1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     unsigned verify(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     typedef SmallVector<unsigned, 16> RegVector;
74     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75     typedef DenseSet<unsigned> RegSet;
76     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78 
79     const MachineInstr *FirstTerminator;
80     BlockSet FunctionBlocks;
81 
82     BitVector regsReserved;
83     RegSet regsLive;
84     RegVector regsDefined, regsDead, regsKilled;
85     RegMaskVector regMasks;
86     RegSet regsLiveInButUnused;
87 
88     SlotIndex lastIndex;
89 
90     // Add Reg and any sub-registers to RV
91     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92       RV.push_back(Reg);
93       if (TargetRegisterInfo::isPhysicalRegister(Reg))
94         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95           RV.push_back(*SubRegs);
96     }
97 
98     struct BBInfo {
99       // Is this MBB reachable from the MF entry point?
100       bool reachable;
101 
102       // Vregs that must be live in because they are used without being
103       // defined. Map value is the user.
104       RegMap vregsLiveIn;
105 
106       // Regs killed in MBB. They may be defined again, and will then be in both
107       // regsKilled and regsLiveOut.
108       RegSet regsKilled;
109 
110       // Regs defined in MBB and live out. Note that vregs passing through may
111       // be live out without being mentioned here.
112       RegSet regsLiveOut;
113 
114       // Vregs that pass through MBB untouched. This set is disjoint from
115       // regsKilled and regsLiveOut.
116       RegSet vregsPassed;
117 
118       // Vregs that must pass through MBB because they are needed by a successor
119       // block. This set is disjoint from regsLiveOut.
120       RegSet vregsRequired;
121 
122       // Set versions of block's predecessor and successor lists.
123       BlockSet Preds, Succs;
124 
125       BBInfo() : reachable(false) {}
126 
127       // Add register to vregsPassed if it belongs there. Return true if
128       // anything changed.
129       bool addPassed(unsigned Reg) {
130         if (!TargetRegisterInfo::isVirtualRegister(Reg))
131           return false;
132         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133           return false;
134         return vregsPassed.insert(Reg).second;
135       }
136 
137       // Same for a full set.
138       bool addPassed(const RegSet &RS) {
139         bool changed = false;
140         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141           if (addPassed(*I))
142             changed = true;
143         return changed;
144       }
145 
146       // Add register to vregsRequired if it belongs there. Return true if
147       // anything changed.
148       bool addRequired(unsigned Reg) {
149         if (!TargetRegisterInfo::isVirtualRegister(Reg))
150           return false;
151         if (regsLiveOut.count(Reg))
152           return false;
153         return vregsRequired.insert(Reg).second;
154       }
155 
156       // Same for a full set.
157       bool addRequired(const RegSet &RS) {
158         bool changed = false;
159         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160           if (addRequired(*I))
161             changed = true;
162         return changed;
163       }
164 
165       // Same for a full map.
166       bool addRequired(const RegMap &RM) {
167         bool changed = false;
168         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169           if (addRequired(I->first))
170             changed = true;
171         return changed;
172       }
173 
174       // Live-out registers are either in regsLiveOut or vregsPassed.
175       bool isLiveOut(unsigned Reg) const {
176         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177       }
178     };
179 
180     // Extra register info per MBB.
181     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182 
183     bool isReserved(unsigned Reg) {
184       return Reg < regsReserved.size() && regsReserved.test(Reg);
185     }
186 
187     bool isAllocatable(unsigned Reg) {
188       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189     }
190 
191     // Analysis information if available
192     LiveVariables *LiveVars;
193     LiveIntervals *LiveInts;
194     LiveStacks *LiveStks;
195     SlotIndexes *Indexes;
196 
197     void visitMachineFunctionBefore();
198     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199     void visitMachineBundleBefore(const MachineInstr *MI);
200     void visitMachineInstrBefore(const MachineInstr *MI);
201     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202     void visitMachineInstrAfter(const MachineInstr *MI);
203     void visitMachineBundleAfter(const MachineInstr *MI);
204     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205     void visitMachineFunctionAfter();
206 
207     template <typename T> void report(const char *msg, ilist_iterator<T> I) {
208       report(msg, &*I);
209     }
210     void report(const char *msg, const MachineFunction *MF);
211     void report(const char *msg, const MachineBasicBlock *MBB);
212     void report(const char *msg, const MachineInstr *MI);
213     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
214 
215     void report_context(const LiveInterval &LI) const;
216     void report_context(const LiveRange &LR, unsigned Reg,
217                         LaneBitmask LaneMask) const;
218     void report_context(const LiveRange::Segment &S) const;
219     void report_context(const VNInfo &VNI) const;
220     void report_context(SlotIndex Pos) const;
221     void report_context_liverange(const LiveRange &LR) const;
222     void report_context_regunit(unsigned RegUnit) const;
223     void report_context_lanemask(LaneBitmask LaneMask) const;
224     void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
225 
226     void verifyInlineAsm(const MachineInstr *MI);
227 
228     void checkLiveness(const MachineOperand *MO, unsigned MONum);
229     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
230                             SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
231                             LaneBitmask LaneMask = 0);
232     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
233                             SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
234                             LaneBitmask LaneMask = 0);
235 
236     void markReachable(const MachineBasicBlock *MBB);
237     void calcRegsPassed();
238     void checkPHIOps(const MachineBasicBlock *MBB);
239 
240     void calcRegsRequired();
241     void verifyLiveVariables();
242     void verifyLiveIntervals();
243     void verifyLiveInterval(const LiveInterval&);
244     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
245                               unsigned);
246     void verifyLiveRangeSegment(const LiveRange&,
247                                 const LiveRange::const_iterator I, unsigned,
248                                 unsigned);
249     void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
250 
251     void verifyStackFrame();
252 
253     void verifySlotIndexes() const;
254     void verifyProperties(const MachineFunction &MF);
255   };
256 
257   struct MachineVerifierPass : public MachineFunctionPass {
258     static char ID; // Pass ID, replacement for typeid
259     const std::string Banner;
260 
261     MachineVerifierPass(const std::string &banner = nullptr)
262       : MachineFunctionPass(ID), Banner(banner) {
263         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
264       }
265 
266     void getAnalysisUsage(AnalysisUsage &AU) const override {
267       AU.setPreservesAll();
268       MachineFunctionPass::getAnalysisUsage(AU);
269     }
270 
271     bool runOnMachineFunction(MachineFunction &MF) override {
272       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
273       if (FoundErrors)
274         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
275       return false;
276     }
277   };
278 
279 }
280 
281 char MachineVerifierPass::ID = 0;
282 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
283                 "Verify generated machine code", false, false)
284 
285 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
286   return new MachineVerifierPass(Banner);
287 }
288 
289 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
290     const {
291   MachineFunction &MF = const_cast<MachineFunction&>(*this);
292   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
293   if (AbortOnErrors && FoundErrors)
294     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
295   return FoundErrors == 0;
296 }
297 
298 void MachineVerifier::verifySlotIndexes() const {
299   if (Indexes == nullptr)
300     return;
301 
302   // Ensure the IdxMBB list is sorted by slot indexes.
303   SlotIndex Last;
304   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
305        E = Indexes->MBBIndexEnd(); I != E; ++I) {
306     assert(!Last.isValid() || I->first > Last);
307     Last = I->first;
308   }
309 }
310 
311 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
312   // If a pass has introduced virtual registers without clearing the
313   // AllVRegsAllocated property (or set it without allocating the vregs)
314   // then report an error.
315   if (MF.getProperties().hasProperty(
316           MachineFunctionProperties::Property::AllVRegsAllocated) &&
317       MRI->getNumVirtRegs()) {
318     report(
319         "Function has AllVRegsAllocated property but there are VReg operands",
320         &MF);
321   }
322 }
323 
324 unsigned MachineVerifier::verify(MachineFunction &MF) {
325   foundErrors = 0;
326 
327   this->MF = &MF;
328   TM = &MF.getTarget();
329   TII = MF.getSubtarget().getInstrInfo();
330   TRI = MF.getSubtarget().getRegisterInfo();
331   MRI = &MF.getRegInfo();
332 
333   LiveVars = nullptr;
334   LiveInts = nullptr;
335   LiveStks = nullptr;
336   Indexes = nullptr;
337   if (PASS) {
338     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
339     // We don't want to verify LiveVariables if LiveIntervals is available.
340     if (!LiveInts)
341       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
342     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
343     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
344   }
345 
346   verifySlotIndexes();
347 
348   verifyProperties(MF);
349 
350   visitMachineFunctionBefore();
351   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
352        MFI!=MFE; ++MFI) {
353     visitMachineBasicBlockBefore(&*MFI);
354     // Keep track of the current bundle header.
355     const MachineInstr *CurBundle = nullptr;
356     // Do we expect the next instruction to be part of the same bundle?
357     bool InBundle = false;
358 
359     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
360            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
361       if (MBBI->getParent() != &*MFI) {
362         report("Bad instruction parent pointer", MFI);
363         errs() << "Instruction: " << *MBBI;
364         continue;
365       }
366 
367       // Check for consistent bundle flags.
368       if (InBundle && !MBBI->isBundledWithPred())
369         report("Missing BundledPred flag, "
370                "BundledSucc was set on predecessor",
371                &*MBBI);
372       if (!InBundle && MBBI->isBundledWithPred())
373         report("BundledPred flag is set, "
374                "but BundledSucc not set on predecessor",
375                &*MBBI);
376 
377       // Is this a bundle header?
378       if (!MBBI->isInsideBundle()) {
379         if (CurBundle)
380           visitMachineBundleAfter(CurBundle);
381         CurBundle = &*MBBI;
382         visitMachineBundleBefore(CurBundle);
383       } else if (!CurBundle)
384         report("No bundle header", MBBI);
385       visitMachineInstrBefore(&*MBBI);
386       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
387         const MachineInstr &MI = *MBBI;
388         const MachineOperand &Op = MI.getOperand(I);
389         if (Op.getParent() != &MI) {
390           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
391           // functions when replacing operands of a MachineInstr.
392           report("Instruction has operand with wrong parent set", &MI);
393         }
394 
395         visitMachineOperand(&Op, I);
396       }
397 
398       visitMachineInstrAfter(&*MBBI);
399 
400       // Was this the last bundled instruction?
401       InBundle = MBBI->isBundledWithSucc();
402     }
403     if (CurBundle)
404       visitMachineBundleAfter(CurBundle);
405     if (InBundle)
406       report("BundledSucc flag set on last instruction in block", &MFI->back());
407     visitMachineBasicBlockAfter(&*MFI);
408   }
409   visitMachineFunctionAfter();
410 
411   // Clean up.
412   regsLive.clear();
413   regsDefined.clear();
414   regsDead.clear();
415   regsKilled.clear();
416   regMasks.clear();
417   regsLiveInButUnused.clear();
418   MBBInfoMap.clear();
419 
420   return foundErrors;
421 }
422 
423 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
424   assert(MF);
425   errs() << '\n';
426   if (!foundErrors++) {
427     if (Banner)
428       errs() << "# " << Banner << '\n';
429     if (LiveInts != nullptr)
430       LiveInts->print(errs());
431     else
432       MF->print(errs(), Indexes);
433   }
434   errs() << "*** Bad machine code: " << msg << " ***\n"
435       << "- function:    " << MF->getName() << "\n";
436 }
437 
438 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
439   assert(MBB);
440   report(msg, MBB->getParent());
441   errs() << "- basic block: BB#" << MBB->getNumber()
442       << ' ' << MBB->getName()
443       << " (" << (const void*)MBB << ')';
444   if (Indexes)
445     errs() << " [" << Indexes->getMBBStartIdx(MBB)
446         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
447   errs() << '\n';
448 }
449 
450 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
451   assert(MI);
452   report(msg, MI->getParent());
453   errs() << "- instruction: ";
454   if (Indexes && Indexes->hasIndex(*MI))
455     errs() << Indexes->getInstructionIndex(*MI) << '\t';
456   MI->print(errs(), /*SkipOpers=*/true);
457   errs() << '\n';
458 }
459 
460 void MachineVerifier::report(const char *msg,
461                              const MachineOperand *MO, unsigned MONum) {
462   assert(MO);
463   report(msg, MO->getParent());
464   errs() << "- operand " << MONum << ":   ";
465   MO->print(errs(), TRI);
466   errs() << "\n";
467 }
468 
469 void MachineVerifier::report_context(SlotIndex Pos) const {
470   errs() << "- at:          " << Pos << '\n';
471 }
472 
473 void MachineVerifier::report_context(const LiveInterval &LI) const {
474   errs() << "- interval:    " << LI << '\n';
475 }
476 
477 void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg,
478                                      LaneBitmask LaneMask) const {
479   report_context_liverange(LR);
480   errs() << "- register:    " << PrintReg(Reg, TRI) << '\n';
481   if (LaneMask != 0)
482     report_context_lanemask(LaneMask);
483 }
484 
485 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
486   errs() << "- segment:     " << S << '\n';
487 }
488 
489 void MachineVerifier::report_context(const VNInfo &VNI) const {
490   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
491 }
492 
493 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
494   errs() << "- liverange:   " << LR << '\n';
495 }
496 
497 void MachineVerifier::report_context_regunit(unsigned RegUnit) const {
498   errs() << "- regunit:     " << PrintRegUnit(RegUnit, TRI) << '\n';
499 }
500 
501 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
502   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
503     errs() << "- v. register: " << PrintReg(VRegOrUnit, TRI) << '\n';
504   } else {
505     errs() << "- regunit:     " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
506   }
507 }
508 
509 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
510   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
511 }
512 
513 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
514   BBInfo &MInfo = MBBInfoMap[MBB];
515   if (!MInfo.reachable) {
516     MInfo.reachable = true;
517     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
518            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
519       markReachable(*SuI);
520   }
521 }
522 
523 void MachineVerifier::visitMachineFunctionBefore() {
524   lastIndex = SlotIndex();
525   regsReserved = MRI->getReservedRegs();
526 
527   // A sub-register of a reserved register is also reserved
528   for (int Reg = regsReserved.find_first(); Reg>=0;
529        Reg = regsReserved.find_next(Reg)) {
530     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
531       // FIXME: This should probably be:
532       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
533       regsReserved.set(*SubRegs);
534     }
535   }
536 
537   markReachable(&MF->front());
538 
539   // Build a set of the basic blocks in the function.
540   FunctionBlocks.clear();
541   for (const auto &MBB : *MF) {
542     FunctionBlocks.insert(&MBB);
543     BBInfo &MInfo = MBBInfoMap[&MBB];
544 
545     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
546     if (MInfo.Preds.size() != MBB.pred_size())
547       report("MBB has duplicate entries in its predecessor list.", &MBB);
548 
549     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
550     if (MInfo.Succs.size() != MBB.succ_size())
551       report("MBB has duplicate entries in its successor list.", &MBB);
552   }
553 
554   // Check that the register use lists are sane.
555   MRI->verifyUseLists();
556 
557   verifyStackFrame();
558 }
559 
560 // Does iterator point to a and b as the first two elements?
561 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
562                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
563   if (*i == a)
564     return *++i == b;
565   if (*i == b)
566     return *++i == a;
567   return false;
568 }
569 
570 void
571 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
572   FirstTerminator = nullptr;
573 
574   if (MRI->isSSA()) {
575     // If this block has allocatable physical registers live-in, check that
576     // it is an entry block or landing pad.
577     for (const auto &LI : MBB->liveins()) {
578       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
579           MBB->getIterator() != MBB->getParent()->begin()) {
580         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
581       }
582     }
583   }
584 
585   // Count the number of landing pad successors.
586   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
587   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
588        E = MBB->succ_end(); I != E; ++I) {
589     if ((*I)->isEHPad())
590       LandingPadSuccs.insert(*I);
591     if (!FunctionBlocks.count(*I))
592       report("MBB has successor that isn't part of the function.", MBB);
593     if (!MBBInfoMap[*I].Preds.count(MBB)) {
594       report("Inconsistent CFG", MBB);
595       errs() << "MBB is not in the predecessor list of the successor BB#"
596           << (*I)->getNumber() << ".\n";
597     }
598   }
599 
600   // Check the predecessor list.
601   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
602        E = MBB->pred_end(); I != E; ++I) {
603     if (!FunctionBlocks.count(*I))
604       report("MBB has predecessor that isn't part of the function.", MBB);
605     if (!MBBInfoMap[*I].Succs.count(MBB)) {
606       report("Inconsistent CFG", MBB);
607       errs() << "MBB is not in the successor list of the predecessor BB#"
608           << (*I)->getNumber() << ".\n";
609     }
610   }
611 
612   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
613   const BasicBlock *BB = MBB->getBasicBlock();
614   const Function *Fn = MF->getFunction();
615   if (LandingPadSuccs.size() > 1 &&
616       !(AsmInfo &&
617         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
618         BB && isa<SwitchInst>(BB->getTerminator())) &&
619       !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
620     report("MBB has more than one landing pad successor", MBB);
621 
622   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
623   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
624   SmallVector<MachineOperand, 4> Cond;
625   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
626                           TBB, FBB, Cond)) {
627     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
628     // check whether its answers match up with reality.
629     if (!TBB && !FBB) {
630       // Block falls through to its successor.
631       MachineFunction::const_iterator MBBI = MBB->getIterator();
632       ++MBBI;
633       if (MBBI == MF->end()) {
634         // It's possible that the block legitimately ends with a noreturn
635         // call or an unreachable, in which case it won't actually fall
636         // out the bottom of the function.
637       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
638         // It's possible that the block legitimately ends with a noreturn
639         // call or an unreachable, in which case it won't actuall fall
640         // out of the block.
641       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
642         report("MBB exits via unconditional fall-through but doesn't have "
643                "exactly one CFG successor!", MBB);
644       } else if (!MBB->isSuccessor(&*MBBI)) {
645         report("MBB exits via unconditional fall-through but its successor "
646                "differs from its CFG successor!", MBB);
647       }
648       if (!MBB->empty() && MBB->back().isBarrier() &&
649           !TII->isPredicated(MBB->back())) {
650         report("MBB exits via unconditional fall-through but ends with a "
651                "barrier instruction!", MBB);
652       }
653       if (!Cond.empty()) {
654         report("MBB exits via unconditional fall-through but has a condition!",
655                MBB);
656       }
657     } else if (TBB && !FBB && Cond.empty()) {
658       // Block unconditionally branches somewhere.
659       // If the block has exactly one successor, that happens to be a
660       // landingpad, accept it as valid control flow.
661       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
662           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
663            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
664         report("MBB exits via unconditional branch but doesn't have "
665                "exactly one CFG successor!", MBB);
666       } else if (!MBB->isSuccessor(TBB)) {
667         report("MBB exits via unconditional branch but the CFG "
668                "successor doesn't match the actual successor!", MBB);
669       }
670       if (MBB->empty()) {
671         report("MBB exits via unconditional branch but doesn't contain "
672                "any instructions!", MBB);
673       } else if (!MBB->back().isBarrier()) {
674         report("MBB exits via unconditional branch but doesn't end with a "
675                "barrier instruction!", MBB);
676       } else if (!MBB->back().isTerminator()) {
677         report("MBB exits via unconditional branch but the branch isn't a "
678                "terminator instruction!", MBB);
679       }
680     } else if (TBB && !FBB && !Cond.empty()) {
681       // Block conditionally branches somewhere, otherwise falls through.
682       MachineFunction::const_iterator MBBI = MBB->getIterator();
683       ++MBBI;
684       if (MBBI == MF->end()) {
685         report("MBB conditionally falls through out of function!", MBB);
686       } else if (MBB->succ_size() == 1) {
687         // A conditional branch with only one successor is weird, but allowed.
688         if (&*MBBI != TBB)
689           report("MBB exits via conditional branch/fall-through but only has "
690                  "one CFG successor!", MBB);
691         else if (TBB != *MBB->succ_begin())
692           report("MBB exits via conditional branch/fall-through but the CFG "
693                  "successor don't match the actual successor!", MBB);
694       } else if (MBB->succ_size() != 2) {
695         report("MBB exits via conditional branch/fall-through but doesn't have "
696                "exactly two CFG successors!", MBB);
697       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
698         report("MBB exits via conditional branch/fall-through but the CFG "
699                "successors don't match the actual successors!", MBB);
700       }
701       if (MBB->empty()) {
702         report("MBB exits via conditional branch/fall-through but doesn't "
703                "contain any instructions!", MBB);
704       } else if (MBB->back().isBarrier()) {
705         report("MBB exits via conditional branch/fall-through but ends with a "
706                "barrier instruction!", MBB);
707       } else if (!MBB->back().isTerminator()) {
708         report("MBB exits via conditional branch/fall-through but the branch "
709                "isn't a terminator instruction!", MBB);
710       }
711     } else if (TBB && FBB) {
712       // Block conditionally branches somewhere, otherwise branches
713       // somewhere else.
714       if (MBB->succ_size() == 1) {
715         // A conditional branch with only one successor is weird, but allowed.
716         if (FBB != TBB)
717           report("MBB exits via conditional branch/branch through but only has "
718                  "one CFG successor!", MBB);
719         else if (TBB != *MBB->succ_begin())
720           report("MBB exits via conditional branch/branch through but the CFG "
721                  "successor don't match the actual successor!", MBB);
722       } else if (MBB->succ_size() != 2) {
723         report("MBB exits via conditional branch/branch but doesn't have "
724                "exactly two CFG successors!", MBB);
725       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
726         report("MBB exits via conditional branch/branch but the CFG "
727                "successors don't match the actual successors!", MBB);
728       }
729       if (MBB->empty()) {
730         report("MBB exits via conditional branch/branch but doesn't "
731                "contain any instructions!", MBB);
732       } else if (!MBB->back().isBarrier()) {
733         report("MBB exits via conditional branch/branch but doesn't end with a "
734                "barrier instruction!", MBB);
735       } else if (!MBB->back().isTerminator()) {
736         report("MBB exits via conditional branch/branch but the branch "
737                "isn't a terminator instruction!", MBB);
738       }
739       if (Cond.empty()) {
740         report("MBB exits via conditinal branch/branch but there's no "
741                "condition!", MBB);
742       }
743     } else {
744       report("AnalyzeBranch returned invalid data!", MBB);
745     }
746   }
747 
748   regsLive.clear();
749   for (const auto &LI : MBB->liveins()) {
750     if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
751       report("MBB live-in list contains non-physical register", MBB);
752       continue;
753     }
754     for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
755          SubRegs.isValid(); ++SubRegs)
756       regsLive.insert(*SubRegs);
757   }
758   regsLiveInButUnused = regsLive;
759 
760   const MachineFrameInfo *MFI = MF->getFrameInfo();
761   assert(MFI && "Function has no frame info");
762   BitVector PR = MFI->getPristineRegs(*MF);
763   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
764     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
765          SubRegs.isValid(); ++SubRegs)
766       regsLive.insert(*SubRegs);
767   }
768 
769   regsKilled.clear();
770   regsDefined.clear();
771 
772   if (Indexes)
773     lastIndex = Indexes->getMBBStartIdx(MBB);
774 }
775 
776 // This function gets called for all bundle headers, including normal
777 // stand-alone unbundled instructions.
778 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
779   if (Indexes && Indexes->hasIndex(*MI)) {
780     SlotIndex idx = Indexes->getInstructionIndex(*MI);
781     if (!(idx > lastIndex)) {
782       report("Instruction index out of order", MI);
783       errs() << "Last instruction was at " << lastIndex << '\n';
784     }
785     lastIndex = idx;
786   }
787 
788   // Ensure non-terminators don't follow terminators.
789   // Ignore predicated terminators formed by if conversion.
790   // FIXME: If conversion shouldn't need to violate this rule.
791   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
792     if (!FirstTerminator)
793       FirstTerminator = MI;
794   } else if (FirstTerminator) {
795     report("Non-terminator instruction after the first terminator", MI);
796     errs() << "First terminator was:\t" << *FirstTerminator;
797   }
798 }
799 
800 // The operands on an INLINEASM instruction must follow a template.
801 // Verify that the flag operands make sense.
802 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
803   // The first two operands on INLINEASM are the asm string and global flags.
804   if (MI->getNumOperands() < 2) {
805     report("Too few operands on inline asm", MI);
806     return;
807   }
808   if (!MI->getOperand(0).isSymbol())
809     report("Asm string must be an external symbol", MI);
810   if (!MI->getOperand(1).isImm())
811     report("Asm flags must be an immediate", MI);
812   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
813   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
814   if (!isUInt<5>(MI->getOperand(1).getImm()))
815     report("Unknown asm flags", &MI->getOperand(1), 1);
816 
817   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
818 
819   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
820   unsigned NumOps;
821   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
822     const MachineOperand &MO = MI->getOperand(OpNo);
823     // There may be implicit ops after the fixed operands.
824     if (!MO.isImm())
825       break;
826     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
827   }
828 
829   if (OpNo > MI->getNumOperands())
830     report("Missing operands in last group", MI);
831 
832   // An optional MDNode follows the groups.
833   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
834     ++OpNo;
835 
836   // All trailing operands must be implicit registers.
837   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
838     const MachineOperand &MO = MI->getOperand(OpNo);
839     if (!MO.isReg() || !MO.isImplicit())
840       report("Expected implicit register after groups", &MO, OpNo);
841   }
842 }
843 
844 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
845   const MCInstrDesc &MCID = MI->getDesc();
846   if (MI->getNumOperands() < MCID.getNumOperands()) {
847     report("Too few operands", MI);
848     errs() << MCID.getNumOperands() << " operands expected, but "
849         << MI->getNumOperands() << " given.\n";
850   }
851 
852   // Check the tied operands.
853   if (MI->isInlineAsm())
854     verifyInlineAsm(MI);
855 
856   // Check the MachineMemOperands for basic consistency.
857   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
858        E = MI->memoperands_end(); I != E; ++I) {
859     if ((*I)->isLoad() && !MI->mayLoad())
860       report("Missing mayLoad flag", MI);
861     if ((*I)->isStore() && !MI->mayStore())
862       report("Missing mayStore flag", MI);
863   }
864 
865   // Debug values must not have a slot index.
866   // Other instructions must have one, unless they are inside a bundle.
867   if (LiveInts) {
868     bool mapped = !LiveInts->isNotInMIMap(*MI);
869     if (MI->isDebugValue()) {
870       if (mapped)
871         report("Debug instruction has a slot index", MI);
872     } else if (MI->isInsideBundle()) {
873       if (mapped)
874         report("Instruction inside bundle has a slot index", MI);
875     } else {
876       if (!mapped)
877         report("Missing slot index", MI);
878     }
879   }
880 
881   StringRef ErrorInfo;
882   if (!TII->verifyInstruction(MI, ErrorInfo))
883     report(ErrorInfo.data(), MI);
884 }
885 
886 void
887 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
888   const MachineInstr *MI = MO->getParent();
889   const MCInstrDesc &MCID = MI->getDesc();
890   unsigned NumDefs = MCID.getNumDefs();
891   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
892     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
893 
894   // The first MCID.NumDefs operands must be explicit register defines
895   if (MONum < NumDefs) {
896     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
897     if (!MO->isReg())
898       report("Explicit definition must be a register", MO, MONum);
899     else if (!MO->isDef() && !MCOI.isOptionalDef())
900       report("Explicit definition marked as use", MO, MONum);
901     else if (MO->isImplicit())
902       report("Explicit definition marked as implicit", MO, MONum);
903   } else if (MONum < MCID.getNumOperands()) {
904     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
905     // Don't check if it's the last operand in a variadic instruction. See,
906     // e.g., LDM_RET in the arm back end.
907     if (MO->isReg() &&
908         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
909       if (MO->isDef() && !MCOI.isOptionalDef())
910         report("Explicit operand marked as def", MO, MONum);
911       if (MO->isImplicit())
912         report("Explicit operand marked as implicit", MO, MONum);
913     }
914 
915     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
916     if (TiedTo != -1) {
917       if (!MO->isReg())
918         report("Tied use must be a register", MO, MONum);
919       else if (!MO->isTied())
920         report("Operand should be tied", MO, MONum);
921       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
922         report("Tied def doesn't match MCInstrDesc", MO, MONum);
923     } else if (MO->isReg() && MO->isTied())
924       report("Explicit operand should not be tied", MO, MONum);
925   } else {
926     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
927     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
928       report("Extra explicit operand on non-variadic instruction", MO, MONum);
929   }
930 
931   switch (MO->getType()) {
932   case MachineOperand::MO_Register: {
933     const unsigned Reg = MO->getReg();
934     if (!Reg)
935       return;
936     if (MRI->tracksLiveness() && !MI->isDebugValue())
937       checkLiveness(MO, MONum);
938 
939     // Verify the consistency of tied operands.
940     if (MO->isTied()) {
941       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
942       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
943       if (!OtherMO.isReg())
944         report("Must be tied to a register", MO, MONum);
945       if (!OtherMO.isTied())
946         report("Missing tie flags on tied operand", MO, MONum);
947       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
948         report("Inconsistent tie links", MO, MONum);
949       if (MONum < MCID.getNumDefs()) {
950         if (OtherIdx < MCID.getNumOperands()) {
951           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
952             report("Explicit def tied to explicit use without tie constraint",
953                    MO, MONum);
954         } else {
955           if (!OtherMO.isImplicit())
956             report("Explicit def should be tied to implicit use", MO, MONum);
957         }
958       }
959     }
960 
961     // Verify two-address constraints after leaving SSA form.
962     unsigned DefIdx;
963     if (!MRI->isSSA() && MO->isUse() &&
964         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
965         Reg != MI->getOperand(DefIdx).getReg())
966       report("Two-address instruction operands must be identical", MO, MONum);
967 
968     // Check register classes.
969     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
970       unsigned SubIdx = MO->getSubReg();
971 
972       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
973         if (SubIdx) {
974           report("Illegal subregister index for physical register", MO, MONum);
975           return;
976         }
977         if (const TargetRegisterClass *DRC =
978               TII->getRegClass(MCID, MONum, TRI, *MF)) {
979           if (!DRC->contains(Reg)) {
980             report("Illegal physical register for instruction", MO, MONum);
981             errs() << TRI->getName(Reg) << " is not a "
982                 << TRI->getRegClassName(DRC) << " register.\n";
983           }
984         }
985       } else {
986         // Virtual register.
987         const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
988         if (!RC) {
989           // This is a generic virtual register.
990           // It must have a size and it must not have a SubIdx.
991           unsigned Size = MRI->getSize(Reg);
992           if (!Size) {
993             report("Generic virtual register must have a size", MO, MONum);
994             return;
995           }
996           // Make sure the register fits into its register bank if any.
997           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
998           if (RegBank && RegBank->getSize() < Size) {
999             report("Register bank is too small for virtual register", MO,
1000                    MONum);
1001             errs() << "Register bank " << RegBank->getName() << " too small("
1002                    << RegBank->getSize() << ") to fit " << Size << "-bits\n";
1003             return;
1004           }
1005           if (SubIdx)  {
1006             report("Generic virtual register does not subregister index", MO, MONum);
1007             return;
1008           }
1009           break;
1010         }
1011         if (SubIdx) {
1012           const TargetRegisterClass *SRC =
1013             TRI->getSubClassWithSubReg(RC, SubIdx);
1014           if (!SRC) {
1015             report("Invalid subregister index for virtual register", MO, MONum);
1016             errs() << "Register class " << TRI->getRegClassName(RC)
1017                 << " does not support subreg index " << SubIdx << "\n";
1018             return;
1019           }
1020           if (RC != SRC) {
1021             report("Invalid register class for subregister index", MO, MONum);
1022             errs() << "Register class " << TRI->getRegClassName(RC)
1023                 << " does not fully support subreg index " << SubIdx << "\n";
1024             return;
1025           }
1026         }
1027         if (const TargetRegisterClass *DRC =
1028               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1029           if (SubIdx) {
1030             const TargetRegisterClass *SuperRC =
1031                 TRI->getLargestLegalSuperClass(RC, *MF);
1032             if (!SuperRC) {
1033               report("No largest legal super class exists.", MO, MONum);
1034               return;
1035             }
1036             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1037             if (!DRC) {
1038               report("No matching super-reg register class.", MO, MONum);
1039               return;
1040             }
1041           }
1042           if (!RC->hasSuperClassEq(DRC)) {
1043             report("Illegal virtual register for instruction", MO, MONum);
1044             errs() << "Expected a " << TRI->getRegClassName(DRC)
1045                 << " register, but got a " << TRI->getRegClassName(RC)
1046                 << " register\n";
1047           }
1048         }
1049       }
1050     }
1051     break;
1052   }
1053 
1054   case MachineOperand::MO_RegisterMask:
1055     regMasks.push_back(MO->getRegMask());
1056     break;
1057 
1058   case MachineOperand::MO_MachineBasicBlock:
1059     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1060       report("PHI operand is not in the CFG", MO, MONum);
1061     break;
1062 
1063   case MachineOperand::MO_FrameIndex:
1064     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1065         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1066       int FI = MO->getIndex();
1067       LiveInterval &LI = LiveStks->getInterval(FI);
1068       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1069 
1070       bool stores = MI->mayStore();
1071       bool loads = MI->mayLoad();
1072       // For a memory-to-memory move, we need to check if the frame
1073       // index is used for storing or loading, by inspecting the
1074       // memory operands.
1075       if (stores && loads) {
1076         for (auto *MMO : MI->memoperands()) {
1077           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1078           if (PSV == nullptr) continue;
1079           const FixedStackPseudoSourceValue *Value =
1080             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1081           if (Value == nullptr) continue;
1082           if (Value->getFrameIndex() != FI) continue;
1083 
1084           if (MMO->isStore())
1085             loads = false;
1086           else
1087             stores = false;
1088           break;
1089         }
1090         if (loads == stores)
1091           report("Missing fixed stack memoperand.", MI);
1092       }
1093       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1094         report("Instruction loads from dead spill slot", MO, MONum);
1095         errs() << "Live stack: " << LI << '\n';
1096       }
1097       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1098         report("Instruction stores to dead spill slot", MO, MONum);
1099         errs() << "Live stack: " << LI << '\n';
1100       }
1101     }
1102     break;
1103 
1104   default:
1105     break;
1106   }
1107 }
1108 
1109 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1110     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1111     LaneBitmask LaneMask) {
1112   LiveQueryResult LRQ = LR.Query(UseIdx);
1113   // Check if we have a segment at the use, note however that we only need one
1114   // live subregister range, the others may be dead.
1115   if (!LRQ.valueIn() && LaneMask == 0) {
1116     report("No live segment at use", MO, MONum);
1117     report_context_liverange(LR);
1118     report_context_vreg_regunit(VRegOrUnit);
1119     report_context(UseIdx);
1120   }
1121   if (MO->isKill() && !LRQ.isKill()) {
1122     report("Live range continues after kill flag", MO, MONum);
1123     report_context_liverange(LR);
1124     report_context_vreg_regunit(VRegOrUnit);
1125     if (LaneMask != 0)
1126       report_context_lanemask(LaneMask);
1127     report_context(UseIdx);
1128   }
1129 }
1130 
1131 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1132     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1133     LaneBitmask LaneMask) {
1134   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1135     assert(VNI && "NULL valno is not allowed");
1136     if (VNI->def != DefIdx) {
1137       report("Inconsistent valno->def", MO, MONum);
1138       report_context_liverange(LR);
1139       report_context_vreg_regunit(VRegOrUnit);
1140       if (LaneMask != 0)
1141         report_context_lanemask(LaneMask);
1142       report_context(*VNI);
1143       report_context(DefIdx);
1144     }
1145   } else {
1146     report("No live segment at def", MO, MONum);
1147     report_context_liverange(LR);
1148     report_context_vreg_regunit(VRegOrUnit);
1149     if (LaneMask != 0)
1150       report_context_lanemask(LaneMask);
1151     report_context(DefIdx);
1152   }
1153   // Check that, if the dead def flag is present, LiveInts agree.
1154   if (MO->isDead()) {
1155     LiveQueryResult LRQ = LR.Query(DefIdx);
1156     if (!LRQ.isDeadDef()) {
1157       // In case of physregs we can have a non-dead definition on another
1158       // operand.
1159       bool otherDef = false;
1160       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1161         const MachineInstr &MI = *MO->getParent();
1162         for (const MachineOperand &MO : MI.operands()) {
1163           if (!MO.isReg() || !MO.isDef() || MO.isDead())
1164             continue;
1165           unsigned Reg = MO.getReg();
1166           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1167             if (*Units == VRegOrUnit) {
1168               otherDef = true;
1169               break;
1170             }
1171           }
1172         }
1173       }
1174 
1175       if (!otherDef) {
1176         report("Live range continues after dead def flag", MO, MONum);
1177         report_context_liverange(LR);
1178         report_context_vreg_regunit(VRegOrUnit);
1179         if (LaneMask != 0)
1180           report_context_lanemask(LaneMask);
1181       }
1182     }
1183   }
1184 }
1185 
1186 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1187   const MachineInstr *MI = MO->getParent();
1188   const unsigned Reg = MO->getReg();
1189 
1190   // Both use and def operands can read a register.
1191   if (MO->readsReg()) {
1192     regsLiveInButUnused.erase(Reg);
1193 
1194     if (MO->isKill())
1195       addRegWithSubRegs(regsKilled, Reg);
1196 
1197     // Check that LiveVars knows this kill.
1198     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1199         MO->isKill()) {
1200       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1201       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1202         report("Kill missing from LiveVariables", MO, MONum);
1203     }
1204 
1205     // Check LiveInts liveness and kill.
1206     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1207       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1208       // Check the cached regunit intervals.
1209       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1210         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1211           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1212             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1213         }
1214       }
1215 
1216       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1217         if (LiveInts->hasInterval(Reg)) {
1218           // This is a virtual register interval.
1219           const LiveInterval &LI = LiveInts->getInterval(Reg);
1220           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1221 
1222           if (LI.hasSubRanges() && !MO->isDef()) {
1223             unsigned SubRegIdx = MO->getSubReg();
1224             LaneBitmask MOMask = SubRegIdx != 0
1225                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1226                                : MRI->getMaxLaneMaskForVReg(Reg);
1227             LaneBitmask LiveInMask = 0;
1228             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1229               if ((MOMask & SR.LaneMask) == 0)
1230                 continue;
1231               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1232               LiveQueryResult LRQ = SR.Query(UseIdx);
1233               if (LRQ.valueIn())
1234                 LiveInMask |= SR.LaneMask;
1235             }
1236             // At least parts of the register has to be live at the use.
1237             if ((LiveInMask & MOMask) == 0) {
1238               report("No live subrange at use", MO, MONum);
1239               report_context(LI);
1240               report_context(UseIdx);
1241             }
1242           }
1243         } else {
1244           report("Virtual register has no live interval", MO, MONum);
1245         }
1246       }
1247     }
1248 
1249     // Use of a dead register.
1250     if (!regsLive.count(Reg)) {
1251       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1252         // Reserved registers may be used even when 'dead'.
1253         bool Bad = !isReserved(Reg);
1254         // We are fine if just any subregister has a defined value.
1255         if (Bad) {
1256           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1257                ++SubRegs) {
1258             if (regsLive.count(*SubRegs)) {
1259               Bad = false;
1260               break;
1261             }
1262           }
1263         }
1264         // If there is an additional implicit-use of a super register we stop
1265         // here. By definition we are fine if the super register is not
1266         // (completely) dead, if the complete super register is dead we will
1267         // get a report for its operand.
1268         if (Bad) {
1269           for (const MachineOperand &MOP : MI->uses()) {
1270             if (!MOP.isReg())
1271               continue;
1272             if (!MOP.isImplicit())
1273               continue;
1274             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1275                  ++SubRegs) {
1276               if (*SubRegs == Reg) {
1277                 Bad = false;
1278                 break;
1279               }
1280             }
1281           }
1282         }
1283         if (Bad)
1284           report("Using an undefined physical register", MO, MONum);
1285       } else if (MRI->def_empty(Reg)) {
1286         report("Reading virtual register without a def", MO, MONum);
1287       } else {
1288         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1289         // We don't know which virtual registers are live in, so only complain
1290         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1291         // must be live in. PHI instructions are handled separately.
1292         if (MInfo.regsKilled.count(Reg))
1293           report("Using a killed virtual register", MO, MONum);
1294         else if (!MI->isPHI())
1295           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1296       }
1297     }
1298   }
1299 
1300   if (MO->isDef()) {
1301     // Register defined.
1302     // TODO: verify that earlyclobber ops are not used.
1303     if (MO->isDead())
1304       addRegWithSubRegs(regsDead, Reg);
1305     else
1306       addRegWithSubRegs(regsDefined, Reg);
1307 
1308     // Verify SSA form.
1309     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1310         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1311       report("Multiple virtual register defs in SSA form", MO, MONum);
1312 
1313     // Check LiveInts for a live segment, but only for virtual registers.
1314     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1315       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1316       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1317 
1318       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1319         if (LiveInts->hasInterval(Reg)) {
1320           const LiveInterval &LI = LiveInts->getInterval(Reg);
1321           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1322 
1323           if (LI.hasSubRanges()) {
1324             unsigned SubRegIdx = MO->getSubReg();
1325             LaneBitmask MOMask = SubRegIdx != 0
1326               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1327               : MRI->getMaxLaneMaskForVReg(Reg);
1328             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1329               if ((SR.LaneMask & MOMask) == 0)
1330                 continue;
1331               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1332             }
1333           }
1334         } else {
1335           report("Virtual register has no Live interval", MO, MONum);
1336         }
1337       }
1338     }
1339   }
1340 }
1341 
1342 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1343 }
1344 
1345 // This function gets called after visiting all instructions in a bundle. The
1346 // argument points to the bundle header.
1347 // Normal stand-alone instructions are also considered 'bundles', and this
1348 // function is called for all of them.
1349 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1350   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1351   set_union(MInfo.regsKilled, regsKilled);
1352   set_subtract(regsLive, regsKilled); regsKilled.clear();
1353   // Kill any masked registers.
1354   while (!regMasks.empty()) {
1355     const uint32_t *Mask = regMasks.pop_back_val();
1356     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1357       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1358           MachineOperand::clobbersPhysReg(Mask, *I))
1359         regsDead.push_back(*I);
1360   }
1361   set_subtract(regsLive, regsDead);   regsDead.clear();
1362   set_union(regsLive, regsDefined);   regsDefined.clear();
1363 }
1364 
1365 void
1366 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1367   MBBInfoMap[MBB].regsLiveOut = regsLive;
1368   regsLive.clear();
1369 
1370   if (Indexes) {
1371     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1372     if (!(stop > lastIndex)) {
1373       report("Block ends before last instruction index", MBB);
1374       errs() << "Block ends at " << stop
1375           << " last instruction was at " << lastIndex << '\n';
1376     }
1377     lastIndex = stop;
1378   }
1379 }
1380 
1381 // Calculate the largest possible vregsPassed sets. These are the registers that
1382 // can pass through an MBB live, but may not be live every time. It is assumed
1383 // that all vregsPassed sets are empty before the call.
1384 void MachineVerifier::calcRegsPassed() {
1385   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1386   // have any vregsPassed.
1387   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1388   for (const auto &MBB : *MF) {
1389     BBInfo &MInfo = MBBInfoMap[&MBB];
1390     if (!MInfo.reachable)
1391       continue;
1392     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1393            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1394       BBInfo &SInfo = MBBInfoMap[*SuI];
1395       if (SInfo.addPassed(MInfo.regsLiveOut))
1396         todo.insert(*SuI);
1397     }
1398   }
1399 
1400   // Iteratively push vregsPassed to successors. This will converge to the same
1401   // final state regardless of DenseSet iteration order.
1402   while (!todo.empty()) {
1403     const MachineBasicBlock *MBB = *todo.begin();
1404     todo.erase(MBB);
1405     BBInfo &MInfo = MBBInfoMap[MBB];
1406     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1407            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1408       if (*SuI == MBB)
1409         continue;
1410       BBInfo &SInfo = MBBInfoMap[*SuI];
1411       if (SInfo.addPassed(MInfo.vregsPassed))
1412         todo.insert(*SuI);
1413     }
1414   }
1415 }
1416 
1417 // Calculate the set of virtual registers that must be passed through each basic
1418 // block in order to satisfy the requirements of successor blocks. This is very
1419 // similar to calcRegsPassed, only backwards.
1420 void MachineVerifier::calcRegsRequired() {
1421   // First push live-in regs to predecessors' vregsRequired.
1422   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1423   for (const auto &MBB : *MF) {
1424     BBInfo &MInfo = MBBInfoMap[&MBB];
1425     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1426            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1427       BBInfo &PInfo = MBBInfoMap[*PrI];
1428       if (PInfo.addRequired(MInfo.vregsLiveIn))
1429         todo.insert(*PrI);
1430     }
1431   }
1432 
1433   // Iteratively push vregsRequired to predecessors. This will converge to the
1434   // same final state regardless of DenseSet iteration order.
1435   while (!todo.empty()) {
1436     const MachineBasicBlock *MBB = *todo.begin();
1437     todo.erase(MBB);
1438     BBInfo &MInfo = MBBInfoMap[MBB];
1439     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1440            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1441       if (*PrI == MBB)
1442         continue;
1443       BBInfo &SInfo = MBBInfoMap[*PrI];
1444       if (SInfo.addRequired(MInfo.vregsRequired))
1445         todo.insert(*PrI);
1446     }
1447   }
1448 }
1449 
1450 // Check PHI instructions at the beginning of MBB. It is assumed that
1451 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1452 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1453   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1454   for (const auto &BBI : *MBB) {
1455     if (!BBI.isPHI())
1456       break;
1457     seen.clear();
1458 
1459     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1460       unsigned Reg = BBI.getOperand(i).getReg();
1461       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1462       if (!Pre->isSuccessor(MBB))
1463         continue;
1464       seen.insert(Pre);
1465       BBInfo &PrInfo = MBBInfoMap[Pre];
1466       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1467         report("PHI operand is not live-out from predecessor",
1468                &BBI.getOperand(i), i);
1469     }
1470 
1471     // Did we see all predecessors?
1472     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1473            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1474       if (!seen.count(*PrI)) {
1475         report("Missing PHI operand", &BBI);
1476         errs() << "BB#" << (*PrI)->getNumber()
1477             << " is a predecessor according to the CFG.\n";
1478       }
1479     }
1480   }
1481 }
1482 
1483 void MachineVerifier::visitMachineFunctionAfter() {
1484   calcRegsPassed();
1485 
1486   for (const auto &MBB : *MF) {
1487     BBInfo &MInfo = MBBInfoMap[&MBB];
1488 
1489     // Skip unreachable MBBs.
1490     if (!MInfo.reachable)
1491       continue;
1492 
1493     checkPHIOps(&MBB);
1494   }
1495 
1496   // Now check liveness info if available
1497   calcRegsRequired();
1498 
1499   // Check for killed virtual registers that should be live out.
1500   for (const auto &MBB : *MF) {
1501     BBInfo &MInfo = MBBInfoMap[&MBB];
1502     for (RegSet::iterator
1503          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1504          ++I)
1505       if (MInfo.regsKilled.count(*I)) {
1506         report("Virtual register killed in block, but needed live out.", &MBB);
1507         errs() << "Virtual register " << PrintReg(*I)
1508             << " is used after the block.\n";
1509       }
1510   }
1511 
1512   if (!MF->empty()) {
1513     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1514     for (RegSet::iterator
1515          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1516          ++I)
1517       report("Virtual register def doesn't dominate all uses.",
1518              MRI->getVRegDef(*I));
1519   }
1520 
1521   if (LiveVars)
1522     verifyLiveVariables();
1523   if (LiveInts)
1524     verifyLiveIntervals();
1525 }
1526 
1527 void MachineVerifier::verifyLiveVariables() {
1528   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1529   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1530     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1531     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1532     for (const auto &MBB : *MF) {
1533       BBInfo &MInfo = MBBInfoMap[&MBB];
1534 
1535       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1536       if (MInfo.vregsRequired.count(Reg)) {
1537         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1538           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1539           errs() << "Virtual register " << PrintReg(Reg)
1540               << " must be live through the block.\n";
1541         }
1542       } else {
1543         if (VI.AliveBlocks.test(MBB.getNumber())) {
1544           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1545           errs() << "Virtual register " << PrintReg(Reg)
1546               << " is not needed live through the block.\n";
1547         }
1548       }
1549     }
1550   }
1551 }
1552 
1553 void MachineVerifier::verifyLiveIntervals() {
1554   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1555   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1556     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1557 
1558     // Spilling and splitting may leave unused registers around. Skip them.
1559     if (MRI->reg_nodbg_empty(Reg))
1560       continue;
1561 
1562     if (!LiveInts->hasInterval(Reg)) {
1563       report("Missing live interval for virtual register", MF);
1564       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1565       continue;
1566     }
1567 
1568     const LiveInterval &LI = LiveInts->getInterval(Reg);
1569     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1570     verifyLiveInterval(LI);
1571   }
1572 
1573   // Verify all the cached regunit intervals.
1574   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1575     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1576       verifyLiveRange(*LR, i);
1577 }
1578 
1579 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1580                                            const VNInfo *VNI, unsigned Reg,
1581                                            LaneBitmask LaneMask) {
1582   if (VNI->isUnused())
1583     return;
1584 
1585   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1586 
1587   if (!DefVNI) {
1588     report("Value not live at VNInfo def and not marked unused", MF);
1589     report_context(LR, Reg, LaneMask);
1590     report_context(*VNI);
1591     return;
1592   }
1593 
1594   if (DefVNI != VNI) {
1595     report("Live segment at def has different VNInfo", MF);
1596     report_context(LR, Reg, LaneMask);
1597     report_context(*VNI);
1598     return;
1599   }
1600 
1601   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1602   if (!MBB) {
1603     report("Invalid VNInfo definition index", MF);
1604     report_context(LR, Reg, LaneMask);
1605     report_context(*VNI);
1606     return;
1607   }
1608 
1609   if (VNI->isPHIDef()) {
1610     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1611       report("PHIDef VNInfo is not defined at MBB start", MBB);
1612       report_context(LR, Reg, LaneMask);
1613       report_context(*VNI);
1614     }
1615     return;
1616   }
1617 
1618   // Non-PHI def.
1619   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1620   if (!MI) {
1621     report("No instruction at VNInfo def index", MBB);
1622     report_context(LR, Reg, LaneMask);
1623     report_context(*VNI);
1624     return;
1625   }
1626 
1627   if (Reg != 0) {
1628     bool hasDef = false;
1629     bool isEarlyClobber = false;
1630     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1631       if (!MOI->isReg() || !MOI->isDef())
1632         continue;
1633       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1634         if (MOI->getReg() != Reg)
1635           continue;
1636       } else {
1637         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1638             !TRI->hasRegUnit(MOI->getReg(), Reg))
1639           continue;
1640       }
1641       if (LaneMask != 0 &&
1642           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1643         continue;
1644       hasDef = true;
1645       if (MOI->isEarlyClobber())
1646         isEarlyClobber = true;
1647     }
1648 
1649     if (!hasDef) {
1650       report("Defining instruction does not modify register", MI);
1651       report_context(LR, Reg, LaneMask);
1652       report_context(*VNI);
1653     }
1654 
1655     // Early clobber defs begin at USE slots, but other defs must begin at
1656     // DEF slots.
1657     if (isEarlyClobber) {
1658       if (!VNI->def.isEarlyClobber()) {
1659         report("Early clobber def must be at an early-clobber slot", MBB);
1660         report_context(LR, Reg, LaneMask);
1661         report_context(*VNI);
1662       }
1663     } else if (!VNI->def.isRegister()) {
1664       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1665       report_context(LR, Reg, LaneMask);
1666       report_context(*VNI);
1667     }
1668   }
1669 }
1670 
1671 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1672                                              const LiveRange::const_iterator I,
1673                                              unsigned Reg, LaneBitmask LaneMask)
1674 {
1675   const LiveRange::Segment &S = *I;
1676   const VNInfo *VNI = S.valno;
1677   assert(VNI && "Live segment has no valno");
1678 
1679   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1680     report("Foreign valno in live segment", MF);
1681     report_context(LR, Reg, LaneMask);
1682     report_context(S);
1683     report_context(*VNI);
1684   }
1685 
1686   if (VNI->isUnused()) {
1687     report("Live segment valno is marked unused", MF);
1688     report_context(LR, Reg, LaneMask);
1689     report_context(S);
1690   }
1691 
1692   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1693   if (!MBB) {
1694     report("Bad start of live segment, no basic block", MF);
1695     report_context(LR, Reg, LaneMask);
1696     report_context(S);
1697     return;
1698   }
1699   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1700   if (S.start != MBBStartIdx && S.start != VNI->def) {
1701     report("Live segment must begin at MBB entry or valno def", MBB);
1702     report_context(LR, Reg, LaneMask);
1703     report_context(S);
1704   }
1705 
1706   const MachineBasicBlock *EndMBB =
1707     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1708   if (!EndMBB) {
1709     report("Bad end of live segment, no basic block", MF);
1710     report_context(LR, Reg, LaneMask);
1711     report_context(S);
1712     return;
1713   }
1714 
1715   // No more checks for live-out segments.
1716   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1717     return;
1718 
1719   // RegUnit intervals are allowed dead phis.
1720   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1721       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1722     return;
1723 
1724   // The live segment is ending inside EndMBB
1725   const MachineInstr *MI =
1726     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1727   if (!MI) {
1728     report("Live segment doesn't end at a valid instruction", EndMBB);
1729     report_context(LR, Reg, LaneMask);
1730     report_context(S);
1731     return;
1732   }
1733 
1734   // The block slot must refer to a basic block boundary.
1735   if (S.end.isBlock()) {
1736     report("Live segment ends at B slot of an instruction", EndMBB);
1737     report_context(LR, Reg, LaneMask);
1738     report_context(S);
1739   }
1740 
1741   if (S.end.isDead()) {
1742     // Segment ends on the dead slot.
1743     // That means there must be a dead def.
1744     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1745       report("Live segment ending at dead slot spans instructions", EndMBB);
1746       report_context(LR, Reg, LaneMask);
1747       report_context(S);
1748     }
1749   }
1750 
1751   // A live segment can only end at an early-clobber slot if it is being
1752   // redefined by an early-clobber def.
1753   if (S.end.isEarlyClobber()) {
1754     if (I+1 == LR.end() || (I+1)->start != S.end) {
1755       report("Live segment ending at early clobber slot must be "
1756              "redefined by an EC def in the same instruction", EndMBB);
1757       report_context(LR, Reg, LaneMask);
1758       report_context(S);
1759     }
1760   }
1761 
1762   // The following checks only apply to virtual registers. Physreg liveness
1763   // is too weird to check.
1764   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1765     // A live segment can end with either a redefinition, a kill flag on a
1766     // use, or a dead flag on a def.
1767     bool hasRead = false;
1768     bool hasSubRegDef = false;
1769     bool hasDeadDef = false;
1770     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1771       if (!MOI->isReg() || MOI->getReg() != Reg)
1772         continue;
1773       if (LaneMask != 0 &&
1774           (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
1775         continue;
1776       if (MOI->isDef()) {
1777         if (MOI->getSubReg() != 0)
1778           hasSubRegDef = true;
1779         if (MOI->isDead())
1780           hasDeadDef = true;
1781       }
1782       if (MOI->readsReg())
1783         hasRead = true;
1784     }
1785     if (S.end.isDead()) {
1786       // Make sure that the corresponding machine operand for a "dead" live
1787       // range has the dead flag. We cannot perform this check for subregister
1788       // liveranges as partially dead values are allowed.
1789       if (LaneMask == 0 && !hasDeadDef) {
1790         report("Instruction ending live segment on dead slot has no dead flag",
1791                MI);
1792         report_context(LR, Reg, LaneMask);
1793         report_context(S);
1794       }
1795     } else {
1796       if (!hasRead) {
1797         // When tracking subregister liveness, the main range must start new
1798         // values on partial register writes, even if there is no read.
1799         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1800             !hasSubRegDef) {
1801           report("Instruction ending live segment doesn't read the register",
1802                  MI);
1803           report_context(LR, Reg, LaneMask);
1804           report_context(S);
1805         }
1806       }
1807     }
1808   }
1809 
1810   // Now check all the basic blocks in this live segment.
1811   MachineFunction::const_iterator MFI = MBB->getIterator();
1812   // Is this live segment the beginning of a non-PHIDef VN?
1813   if (S.start == VNI->def && !VNI->isPHIDef()) {
1814     // Not live-in to any blocks.
1815     if (MBB == EndMBB)
1816       return;
1817     // Skip this block.
1818     ++MFI;
1819   }
1820   for (;;) {
1821     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1822     // We don't know how to track physregs into a landing pad.
1823     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1824         MFI->isEHPad()) {
1825       if (&*MFI == EndMBB)
1826         break;
1827       ++MFI;
1828       continue;
1829     }
1830 
1831     // Is VNI a PHI-def in the current block?
1832     bool IsPHI = VNI->isPHIDef() &&
1833       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1834 
1835     // Check that VNI is live-out of all predecessors.
1836     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1837          PE = MFI->pred_end(); PI != PE; ++PI) {
1838       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1839       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1840 
1841       // All predecessors must have a live-out value.
1842       if (!PVNI) {
1843         report("Register not marked live out of predecessor", *PI);
1844         report_context(LR, Reg, LaneMask);
1845         report_context(*VNI);
1846         errs() << " live into BB#" << MFI->getNumber()
1847                << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1848                << PEnd << '\n';
1849         continue;
1850       }
1851 
1852       // Only PHI-defs can take different predecessor values.
1853       if (!IsPHI && PVNI != VNI) {
1854         report("Different value live out of predecessor", *PI);
1855         report_context(LR, Reg, LaneMask);
1856         errs() << "Valno #" << PVNI->id << " live out of BB#"
1857                << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1858                << " live into BB#" << MFI->getNumber() << '@'
1859                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1860       }
1861     }
1862     if (&*MFI == EndMBB)
1863       break;
1864     ++MFI;
1865   }
1866 }
1867 
1868 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1869                                       LaneBitmask LaneMask) {
1870   for (const VNInfo *VNI : LR.valnos)
1871     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1872 
1873   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1874     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1875 }
1876 
1877 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1878   unsigned Reg = LI.reg;
1879   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1880   verifyLiveRange(LI, Reg);
1881 
1882   LaneBitmask Mask = 0;
1883   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1884   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1885     if ((Mask & SR.LaneMask) != 0) {
1886       report("Lane masks of sub ranges overlap in live interval", MF);
1887       report_context(LI);
1888     }
1889     if ((SR.LaneMask & ~MaxMask) != 0) {
1890       report("Subrange lanemask is invalid", MF);
1891       report_context(LI);
1892     }
1893     if (SR.empty()) {
1894       report("Subrange must not be empty", MF);
1895       report_context(SR, LI.reg, SR.LaneMask);
1896     }
1897     Mask |= SR.LaneMask;
1898     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1899     if (!LI.covers(SR)) {
1900       report("A Subrange is not covered by the main range", MF);
1901       report_context(LI);
1902     }
1903   }
1904 
1905   // Check the LI only has one connected component.
1906   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1907   unsigned NumComp = ConEQ.Classify(LI);
1908   if (NumComp > 1) {
1909     report("Multiple connected components in live interval", MF);
1910     report_context(LI);
1911     for (unsigned comp = 0; comp != NumComp; ++comp) {
1912       errs() << comp << ": valnos";
1913       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1914            E = LI.vni_end(); I!=E; ++I)
1915         if (comp == ConEQ.getEqClass(*I))
1916           errs() << ' ' << (*I)->id;
1917       errs() << '\n';
1918     }
1919   }
1920 }
1921 
1922 namespace {
1923   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1924   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1925   // value is zero.
1926   // We use a bool plus an integer to capture the stack state.
1927   struct StackStateOfBB {
1928     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1929       ExitIsSetup(false) { }
1930     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1931       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1932       ExitIsSetup(ExitSetup) { }
1933     // Can be negative, which means we are setting up a frame.
1934     int EntryValue;
1935     int ExitValue;
1936     bool EntryIsSetup;
1937     bool ExitIsSetup;
1938   };
1939 }
1940 
1941 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1942 /// by a FrameDestroy <n>, stack adjustments are identical on all
1943 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
1944 void MachineVerifier::verifyStackFrame() {
1945   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1946   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1947 
1948   SmallVector<StackStateOfBB, 8> SPState;
1949   SPState.resize(MF->getNumBlockIDs());
1950   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1951 
1952   // Visit the MBBs in DFS order.
1953   for (df_ext_iterator<const MachineFunction*,
1954                        SmallPtrSet<const MachineBasicBlock*, 8> >
1955        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1956        DFI != DFE; ++DFI) {
1957     const MachineBasicBlock *MBB = *DFI;
1958 
1959     StackStateOfBB BBState;
1960     // Check the exit state of the DFS stack predecessor.
1961     if (DFI.getPathLength() >= 2) {
1962       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1963       assert(Reachable.count(StackPred) &&
1964              "DFS stack predecessor is already visited.\n");
1965       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1966       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1967       BBState.ExitValue = BBState.EntryValue;
1968       BBState.ExitIsSetup = BBState.EntryIsSetup;
1969     }
1970 
1971     // Update stack state by checking contents of MBB.
1972     for (const auto &I : *MBB) {
1973       if (I.getOpcode() == FrameSetupOpcode) {
1974         // The first operand of a FrameOpcode should be i32.
1975         int Size = I.getOperand(0).getImm();
1976         assert(Size >= 0 &&
1977           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1978 
1979         if (BBState.ExitIsSetup)
1980           report("FrameSetup is after another FrameSetup", &I);
1981         BBState.ExitValue -= Size;
1982         BBState.ExitIsSetup = true;
1983       }
1984 
1985       if (I.getOpcode() == FrameDestroyOpcode) {
1986         // The first operand of a FrameOpcode should be i32.
1987         int Size = I.getOperand(0).getImm();
1988         assert(Size >= 0 &&
1989           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1990 
1991         if (!BBState.ExitIsSetup)
1992           report("FrameDestroy is not after a FrameSetup", &I);
1993         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1994                                                BBState.ExitValue;
1995         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1996           report("FrameDestroy <n> is after FrameSetup <m>", &I);
1997           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
1998               << AbsSPAdj << ">.\n";
1999         }
2000         BBState.ExitValue += Size;
2001         BBState.ExitIsSetup = false;
2002       }
2003     }
2004     SPState[MBB->getNumber()] = BBState;
2005 
2006     // Make sure the exit state of any predecessor is consistent with the entry
2007     // state.
2008     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2009          E = MBB->pred_end(); I != E; ++I) {
2010       if (Reachable.count(*I) &&
2011           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2012            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2013         report("The exit stack state of a predecessor is inconsistent.", MBB);
2014         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2015             << SPState[(*I)->getNumber()].ExitValue << ", "
2016             << SPState[(*I)->getNumber()].ExitIsSetup
2017             << "), while BB#" << MBB->getNumber() << " has entry state ("
2018             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2019       }
2020     }
2021 
2022     // Make sure the entry state of any successor is consistent with the exit
2023     // state.
2024     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2025          E = MBB->succ_end(); I != E; ++I) {
2026       if (Reachable.count(*I) &&
2027           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2028            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2029         report("The entry stack state of a successor is inconsistent.", MBB);
2030         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2031             << SPState[(*I)->getNumber()].EntryValue << ", "
2032             << SPState[(*I)->getNumber()].EntryIsSetup
2033             << "), while BB#" << MBB->getNumber() << " has exit state ("
2034             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2035       }
2036     }
2037 
2038     // Make sure a basic block with return ends with zero stack adjustment.
2039     if (!MBB->empty() && MBB->back().isReturn()) {
2040       if (BBState.ExitIsSetup)
2041         report("A return block ends with a FrameSetup.", MBB);
2042       if (BBState.ExitValue)
2043         report("A return block ends with a nonzero stack adjustment.", MBB);
2044     }
2045   }
2046 }
2047