1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 33 #include "llvm/CodeGen/LiveStackAnalysis.h" 34 #include "llvm/CodeGen/LiveVariables.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 unsigned verify(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 // Avoid querying the MachineFunctionProperties for each operand. 74 bool isFunctionRegBankSelected; 75 bool isFunctionSelected; 76 77 typedef SmallVector<unsigned, 16> RegVector; 78 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 79 typedef DenseSet<unsigned> RegSet; 80 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 81 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 82 83 const MachineInstr *FirstTerminator; 84 BlockSet FunctionBlocks; 85 86 BitVector regsReserved; 87 RegSet regsLive; 88 RegVector regsDefined, regsDead, regsKilled; 89 RegMaskVector regMasks; 90 RegSet regsLiveInButUnused; 91 92 SlotIndex lastIndex; 93 94 // Add Reg and any sub-registers to RV 95 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 96 RV.push_back(Reg); 97 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 98 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 99 RV.push_back(*SubRegs); 100 } 101 102 struct BBInfo { 103 // Is this MBB reachable from the MF entry point? 104 bool reachable; 105 106 // Vregs that must be live in because they are used without being 107 // defined. Map value is the user. 108 RegMap vregsLiveIn; 109 110 // Regs killed in MBB. They may be defined again, and will then be in both 111 // regsKilled and regsLiveOut. 112 RegSet regsKilled; 113 114 // Regs defined in MBB and live out. Note that vregs passing through may 115 // be live out without being mentioned here. 116 RegSet regsLiveOut; 117 118 // Vregs that pass through MBB untouched. This set is disjoint from 119 // regsKilled and regsLiveOut. 120 RegSet vregsPassed; 121 122 // Vregs that must pass through MBB because they are needed by a successor 123 // block. This set is disjoint from regsLiveOut. 124 RegSet vregsRequired; 125 126 // Set versions of block's predecessor and successor lists. 127 BlockSet Preds, Succs; 128 129 BBInfo() : reachable(false) {} 130 131 // Add register to vregsPassed if it belongs there. Return true if 132 // anything changed. 133 bool addPassed(unsigned Reg) { 134 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 135 return false; 136 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 137 return false; 138 return vregsPassed.insert(Reg).second; 139 } 140 141 // Same for a full set. 142 bool addPassed(const RegSet &RS) { 143 bool changed = false; 144 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 145 if (addPassed(*I)) 146 changed = true; 147 return changed; 148 } 149 150 // Add register to vregsRequired if it belongs there. Return true if 151 // anything changed. 152 bool addRequired(unsigned Reg) { 153 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 154 return false; 155 if (regsLiveOut.count(Reg)) 156 return false; 157 return vregsRequired.insert(Reg).second; 158 } 159 160 // Same for a full set. 161 bool addRequired(const RegSet &RS) { 162 bool changed = false; 163 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 164 if (addRequired(*I)) 165 changed = true; 166 return changed; 167 } 168 169 // Same for a full map. 170 bool addRequired(const RegMap &RM) { 171 bool changed = false; 172 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 173 if (addRequired(I->first)) 174 changed = true; 175 return changed; 176 } 177 178 // Live-out registers are either in regsLiveOut or vregsPassed. 179 bool isLiveOut(unsigned Reg) const { 180 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 181 } 182 }; 183 184 // Extra register info per MBB. 185 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 186 187 bool isReserved(unsigned Reg) { 188 return Reg < regsReserved.size() && regsReserved.test(Reg); 189 } 190 191 bool isAllocatable(unsigned Reg) { 192 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 193 } 194 195 // Analysis information if available 196 LiveVariables *LiveVars; 197 LiveIntervals *LiveInts; 198 LiveStacks *LiveStks; 199 SlotIndexes *Indexes; 200 201 void visitMachineFunctionBefore(); 202 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 203 void visitMachineBundleBefore(const MachineInstr *MI); 204 void visitMachineInstrBefore(const MachineInstr *MI); 205 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 206 void visitMachineInstrAfter(const MachineInstr *MI); 207 void visitMachineBundleAfter(const MachineInstr *MI); 208 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 209 void visitMachineFunctionAfter(); 210 211 template <typename T> void report(const char *msg, ilist_iterator<T> I) { 212 report(msg, &*I); 213 } 214 void report(const char *msg, const MachineFunction *MF); 215 void report(const char *msg, const MachineBasicBlock *MBB); 216 void report(const char *msg, const MachineInstr *MI); 217 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 218 219 void report_context(const LiveInterval &LI) const; 220 void report_context(const LiveRange &LR, unsigned VRegUnit, 221 LaneBitmask LaneMask) const; 222 void report_context(const LiveRange::Segment &S) const; 223 void report_context(const VNInfo &VNI) const; 224 void report_context(SlotIndex Pos) const; 225 void report_context_liverange(const LiveRange &LR) const; 226 void report_context_lanemask(LaneBitmask LaneMask) const; 227 void report_context_vreg(unsigned VReg) const; 228 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 229 230 void verifyInlineAsm(const MachineInstr *MI); 231 232 void checkLiveness(const MachineOperand *MO, unsigned MONum); 233 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 234 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 235 LaneBitmask LaneMask = 0); 236 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 237 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 238 LaneBitmask LaneMask = 0); 239 240 void markReachable(const MachineBasicBlock *MBB); 241 void calcRegsPassed(); 242 void checkPHIOps(const MachineBasicBlock *MBB); 243 244 void calcRegsRequired(); 245 void verifyLiveVariables(); 246 void verifyLiveIntervals(); 247 void verifyLiveInterval(const LiveInterval&); 248 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 249 unsigned); 250 void verifyLiveRangeSegment(const LiveRange&, 251 const LiveRange::const_iterator I, unsigned, 252 unsigned); 253 void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0); 254 255 void verifyStackFrame(); 256 257 void verifySlotIndexes() const; 258 void verifyProperties(const MachineFunction &MF); 259 }; 260 261 struct MachineVerifierPass : public MachineFunctionPass { 262 static char ID; // Pass ID, replacement for typeid 263 const std::string Banner; 264 265 MachineVerifierPass(const std::string &banner = nullptr) 266 : MachineFunctionPass(ID), Banner(banner) { 267 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 268 } 269 270 void getAnalysisUsage(AnalysisUsage &AU) const override { 271 AU.setPreservesAll(); 272 MachineFunctionPass::getAnalysisUsage(AU); 273 } 274 275 bool runOnMachineFunction(MachineFunction &MF) override { 276 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 277 if (FoundErrors) 278 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 279 return false; 280 } 281 }; 282 283 } 284 285 char MachineVerifierPass::ID = 0; 286 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 287 "Verify generated machine code", false, false) 288 289 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 290 return new MachineVerifierPass(Banner); 291 } 292 293 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 294 const { 295 MachineFunction &MF = const_cast<MachineFunction&>(*this); 296 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 297 if (AbortOnErrors && FoundErrors) 298 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 299 return FoundErrors == 0; 300 } 301 302 void MachineVerifier::verifySlotIndexes() const { 303 if (Indexes == nullptr) 304 return; 305 306 // Ensure the IdxMBB list is sorted by slot indexes. 307 SlotIndex Last; 308 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 309 E = Indexes->MBBIndexEnd(); I != E; ++I) { 310 assert(!Last.isValid() || I->first > Last); 311 Last = I->first; 312 } 313 } 314 315 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 316 // If a pass has introduced virtual registers without clearing the 317 // AllVRegsAllocated property (or set it without allocating the vregs) 318 // then report an error. 319 if (MF.getProperties().hasProperty( 320 MachineFunctionProperties::Property::AllVRegsAllocated) && 321 MRI->getNumVirtRegs()) { 322 report( 323 "Function has AllVRegsAllocated property but there are VReg operands", 324 &MF); 325 } 326 } 327 328 unsigned MachineVerifier::verify(MachineFunction &MF) { 329 foundErrors = 0; 330 331 this->MF = &MF; 332 TM = &MF.getTarget(); 333 TII = MF.getSubtarget().getInstrInfo(); 334 TRI = MF.getSubtarget().getRegisterInfo(); 335 MRI = &MF.getRegInfo(); 336 337 isFunctionRegBankSelected = MF.getProperties().hasProperty( 338 MachineFunctionProperties::Property::RegBankSelected); 339 isFunctionSelected = MF.getProperties().hasProperty( 340 MachineFunctionProperties::Property::Selected); 341 342 LiveVars = nullptr; 343 LiveInts = nullptr; 344 LiveStks = nullptr; 345 Indexes = nullptr; 346 if (PASS) { 347 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 348 // We don't want to verify LiveVariables if LiveIntervals is available. 349 if (!LiveInts) 350 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 351 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 352 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 353 } 354 355 verifySlotIndexes(); 356 357 verifyProperties(MF); 358 359 visitMachineFunctionBefore(); 360 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 361 MFI!=MFE; ++MFI) { 362 visitMachineBasicBlockBefore(&*MFI); 363 // Keep track of the current bundle header. 364 const MachineInstr *CurBundle = nullptr; 365 // Do we expect the next instruction to be part of the same bundle? 366 bool InBundle = false; 367 368 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 369 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 370 if (MBBI->getParent() != &*MFI) { 371 report("Bad instruction parent pointer", MFI); 372 errs() << "Instruction: " << *MBBI; 373 continue; 374 } 375 376 // Check for consistent bundle flags. 377 if (InBundle && !MBBI->isBundledWithPred()) 378 report("Missing BundledPred flag, " 379 "BundledSucc was set on predecessor", 380 &*MBBI); 381 if (!InBundle && MBBI->isBundledWithPred()) 382 report("BundledPred flag is set, " 383 "but BundledSucc not set on predecessor", 384 &*MBBI); 385 386 // Is this a bundle header? 387 if (!MBBI->isInsideBundle()) { 388 if (CurBundle) 389 visitMachineBundleAfter(CurBundle); 390 CurBundle = &*MBBI; 391 visitMachineBundleBefore(CurBundle); 392 } else if (!CurBundle) 393 report("No bundle header", MBBI); 394 visitMachineInstrBefore(&*MBBI); 395 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 396 const MachineInstr &MI = *MBBI; 397 const MachineOperand &Op = MI.getOperand(I); 398 if (Op.getParent() != &MI) { 399 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 400 // functions when replacing operands of a MachineInstr. 401 report("Instruction has operand with wrong parent set", &MI); 402 } 403 404 visitMachineOperand(&Op, I); 405 } 406 407 visitMachineInstrAfter(&*MBBI); 408 409 // Was this the last bundled instruction? 410 InBundle = MBBI->isBundledWithSucc(); 411 } 412 if (CurBundle) 413 visitMachineBundleAfter(CurBundle); 414 if (InBundle) 415 report("BundledSucc flag set on last instruction in block", &MFI->back()); 416 visitMachineBasicBlockAfter(&*MFI); 417 } 418 visitMachineFunctionAfter(); 419 420 // Clean up. 421 regsLive.clear(); 422 regsDefined.clear(); 423 regsDead.clear(); 424 regsKilled.clear(); 425 regMasks.clear(); 426 regsLiveInButUnused.clear(); 427 MBBInfoMap.clear(); 428 429 return foundErrors; 430 } 431 432 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 433 assert(MF); 434 errs() << '\n'; 435 if (!foundErrors++) { 436 if (Banner) 437 errs() << "# " << Banner << '\n'; 438 if (LiveInts != nullptr) 439 LiveInts->print(errs()); 440 else 441 MF->print(errs(), Indexes); 442 } 443 errs() << "*** Bad machine code: " << msg << " ***\n" 444 << "- function: " << MF->getName() << "\n"; 445 } 446 447 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 448 assert(MBB); 449 report(msg, MBB->getParent()); 450 errs() << "- basic block: BB#" << MBB->getNumber() 451 << ' ' << MBB->getName() 452 << " (" << (const void*)MBB << ')'; 453 if (Indexes) 454 errs() << " [" << Indexes->getMBBStartIdx(MBB) 455 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 456 errs() << '\n'; 457 } 458 459 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 460 assert(MI); 461 report(msg, MI->getParent()); 462 errs() << "- instruction: "; 463 if (Indexes && Indexes->hasIndex(*MI)) 464 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 465 MI->print(errs(), /*SkipOpers=*/true); 466 errs() << '\n'; 467 } 468 469 void MachineVerifier::report(const char *msg, 470 const MachineOperand *MO, unsigned MONum) { 471 assert(MO); 472 report(msg, MO->getParent()); 473 errs() << "- operand " << MONum << ": "; 474 MO->print(errs(), TRI); 475 errs() << "\n"; 476 } 477 478 void MachineVerifier::report_context(SlotIndex Pos) const { 479 errs() << "- at: " << Pos << '\n'; 480 } 481 482 void MachineVerifier::report_context(const LiveInterval &LI) const { 483 errs() << "- interval: " << LI << '\n'; 484 } 485 486 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 487 LaneBitmask LaneMask) const { 488 report_context_liverange(LR); 489 report_context_vreg_regunit(VRegUnit); 490 if (LaneMask != 0) 491 report_context_lanemask(LaneMask); 492 } 493 494 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 495 errs() << "- segment: " << S << '\n'; 496 } 497 498 void MachineVerifier::report_context(const VNInfo &VNI) const { 499 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 500 } 501 502 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 503 errs() << "- liverange: " << LR << '\n'; 504 } 505 506 void MachineVerifier::report_context_vreg(unsigned VReg) const { 507 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 508 } 509 510 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 511 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 512 report_context_vreg(VRegOrUnit); 513 } else { 514 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 515 } 516 } 517 518 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 519 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 520 } 521 522 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 523 BBInfo &MInfo = MBBInfoMap[MBB]; 524 if (!MInfo.reachable) { 525 MInfo.reachable = true; 526 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 527 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 528 markReachable(*SuI); 529 } 530 } 531 532 void MachineVerifier::visitMachineFunctionBefore() { 533 lastIndex = SlotIndex(); 534 regsReserved = MRI->getReservedRegs(); 535 536 // A sub-register of a reserved register is also reserved 537 for (int Reg = regsReserved.find_first(); Reg>=0; 538 Reg = regsReserved.find_next(Reg)) { 539 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 540 // FIXME: This should probably be: 541 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 542 regsReserved.set(*SubRegs); 543 } 544 } 545 546 markReachable(&MF->front()); 547 548 // Build a set of the basic blocks in the function. 549 FunctionBlocks.clear(); 550 for (const auto &MBB : *MF) { 551 FunctionBlocks.insert(&MBB); 552 BBInfo &MInfo = MBBInfoMap[&MBB]; 553 554 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 555 if (MInfo.Preds.size() != MBB.pred_size()) 556 report("MBB has duplicate entries in its predecessor list.", &MBB); 557 558 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 559 if (MInfo.Succs.size() != MBB.succ_size()) 560 report("MBB has duplicate entries in its successor list.", &MBB); 561 } 562 563 // Check that the register use lists are sane. 564 MRI->verifyUseLists(); 565 566 verifyStackFrame(); 567 } 568 569 // Does iterator point to a and b as the first two elements? 570 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 571 const MachineBasicBlock *a, const MachineBasicBlock *b) { 572 if (*i == a) 573 return *++i == b; 574 if (*i == b) 575 return *++i == a; 576 return false; 577 } 578 579 void 580 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 581 FirstTerminator = nullptr; 582 583 if (MRI->isSSA()) { 584 // If this block has allocatable physical registers live-in, check that 585 // it is an entry block or landing pad. 586 for (const auto &LI : MBB->liveins()) { 587 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 588 MBB->getIterator() != MBB->getParent()->begin()) { 589 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 590 } 591 } 592 } 593 594 // Count the number of landing pad successors. 595 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 596 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 597 E = MBB->succ_end(); I != E; ++I) { 598 if ((*I)->isEHPad()) 599 LandingPadSuccs.insert(*I); 600 if (!FunctionBlocks.count(*I)) 601 report("MBB has successor that isn't part of the function.", MBB); 602 if (!MBBInfoMap[*I].Preds.count(MBB)) { 603 report("Inconsistent CFG", MBB); 604 errs() << "MBB is not in the predecessor list of the successor BB#" 605 << (*I)->getNumber() << ".\n"; 606 } 607 } 608 609 // Check the predecessor list. 610 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 611 E = MBB->pred_end(); I != E; ++I) { 612 if (!FunctionBlocks.count(*I)) 613 report("MBB has predecessor that isn't part of the function.", MBB); 614 if (!MBBInfoMap[*I].Succs.count(MBB)) { 615 report("Inconsistent CFG", MBB); 616 errs() << "MBB is not in the successor list of the predecessor BB#" 617 << (*I)->getNumber() << ".\n"; 618 } 619 } 620 621 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 622 const BasicBlock *BB = MBB->getBasicBlock(); 623 const Function *Fn = MF->getFunction(); 624 if (LandingPadSuccs.size() > 1 && 625 !(AsmInfo && 626 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 627 BB && isa<SwitchInst>(BB->getTerminator())) && 628 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 629 report("MBB has more than one landing pad successor", MBB); 630 631 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 632 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 633 SmallVector<MachineOperand, 4> Cond; 634 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 635 Cond)) { 636 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 637 // check whether its answers match up with reality. 638 if (!TBB && !FBB) { 639 // Block falls through to its successor. 640 MachineFunction::const_iterator MBBI = MBB->getIterator(); 641 ++MBBI; 642 if (MBBI == MF->end()) { 643 // It's possible that the block legitimately ends with a noreturn 644 // call or an unreachable, in which case it won't actually fall 645 // out the bottom of the function. 646 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 647 // It's possible that the block legitimately ends with a noreturn 648 // call or an unreachable, in which case it won't actuall fall 649 // out of the block. 650 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 651 report("MBB exits via unconditional fall-through but doesn't have " 652 "exactly one CFG successor!", MBB); 653 } else if (!MBB->isSuccessor(&*MBBI)) { 654 report("MBB exits via unconditional fall-through but its successor " 655 "differs from its CFG successor!", MBB); 656 } 657 if (!MBB->empty() && MBB->back().isBarrier() && 658 !TII->isPredicated(MBB->back())) { 659 report("MBB exits via unconditional fall-through but ends with a " 660 "barrier instruction!", MBB); 661 } 662 if (!Cond.empty()) { 663 report("MBB exits via unconditional fall-through but has a condition!", 664 MBB); 665 } 666 } else if (TBB && !FBB && Cond.empty()) { 667 // Block unconditionally branches somewhere. 668 // If the block has exactly one successor, that happens to be a 669 // landingpad, accept it as valid control flow. 670 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 671 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 672 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 673 report("MBB exits via unconditional branch but doesn't have " 674 "exactly one CFG successor!", MBB); 675 } else if (!MBB->isSuccessor(TBB)) { 676 report("MBB exits via unconditional branch but the CFG " 677 "successor doesn't match the actual successor!", MBB); 678 } 679 if (MBB->empty()) { 680 report("MBB exits via unconditional branch but doesn't contain " 681 "any instructions!", MBB); 682 } else if (!MBB->back().isBarrier()) { 683 report("MBB exits via unconditional branch but doesn't end with a " 684 "barrier instruction!", MBB); 685 } else if (!MBB->back().isTerminator()) { 686 report("MBB exits via unconditional branch but the branch isn't a " 687 "terminator instruction!", MBB); 688 } 689 } else if (TBB && !FBB && !Cond.empty()) { 690 // Block conditionally branches somewhere, otherwise falls through. 691 MachineFunction::const_iterator MBBI = MBB->getIterator(); 692 ++MBBI; 693 if (MBBI == MF->end()) { 694 report("MBB conditionally falls through out of function!", MBB); 695 } else if (MBB->succ_size() == 1) { 696 // A conditional branch with only one successor is weird, but allowed. 697 if (&*MBBI != TBB) 698 report("MBB exits via conditional branch/fall-through but only has " 699 "one CFG successor!", MBB); 700 else if (TBB != *MBB->succ_begin()) 701 report("MBB exits via conditional branch/fall-through but the CFG " 702 "successor don't match the actual successor!", MBB); 703 } else if (MBB->succ_size() != 2) { 704 report("MBB exits via conditional branch/fall-through but doesn't have " 705 "exactly two CFG successors!", MBB); 706 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 707 report("MBB exits via conditional branch/fall-through but the CFG " 708 "successors don't match the actual successors!", MBB); 709 } 710 if (MBB->empty()) { 711 report("MBB exits via conditional branch/fall-through but doesn't " 712 "contain any instructions!", MBB); 713 } else if (MBB->back().isBarrier()) { 714 report("MBB exits via conditional branch/fall-through but ends with a " 715 "barrier instruction!", MBB); 716 } else if (!MBB->back().isTerminator()) { 717 report("MBB exits via conditional branch/fall-through but the branch " 718 "isn't a terminator instruction!", MBB); 719 } 720 } else if (TBB && FBB) { 721 // Block conditionally branches somewhere, otherwise branches 722 // somewhere else. 723 if (MBB->succ_size() == 1) { 724 // A conditional branch with only one successor is weird, but allowed. 725 if (FBB != TBB) 726 report("MBB exits via conditional branch/branch through but only has " 727 "one CFG successor!", MBB); 728 else if (TBB != *MBB->succ_begin()) 729 report("MBB exits via conditional branch/branch through but the CFG " 730 "successor don't match the actual successor!", MBB); 731 } else if (MBB->succ_size() != 2) { 732 report("MBB exits via conditional branch/branch but doesn't have " 733 "exactly two CFG successors!", MBB); 734 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 735 report("MBB exits via conditional branch/branch but the CFG " 736 "successors don't match the actual successors!", MBB); 737 } 738 if (MBB->empty()) { 739 report("MBB exits via conditional branch/branch but doesn't " 740 "contain any instructions!", MBB); 741 } else if (!MBB->back().isBarrier()) { 742 report("MBB exits via conditional branch/branch but doesn't end with a " 743 "barrier instruction!", MBB); 744 } else if (!MBB->back().isTerminator()) { 745 report("MBB exits via conditional branch/branch but the branch " 746 "isn't a terminator instruction!", MBB); 747 } 748 if (Cond.empty()) { 749 report("MBB exits via conditinal branch/branch but there's no " 750 "condition!", MBB); 751 } 752 } else { 753 report("AnalyzeBranch returned invalid data!", MBB); 754 } 755 } 756 757 regsLive.clear(); 758 for (const auto &LI : MBB->liveins()) { 759 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 760 report("MBB live-in list contains non-physical register", MBB); 761 continue; 762 } 763 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 764 SubRegs.isValid(); ++SubRegs) 765 regsLive.insert(*SubRegs); 766 } 767 regsLiveInButUnused = regsLive; 768 769 const MachineFrameInfo &MFI = MF->getFrameInfo(); 770 BitVector PR = MFI.getPristineRegs(*MF); 771 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 772 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 773 SubRegs.isValid(); ++SubRegs) 774 regsLive.insert(*SubRegs); 775 } 776 777 regsKilled.clear(); 778 regsDefined.clear(); 779 780 if (Indexes) 781 lastIndex = Indexes->getMBBStartIdx(MBB); 782 } 783 784 // This function gets called for all bundle headers, including normal 785 // stand-alone unbundled instructions. 786 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 787 if (Indexes && Indexes->hasIndex(*MI)) { 788 SlotIndex idx = Indexes->getInstructionIndex(*MI); 789 if (!(idx > lastIndex)) { 790 report("Instruction index out of order", MI); 791 errs() << "Last instruction was at " << lastIndex << '\n'; 792 } 793 lastIndex = idx; 794 } 795 796 // Ensure non-terminators don't follow terminators. 797 // Ignore predicated terminators formed by if conversion. 798 // FIXME: If conversion shouldn't need to violate this rule. 799 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 800 if (!FirstTerminator) 801 FirstTerminator = MI; 802 } else if (FirstTerminator) { 803 report("Non-terminator instruction after the first terminator", MI); 804 errs() << "First terminator was:\t" << *FirstTerminator; 805 } 806 } 807 808 // The operands on an INLINEASM instruction must follow a template. 809 // Verify that the flag operands make sense. 810 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 811 // The first two operands on INLINEASM are the asm string and global flags. 812 if (MI->getNumOperands() < 2) { 813 report("Too few operands on inline asm", MI); 814 return; 815 } 816 if (!MI->getOperand(0).isSymbol()) 817 report("Asm string must be an external symbol", MI); 818 if (!MI->getOperand(1).isImm()) 819 report("Asm flags must be an immediate", MI); 820 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 821 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 822 // and Extra_IsConvergent = 32. 823 if (!isUInt<6>(MI->getOperand(1).getImm())) 824 report("Unknown asm flags", &MI->getOperand(1), 1); 825 826 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 827 828 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 829 unsigned NumOps; 830 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 831 const MachineOperand &MO = MI->getOperand(OpNo); 832 // There may be implicit ops after the fixed operands. 833 if (!MO.isImm()) 834 break; 835 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 836 } 837 838 if (OpNo > MI->getNumOperands()) 839 report("Missing operands in last group", MI); 840 841 // An optional MDNode follows the groups. 842 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 843 ++OpNo; 844 845 // All trailing operands must be implicit registers. 846 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 847 const MachineOperand &MO = MI->getOperand(OpNo); 848 if (!MO.isReg() || !MO.isImplicit()) 849 report("Expected implicit register after groups", &MO, OpNo); 850 } 851 } 852 853 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 854 const MCInstrDesc &MCID = MI->getDesc(); 855 if (MI->getNumOperands() < MCID.getNumOperands()) { 856 report("Too few operands", MI); 857 errs() << MCID.getNumOperands() << " operands expected, but " 858 << MI->getNumOperands() << " given.\n"; 859 } 860 861 // Check the tied operands. 862 if (MI->isInlineAsm()) 863 verifyInlineAsm(MI); 864 865 // Check the MachineMemOperands for basic consistency. 866 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 867 E = MI->memoperands_end(); I != E; ++I) { 868 if ((*I)->isLoad() && !MI->mayLoad()) 869 report("Missing mayLoad flag", MI); 870 if ((*I)->isStore() && !MI->mayStore()) 871 report("Missing mayStore flag", MI); 872 } 873 874 // Debug values must not have a slot index. 875 // Other instructions must have one, unless they are inside a bundle. 876 if (LiveInts) { 877 bool mapped = !LiveInts->isNotInMIMap(*MI); 878 if (MI->isDebugValue()) { 879 if (mapped) 880 report("Debug instruction has a slot index", MI); 881 } else if (MI->isInsideBundle()) { 882 if (mapped) 883 report("Instruction inside bundle has a slot index", MI); 884 } else { 885 if (!mapped) 886 report("Missing slot index", MI); 887 } 888 } 889 890 // Check types. 891 const unsigned NumTypes = MI->getNumTypes(); 892 if (isPreISelGenericOpcode(MCID.getOpcode())) { 893 if (isFunctionSelected) 894 report("Unexpected generic instruction in a Selected function", MI); 895 896 if (NumTypes == 0) 897 report("Generic instruction must have a type", MI); 898 } else { 899 if (NumTypes != 0) 900 report("Non-generic instruction cannot have a type", MI); 901 } 902 903 StringRef ErrorInfo; 904 if (!TII->verifyInstruction(*MI, ErrorInfo)) 905 report(ErrorInfo.data(), MI); 906 } 907 908 void 909 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 910 const MachineInstr *MI = MO->getParent(); 911 const MCInstrDesc &MCID = MI->getDesc(); 912 unsigned NumDefs = MCID.getNumDefs(); 913 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 914 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 915 916 // The first MCID.NumDefs operands must be explicit register defines 917 if (MONum < NumDefs) { 918 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 919 if (!MO->isReg()) 920 report("Explicit definition must be a register", MO, MONum); 921 else if (!MO->isDef() && !MCOI.isOptionalDef()) 922 report("Explicit definition marked as use", MO, MONum); 923 else if (MO->isImplicit()) 924 report("Explicit definition marked as implicit", MO, MONum); 925 } else if (MONum < MCID.getNumOperands()) { 926 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 927 // Don't check if it's the last operand in a variadic instruction. See, 928 // e.g., LDM_RET in the arm back end. 929 if (MO->isReg() && 930 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 931 if (MO->isDef() && !MCOI.isOptionalDef()) 932 report("Explicit operand marked as def", MO, MONum); 933 if (MO->isImplicit()) 934 report("Explicit operand marked as implicit", MO, MONum); 935 } 936 937 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 938 if (TiedTo != -1) { 939 if (!MO->isReg()) 940 report("Tied use must be a register", MO, MONum); 941 else if (!MO->isTied()) 942 report("Operand should be tied", MO, MONum); 943 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 944 report("Tied def doesn't match MCInstrDesc", MO, MONum); 945 } else if (MO->isReg() && MO->isTied()) 946 report("Explicit operand should not be tied", MO, MONum); 947 } else { 948 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 949 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 950 report("Extra explicit operand on non-variadic instruction", MO, MONum); 951 } 952 953 switch (MO->getType()) { 954 case MachineOperand::MO_Register: { 955 const unsigned Reg = MO->getReg(); 956 if (!Reg) 957 return; 958 if (MRI->tracksLiveness() && !MI->isDebugValue()) 959 checkLiveness(MO, MONum); 960 961 // Verify the consistency of tied operands. 962 if (MO->isTied()) { 963 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 964 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 965 if (!OtherMO.isReg()) 966 report("Must be tied to a register", MO, MONum); 967 if (!OtherMO.isTied()) 968 report("Missing tie flags on tied operand", MO, MONum); 969 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 970 report("Inconsistent tie links", MO, MONum); 971 if (MONum < MCID.getNumDefs()) { 972 if (OtherIdx < MCID.getNumOperands()) { 973 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 974 report("Explicit def tied to explicit use without tie constraint", 975 MO, MONum); 976 } else { 977 if (!OtherMO.isImplicit()) 978 report("Explicit def should be tied to implicit use", MO, MONum); 979 } 980 } 981 } 982 983 // Verify two-address constraints after leaving SSA form. 984 unsigned DefIdx; 985 if (!MRI->isSSA() && MO->isUse() && 986 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 987 Reg != MI->getOperand(DefIdx).getReg()) 988 report("Two-address instruction operands must be identical", MO, MONum); 989 990 // Check register classes. 991 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 992 unsigned SubIdx = MO->getSubReg(); 993 994 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 995 if (SubIdx) { 996 report("Illegal subregister index for physical register", MO, MONum); 997 return; 998 } 999 if (const TargetRegisterClass *DRC = 1000 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1001 if (!DRC->contains(Reg)) { 1002 report("Illegal physical register for instruction", MO, MONum); 1003 errs() << TRI->getName(Reg) << " is not a " 1004 << TRI->getRegClassName(DRC) << " register.\n"; 1005 } 1006 } 1007 } else { 1008 // Virtual register. 1009 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1010 if (!RC) { 1011 // This is a generic virtual register. 1012 1013 // If we're post-Select, we can't have gvregs anymore. 1014 if (isFunctionSelected) { 1015 report("Generic virtual register invalid in a Selected function", 1016 MO, MONum); 1017 return; 1018 } 1019 1020 // The gvreg must have a size and it must not have a SubIdx. 1021 unsigned Size = MRI->getSize(Reg); 1022 if (!Size) { 1023 report("Generic virtual register must have a size", MO, MONum); 1024 return; 1025 } 1026 1027 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1028 1029 // If we're post-RegBankSelect, the gvreg must have a bank. 1030 if (!RegBank && isFunctionRegBankSelected) { 1031 report("Generic virtual register must have a bank in a " 1032 "RegBankSelected function", 1033 MO, MONum); 1034 return; 1035 } 1036 1037 // Make sure the register fits into its register bank if any. 1038 if (RegBank && RegBank->getSize() < Size) { 1039 report("Register bank is too small for virtual register", MO, 1040 MONum); 1041 errs() << "Register bank " << RegBank->getName() << " too small(" 1042 << RegBank->getSize() << ") to fit " << Size << "-bits\n"; 1043 return; 1044 } 1045 if (SubIdx) { 1046 report("Generic virtual register does not subregister index", MO, MONum); 1047 return; 1048 } 1049 break; 1050 } 1051 if (SubIdx) { 1052 const TargetRegisterClass *SRC = 1053 TRI->getSubClassWithSubReg(RC, SubIdx); 1054 if (!SRC) { 1055 report("Invalid subregister index for virtual register", MO, MONum); 1056 errs() << "Register class " << TRI->getRegClassName(RC) 1057 << " does not support subreg index " << SubIdx << "\n"; 1058 return; 1059 } 1060 if (RC != SRC) { 1061 report("Invalid register class for subregister index", MO, MONum); 1062 errs() << "Register class " << TRI->getRegClassName(RC) 1063 << " does not fully support subreg index " << SubIdx << "\n"; 1064 return; 1065 } 1066 } 1067 if (const TargetRegisterClass *DRC = 1068 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1069 if (SubIdx) { 1070 const TargetRegisterClass *SuperRC = 1071 TRI->getLargestLegalSuperClass(RC, *MF); 1072 if (!SuperRC) { 1073 report("No largest legal super class exists.", MO, MONum); 1074 return; 1075 } 1076 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1077 if (!DRC) { 1078 report("No matching super-reg register class.", MO, MONum); 1079 return; 1080 } 1081 } 1082 if (!RC->hasSuperClassEq(DRC)) { 1083 report("Illegal virtual register for instruction", MO, MONum); 1084 errs() << "Expected a " << TRI->getRegClassName(DRC) 1085 << " register, but got a " << TRI->getRegClassName(RC) 1086 << " register\n"; 1087 } 1088 } 1089 } 1090 } 1091 break; 1092 } 1093 1094 case MachineOperand::MO_RegisterMask: 1095 regMasks.push_back(MO->getRegMask()); 1096 break; 1097 1098 case MachineOperand::MO_MachineBasicBlock: 1099 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1100 report("PHI operand is not in the CFG", MO, MONum); 1101 break; 1102 1103 case MachineOperand::MO_FrameIndex: 1104 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1105 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1106 int FI = MO->getIndex(); 1107 LiveInterval &LI = LiveStks->getInterval(FI); 1108 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1109 1110 bool stores = MI->mayStore(); 1111 bool loads = MI->mayLoad(); 1112 // For a memory-to-memory move, we need to check if the frame 1113 // index is used for storing or loading, by inspecting the 1114 // memory operands. 1115 if (stores && loads) { 1116 for (auto *MMO : MI->memoperands()) { 1117 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1118 if (PSV == nullptr) continue; 1119 const FixedStackPseudoSourceValue *Value = 1120 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1121 if (Value == nullptr) continue; 1122 if (Value->getFrameIndex() != FI) continue; 1123 1124 if (MMO->isStore()) 1125 loads = false; 1126 else 1127 stores = false; 1128 break; 1129 } 1130 if (loads == stores) 1131 report("Missing fixed stack memoperand.", MI); 1132 } 1133 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1134 report("Instruction loads from dead spill slot", MO, MONum); 1135 errs() << "Live stack: " << LI << '\n'; 1136 } 1137 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1138 report("Instruction stores to dead spill slot", MO, MONum); 1139 errs() << "Live stack: " << LI << '\n'; 1140 } 1141 } 1142 break; 1143 1144 default: 1145 break; 1146 } 1147 } 1148 1149 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1150 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1151 LaneBitmask LaneMask) { 1152 LiveQueryResult LRQ = LR.Query(UseIdx); 1153 // Check if we have a segment at the use, note however that we only need one 1154 // live subregister range, the others may be dead. 1155 if (!LRQ.valueIn() && LaneMask == 0) { 1156 report("No live segment at use", MO, MONum); 1157 report_context_liverange(LR); 1158 report_context_vreg_regunit(VRegOrUnit); 1159 report_context(UseIdx); 1160 } 1161 if (MO->isKill() && !LRQ.isKill()) { 1162 report("Live range continues after kill flag", MO, MONum); 1163 report_context_liverange(LR); 1164 report_context_vreg_regunit(VRegOrUnit); 1165 if (LaneMask != 0) 1166 report_context_lanemask(LaneMask); 1167 report_context(UseIdx); 1168 } 1169 } 1170 1171 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1172 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1173 LaneBitmask LaneMask) { 1174 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1175 assert(VNI && "NULL valno is not allowed"); 1176 if (VNI->def != DefIdx) { 1177 report("Inconsistent valno->def", MO, MONum); 1178 report_context_liverange(LR); 1179 report_context_vreg_regunit(VRegOrUnit); 1180 if (LaneMask != 0) 1181 report_context_lanemask(LaneMask); 1182 report_context(*VNI); 1183 report_context(DefIdx); 1184 } 1185 } else { 1186 report("No live segment at def", MO, MONum); 1187 report_context_liverange(LR); 1188 report_context_vreg_regunit(VRegOrUnit); 1189 if (LaneMask != 0) 1190 report_context_lanemask(LaneMask); 1191 report_context(DefIdx); 1192 } 1193 // Check that, if the dead def flag is present, LiveInts agree. 1194 if (MO->isDead()) { 1195 LiveQueryResult LRQ = LR.Query(DefIdx); 1196 if (!LRQ.isDeadDef()) { 1197 // In case of physregs we can have a non-dead definition on another 1198 // operand. 1199 bool otherDef = false; 1200 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1201 const MachineInstr &MI = *MO->getParent(); 1202 for (const MachineOperand &MO : MI.operands()) { 1203 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1204 continue; 1205 unsigned Reg = MO.getReg(); 1206 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1207 if (*Units == VRegOrUnit) { 1208 otherDef = true; 1209 break; 1210 } 1211 } 1212 } 1213 } 1214 1215 if (!otherDef) { 1216 report("Live range continues after dead def flag", MO, MONum); 1217 report_context_liverange(LR); 1218 report_context_vreg_regunit(VRegOrUnit); 1219 if (LaneMask != 0) 1220 report_context_lanemask(LaneMask); 1221 } 1222 } 1223 } 1224 } 1225 1226 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1227 const MachineInstr *MI = MO->getParent(); 1228 const unsigned Reg = MO->getReg(); 1229 1230 // Both use and def operands can read a register. 1231 if (MO->readsReg()) { 1232 regsLiveInButUnused.erase(Reg); 1233 1234 if (MO->isKill()) 1235 addRegWithSubRegs(regsKilled, Reg); 1236 1237 // Check that LiveVars knows this kill. 1238 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1239 MO->isKill()) { 1240 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1241 if (!is_contained(VI.Kills, MI)) 1242 report("Kill missing from LiveVariables", MO, MONum); 1243 } 1244 1245 // Check LiveInts liveness and kill. 1246 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1247 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1248 // Check the cached regunit intervals. 1249 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1250 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1251 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1252 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1253 } 1254 } 1255 1256 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1257 if (LiveInts->hasInterval(Reg)) { 1258 // This is a virtual register interval. 1259 const LiveInterval &LI = LiveInts->getInterval(Reg); 1260 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1261 1262 if (LI.hasSubRanges() && !MO->isDef()) { 1263 unsigned SubRegIdx = MO->getSubReg(); 1264 LaneBitmask MOMask = SubRegIdx != 0 1265 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1266 : MRI->getMaxLaneMaskForVReg(Reg); 1267 LaneBitmask LiveInMask = 0; 1268 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1269 if ((MOMask & SR.LaneMask) == 0) 1270 continue; 1271 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1272 LiveQueryResult LRQ = SR.Query(UseIdx); 1273 if (LRQ.valueIn()) 1274 LiveInMask |= SR.LaneMask; 1275 } 1276 // At least parts of the register has to be live at the use. 1277 if ((LiveInMask & MOMask) == 0) { 1278 report("No live subrange at use", MO, MONum); 1279 report_context(LI); 1280 report_context(UseIdx); 1281 } 1282 } 1283 } else { 1284 report("Virtual register has no live interval", MO, MONum); 1285 } 1286 } 1287 } 1288 1289 // Use of a dead register. 1290 if (!regsLive.count(Reg)) { 1291 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1292 // Reserved registers may be used even when 'dead'. 1293 bool Bad = !isReserved(Reg); 1294 // We are fine if just any subregister has a defined value. 1295 if (Bad) { 1296 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1297 ++SubRegs) { 1298 if (regsLive.count(*SubRegs)) { 1299 Bad = false; 1300 break; 1301 } 1302 } 1303 } 1304 // If there is an additional implicit-use of a super register we stop 1305 // here. By definition we are fine if the super register is not 1306 // (completely) dead, if the complete super register is dead we will 1307 // get a report for its operand. 1308 if (Bad) { 1309 for (const MachineOperand &MOP : MI->uses()) { 1310 if (!MOP.isReg()) 1311 continue; 1312 if (!MOP.isImplicit()) 1313 continue; 1314 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1315 ++SubRegs) { 1316 if (*SubRegs == Reg) { 1317 Bad = false; 1318 break; 1319 } 1320 } 1321 } 1322 } 1323 if (Bad) 1324 report("Using an undefined physical register", MO, MONum); 1325 } else if (MRI->def_empty(Reg)) { 1326 report("Reading virtual register without a def", MO, MONum); 1327 } else { 1328 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1329 // We don't know which virtual registers are live in, so only complain 1330 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1331 // must be live in. PHI instructions are handled separately. 1332 if (MInfo.regsKilled.count(Reg)) 1333 report("Using a killed virtual register", MO, MONum); 1334 else if (!MI->isPHI()) 1335 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1336 } 1337 } 1338 } 1339 1340 if (MO->isDef()) { 1341 // Register defined. 1342 // TODO: verify that earlyclobber ops are not used. 1343 if (MO->isDead()) 1344 addRegWithSubRegs(regsDead, Reg); 1345 else 1346 addRegWithSubRegs(regsDefined, Reg); 1347 1348 // Verify SSA form. 1349 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1350 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1351 report("Multiple virtual register defs in SSA form", MO, MONum); 1352 1353 // Check LiveInts for a live segment, but only for virtual registers. 1354 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1355 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1356 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1357 1358 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1359 if (LiveInts->hasInterval(Reg)) { 1360 const LiveInterval &LI = LiveInts->getInterval(Reg); 1361 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1362 1363 if (LI.hasSubRanges()) { 1364 unsigned SubRegIdx = MO->getSubReg(); 1365 LaneBitmask MOMask = SubRegIdx != 0 1366 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1367 : MRI->getMaxLaneMaskForVReg(Reg); 1368 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1369 if ((SR.LaneMask & MOMask) == 0) 1370 continue; 1371 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1372 } 1373 } 1374 } else { 1375 report("Virtual register has no Live interval", MO, MONum); 1376 } 1377 } 1378 } 1379 } 1380 } 1381 1382 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1383 } 1384 1385 // This function gets called after visiting all instructions in a bundle. The 1386 // argument points to the bundle header. 1387 // Normal stand-alone instructions are also considered 'bundles', and this 1388 // function is called for all of them. 1389 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1390 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1391 set_union(MInfo.regsKilled, regsKilled); 1392 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1393 // Kill any masked registers. 1394 while (!regMasks.empty()) { 1395 const uint32_t *Mask = regMasks.pop_back_val(); 1396 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1397 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1398 MachineOperand::clobbersPhysReg(Mask, *I)) 1399 regsDead.push_back(*I); 1400 } 1401 set_subtract(regsLive, regsDead); regsDead.clear(); 1402 set_union(regsLive, regsDefined); regsDefined.clear(); 1403 } 1404 1405 void 1406 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1407 MBBInfoMap[MBB].regsLiveOut = regsLive; 1408 regsLive.clear(); 1409 1410 if (Indexes) { 1411 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1412 if (!(stop > lastIndex)) { 1413 report("Block ends before last instruction index", MBB); 1414 errs() << "Block ends at " << stop 1415 << " last instruction was at " << lastIndex << '\n'; 1416 } 1417 lastIndex = stop; 1418 } 1419 } 1420 1421 // Calculate the largest possible vregsPassed sets. These are the registers that 1422 // can pass through an MBB live, but may not be live every time. It is assumed 1423 // that all vregsPassed sets are empty before the call. 1424 void MachineVerifier::calcRegsPassed() { 1425 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1426 // have any vregsPassed. 1427 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1428 for (const auto &MBB : *MF) { 1429 BBInfo &MInfo = MBBInfoMap[&MBB]; 1430 if (!MInfo.reachable) 1431 continue; 1432 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1433 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1434 BBInfo &SInfo = MBBInfoMap[*SuI]; 1435 if (SInfo.addPassed(MInfo.regsLiveOut)) 1436 todo.insert(*SuI); 1437 } 1438 } 1439 1440 // Iteratively push vregsPassed to successors. This will converge to the same 1441 // final state regardless of DenseSet iteration order. 1442 while (!todo.empty()) { 1443 const MachineBasicBlock *MBB = *todo.begin(); 1444 todo.erase(MBB); 1445 BBInfo &MInfo = MBBInfoMap[MBB]; 1446 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1447 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1448 if (*SuI == MBB) 1449 continue; 1450 BBInfo &SInfo = MBBInfoMap[*SuI]; 1451 if (SInfo.addPassed(MInfo.vregsPassed)) 1452 todo.insert(*SuI); 1453 } 1454 } 1455 } 1456 1457 // Calculate the set of virtual registers that must be passed through each basic 1458 // block in order to satisfy the requirements of successor blocks. This is very 1459 // similar to calcRegsPassed, only backwards. 1460 void MachineVerifier::calcRegsRequired() { 1461 // First push live-in regs to predecessors' vregsRequired. 1462 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1463 for (const auto &MBB : *MF) { 1464 BBInfo &MInfo = MBBInfoMap[&MBB]; 1465 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1466 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1467 BBInfo &PInfo = MBBInfoMap[*PrI]; 1468 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1469 todo.insert(*PrI); 1470 } 1471 } 1472 1473 // Iteratively push vregsRequired to predecessors. This will converge to the 1474 // same final state regardless of DenseSet iteration order. 1475 while (!todo.empty()) { 1476 const MachineBasicBlock *MBB = *todo.begin(); 1477 todo.erase(MBB); 1478 BBInfo &MInfo = MBBInfoMap[MBB]; 1479 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1480 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1481 if (*PrI == MBB) 1482 continue; 1483 BBInfo &SInfo = MBBInfoMap[*PrI]; 1484 if (SInfo.addRequired(MInfo.vregsRequired)) 1485 todo.insert(*PrI); 1486 } 1487 } 1488 } 1489 1490 // Check PHI instructions at the beginning of MBB. It is assumed that 1491 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1492 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1493 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1494 for (const auto &BBI : *MBB) { 1495 if (!BBI.isPHI()) 1496 break; 1497 seen.clear(); 1498 1499 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1500 unsigned Reg = BBI.getOperand(i).getReg(); 1501 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1502 if (!Pre->isSuccessor(MBB)) 1503 continue; 1504 seen.insert(Pre); 1505 BBInfo &PrInfo = MBBInfoMap[Pre]; 1506 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1507 report("PHI operand is not live-out from predecessor", 1508 &BBI.getOperand(i), i); 1509 } 1510 1511 // Did we see all predecessors? 1512 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1513 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1514 if (!seen.count(*PrI)) { 1515 report("Missing PHI operand", &BBI); 1516 errs() << "BB#" << (*PrI)->getNumber() 1517 << " is a predecessor according to the CFG.\n"; 1518 } 1519 } 1520 } 1521 } 1522 1523 void MachineVerifier::visitMachineFunctionAfter() { 1524 calcRegsPassed(); 1525 1526 for (const auto &MBB : *MF) { 1527 BBInfo &MInfo = MBBInfoMap[&MBB]; 1528 1529 // Skip unreachable MBBs. 1530 if (!MInfo.reachable) 1531 continue; 1532 1533 checkPHIOps(&MBB); 1534 } 1535 1536 // Now check liveness info if available 1537 calcRegsRequired(); 1538 1539 // Check for killed virtual registers that should be live out. 1540 for (const auto &MBB : *MF) { 1541 BBInfo &MInfo = MBBInfoMap[&MBB]; 1542 for (RegSet::iterator 1543 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1544 ++I) 1545 if (MInfo.regsKilled.count(*I)) { 1546 report("Virtual register killed in block, but needed live out.", &MBB); 1547 errs() << "Virtual register " << PrintReg(*I) 1548 << " is used after the block.\n"; 1549 } 1550 } 1551 1552 if (!MF->empty()) { 1553 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1554 for (RegSet::iterator 1555 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1556 ++I) { 1557 report("Virtual register defs don't dominate all uses.", MF); 1558 report_context_vreg(*I); 1559 } 1560 } 1561 1562 if (LiveVars) 1563 verifyLiveVariables(); 1564 if (LiveInts) 1565 verifyLiveIntervals(); 1566 } 1567 1568 void MachineVerifier::verifyLiveVariables() { 1569 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1570 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1571 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1572 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1573 for (const auto &MBB : *MF) { 1574 BBInfo &MInfo = MBBInfoMap[&MBB]; 1575 1576 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1577 if (MInfo.vregsRequired.count(Reg)) { 1578 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1579 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1580 errs() << "Virtual register " << PrintReg(Reg) 1581 << " must be live through the block.\n"; 1582 } 1583 } else { 1584 if (VI.AliveBlocks.test(MBB.getNumber())) { 1585 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1586 errs() << "Virtual register " << PrintReg(Reg) 1587 << " is not needed live through the block.\n"; 1588 } 1589 } 1590 } 1591 } 1592 } 1593 1594 void MachineVerifier::verifyLiveIntervals() { 1595 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1596 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1597 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1598 1599 // Spilling and splitting may leave unused registers around. Skip them. 1600 if (MRI->reg_nodbg_empty(Reg)) 1601 continue; 1602 1603 if (!LiveInts->hasInterval(Reg)) { 1604 report("Missing live interval for virtual register", MF); 1605 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1606 continue; 1607 } 1608 1609 const LiveInterval &LI = LiveInts->getInterval(Reg); 1610 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1611 verifyLiveInterval(LI); 1612 } 1613 1614 // Verify all the cached regunit intervals. 1615 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1616 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1617 verifyLiveRange(*LR, i); 1618 } 1619 1620 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1621 const VNInfo *VNI, unsigned Reg, 1622 LaneBitmask LaneMask) { 1623 if (VNI->isUnused()) 1624 return; 1625 1626 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1627 1628 if (!DefVNI) { 1629 report("Value not live at VNInfo def and not marked unused", MF); 1630 report_context(LR, Reg, LaneMask); 1631 report_context(*VNI); 1632 return; 1633 } 1634 1635 if (DefVNI != VNI) { 1636 report("Live segment at def has different VNInfo", MF); 1637 report_context(LR, Reg, LaneMask); 1638 report_context(*VNI); 1639 return; 1640 } 1641 1642 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1643 if (!MBB) { 1644 report("Invalid VNInfo definition index", MF); 1645 report_context(LR, Reg, LaneMask); 1646 report_context(*VNI); 1647 return; 1648 } 1649 1650 if (VNI->isPHIDef()) { 1651 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1652 report("PHIDef VNInfo is not defined at MBB start", MBB); 1653 report_context(LR, Reg, LaneMask); 1654 report_context(*VNI); 1655 } 1656 return; 1657 } 1658 1659 // Non-PHI def. 1660 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1661 if (!MI) { 1662 report("No instruction at VNInfo def index", MBB); 1663 report_context(LR, Reg, LaneMask); 1664 report_context(*VNI); 1665 return; 1666 } 1667 1668 if (Reg != 0) { 1669 bool hasDef = false; 1670 bool isEarlyClobber = false; 1671 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1672 if (!MOI->isReg() || !MOI->isDef()) 1673 continue; 1674 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1675 if (MOI->getReg() != Reg) 1676 continue; 1677 } else { 1678 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1679 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1680 continue; 1681 } 1682 if (LaneMask != 0 && 1683 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1684 continue; 1685 hasDef = true; 1686 if (MOI->isEarlyClobber()) 1687 isEarlyClobber = true; 1688 } 1689 1690 if (!hasDef) { 1691 report("Defining instruction does not modify register", MI); 1692 report_context(LR, Reg, LaneMask); 1693 report_context(*VNI); 1694 } 1695 1696 // Early clobber defs begin at USE slots, but other defs must begin at 1697 // DEF slots. 1698 if (isEarlyClobber) { 1699 if (!VNI->def.isEarlyClobber()) { 1700 report("Early clobber def must be at an early-clobber slot", MBB); 1701 report_context(LR, Reg, LaneMask); 1702 report_context(*VNI); 1703 } 1704 } else if (!VNI->def.isRegister()) { 1705 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1706 report_context(LR, Reg, LaneMask); 1707 report_context(*VNI); 1708 } 1709 } 1710 } 1711 1712 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1713 const LiveRange::const_iterator I, 1714 unsigned Reg, LaneBitmask LaneMask) 1715 { 1716 const LiveRange::Segment &S = *I; 1717 const VNInfo *VNI = S.valno; 1718 assert(VNI && "Live segment has no valno"); 1719 1720 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1721 report("Foreign valno in live segment", MF); 1722 report_context(LR, Reg, LaneMask); 1723 report_context(S); 1724 report_context(*VNI); 1725 } 1726 1727 if (VNI->isUnused()) { 1728 report("Live segment valno is marked unused", MF); 1729 report_context(LR, Reg, LaneMask); 1730 report_context(S); 1731 } 1732 1733 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1734 if (!MBB) { 1735 report("Bad start of live segment, no basic block", MF); 1736 report_context(LR, Reg, LaneMask); 1737 report_context(S); 1738 return; 1739 } 1740 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1741 if (S.start != MBBStartIdx && S.start != VNI->def) { 1742 report("Live segment must begin at MBB entry or valno def", MBB); 1743 report_context(LR, Reg, LaneMask); 1744 report_context(S); 1745 } 1746 1747 const MachineBasicBlock *EndMBB = 1748 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1749 if (!EndMBB) { 1750 report("Bad end of live segment, no basic block", MF); 1751 report_context(LR, Reg, LaneMask); 1752 report_context(S); 1753 return; 1754 } 1755 1756 // No more checks for live-out segments. 1757 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1758 return; 1759 1760 // RegUnit intervals are allowed dead phis. 1761 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1762 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1763 return; 1764 1765 // The live segment is ending inside EndMBB 1766 const MachineInstr *MI = 1767 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1768 if (!MI) { 1769 report("Live segment doesn't end at a valid instruction", EndMBB); 1770 report_context(LR, Reg, LaneMask); 1771 report_context(S); 1772 return; 1773 } 1774 1775 // The block slot must refer to a basic block boundary. 1776 if (S.end.isBlock()) { 1777 report("Live segment ends at B slot of an instruction", EndMBB); 1778 report_context(LR, Reg, LaneMask); 1779 report_context(S); 1780 } 1781 1782 if (S.end.isDead()) { 1783 // Segment ends on the dead slot. 1784 // That means there must be a dead def. 1785 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1786 report("Live segment ending at dead slot spans instructions", EndMBB); 1787 report_context(LR, Reg, LaneMask); 1788 report_context(S); 1789 } 1790 } 1791 1792 // A live segment can only end at an early-clobber slot if it is being 1793 // redefined by an early-clobber def. 1794 if (S.end.isEarlyClobber()) { 1795 if (I+1 == LR.end() || (I+1)->start != S.end) { 1796 report("Live segment ending at early clobber slot must be " 1797 "redefined by an EC def in the same instruction", EndMBB); 1798 report_context(LR, Reg, LaneMask); 1799 report_context(S); 1800 } 1801 } 1802 1803 // The following checks only apply to virtual registers. Physreg liveness 1804 // is too weird to check. 1805 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1806 // A live segment can end with either a redefinition, a kill flag on a 1807 // use, or a dead flag on a def. 1808 bool hasRead = false; 1809 bool hasSubRegDef = false; 1810 bool hasDeadDef = false; 1811 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1812 if (!MOI->isReg() || MOI->getReg() != Reg) 1813 continue; 1814 if (LaneMask != 0 && 1815 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) 1816 continue; 1817 if (MOI->isDef()) { 1818 if (MOI->getSubReg() != 0) 1819 hasSubRegDef = true; 1820 if (MOI->isDead()) 1821 hasDeadDef = true; 1822 } 1823 if (MOI->readsReg()) 1824 hasRead = true; 1825 } 1826 if (S.end.isDead()) { 1827 // Make sure that the corresponding machine operand for a "dead" live 1828 // range has the dead flag. We cannot perform this check for subregister 1829 // liveranges as partially dead values are allowed. 1830 if (LaneMask == 0 && !hasDeadDef) { 1831 report("Instruction ending live segment on dead slot has no dead flag", 1832 MI); 1833 report_context(LR, Reg, LaneMask); 1834 report_context(S); 1835 } 1836 } else { 1837 if (!hasRead) { 1838 // When tracking subregister liveness, the main range must start new 1839 // values on partial register writes, even if there is no read. 1840 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || 1841 !hasSubRegDef) { 1842 report("Instruction ending live segment doesn't read the register", 1843 MI); 1844 report_context(LR, Reg, LaneMask); 1845 report_context(S); 1846 } 1847 } 1848 } 1849 } 1850 1851 // Now check all the basic blocks in this live segment. 1852 MachineFunction::const_iterator MFI = MBB->getIterator(); 1853 // Is this live segment the beginning of a non-PHIDef VN? 1854 if (S.start == VNI->def && !VNI->isPHIDef()) { 1855 // Not live-in to any blocks. 1856 if (MBB == EndMBB) 1857 return; 1858 // Skip this block. 1859 ++MFI; 1860 } 1861 for (;;) { 1862 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1863 // We don't know how to track physregs into a landing pad. 1864 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1865 MFI->isEHPad()) { 1866 if (&*MFI == EndMBB) 1867 break; 1868 ++MFI; 1869 continue; 1870 } 1871 1872 // Is VNI a PHI-def in the current block? 1873 bool IsPHI = VNI->isPHIDef() && 1874 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1875 1876 // Check that VNI is live-out of all predecessors. 1877 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1878 PE = MFI->pred_end(); PI != PE; ++PI) { 1879 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1880 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1881 1882 // All predecessors must have a live-out value if this is not a 1883 // subregister liverange. 1884 if (!PVNI && LaneMask == 0) { 1885 report("Register not marked live out of predecessor", *PI); 1886 report_context(LR, Reg, LaneMask); 1887 report_context(*VNI); 1888 errs() << " live into BB#" << MFI->getNumber() 1889 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1890 << PEnd << '\n'; 1891 continue; 1892 } 1893 1894 // Only PHI-defs can take different predecessor values. 1895 if (!IsPHI && PVNI != VNI) { 1896 report("Different value live out of predecessor", *PI); 1897 report_context(LR, Reg, LaneMask); 1898 errs() << "Valno #" << PVNI->id << " live out of BB#" 1899 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1900 << " live into BB#" << MFI->getNumber() << '@' 1901 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1902 } 1903 } 1904 if (&*MFI == EndMBB) 1905 break; 1906 ++MFI; 1907 } 1908 } 1909 1910 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1911 LaneBitmask LaneMask) { 1912 for (const VNInfo *VNI : LR.valnos) 1913 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1914 1915 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1916 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1917 } 1918 1919 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1920 unsigned Reg = LI.reg; 1921 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1922 verifyLiveRange(LI, Reg); 1923 1924 LaneBitmask Mask = 0; 1925 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1926 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1927 if ((Mask & SR.LaneMask) != 0) { 1928 report("Lane masks of sub ranges overlap in live interval", MF); 1929 report_context(LI); 1930 } 1931 if ((SR.LaneMask & ~MaxMask) != 0) { 1932 report("Subrange lanemask is invalid", MF); 1933 report_context(LI); 1934 } 1935 if (SR.empty()) { 1936 report("Subrange must not be empty", MF); 1937 report_context(SR, LI.reg, SR.LaneMask); 1938 } 1939 Mask |= SR.LaneMask; 1940 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1941 if (!LI.covers(SR)) { 1942 report("A Subrange is not covered by the main range", MF); 1943 report_context(LI); 1944 } 1945 } 1946 1947 // Check the LI only has one connected component. 1948 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1949 unsigned NumComp = ConEQ.Classify(LI); 1950 if (NumComp > 1) { 1951 report("Multiple connected components in live interval", MF); 1952 report_context(LI); 1953 for (unsigned comp = 0; comp != NumComp; ++comp) { 1954 errs() << comp << ": valnos"; 1955 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1956 E = LI.vni_end(); I!=E; ++I) 1957 if (comp == ConEQ.getEqClass(*I)) 1958 errs() << ' ' << (*I)->id; 1959 errs() << '\n'; 1960 } 1961 } 1962 } 1963 1964 namespace { 1965 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1966 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1967 // value is zero. 1968 // We use a bool plus an integer to capture the stack state. 1969 struct StackStateOfBB { 1970 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1971 ExitIsSetup(false) { } 1972 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1973 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1974 ExitIsSetup(ExitSetup) { } 1975 // Can be negative, which means we are setting up a frame. 1976 int EntryValue; 1977 int ExitValue; 1978 bool EntryIsSetup; 1979 bool ExitIsSetup; 1980 }; 1981 } 1982 1983 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1984 /// by a FrameDestroy <n>, stack adjustments are identical on all 1985 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1986 void MachineVerifier::verifyStackFrame() { 1987 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1988 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1989 1990 SmallVector<StackStateOfBB, 8> SPState; 1991 SPState.resize(MF->getNumBlockIDs()); 1992 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1993 1994 // Visit the MBBs in DFS order. 1995 for (df_ext_iterator<const MachineFunction*, 1996 SmallPtrSet<const MachineBasicBlock*, 8> > 1997 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1998 DFI != DFE; ++DFI) { 1999 const MachineBasicBlock *MBB = *DFI; 2000 2001 StackStateOfBB BBState; 2002 // Check the exit state of the DFS stack predecessor. 2003 if (DFI.getPathLength() >= 2) { 2004 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2005 assert(Reachable.count(StackPred) && 2006 "DFS stack predecessor is already visited.\n"); 2007 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2008 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2009 BBState.ExitValue = BBState.EntryValue; 2010 BBState.ExitIsSetup = BBState.EntryIsSetup; 2011 } 2012 2013 // Update stack state by checking contents of MBB. 2014 for (const auto &I : *MBB) { 2015 if (I.getOpcode() == FrameSetupOpcode) { 2016 // The first operand of a FrameOpcode should be i32. 2017 int Size = I.getOperand(0).getImm(); 2018 assert(Size >= 0 && 2019 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 2020 2021 if (BBState.ExitIsSetup) 2022 report("FrameSetup is after another FrameSetup", &I); 2023 BBState.ExitValue -= Size; 2024 BBState.ExitIsSetup = true; 2025 } 2026 2027 if (I.getOpcode() == FrameDestroyOpcode) { 2028 // The first operand of a FrameOpcode should be i32. 2029 int Size = I.getOperand(0).getImm(); 2030 assert(Size >= 0 && 2031 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 2032 2033 if (!BBState.ExitIsSetup) 2034 report("FrameDestroy is not after a FrameSetup", &I); 2035 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2036 BBState.ExitValue; 2037 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2038 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2039 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2040 << AbsSPAdj << ">.\n"; 2041 } 2042 BBState.ExitValue += Size; 2043 BBState.ExitIsSetup = false; 2044 } 2045 } 2046 SPState[MBB->getNumber()] = BBState; 2047 2048 // Make sure the exit state of any predecessor is consistent with the entry 2049 // state. 2050 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2051 E = MBB->pred_end(); I != E; ++I) { 2052 if (Reachable.count(*I) && 2053 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2054 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2055 report("The exit stack state of a predecessor is inconsistent.", MBB); 2056 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2057 << SPState[(*I)->getNumber()].ExitValue << ", " 2058 << SPState[(*I)->getNumber()].ExitIsSetup 2059 << "), while BB#" << MBB->getNumber() << " has entry state (" 2060 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2061 } 2062 } 2063 2064 // Make sure the entry state of any successor is consistent with the exit 2065 // state. 2066 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2067 E = MBB->succ_end(); I != E; ++I) { 2068 if (Reachable.count(*I) && 2069 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2070 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2071 report("The entry stack state of a successor is inconsistent.", MBB); 2072 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2073 << SPState[(*I)->getNumber()].EntryValue << ", " 2074 << SPState[(*I)->getNumber()].EntryIsSetup 2075 << "), while BB#" << MBB->getNumber() << " has exit state (" 2076 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2077 } 2078 } 2079 2080 // Make sure a basic block with return ends with zero stack adjustment. 2081 if (!MBB->empty() && MBB->back().isReturn()) { 2082 if (BBState.ExitIsSetup) 2083 report("A return block ends with a FrameSetup.", MBB); 2084 if (BBState.ExitValue) 2085 report("A return block ends with a nonzero stack adjustment.", MBB); 2086 } 2087 } 2088 } 2089