1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     // Avoid querying the MachineFunctionProperties for each operand.
74     bool isFunctionRegBankSelected;
75     bool isFunctionSelected;
76 
77     typedef SmallVector<unsigned, 16> RegVector;
78     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
79     typedef DenseSet<unsigned> RegSet;
80     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
81     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
82 
83     const MachineInstr *FirstTerminator;
84     BlockSet FunctionBlocks;
85 
86     BitVector regsReserved;
87     RegSet regsLive;
88     RegVector regsDefined, regsDead, regsKilled;
89     RegMaskVector regMasks;
90     RegSet regsLiveInButUnused;
91 
92     SlotIndex lastIndex;
93 
94     // Add Reg and any sub-registers to RV
95     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
96       RV.push_back(Reg);
97       if (TargetRegisterInfo::isPhysicalRegister(Reg))
98         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
99           RV.push_back(*SubRegs);
100     }
101 
102     struct BBInfo {
103       // Is this MBB reachable from the MF entry point?
104       bool reachable;
105 
106       // Vregs that must be live in because they are used without being
107       // defined. Map value is the user.
108       RegMap vregsLiveIn;
109 
110       // Regs killed in MBB. They may be defined again, and will then be in both
111       // regsKilled and regsLiveOut.
112       RegSet regsKilled;
113 
114       // Regs defined in MBB and live out. Note that vregs passing through may
115       // be live out without being mentioned here.
116       RegSet regsLiveOut;
117 
118       // Vregs that pass through MBB untouched. This set is disjoint from
119       // regsKilled and regsLiveOut.
120       RegSet vregsPassed;
121 
122       // Vregs that must pass through MBB because they are needed by a successor
123       // block. This set is disjoint from regsLiveOut.
124       RegSet vregsRequired;
125 
126       // Set versions of block's predecessor and successor lists.
127       BlockSet Preds, Succs;
128 
129       BBInfo() : reachable(false) {}
130 
131       // Add register to vregsPassed if it belongs there. Return true if
132       // anything changed.
133       bool addPassed(unsigned Reg) {
134         if (!TargetRegisterInfo::isVirtualRegister(Reg))
135           return false;
136         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
137           return false;
138         return vregsPassed.insert(Reg).second;
139       }
140 
141       // Same for a full set.
142       bool addPassed(const RegSet &RS) {
143         bool changed = false;
144         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
145           if (addPassed(*I))
146             changed = true;
147         return changed;
148       }
149 
150       // Add register to vregsRequired if it belongs there. Return true if
151       // anything changed.
152       bool addRequired(unsigned Reg) {
153         if (!TargetRegisterInfo::isVirtualRegister(Reg))
154           return false;
155         if (regsLiveOut.count(Reg))
156           return false;
157         return vregsRequired.insert(Reg).second;
158       }
159 
160       // Same for a full set.
161       bool addRequired(const RegSet &RS) {
162         bool changed = false;
163         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
164           if (addRequired(*I))
165             changed = true;
166         return changed;
167       }
168 
169       // Same for a full map.
170       bool addRequired(const RegMap &RM) {
171         bool changed = false;
172         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
173           if (addRequired(I->first))
174             changed = true;
175         return changed;
176       }
177 
178       // Live-out registers are either in regsLiveOut or vregsPassed.
179       bool isLiveOut(unsigned Reg) const {
180         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
181       }
182     };
183 
184     // Extra register info per MBB.
185     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
186 
187     bool isReserved(unsigned Reg) {
188       return Reg < regsReserved.size() && regsReserved.test(Reg);
189     }
190 
191     bool isAllocatable(unsigned Reg) {
192       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
193     }
194 
195     // Analysis information if available
196     LiveVariables *LiveVars;
197     LiveIntervals *LiveInts;
198     LiveStacks *LiveStks;
199     SlotIndexes *Indexes;
200 
201     void visitMachineFunctionBefore();
202     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
203     void visitMachineBundleBefore(const MachineInstr *MI);
204     void visitMachineInstrBefore(const MachineInstr *MI);
205     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
206     void visitMachineInstrAfter(const MachineInstr *MI);
207     void visitMachineBundleAfter(const MachineInstr *MI);
208     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
209     void visitMachineFunctionAfter();
210 
211     template <typename T> void report(const char *msg, ilist_iterator<T> I) {
212       report(msg, &*I);
213     }
214     void report(const char *msg, const MachineFunction *MF);
215     void report(const char *msg, const MachineBasicBlock *MBB);
216     void report(const char *msg, const MachineInstr *MI);
217     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
218 
219     void report_context(const LiveInterval &LI) const;
220     void report_context(const LiveRange &LR, unsigned VRegUnit,
221                         LaneBitmask LaneMask) const;
222     void report_context(const LiveRange::Segment &S) const;
223     void report_context(const VNInfo &VNI) const;
224     void report_context(SlotIndex Pos) const;
225     void report_context_liverange(const LiveRange &LR) const;
226     void report_context_lanemask(LaneBitmask LaneMask) const;
227     void report_context_vreg(unsigned VReg) const;
228     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
229 
230     void verifyInlineAsm(const MachineInstr *MI);
231 
232     void checkLiveness(const MachineOperand *MO, unsigned MONum);
233     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
234                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
235                             LaneBitmask LaneMask = 0);
236     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
237                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
238                             LaneBitmask LaneMask = 0);
239 
240     void markReachable(const MachineBasicBlock *MBB);
241     void calcRegsPassed();
242     void checkPHIOps(const MachineBasicBlock *MBB);
243 
244     void calcRegsRequired();
245     void verifyLiveVariables();
246     void verifyLiveIntervals();
247     void verifyLiveInterval(const LiveInterval&);
248     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
249                               unsigned);
250     void verifyLiveRangeSegment(const LiveRange&,
251                                 const LiveRange::const_iterator I, unsigned,
252                                 unsigned);
253     void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
254 
255     void verifyStackFrame();
256 
257     void verifySlotIndexes() const;
258     void verifyProperties(const MachineFunction &MF);
259   };
260 
261   struct MachineVerifierPass : public MachineFunctionPass {
262     static char ID; // Pass ID, replacement for typeid
263     const std::string Banner;
264 
265     MachineVerifierPass(const std::string &banner = nullptr)
266       : MachineFunctionPass(ID), Banner(banner) {
267         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
268       }
269 
270     void getAnalysisUsage(AnalysisUsage &AU) const override {
271       AU.setPreservesAll();
272       MachineFunctionPass::getAnalysisUsage(AU);
273     }
274 
275     bool runOnMachineFunction(MachineFunction &MF) override {
276       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
277       if (FoundErrors)
278         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
279       return false;
280     }
281   };
282 
283 }
284 
285 char MachineVerifierPass::ID = 0;
286 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
287                 "Verify generated machine code", false, false)
288 
289 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
290   return new MachineVerifierPass(Banner);
291 }
292 
293 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
294     const {
295   MachineFunction &MF = const_cast<MachineFunction&>(*this);
296   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
297   if (AbortOnErrors && FoundErrors)
298     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
299   return FoundErrors == 0;
300 }
301 
302 void MachineVerifier::verifySlotIndexes() const {
303   if (Indexes == nullptr)
304     return;
305 
306   // Ensure the IdxMBB list is sorted by slot indexes.
307   SlotIndex Last;
308   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
309        E = Indexes->MBBIndexEnd(); I != E; ++I) {
310     assert(!Last.isValid() || I->first > Last);
311     Last = I->first;
312   }
313 }
314 
315 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
316   // If a pass has introduced virtual registers without clearing the
317   // AllVRegsAllocated property (or set it without allocating the vregs)
318   // then report an error.
319   if (MF.getProperties().hasProperty(
320           MachineFunctionProperties::Property::AllVRegsAllocated) &&
321       MRI->getNumVirtRegs()) {
322     report(
323         "Function has AllVRegsAllocated property but there are VReg operands",
324         &MF);
325   }
326 }
327 
328 unsigned MachineVerifier::verify(MachineFunction &MF) {
329   foundErrors = 0;
330 
331   this->MF = &MF;
332   TM = &MF.getTarget();
333   TII = MF.getSubtarget().getInstrInfo();
334   TRI = MF.getSubtarget().getRegisterInfo();
335   MRI = &MF.getRegInfo();
336 
337   isFunctionRegBankSelected = MF.getProperties().hasProperty(
338       MachineFunctionProperties::Property::RegBankSelected);
339   isFunctionSelected = MF.getProperties().hasProperty(
340       MachineFunctionProperties::Property::Selected);
341 
342   LiveVars = nullptr;
343   LiveInts = nullptr;
344   LiveStks = nullptr;
345   Indexes = nullptr;
346   if (PASS) {
347     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
348     // We don't want to verify LiveVariables if LiveIntervals is available.
349     if (!LiveInts)
350       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
351     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
352     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
353   }
354 
355   verifySlotIndexes();
356 
357   verifyProperties(MF);
358 
359   visitMachineFunctionBefore();
360   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
361        MFI!=MFE; ++MFI) {
362     visitMachineBasicBlockBefore(&*MFI);
363     // Keep track of the current bundle header.
364     const MachineInstr *CurBundle = nullptr;
365     // Do we expect the next instruction to be part of the same bundle?
366     bool InBundle = false;
367 
368     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
369            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
370       if (MBBI->getParent() != &*MFI) {
371         report("Bad instruction parent pointer", MFI);
372         errs() << "Instruction: " << *MBBI;
373         continue;
374       }
375 
376       // Check for consistent bundle flags.
377       if (InBundle && !MBBI->isBundledWithPred())
378         report("Missing BundledPred flag, "
379                "BundledSucc was set on predecessor",
380                &*MBBI);
381       if (!InBundle && MBBI->isBundledWithPred())
382         report("BundledPred flag is set, "
383                "but BundledSucc not set on predecessor",
384                &*MBBI);
385 
386       // Is this a bundle header?
387       if (!MBBI->isInsideBundle()) {
388         if (CurBundle)
389           visitMachineBundleAfter(CurBundle);
390         CurBundle = &*MBBI;
391         visitMachineBundleBefore(CurBundle);
392       } else if (!CurBundle)
393         report("No bundle header", MBBI);
394       visitMachineInstrBefore(&*MBBI);
395       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
396         const MachineInstr &MI = *MBBI;
397         const MachineOperand &Op = MI.getOperand(I);
398         if (Op.getParent() != &MI) {
399           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
400           // functions when replacing operands of a MachineInstr.
401           report("Instruction has operand with wrong parent set", &MI);
402         }
403 
404         visitMachineOperand(&Op, I);
405       }
406 
407       visitMachineInstrAfter(&*MBBI);
408 
409       // Was this the last bundled instruction?
410       InBundle = MBBI->isBundledWithSucc();
411     }
412     if (CurBundle)
413       visitMachineBundleAfter(CurBundle);
414     if (InBundle)
415       report("BundledSucc flag set on last instruction in block", &MFI->back());
416     visitMachineBasicBlockAfter(&*MFI);
417   }
418   visitMachineFunctionAfter();
419 
420   // Clean up.
421   regsLive.clear();
422   regsDefined.clear();
423   regsDead.clear();
424   regsKilled.clear();
425   regMasks.clear();
426   regsLiveInButUnused.clear();
427   MBBInfoMap.clear();
428 
429   return foundErrors;
430 }
431 
432 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
433   assert(MF);
434   errs() << '\n';
435   if (!foundErrors++) {
436     if (Banner)
437       errs() << "# " << Banner << '\n';
438     if (LiveInts != nullptr)
439       LiveInts->print(errs());
440     else
441       MF->print(errs(), Indexes);
442   }
443   errs() << "*** Bad machine code: " << msg << " ***\n"
444       << "- function:    " << MF->getName() << "\n";
445 }
446 
447 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
448   assert(MBB);
449   report(msg, MBB->getParent());
450   errs() << "- basic block: BB#" << MBB->getNumber()
451       << ' ' << MBB->getName()
452       << " (" << (const void*)MBB << ')';
453   if (Indexes)
454     errs() << " [" << Indexes->getMBBStartIdx(MBB)
455         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
456   errs() << '\n';
457 }
458 
459 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
460   assert(MI);
461   report(msg, MI->getParent());
462   errs() << "- instruction: ";
463   if (Indexes && Indexes->hasIndex(*MI))
464     errs() << Indexes->getInstructionIndex(*MI) << '\t';
465   MI->print(errs(), /*SkipOpers=*/true);
466   errs() << '\n';
467 }
468 
469 void MachineVerifier::report(const char *msg,
470                              const MachineOperand *MO, unsigned MONum) {
471   assert(MO);
472   report(msg, MO->getParent());
473   errs() << "- operand " << MONum << ":   ";
474   MO->print(errs(), TRI);
475   errs() << "\n";
476 }
477 
478 void MachineVerifier::report_context(SlotIndex Pos) const {
479   errs() << "- at:          " << Pos << '\n';
480 }
481 
482 void MachineVerifier::report_context(const LiveInterval &LI) const {
483   errs() << "- interval:    " << LI << '\n';
484 }
485 
486 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
487                                      LaneBitmask LaneMask) const {
488   report_context_liverange(LR);
489   report_context_vreg_regunit(VRegUnit);
490   if (LaneMask != 0)
491     report_context_lanemask(LaneMask);
492 }
493 
494 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
495   errs() << "- segment:     " << S << '\n';
496 }
497 
498 void MachineVerifier::report_context(const VNInfo &VNI) const {
499   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
500 }
501 
502 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
503   errs() << "- liverange:   " << LR << '\n';
504 }
505 
506 void MachineVerifier::report_context_vreg(unsigned VReg) const {
507   errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
508 }
509 
510 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
511   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
512     report_context_vreg(VRegOrUnit);
513   } else {
514     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
515   }
516 }
517 
518 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
519   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
520 }
521 
522 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
523   BBInfo &MInfo = MBBInfoMap[MBB];
524   if (!MInfo.reachable) {
525     MInfo.reachable = true;
526     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
527            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
528       markReachable(*SuI);
529   }
530 }
531 
532 void MachineVerifier::visitMachineFunctionBefore() {
533   lastIndex = SlotIndex();
534   regsReserved = MRI->getReservedRegs();
535 
536   // A sub-register of a reserved register is also reserved
537   for (int Reg = regsReserved.find_first(); Reg>=0;
538        Reg = regsReserved.find_next(Reg)) {
539     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
540       // FIXME: This should probably be:
541       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
542       regsReserved.set(*SubRegs);
543     }
544   }
545 
546   markReachable(&MF->front());
547 
548   // Build a set of the basic blocks in the function.
549   FunctionBlocks.clear();
550   for (const auto &MBB : *MF) {
551     FunctionBlocks.insert(&MBB);
552     BBInfo &MInfo = MBBInfoMap[&MBB];
553 
554     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
555     if (MInfo.Preds.size() != MBB.pred_size())
556       report("MBB has duplicate entries in its predecessor list.", &MBB);
557 
558     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
559     if (MInfo.Succs.size() != MBB.succ_size())
560       report("MBB has duplicate entries in its successor list.", &MBB);
561   }
562 
563   // Check that the register use lists are sane.
564   MRI->verifyUseLists();
565 
566   verifyStackFrame();
567 }
568 
569 // Does iterator point to a and b as the first two elements?
570 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
571                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
572   if (*i == a)
573     return *++i == b;
574   if (*i == b)
575     return *++i == a;
576   return false;
577 }
578 
579 void
580 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
581   FirstTerminator = nullptr;
582 
583   if (MRI->isSSA()) {
584     // If this block has allocatable physical registers live-in, check that
585     // it is an entry block or landing pad.
586     for (const auto &LI : MBB->liveins()) {
587       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
588           MBB->getIterator() != MBB->getParent()->begin()) {
589         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
590       }
591     }
592   }
593 
594   // Count the number of landing pad successors.
595   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
596   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
597        E = MBB->succ_end(); I != E; ++I) {
598     if ((*I)->isEHPad())
599       LandingPadSuccs.insert(*I);
600     if (!FunctionBlocks.count(*I))
601       report("MBB has successor that isn't part of the function.", MBB);
602     if (!MBBInfoMap[*I].Preds.count(MBB)) {
603       report("Inconsistent CFG", MBB);
604       errs() << "MBB is not in the predecessor list of the successor BB#"
605           << (*I)->getNumber() << ".\n";
606     }
607   }
608 
609   // Check the predecessor list.
610   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
611        E = MBB->pred_end(); I != E; ++I) {
612     if (!FunctionBlocks.count(*I))
613       report("MBB has predecessor that isn't part of the function.", MBB);
614     if (!MBBInfoMap[*I].Succs.count(MBB)) {
615       report("Inconsistent CFG", MBB);
616       errs() << "MBB is not in the successor list of the predecessor BB#"
617           << (*I)->getNumber() << ".\n";
618     }
619   }
620 
621   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
622   const BasicBlock *BB = MBB->getBasicBlock();
623   const Function *Fn = MF->getFunction();
624   if (LandingPadSuccs.size() > 1 &&
625       !(AsmInfo &&
626         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
627         BB && isa<SwitchInst>(BB->getTerminator())) &&
628       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
629     report("MBB has more than one landing pad successor", MBB);
630 
631   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
632   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
633   SmallVector<MachineOperand, 4> Cond;
634   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
635                           Cond)) {
636     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
637     // check whether its answers match up with reality.
638     if (!TBB && !FBB) {
639       // Block falls through to its successor.
640       MachineFunction::const_iterator MBBI = MBB->getIterator();
641       ++MBBI;
642       if (MBBI == MF->end()) {
643         // It's possible that the block legitimately ends with a noreturn
644         // call or an unreachable, in which case it won't actually fall
645         // out the bottom of the function.
646       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
647         // It's possible that the block legitimately ends with a noreturn
648         // call or an unreachable, in which case it won't actuall fall
649         // out of the block.
650       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
651         report("MBB exits via unconditional fall-through but doesn't have "
652                "exactly one CFG successor!", MBB);
653       } else if (!MBB->isSuccessor(&*MBBI)) {
654         report("MBB exits via unconditional fall-through but its successor "
655                "differs from its CFG successor!", MBB);
656       }
657       if (!MBB->empty() && MBB->back().isBarrier() &&
658           !TII->isPredicated(MBB->back())) {
659         report("MBB exits via unconditional fall-through but ends with a "
660                "barrier instruction!", MBB);
661       }
662       if (!Cond.empty()) {
663         report("MBB exits via unconditional fall-through but has a condition!",
664                MBB);
665       }
666     } else if (TBB && !FBB && Cond.empty()) {
667       // Block unconditionally branches somewhere.
668       // If the block has exactly one successor, that happens to be a
669       // landingpad, accept it as valid control flow.
670       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
671           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
672            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
673         report("MBB exits via unconditional branch but doesn't have "
674                "exactly one CFG successor!", MBB);
675       } else if (!MBB->isSuccessor(TBB)) {
676         report("MBB exits via unconditional branch but the CFG "
677                "successor doesn't match the actual successor!", MBB);
678       }
679       if (MBB->empty()) {
680         report("MBB exits via unconditional branch but doesn't contain "
681                "any instructions!", MBB);
682       } else if (!MBB->back().isBarrier()) {
683         report("MBB exits via unconditional branch but doesn't end with a "
684                "barrier instruction!", MBB);
685       } else if (!MBB->back().isTerminator()) {
686         report("MBB exits via unconditional branch but the branch isn't a "
687                "terminator instruction!", MBB);
688       }
689     } else if (TBB && !FBB && !Cond.empty()) {
690       // Block conditionally branches somewhere, otherwise falls through.
691       MachineFunction::const_iterator MBBI = MBB->getIterator();
692       ++MBBI;
693       if (MBBI == MF->end()) {
694         report("MBB conditionally falls through out of function!", MBB);
695       } else if (MBB->succ_size() == 1) {
696         // A conditional branch with only one successor is weird, but allowed.
697         if (&*MBBI != TBB)
698           report("MBB exits via conditional branch/fall-through but only has "
699                  "one CFG successor!", MBB);
700         else if (TBB != *MBB->succ_begin())
701           report("MBB exits via conditional branch/fall-through but the CFG "
702                  "successor don't match the actual successor!", MBB);
703       } else if (MBB->succ_size() != 2) {
704         report("MBB exits via conditional branch/fall-through but doesn't have "
705                "exactly two CFG successors!", MBB);
706       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
707         report("MBB exits via conditional branch/fall-through but the CFG "
708                "successors don't match the actual successors!", MBB);
709       }
710       if (MBB->empty()) {
711         report("MBB exits via conditional branch/fall-through but doesn't "
712                "contain any instructions!", MBB);
713       } else if (MBB->back().isBarrier()) {
714         report("MBB exits via conditional branch/fall-through but ends with a "
715                "barrier instruction!", MBB);
716       } else if (!MBB->back().isTerminator()) {
717         report("MBB exits via conditional branch/fall-through but the branch "
718                "isn't a terminator instruction!", MBB);
719       }
720     } else if (TBB && FBB) {
721       // Block conditionally branches somewhere, otherwise branches
722       // somewhere else.
723       if (MBB->succ_size() == 1) {
724         // A conditional branch with only one successor is weird, but allowed.
725         if (FBB != TBB)
726           report("MBB exits via conditional branch/branch through but only has "
727                  "one CFG successor!", MBB);
728         else if (TBB != *MBB->succ_begin())
729           report("MBB exits via conditional branch/branch through but the CFG "
730                  "successor don't match the actual successor!", MBB);
731       } else if (MBB->succ_size() != 2) {
732         report("MBB exits via conditional branch/branch but doesn't have "
733                "exactly two CFG successors!", MBB);
734       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
735         report("MBB exits via conditional branch/branch but the CFG "
736                "successors don't match the actual successors!", MBB);
737       }
738       if (MBB->empty()) {
739         report("MBB exits via conditional branch/branch but doesn't "
740                "contain any instructions!", MBB);
741       } else if (!MBB->back().isBarrier()) {
742         report("MBB exits via conditional branch/branch but doesn't end with a "
743                "barrier instruction!", MBB);
744       } else if (!MBB->back().isTerminator()) {
745         report("MBB exits via conditional branch/branch but the branch "
746                "isn't a terminator instruction!", MBB);
747       }
748       if (Cond.empty()) {
749         report("MBB exits via conditinal branch/branch but there's no "
750                "condition!", MBB);
751       }
752     } else {
753       report("AnalyzeBranch returned invalid data!", MBB);
754     }
755   }
756 
757   regsLive.clear();
758   for (const auto &LI : MBB->liveins()) {
759     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
760       report("MBB live-in list contains non-physical register", MBB);
761       continue;
762     }
763     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
764          SubRegs.isValid(); ++SubRegs)
765       regsLive.insert(*SubRegs);
766   }
767   regsLiveInButUnused = regsLive;
768 
769   const MachineFrameInfo &MFI = MF->getFrameInfo();
770   BitVector PR = MFI.getPristineRegs(*MF);
771   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
772     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
773          SubRegs.isValid(); ++SubRegs)
774       regsLive.insert(*SubRegs);
775   }
776 
777   regsKilled.clear();
778   regsDefined.clear();
779 
780   if (Indexes)
781     lastIndex = Indexes->getMBBStartIdx(MBB);
782 }
783 
784 // This function gets called for all bundle headers, including normal
785 // stand-alone unbundled instructions.
786 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
787   if (Indexes && Indexes->hasIndex(*MI)) {
788     SlotIndex idx = Indexes->getInstructionIndex(*MI);
789     if (!(idx > lastIndex)) {
790       report("Instruction index out of order", MI);
791       errs() << "Last instruction was at " << lastIndex << '\n';
792     }
793     lastIndex = idx;
794   }
795 
796   // Ensure non-terminators don't follow terminators.
797   // Ignore predicated terminators formed by if conversion.
798   // FIXME: If conversion shouldn't need to violate this rule.
799   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
800     if (!FirstTerminator)
801       FirstTerminator = MI;
802   } else if (FirstTerminator) {
803     report("Non-terminator instruction after the first terminator", MI);
804     errs() << "First terminator was:\t" << *FirstTerminator;
805   }
806 }
807 
808 // The operands on an INLINEASM instruction must follow a template.
809 // Verify that the flag operands make sense.
810 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
811   // The first two operands on INLINEASM are the asm string and global flags.
812   if (MI->getNumOperands() < 2) {
813     report("Too few operands on inline asm", MI);
814     return;
815   }
816   if (!MI->getOperand(0).isSymbol())
817     report("Asm string must be an external symbol", MI);
818   if (!MI->getOperand(1).isImm())
819     report("Asm flags must be an immediate", MI);
820   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
821   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
822   // and Extra_IsConvergent = 32.
823   if (!isUInt<6>(MI->getOperand(1).getImm()))
824     report("Unknown asm flags", &MI->getOperand(1), 1);
825 
826   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
827 
828   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
829   unsigned NumOps;
830   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
831     const MachineOperand &MO = MI->getOperand(OpNo);
832     // There may be implicit ops after the fixed operands.
833     if (!MO.isImm())
834       break;
835     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
836   }
837 
838   if (OpNo > MI->getNumOperands())
839     report("Missing operands in last group", MI);
840 
841   // An optional MDNode follows the groups.
842   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
843     ++OpNo;
844 
845   // All trailing operands must be implicit registers.
846   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
847     const MachineOperand &MO = MI->getOperand(OpNo);
848     if (!MO.isReg() || !MO.isImplicit())
849       report("Expected implicit register after groups", &MO, OpNo);
850   }
851 }
852 
853 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
854   const MCInstrDesc &MCID = MI->getDesc();
855   if (MI->getNumOperands() < MCID.getNumOperands()) {
856     report("Too few operands", MI);
857     errs() << MCID.getNumOperands() << " operands expected, but "
858         << MI->getNumOperands() << " given.\n";
859   }
860 
861   // Check the tied operands.
862   if (MI->isInlineAsm())
863     verifyInlineAsm(MI);
864 
865   // Check the MachineMemOperands for basic consistency.
866   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
867        E = MI->memoperands_end(); I != E; ++I) {
868     if ((*I)->isLoad() && !MI->mayLoad())
869       report("Missing mayLoad flag", MI);
870     if ((*I)->isStore() && !MI->mayStore())
871       report("Missing mayStore flag", MI);
872   }
873 
874   // Debug values must not have a slot index.
875   // Other instructions must have one, unless they are inside a bundle.
876   if (LiveInts) {
877     bool mapped = !LiveInts->isNotInMIMap(*MI);
878     if (MI->isDebugValue()) {
879       if (mapped)
880         report("Debug instruction has a slot index", MI);
881     } else if (MI->isInsideBundle()) {
882       if (mapped)
883         report("Instruction inside bundle has a slot index", MI);
884     } else {
885       if (!mapped)
886         report("Missing slot index", MI);
887     }
888   }
889 
890   // Check types.
891   const unsigned NumTypes = MI->getNumTypes();
892   if (isPreISelGenericOpcode(MCID.getOpcode())) {
893     if (isFunctionSelected)
894       report("Unexpected generic instruction in a Selected function", MI);
895 
896     if (NumTypes == 0)
897       report("Generic instruction must have a type", MI);
898   } else {
899     if (NumTypes != 0)
900       report("Non-generic instruction cannot have a type", MI);
901   }
902 
903   StringRef ErrorInfo;
904   if (!TII->verifyInstruction(*MI, ErrorInfo))
905     report(ErrorInfo.data(), MI);
906 }
907 
908 void
909 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
910   const MachineInstr *MI = MO->getParent();
911   const MCInstrDesc &MCID = MI->getDesc();
912   unsigned NumDefs = MCID.getNumDefs();
913   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
914     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
915 
916   // The first MCID.NumDefs operands must be explicit register defines
917   if (MONum < NumDefs) {
918     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
919     if (!MO->isReg())
920       report("Explicit definition must be a register", MO, MONum);
921     else if (!MO->isDef() && !MCOI.isOptionalDef())
922       report("Explicit definition marked as use", MO, MONum);
923     else if (MO->isImplicit())
924       report("Explicit definition marked as implicit", MO, MONum);
925   } else if (MONum < MCID.getNumOperands()) {
926     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
927     // Don't check if it's the last operand in a variadic instruction. See,
928     // e.g., LDM_RET in the arm back end.
929     if (MO->isReg() &&
930         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
931       if (MO->isDef() && !MCOI.isOptionalDef())
932         report("Explicit operand marked as def", MO, MONum);
933       if (MO->isImplicit())
934         report("Explicit operand marked as implicit", MO, MONum);
935     }
936 
937     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
938     if (TiedTo != -1) {
939       if (!MO->isReg())
940         report("Tied use must be a register", MO, MONum);
941       else if (!MO->isTied())
942         report("Operand should be tied", MO, MONum);
943       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
944         report("Tied def doesn't match MCInstrDesc", MO, MONum);
945     } else if (MO->isReg() && MO->isTied())
946       report("Explicit operand should not be tied", MO, MONum);
947   } else {
948     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
949     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
950       report("Extra explicit operand on non-variadic instruction", MO, MONum);
951   }
952 
953   switch (MO->getType()) {
954   case MachineOperand::MO_Register: {
955     const unsigned Reg = MO->getReg();
956     if (!Reg)
957       return;
958     if (MRI->tracksLiveness() && !MI->isDebugValue())
959       checkLiveness(MO, MONum);
960 
961     // Verify the consistency of tied operands.
962     if (MO->isTied()) {
963       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
964       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
965       if (!OtherMO.isReg())
966         report("Must be tied to a register", MO, MONum);
967       if (!OtherMO.isTied())
968         report("Missing tie flags on tied operand", MO, MONum);
969       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
970         report("Inconsistent tie links", MO, MONum);
971       if (MONum < MCID.getNumDefs()) {
972         if (OtherIdx < MCID.getNumOperands()) {
973           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
974             report("Explicit def tied to explicit use without tie constraint",
975                    MO, MONum);
976         } else {
977           if (!OtherMO.isImplicit())
978             report("Explicit def should be tied to implicit use", MO, MONum);
979         }
980       }
981     }
982 
983     // Verify two-address constraints after leaving SSA form.
984     unsigned DefIdx;
985     if (!MRI->isSSA() && MO->isUse() &&
986         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
987         Reg != MI->getOperand(DefIdx).getReg())
988       report("Two-address instruction operands must be identical", MO, MONum);
989 
990     // Check register classes.
991     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
992       unsigned SubIdx = MO->getSubReg();
993 
994       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
995         if (SubIdx) {
996           report("Illegal subregister index for physical register", MO, MONum);
997           return;
998         }
999         if (const TargetRegisterClass *DRC =
1000               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1001           if (!DRC->contains(Reg)) {
1002             report("Illegal physical register for instruction", MO, MONum);
1003             errs() << TRI->getName(Reg) << " is not a "
1004                 << TRI->getRegClassName(DRC) << " register.\n";
1005           }
1006         }
1007       } else {
1008         // Virtual register.
1009         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1010         if (!RC) {
1011           // This is a generic virtual register.
1012 
1013           // If we're post-Select, we can't have gvregs anymore.
1014           if (isFunctionSelected) {
1015             report("Generic virtual register invalid in a Selected function",
1016                    MO, MONum);
1017             return;
1018           }
1019 
1020           // The gvreg must have a size and it must not have a SubIdx.
1021           unsigned Size = MRI->getSize(Reg);
1022           if (!Size) {
1023             report("Generic virtual register must have a size", MO, MONum);
1024             return;
1025           }
1026 
1027           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1028 
1029           // If we're post-RegBankSelect, the gvreg must have a bank.
1030           if (!RegBank && isFunctionRegBankSelected) {
1031             report("Generic virtual register must have a bank in a "
1032                    "RegBankSelected function",
1033                    MO, MONum);
1034             return;
1035           }
1036 
1037           // Make sure the register fits into its register bank if any.
1038           if (RegBank && RegBank->getSize() < Size) {
1039             report("Register bank is too small for virtual register", MO,
1040                    MONum);
1041             errs() << "Register bank " << RegBank->getName() << " too small("
1042                    << RegBank->getSize() << ") to fit " << Size << "-bits\n";
1043             return;
1044           }
1045           if (SubIdx)  {
1046             report("Generic virtual register does not subregister index", MO, MONum);
1047             return;
1048           }
1049           break;
1050         }
1051         if (SubIdx) {
1052           const TargetRegisterClass *SRC =
1053             TRI->getSubClassWithSubReg(RC, SubIdx);
1054           if (!SRC) {
1055             report("Invalid subregister index for virtual register", MO, MONum);
1056             errs() << "Register class " << TRI->getRegClassName(RC)
1057                 << " does not support subreg index " << SubIdx << "\n";
1058             return;
1059           }
1060           if (RC != SRC) {
1061             report("Invalid register class for subregister index", MO, MONum);
1062             errs() << "Register class " << TRI->getRegClassName(RC)
1063                 << " does not fully support subreg index " << SubIdx << "\n";
1064             return;
1065           }
1066         }
1067         if (const TargetRegisterClass *DRC =
1068               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1069           if (SubIdx) {
1070             const TargetRegisterClass *SuperRC =
1071                 TRI->getLargestLegalSuperClass(RC, *MF);
1072             if (!SuperRC) {
1073               report("No largest legal super class exists.", MO, MONum);
1074               return;
1075             }
1076             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1077             if (!DRC) {
1078               report("No matching super-reg register class.", MO, MONum);
1079               return;
1080             }
1081           }
1082           if (!RC->hasSuperClassEq(DRC)) {
1083             report("Illegal virtual register for instruction", MO, MONum);
1084             errs() << "Expected a " << TRI->getRegClassName(DRC)
1085                 << " register, but got a " << TRI->getRegClassName(RC)
1086                 << " register\n";
1087           }
1088         }
1089       }
1090     }
1091     break;
1092   }
1093 
1094   case MachineOperand::MO_RegisterMask:
1095     regMasks.push_back(MO->getRegMask());
1096     break;
1097 
1098   case MachineOperand::MO_MachineBasicBlock:
1099     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1100       report("PHI operand is not in the CFG", MO, MONum);
1101     break;
1102 
1103   case MachineOperand::MO_FrameIndex:
1104     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1105         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1106       int FI = MO->getIndex();
1107       LiveInterval &LI = LiveStks->getInterval(FI);
1108       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1109 
1110       bool stores = MI->mayStore();
1111       bool loads = MI->mayLoad();
1112       // For a memory-to-memory move, we need to check if the frame
1113       // index is used for storing or loading, by inspecting the
1114       // memory operands.
1115       if (stores && loads) {
1116         for (auto *MMO : MI->memoperands()) {
1117           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1118           if (PSV == nullptr) continue;
1119           const FixedStackPseudoSourceValue *Value =
1120             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1121           if (Value == nullptr) continue;
1122           if (Value->getFrameIndex() != FI) continue;
1123 
1124           if (MMO->isStore())
1125             loads = false;
1126           else
1127             stores = false;
1128           break;
1129         }
1130         if (loads == stores)
1131           report("Missing fixed stack memoperand.", MI);
1132       }
1133       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1134         report("Instruction loads from dead spill slot", MO, MONum);
1135         errs() << "Live stack: " << LI << '\n';
1136       }
1137       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1138         report("Instruction stores to dead spill slot", MO, MONum);
1139         errs() << "Live stack: " << LI << '\n';
1140       }
1141     }
1142     break;
1143 
1144   default:
1145     break;
1146   }
1147 }
1148 
1149 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1150     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1151     LaneBitmask LaneMask) {
1152   LiveQueryResult LRQ = LR.Query(UseIdx);
1153   // Check if we have a segment at the use, note however that we only need one
1154   // live subregister range, the others may be dead.
1155   if (!LRQ.valueIn() && LaneMask == 0) {
1156     report("No live segment at use", MO, MONum);
1157     report_context_liverange(LR);
1158     report_context_vreg_regunit(VRegOrUnit);
1159     report_context(UseIdx);
1160   }
1161   if (MO->isKill() && !LRQ.isKill()) {
1162     report("Live range continues after kill flag", MO, MONum);
1163     report_context_liverange(LR);
1164     report_context_vreg_regunit(VRegOrUnit);
1165     if (LaneMask != 0)
1166       report_context_lanemask(LaneMask);
1167     report_context(UseIdx);
1168   }
1169 }
1170 
1171 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1172     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1173     LaneBitmask LaneMask) {
1174   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1175     assert(VNI && "NULL valno is not allowed");
1176     if (VNI->def != DefIdx) {
1177       report("Inconsistent valno->def", MO, MONum);
1178       report_context_liverange(LR);
1179       report_context_vreg_regunit(VRegOrUnit);
1180       if (LaneMask != 0)
1181         report_context_lanemask(LaneMask);
1182       report_context(*VNI);
1183       report_context(DefIdx);
1184     }
1185   } else {
1186     report("No live segment at def", MO, MONum);
1187     report_context_liverange(LR);
1188     report_context_vreg_regunit(VRegOrUnit);
1189     if (LaneMask != 0)
1190       report_context_lanemask(LaneMask);
1191     report_context(DefIdx);
1192   }
1193   // Check that, if the dead def flag is present, LiveInts agree.
1194   if (MO->isDead()) {
1195     LiveQueryResult LRQ = LR.Query(DefIdx);
1196     if (!LRQ.isDeadDef()) {
1197       // In case of physregs we can have a non-dead definition on another
1198       // operand.
1199       bool otherDef = false;
1200       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1201         const MachineInstr &MI = *MO->getParent();
1202         for (const MachineOperand &MO : MI.operands()) {
1203           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1204             continue;
1205           unsigned Reg = MO.getReg();
1206           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1207             if (*Units == VRegOrUnit) {
1208               otherDef = true;
1209               break;
1210             }
1211           }
1212         }
1213       }
1214 
1215       if (!otherDef) {
1216         report("Live range continues after dead def flag", MO, MONum);
1217         report_context_liverange(LR);
1218         report_context_vreg_regunit(VRegOrUnit);
1219         if (LaneMask != 0)
1220           report_context_lanemask(LaneMask);
1221       }
1222     }
1223   }
1224 }
1225 
1226 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1227   const MachineInstr *MI = MO->getParent();
1228   const unsigned Reg = MO->getReg();
1229 
1230   // Both use and def operands can read a register.
1231   if (MO->readsReg()) {
1232     regsLiveInButUnused.erase(Reg);
1233 
1234     if (MO->isKill())
1235       addRegWithSubRegs(regsKilled, Reg);
1236 
1237     // Check that LiveVars knows this kill.
1238     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1239         MO->isKill()) {
1240       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1241       if (!is_contained(VI.Kills, MI))
1242         report("Kill missing from LiveVariables", MO, MONum);
1243     }
1244 
1245     // Check LiveInts liveness and kill.
1246     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1247       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1248       // Check the cached regunit intervals.
1249       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1250         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1251           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1252             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1253         }
1254       }
1255 
1256       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1257         if (LiveInts->hasInterval(Reg)) {
1258           // This is a virtual register interval.
1259           const LiveInterval &LI = LiveInts->getInterval(Reg);
1260           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1261 
1262           if (LI.hasSubRanges() && !MO->isDef()) {
1263             unsigned SubRegIdx = MO->getSubReg();
1264             LaneBitmask MOMask = SubRegIdx != 0
1265                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1266                                : MRI->getMaxLaneMaskForVReg(Reg);
1267             LaneBitmask LiveInMask = 0;
1268             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1269               if ((MOMask & SR.LaneMask) == 0)
1270                 continue;
1271               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1272               LiveQueryResult LRQ = SR.Query(UseIdx);
1273               if (LRQ.valueIn())
1274                 LiveInMask |= SR.LaneMask;
1275             }
1276             // At least parts of the register has to be live at the use.
1277             if ((LiveInMask & MOMask) == 0) {
1278               report("No live subrange at use", MO, MONum);
1279               report_context(LI);
1280               report_context(UseIdx);
1281             }
1282           }
1283         } else {
1284           report("Virtual register has no live interval", MO, MONum);
1285         }
1286       }
1287     }
1288 
1289     // Use of a dead register.
1290     if (!regsLive.count(Reg)) {
1291       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1292         // Reserved registers may be used even when 'dead'.
1293         bool Bad = !isReserved(Reg);
1294         // We are fine if just any subregister has a defined value.
1295         if (Bad) {
1296           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1297                ++SubRegs) {
1298             if (regsLive.count(*SubRegs)) {
1299               Bad = false;
1300               break;
1301             }
1302           }
1303         }
1304         // If there is an additional implicit-use of a super register we stop
1305         // here. By definition we are fine if the super register is not
1306         // (completely) dead, if the complete super register is dead we will
1307         // get a report for its operand.
1308         if (Bad) {
1309           for (const MachineOperand &MOP : MI->uses()) {
1310             if (!MOP.isReg())
1311               continue;
1312             if (!MOP.isImplicit())
1313               continue;
1314             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1315                  ++SubRegs) {
1316               if (*SubRegs == Reg) {
1317                 Bad = false;
1318                 break;
1319               }
1320             }
1321           }
1322         }
1323         if (Bad)
1324           report("Using an undefined physical register", MO, MONum);
1325       } else if (MRI->def_empty(Reg)) {
1326         report("Reading virtual register without a def", MO, MONum);
1327       } else {
1328         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1329         // We don't know which virtual registers are live in, so only complain
1330         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1331         // must be live in. PHI instructions are handled separately.
1332         if (MInfo.regsKilled.count(Reg))
1333           report("Using a killed virtual register", MO, MONum);
1334         else if (!MI->isPHI())
1335           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1336       }
1337     }
1338   }
1339 
1340   if (MO->isDef()) {
1341     // Register defined.
1342     // TODO: verify that earlyclobber ops are not used.
1343     if (MO->isDead())
1344       addRegWithSubRegs(regsDead, Reg);
1345     else
1346       addRegWithSubRegs(regsDefined, Reg);
1347 
1348     // Verify SSA form.
1349     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1350         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1351       report("Multiple virtual register defs in SSA form", MO, MONum);
1352 
1353     // Check LiveInts for a live segment, but only for virtual registers.
1354     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1355       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1356       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1357 
1358       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1359         if (LiveInts->hasInterval(Reg)) {
1360           const LiveInterval &LI = LiveInts->getInterval(Reg);
1361           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1362 
1363           if (LI.hasSubRanges()) {
1364             unsigned SubRegIdx = MO->getSubReg();
1365             LaneBitmask MOMask = SubRegIdx != 0
1366               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1367               : MRI->getMaxLaneMaskForVReg(Reg);
1368             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1369               if ((SR.LaneMask & MOMask) == 0)
1370                 continue;
1371               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1372             }
1373           }
1374         } else {
1375           report("Virtual register has no Live interval", MO, MONum);
1376         }
1377       }
1378     }
1379   }
1380 }
1381 
1382 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1383 }
1384 
1385 // This function gets called after visiting all instructions in a bundle. The
1386 // argument points to the bundle header.
1387 // Normal stand-alone instructions are also considered 'bundles', and this
1388 // function is called for all of them.
1389 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1390   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1391   set_union(MInfo.regsKilled, regsKilled);
1392   set_subtract(regsLive, regsKilled); regsKilled.clear();
1393   // Kill any masked registers.
1394   while (!regMasks.empty()) {
1395     const uint32_t *Mask = regMasks.pop_back_val();
1396     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1397       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1398           MachineOperand::clobbersPhysReg(Mask, *I))
1399         regsDead.push_back(*I);
1400   }
1401   set_subtract(regsLive, regsDead);   regsDead.clear();
1402   set_union(regsLive, regsDefined);   regsDefined.clear();
1403 }
1404 
1405 void
1406 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1407   MBBInfoMap[MBB].regsLiveOut = regsLive;
1408   regsLive.clear();
1409 
1410   if (Indexes) {
1411     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1412     if (!(stop > lastIndex)) {
1413       report("Block ends before last instruction index", MBB);
1414       errs() << "Block ends at " << stop
1415           << " last instruction was at " << lastIndex << '\n';
1416     }
1417     lastIndex = stop;
1418   }
1419 }
1420 
1421 // Calculate the largest possible vregsPassed sets. These are the registers that
1422 // can pass through an MBB live, but may not be live every time. It is assumed
1423 // that all vregsPassed sets are empty before the call.
1424 void MachineVerifier::calcRegsPassed() {
1425   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1426   // have any vregsPassed.
1427   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1428   for (const auto &MBB : *MF) {
1429     BBInfo &MInfo = MBBInfoMap[&MBB];
1430     if (!MInfo.reachable)
1431       continue;
1432     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1433            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1434       BBInfo &SInfo = MBBInfoMap[*SuI];
1435       if (SInfo.addPassed(MInfo.regsLiveOut))
1436         todo.insert(*SuI);
1437     }
1438   }
1439 
1440   // Iteratively push vregsPassed to successors. This will converge to the same
1441   // final state regardless of DenseSet iteration order.
1442   while (!todo.empty()) {
1443     const MachineBasicBlock *MBB = *todo.begin();
1444     todo.erase(MBB);
1445     BBInfo &MInfo = MBBInfoMap[MBB];
1446     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1447            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1448       if (*SuI == MBB)
1449         continue;
1450       BBInfo &SInfo = MBBInfoMap[*SuI];
1451       if (SInfo.addPassed(MInfo.vregsPassed))
1452         todo.insert(*SuI);
1453     }
1454   }
1455 }
1456 
1457 // Calculate the set of virtual registers that must be passed through each basic
1458 // block in order to satisfy the requirements of successor blocks. This is very
1459 // similar to calcRegsPassed, only backwards.
1460 void MachineVerifier::calcRegsRequired() {
1461   // First push live-in regs to predecessors' vregsRequired.
1462   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1463   for (const auto &MBB : *MF) {
1464     BBInfo &MInfo = MBBInfoMap[&MBB];
1465     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1466            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1467       BBInfo &PInfo = MBBInfoMap[*PrI];
1468       if (PInfo.addRequired(MInfo.vregsLiveIn))
1469         todo.insert(*PrI);
1470     }
1471   }
1472 
1473   // Iteratively push vregsRequired to predecessors. This will converge to the
1474   // same final state regardless of DenseSet iteration order.
1475   while (!todo.empty()) {
1476     const MachineBasicBlock *MBB = *todo.begin();
1477     todo.erase(MBB);
1478     BBInfo &MInfo = MBBInfoMap[MBB];
1479     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1480            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1481       if (*PrI == MBB)
1482         continue;
1483       BBInfo &SInfo = MBBInfoMap[*PrI];
1484       if (SInfo.addRequired(MInfo.vregsRequired))
1485         todo.insert(*PrI);
1486     }
1487   }
1488 }
1489 
1490 // Check PHI instructions at the beginning of MBB. It is assumed that
1491 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1492 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1493   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1494   for (const auto &BBI : *MBB) {
1495     if (!BBI.isPHI())
1496       break;
1497     seen.clear();
1498 
1499     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1500       unsigned Reg = BBI.getOperand(i).getReg();
1501       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1502       if (!Pre->isSuccessor(MBB))
1503         continue;
1504       seen.insert(Pre);
1505       BBInfo &PrInfo = MBBInfoMap[Pre];
1506       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1507         report("PHI operand is not live-out from predecessor",
1508                &BBI.getOperand(i), i);
1509     }
1510 
1511     // Did we see all predecessors?
1512     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1513            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1514       if (!seen.count(*PrI)) {
1515         report("Missing PHI operand", &BBI);
1516         errs() << "BB#" << (*PrI)->getNumber()
1517             << " is a predecessor according to the CFG.\n";
1518       }
1519     }
1520   }
1521 }
1522 
1523 void MachineVerifier::visitMachineFunctionAfter() {
1524   calcRegsPassed();
1525 
1526   for (const auto &MBB : *MF) {
1527     BBInfo &MInfo = MBBInfoMap[&MBB];
1528 
1529     // Skip unreachable MBBs.
1530     if (!MInfo.reachable)
1531       continue;
1532 
1533     checkPHIOps(&MBB);
1534   }
1535 
1536   // Now check liveness info if available
1537   calcRegsRequired();
1538 
1539   // Check for killed virtual registers that should be live out.
1540   for (const auto &MBB : *MF) {
1541     BBInfo &MInfo = MBBInfoMap[&MBB];
1542     for (RegSet::iterator
1543          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1544          ++I)
1545       if (MInfo.regsKilled.count(*I)) {
1546         report("Virtual register killed in block, but needed live out.", &MBB);
1547         errs() << "Virtual register " << PrintReg(*I)
1548             << " is used after the block.\n";
1549       }
1550   }
1551 
1552   if (!MF->empty()) {
1553     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1554     for (RegSet::iterator
1555          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1556          ++I) {
1557       report("Virtual register defs don't dominate all uses.", MF);
1558       report_context_vreg(*I);
1559     }
1560   }
1561 
1562   if (LiveVars)
1563     verifyLiveVariables();
1564   if (LiveInts)
1565     verifyLiveIntervals();
1566 }
1567 
1568 void MachineVerifier::verifyLiveVariables() {
1569   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1570   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1571     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1572     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1573     for (const auto &MBB : *MF) {
1574       BBInfo &MInfo = MBBInfoMap[&MBB];
1575 
1576       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1577       if (MInfo.vregsRequired.count(Reg)) {
1578         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1579           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1580           errs() << "Virtual register " << PrintReg(Reg)
1581               << " must be live through the block.\n";
1582         }
1583       } else {
1584         if (VI.AliveBlocks.test(MBB.getNumber())) {
1585           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1586           errs() << "Virtual register " << PrintReg(Reg)
1587               << " is not needed live through the block.\n";
1588         }
1589       }
1590     }
1591   }
1592 }
1593 
1594 void MachineVerifier::verifyLiveIntervals() {
1595   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1596   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1597     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1598 
1599     // Spilling and splitting may leave unused registers around. Skip them.
1600     if (MRI->reg_nodbg_empty(Reg))
1601       continue;
1602 
1603     if (!LiveInts->hasInterval(Reg)) {
1604       report("Missing live interval for virtual register", MF);
1605       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1606       continue;
1607     }
1608 
1609     const LiveInterval &LI = LiveInts->getInterval(Reg);
1610     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1611     verifyLiveInterval(LI);
1612   }
1613 
1614   // Verify all the cached regunit intervals.
1615   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1616     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1617       verifyLiveRange(*LR, i);
1618 }
1619 
1620 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1621                                            const VNInfo *VNI, unsigned Reg,
1622                                            LaneBitmask LaneMask) {
1623   if (VNI->isUnused())
1624     return;
1625 
1626   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1627 
1628   if (!DefVNI) {
1629     report("Value not live at VNInfo def and not marked unused", MF);
1630     report_context(LR, Reg, LaneMask);
1631     report_context(*VNI);
1632     return;
1633   }
1634 
1635   if (DefVNI != VNI) {
1636     report("Live segment at def has different VNInfo", MF);
1637     report_context(LR, Reg, LaneMask);
1638     report_context(*VNI);
1639     return;
1640   }
1641 
1642   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1643   if (!MBB) {
1644     report("Invalid VNInfo definition index", MF);
1645     report_context(LR, Reg, LaneMask);
1646     report_context(*VNI);
1647     return;
1648   }
1649 
1650   if (VNI->isPHIDef()) {
1651     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1652       report("PHIDef VNInfo is not defined at MBB start", MBB);
1653       report_context(LR, Reg, LaneMask);
1654       report_context(*VNI);
1655     }
1656     return;
1657   }
1658 
1659   // Non-PHI def.
1660   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1661   if (!MI) {
1662     report("No instruction at VNInfo def index", MBB);
1663     report_context(LR, Reg, LaneMask);
1664     report_context(*VNI);
1665     return;
1666   }
1667 
1668   if (Reg != 0) {
1669     bool hasDef = false;
1670     bool isEarlyClobber = false;
1671     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1672       if (!MOI->isReg() || !MOI->isDef())
1673         continue;
1674       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1675         if (MOI->getReg() != Reg)
1676           continue;
1677       } else {
1678         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1679             !TRI->hasRegUnit(MOI->getReg(), Reg))
1680           continue;
1681       }
1682       if (LaneMask != 0 &&
1683           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1684         continue;
1685       hasDef = true;
1686       if (MOI->isEarlyClobber())
1687         isEarlyClobber = true;
1688     }
1689 
1690     if (!hasDef) {
1691       report("Defining instruction does not modify register", MI);
1692       report_context(LR, Reg, LaneMask);
1693       report_context(*VNI);
1694     }
1695 
1696     // Early clobber defs begin at USE slots, but other defs must begin at
1697     // DEF slots.
1698     if (isEarlyClobber) {
1699       if (!VNI->def.isEarlyClobber()) {
1700         report("Early clobber def must be at an early-clobber slot", MBB);
1701         report_context(LR, Reg, LaneMask);
1702         report_context(*VNI);
1703       }
1704     } else if (!VNI->def.isRegister()) {
1705       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1706       report_context(LR, Reg, LaneMask);
1707       report_context(*VNI);
1708     }
1709   }
1710 }
1711 
1712 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1713                                              const LiveRange::const_iterator I,
1714                                              unsigned Reg, LaneBitmask LaneMask)
1715 {
1716   const LiveRange::Segment &S = *I;
1717   const VNInfo *VNI = S.valno;
1718   assert(VNI && "Live segment has no valno");
1719 
1720   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1721     report("Foreign valno in live segment", MF);
1722     report_context(LR, Reg, LaneMask);
1723     report_context(S);
1724     report_context(*VNI);
1725   }
1726 
1727   if (VNI->isUnused()) {
1728     report("Live segment valno is marked unused", MF);
1729     report_context(LR, Reg, LaneMask);
1730     report_context(S);
1731   }
1732 
1733   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1734   if (!MBB) {
1735     report("Bad start of live segment, no basic block", MF);
1736     report_context(LR, Reg, LaneMask);
1737     report_context(S);
1738     return;
1739   }
1740   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1741   if (S.start != MBBStartIdx && S.start != VNI->def) {
1742     report("Live segment must begin at MBB entry or valno def", MBB);
1743     report_context(LR, Reg, LaneMask);
1744     report_context(S);
1745   }
1746 
1747   const MachineBasicBlock *EndMBB =
1748     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1749   if (!EndMBB) {
1750     report("Bad end of live segment, no basic block", MF);
1751     report_context(LR, Reg, LaneMask);
1752     report_context(S);
1753     return;
1754   }
1755 
1756   // No more checks for live-out segments.
1757   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1758     return;
1759 
1760   // RegUnit intervals are allowed dead phis.
1761   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1762       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1763     return;
1764 
1765   // The live segment is ending inside EndMBB
1766   const MachineInstr *MI =
1767     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1768   if (!MI) {
1769     report("Live segment doesn't end at a valid instruction", EndMBB);
1770     report_context(LR, Reg, LaneMask);
1771     report_context(S);
1772     return;
1773   }
1774 
1775   // The block slot must refer to a basic block boundary.
1776   if (S.end.isBlock()) {
1777     report("Live segment ends at B slot of an instruction", EndMBB);
1778     report_context(LR, Reg, LaneMask);
1779     report_context(S);
1780   }
1781 
1782   if (S.end.isDead()) {
1783     // Segment ends on the dead slot.
1784     // That means there must be a dead def.
1785     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1786       report("Live segment ending at dead slot spans instructions", EndMBB);
1787       report_context(LR, Reg, LaneMask);
1788       report_context(S);
1789     }
1790   }
1791 
1792   // A live segment can only end at an early-clobber slot if it is being
1793   // redefined by an early-clobber def.
1794   if (S.end.isEarlyClobber()) {
1795     if (I+1 == LR.end() || (I+1)->start != S.end) {
1796       report("Live segment ending at early clobber slot must be "
1797              "redefined by an EC def in the same instruction", EndMBB);
1798       report_context(LR, Reg, LaneMask);
1799       report_context(S);
1800     }
1801   }
1802 
1803   // The following checks only apply to virtual registers. Physreg liveness
1804   // is too weird to check.
1805   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1806     // A live segment can end with either a redefinition, a kill flag on a
1807     // use, or a dead flag on a def.
1808     bool hasRead = false;
1809     bool hasSubRegDef = false;
1810     bool hasDeadDef = false;
1811     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1812       if (!MOI->isReg() || MOI->getReg() != Reg)
1813         continue;
1814       if (LaneMask != 0 &&
1815           (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
1816         continue;
1817       if (MOI->isDef()) {
1818         if (MOI->getSubReg() != 0)
1819           hasSubRegDef = true;
1820         if (MOI->isDead())
1821           hasDeadDef = true;
1822       }
1823       if (MOI->readsReg())
1824         hasRead = true;
1825     }
1826     if (S.end.isDead()) {
1827       // Make sure that the corresponding machine operand for a "dead" live
1828       // range has the dead flag. We cannot perform this check for subregister
1829       // liveranges as partially dead values are allowed.
1830       if (LaneMask == 0 && !hasDeadDef) {
1831         report("Instruction ending live segment on dead slot has no dead flag",
1832                MI);
1833         report_context(LR, Reg, LaneMask);
1834         report_context(S);
1835       }
1836     } else {
1837       if (!hasRead) {
1838         // When tracking subregister liveness, the main range must start new
1839         // values on partial register writes, even if there is no read.
1840         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1841             !hasSubRegDef) {
1842           report("Instruction ending live segment doesn't read the register",
1843                  MI);
1844           report_context(LR, Reg, LaneMask);
1845           report_context(S);
1846         }
1847       }
1848     }
1849   }
1850 
1851   // Now check all the basic blocks in this live segment.
1852   MachineFunction::const_iterator MFI = MBB->getIterator();
1853   // Is this live segment the beginning of a non-PHIDef VN?
1854   if (S.start == VNI->def && !VNI->isPHIDef()) {
1855     // Not live-in to any blocks.
1856     if (MBB == EndMBB)
1857       return;
1858     // Skip this block.
1859     ++MFI;
1860   }
1861   for (;;) {
1862     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1863     // We don't know how to track physregs into a landing pad.
1864     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1865         MFI->isEHPad()) {
1866       if (&*MFI == EndMBB)
1867         break;
1868       ++MFI;
1869       continue;
1870     }
1871 
1872     // Is VNI a PHI-def in the current block?
1873     bool IsPHI = VNI->isPHIDef() &&
1874       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1875 
1876     // Check that VNI is live-out of all predecessors.
1877     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1878          PE = MFI->pred_end(); PI != PE; ++PI) {
1879       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1880       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1881 
1882       // All predecessors must have a live-out value if this is not a
1883       // subregister liverange.
1884       if (!PVNI && LaneMask == 0) {
1885         report("Register not marked live out of predecessor", *PI);
1886         report_context(LR, Reg, LaneMask);
1887         report_context(*VNI);
1888         errs() << " live into BB#" << MFI->getNumber()
1889                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1890                << PEnd << '\n';
1891         continue;
1892       }
1893 
1894       // Only PHI-defs can take different predecessor values.
1895       if (!IsPHI && PVNI != VNI) {
1896         report("Different value live out of predecessor", *PI);
1897         report_context(LR, Reg, LaneMask);
1898         errs() << "Valno #" << PVNI->id << " live out of BB#"
1899                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1900                << " live into BB#" << MFI->getNumber() << '@'
1901                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1902       }
1903     }
1904     if (&*MFI == EndMBB)
1905       break;
1906     ++MFI;
1907   }
1908 }
1909 
1910 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1911                                       LaneBitmask LaneMask) {
1912   for (const VNInfo *VNI : LR.valnos)
1913     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1914 
1915   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1916     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1917 }
1918 
1919 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1920   unsigned Reg = LI.reg;
1921   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1922   verifyLiveRange(LI, Reg);
1923 
1924   LaneBitmask Mask = 0;
1925   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1926   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1927     if ((Mask & SR.LaneMask) != 0) {
1928       report("Lane masks of sub ranges overlap in live interval", MF);
1929       report_context(LI);
1930     }
1931     if ((SR.LaneMask & ~MaxMask) != 0) {
1932       report("Subrange lanemask is invalid", MF);
1933       report_context(LI);
1934     }
1935     if (SR.empty()) {
1936       report("Subrange must not be empty", MF);
1937       report_context(SR, LI.reg, SR.LaneMask);
1938     }
1939     Mask |= SR.LaneMask;
1940     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1941     if (!LI.covers(SR)) {
1942       report("A Subrange is not covered by the main range", MF);
1943       report_context(LI);
1944     }
1945   }
1946 
1947   // Check the LI only has one connected component.
1948   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1949   unsigned NumComp = ConEQ.Classify(LI);
1950   if (NumComp > 1) {
1951     report("Multiple connected components in live interval", MF);
1952     report_context(LI);
1953     for (unsigned comp = 0; comp != NumComp; ++comp) {
1954       errs() << comp << ": valnos";
1955       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1956            E = LI.vni_end(); I!=E; ++I)
1957         if (comp == ConEQ.getEqClass(*I))
1958           errs() << ' ' << (*I)->id;
1959       errs() << '\n';
1960     }
1961   }
1962 }
1963 
1964 namespace {
1965   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1966   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1967   // value is zero.
1968   // We use a bool plus an integer to capture the stack state.
1969   struct StackStateOfBB {
1970     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1971       ExitIsSetup(false) { }
1972     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1973       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1974       ExitIsSetup(ExitSetup) { }
1975     // Can be negative, which means we are setting up a frame.
1976     int EntryValue;
1977     int ExitValue;
1978     bool EntryIsSetup;
1979     bool ExitIsSetup;
1980   };
1981 }
1982 
1983 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1984 /// by a FrameDestroy <n>, stack adjustments are identical on all
1985 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
1986 void MachineVerifier::verifyStackFrame() {
1987   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1988   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1989 
1990   SmallVector<StackStateOfBB, 8> SPState;
1991   SPState.resize(MF->getNumBlockIDs());
1992   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1993 
1994   // Visit the MBBs in DFS order.
1995   for (df_ext_iterator<const MachineFunction*,
1996                        SmallPtrSet<const MachineBasicBlock*, 8> >
1997        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1998        DFI != DFE; ++DFI) {
1999     const MachineBasicBlock *MBB = *DFI;
2000 
2001     StackStateOfBB BBState;
2002     // Check the exit state of the DFS stack predecessor.
2003     if (DFI.getPathLength() >= 2) {
2004       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2005       assert(Reachable.count(StackPred) &&
2006              "DFS stack predecessor is already visited.\n");
2007       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2008       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2009       BBState.ExitValue = BBState.EntryValue;
2010       BBState.ExitIsSetup = BBState.EntryIsSetup;
2011     }
2012 
2013     // Update stack state by checking contents of MBB.
2014     for (const auto &I : *MBB) {
2015       if (I.getOpcode() == FrameSetupOpcode) {
2016         // The first operand of a FrameOpcode should be i32.
2017         int Size = I.getOperand(0).getImm();
2018         assert(Size >= 0 &&
2019           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2020 
2021         if (BBState.ExitIsSetup)
2022           report("FrameSetup is after another FrameSetup", &I);
2023         BBState.ExitValue -= Size;
2024         BBState.ExitIsSetup = true;
2025       }
2026 
2027       if (I.getOpcode() == FrameDestroyOpcode) {
2028         // The first operand of a FrameOpcode should be i32.
2029         int Size = I.getOperand(0).getImm();
2030         assert(Size >= 0 &&
2031           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
2032 
2033         if (!BBState.ExitIsSetup)
2034           report("FrameDestroy is not after a FrameSetup", &I);
2035         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2036                                                BBState.ExitValue;
2037         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2038           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2039           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2040               << AbsSPAdj << ">.\n";
2041         }
2042         BBState.ExitValue += Size;
2043         BBState.ExitIsSetup = false;
2044       }
2045     }
2046     SPState[MBB->getNumber()] = BBState;
2047 
2048     // Make sure the exit state of any predecessor is consistent with the entry
2049     // state.
2050     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2051          E = MBB->pred_end(); I != E; ++I) {
2052       if (Reachable.count(*I) &&
2053           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2054            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2055         report("The exit stack state of a predecessor is inconsistent.", MBB);
2056         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2057             << SPState[(*I)->getNumber()].ExitValue << ", "
2058             << SPState[(*I)->getNumber()].ExitIsSetup
2059             << "), while BB#" << MBB->getNumber() << " has entry state ("
2060             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2061       }
2062     }
2063 
2064     // Make sure the entry state of any successor is consistent with the exit
2065     // state.
2066     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2067          E = MBB->succ_end(); I != E; ++I) {
2068       if (Reachable.count(*I) &&
2069           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2070            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2071         report("The entry stack state of a successor is inconsistent.", MBB);
2072         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2073             << SPState[(*I)->getNumber()].EntryValue << ", "
2074             << SPState[(*I)->getNumber()].EntryIsSetup
2075             << "), while BB#" << MBB->getNumber() << " has exit state ("
2076             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2077       }
2078     }
2079 
2080     // Make sure a basic block with return ends with zero stack adjustment.
2081     if (!MBB->empty() && MBB->back().isReturn()) {
2082       if (BBState.ExitIsSetup)
2083         report("A return block ends with a FrameSetup.", MBB);
2084       if (BBState.ExitValue)
2085         report("A return block ends with a nonzero stack adjustment.", MBB);
2086     }
2087   }
2088 }
2089