1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (Register::isPhysicalRegister(Reg)) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(unsigned Reg) { 162 if (!Register::isVirtualRegister(Reg)) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addRequired(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Same for a full map. 179 bool addRequired(const RegMap &RM) { 180 bool changed = false; 181 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 182 if (addRequired(I->first)) 183 changed = true; 184 return changed; 185 } 186 187 // Live-out registers are either in regsLiveOut or vregsPassed. 188 bool isLiveOut(unsigned Reg) const { 189 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 190 } 191 }; 192 193 // Extra register info per MBB. 194 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 195 196 bool isReserved(unsigned Reg) { 197 return Reg < regsReserved.size() && regsReserved.test(Reg); 198 } 199 200 bool isAllocatable(unsigned Reg) const { 201 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 202 !regsReserved.test(Reg); 203 } 204 205 // Analysis information if available 206 LiveVariables *LiveVars; 207 LiveIntervals *LiveInts; 208 LiveStacks *LiveStks; 209 SlotIndexes *Indexes; 210 211 void visitMachineFunctionBefore(); 212 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 213 void visitMachineBundleBefore(const MachineInstr *MI); 214 215 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 216 void verifyPreISelGenericInstruction(const MachineInstr *MI); 217 void visitMachineInstrBefore(const MachineInstr *MI); 218 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 219 void visitMachineInstrAfter(const MachineInstr *MI); 220 void visitMachineBundleAfter(const MachineInstr *MI); 221 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 222 void visitMachineFunctionAfter(); 223 224 void report(const char *msg, const MachineFunction *MF); 225 void report(const char *msg, const MachineBasicBlock *MBB); 226 void report(const char *msg, const MachineInstr *MI); 227 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 228 LLT MOVRegType = LLT{}); 229 230 void report_context(const LiveInterval &LI) const; 231 void report_context(const LiveRange &LR, unsigned VRegUnit, 232 LaneBitmask LaneMask) const; 233 void report_context(const LiveRange::Segment &S) const; 234 void report_context(const VNInfo &VNI) const; 235 void report_context(SlotIndex Pos) const; 236 void report_context(MCPhysReg PhysReg) const; 237 void report_context_liverange(const LiveRange &LR) const; 238 void report_context_lanemask(LaneBitmask LaneMask) const; 239 void report_context_vreg(unsigned VReg) const; 240 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 241 242 void verifyInlineAsm(const MachineInstr *MI); 243 244 void checkLiveness(const MachineOperand *MO, unsigned MONum); 245 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 246 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 247 LaneBitmask LaneMask = LaneBitmask::getNone()); 248 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 249 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 250 bool SubRangeCheck = false, 251 LaneBitmask LaneMask = LaneBitmask::getNone()); 252 253 void markReachable(const MachineBasicBlock *MBB); 254 void calcRegsPassed(); 255 void checkPHIOps(const MachineBasicBlock &MBB); 256 257 void calcRegsRequired(); 258 void verifyLiveVariables(); 259 void verifyLiveIntervals(); 260 void verifyLiveInterval(const LiveInterval&); 261 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 262 LaneBitmask); 263 void verifyLiveRangeSegment(const LiveRange&, 264 const LiveRange::const_iterator I, unsigned, 265 LaneBitmask); 266 void verifyLiveRange(const LiveRange&, unsigned, 267 LaneBitmask LaneMask = LaneBitmask::getNone()); 268 269 void verifyStackFrame(); 270 271 void verifySlotIndexes() const; 272 void verifyProperties(const MachineFunction &MF); 273 }; 274 275 struct MachineVerifierPass : public MachineFunctionPass { 276 static char ID; // Pass ID, replacement for typeid 277 278 const std::string Banner; 279 280 MachineVerifierPass(std::string banner = std::string()) 281 : MachineFunctionPass(ID), Banner(std::move(banner)) { 282 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 283 } 284 285 void getAnalysisUsage(AnalysisUsage &AU) const override { 286 AU.setPreservesAll(); 287 MachineFunctionPass::getAnalysisUsage(AU); 288 } 289 290 bool runOnMachineFunction(MachineFunction &MF) override { 291 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 292 if (FoundErrors) 293 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 294 return false; 295 } 296 }; 297 298 } // end anonymous namespace 299 300 char MachineVerifierPass::ID = 0; 301 302 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 303 "Verify generated machine code", false, false) 304 305 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 306 return new MachineVerifierPass(Banner); 307 } 308 309 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 310 const { 311 MachineFunction &MF = const_cast<MachineFunction&>(*this); 312 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 313 if (AbortOnErrors && FoundErrors) 314 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 315 return FoundErrors == 0; 316 } 317 318 void MachineVerifier::verifySlotIndexes() const { 319 if (Indexes == nullptr) 320 return; 321 322 // Ensure the IdxMBB list is sorted by slot indexes. 323 SlotIndex Last; 324 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 325 E = Indexes->MBBIndexEnd(); I != E; ++I) { 326 assert(!Last.isValid() || I->first > Last); 327 Last = I->first; 328 } 329 } 330 331 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 332 // If a pass has introduced virtual registers without clearing the 333 // NoVRegs property (or set it without allocating the vregs) 334 // then report an error. 335 if (MF.getProperties().hasProperty( 336 MachineFunctionProperties::Property::NoVRegs) && 337 MRI->getNumVirtRegs()) 338 report("Function has NoVRegs property but there are VReg operands", &MF); 339 } 340 341 unsigned MachineVerifier::verify(MachineFunction &MF) { 342 foundErrors = 0; 343 344 this->MF = &MF; 345 TM = &MF.getTarget(); 346 TII = MF.getSubtarget().getInstrInfo(); 347 TRI = MF.getSubtarget().getRegisterInfo(); 348 MRI = &MF.getRegInfo(); 349 350 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 351 MachineFunctionProperties::Property::FailedISel); 352 353 // If we're mid-GlobalISel and we already triggered the fallback path then 354 // it's expected that the MIR is somewhat broken but that's ok since we'll 355 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 356 if (isFunctionFailedISel) 357 return foundErrors; 358 359 isFunctionRegBankSelected = MF.getProperties().hasProperty( 360 MachineFunctionProperties::Property::RegBankSelected); 361 isFunctionSelected = MF.getProperties().hasProperty( 362 MachineFunctionProperties::Property::Selected); 363 364 LiveVars = nullptr; 365 LiveInts = nullptr; 366 LiveStks = nullptr; 367 Indexes = nullptr; 368 if (PASS) { 369 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 370 // We don't want to verify LiveVariables if LiveIntervals is available. 371 if (!LiveInts) 372 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 373 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 374 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 375 } 376 377 verifySlotIndexes(); 378 379 verifyProperties(MF); 380 381 visitMachineFunctionBefore(); 382 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 383 MFI!=MFE; ++MFI) { 384 visitMachineBasicBlockBefore(&*MFI); 385 // Keep track of the current bundle header. 386 const MachineInstr *CurBundle = nullptr; 387 // Do we expect the next instruction to be part of the same bundle? 388 bool InBundle = false; 389 390 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 391 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 392 if (MBBI->getParent() != &*MFI) { 393 report("Bad instruction parent pointer", &*MFI); 394 errs() << "Instruction: " << *MBBI; 395 continue; 396 } 397 398 // Check for consistent bundle flags. 399 if (InBundle && !MBBI->isBundledWithPred()) 400 report("Missing BundledPred flag, " 401 "BundledSucc was set on predecessor", 402 &*MBBI); 403 if (!InBundle && MBBI->isBundledWithPred()) 404 report("BundledPred flag is set, " 405 "but BundledSucc not set on predecessor", 406 &*MBBI); 407 408 // Is this a bundle header? 409 if (!MBBI->isInsideBundle()) { 410 if (CurBundle) 411 visitMachineBundleAfter(CurBundle); 412 CurBundle = &*MBBI; 413 visitMachineBundleBefore(CurBundle); 414 } else if (!CurBundle) 415 report("No bundle header", &*MBBI); 416 visitMachineInstrBefore(&*MBBI); 417 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 418 const MachineInstr &MI = *MBBI; 419 const MachineOperand &Op = MI.getOperand(I); 420 if (Op.getParent() != &MI) { 421 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 422 // functions when replacing operands of a MachineInstr. 423 report("Instruction has operand with wrong parent set", &MI); 424 } 425 426 visitMachineOperand(&Op, I); 427 } 428 429 visitMachineInstrAfter(&*MBBI); 430 431 // Was this the last bundled instruction? 432 InBundle = MBBI->isBundledWithSucc(); 433 } 434 if (CurBundle) 435 visitMachineBundleAfter(CurBundle); 436 if (InBundle) 437 report("BundledSucc flag set on last instruction in block", &MFI->back()); 438 visitMachineBasicBlockAfter(&*MFI); 439 } 440 visitMachineFunctionAfter(); 441 442 // Clean up. 443 regsLive.clear(); 444 regsDefined.clear(); 445 regsDead.clear(); 446 regsKilled.clear(); 447 regMasks.clear(); 448 MBBInfoMap.clear(); 449 450 return foundErrors; 451 } 452 453 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 454 assert(MF); 455 errs() << '\n'; 456 if (!foundErrors++) { 457 if (Banner) 458 errs() << "# " << Banner << '\n'; 459 if (LiveInts != nullptr) 460 LiveInts->print(errs()); 461 else 462 MF->print(errs(), Indexes); 463 } 464 errs() << "*** Bad machine code: " << msg << " ***\n" 465 << "- function: " << MF->getName() << "\n"; 466 } 467 468 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 469 assert(MBB); 470 report(msg, MBB->getParent()); 471 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 472 << MBB->getName() << " (" << (const void *)MBB << ')'; 473 if (Indexes) 474 errs() << " [" << Indexes->getMBBStartIdx(MBB) 475 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 476 errs() << '\n'; 477 } 478 479 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 480 assert(MI); 481 report(msg, MI->getParent()); 482 errs() << "- instruction: "; 483 if (Indexes && Indexes->hasIndex(*MI)) 484 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 485 MI->print(errs(), /*SkipOpers=*/true); 486 } 487 488 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 489 unsigned MONum, LLT MOVRegType) { 490 assert(MO); 491 report(msg, MO->getParent()); 492 errs() << "- operand " << MONum << ": "; 493 MO->print(errs(), MOVRegType, TRI); 494 errs() << "\n"; 495 } 496 497 void MachineVerifier::report_context(SlotIndex Pos) const { 498 errs() << "- at: " << Pos << '\n'; 499 } 500 501 void MachineVerifier::report_context(const LiveInterval &LI) const { 502 errs() << "- interval: " << LI << '\n'; 503 } 504 505 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 506 LaneBitmask LaneMask) const { 507 report_context_liverange(LR); 508 report_context_vreg_regunit(VRegUnit); 509 if (LaneMask.any()) 510 report_context_lanemask(LaneMask); 511 } 512 513 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 514 errs() << "- segment: " << S << '\n'; 515 } 516 517 void MachineVerifier::report_context(const VNInfo &VNI) const { 518 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 519 } 520 521 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 522 errs() << "- liverange: " << LR << '\n'; 523 } 524 525 void MachineVerifier::report_context(MCPhysReg PReg) const { 526 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 527 } 528 529 void MachineVerifier::report_context_vreg(unsigned VReg) const { 530 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 531 } 532 533 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 534 if (Register::isVirtualRegister(VRegOrUnit)) { 535 report_context_vreg(VRegOrUnit); 536 } else { 537 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 538 } 539 } 540 541 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 542 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 543 } 544 545 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 546 BBInfo &MInfo = MBBInfoMap[MBB]; 547 if (!MInfo.reachable) { 548 MInfo.reachable = true; 549 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 550 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 551 markReachable(*SuI); 552 } 553 } 554 555 void MachineVerifier::visitMachineFunctionBefore() { 556 lastIndex = SlotIndex(); 557 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 558 : TRI->getReservedRegs(*MF); 559 560 if (!MF->empty()) 561 markReachable(&MF->front()); 562 563 // Build a set of the basic blocks in the function. 564 FunctionBlocks.clear(); 565 for (const auto &MBB : *MF) { 566 FunctionBlocks.insert(&MBB); 567 BBInfo &MInfo = MBBInfoMap[&MBB]; 568 569 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 570 if (MInfo.Preds.size() != MBB.pred_size()) 571 report("MBB has duplicate entries in its predecessor list.", &MBB); 572 573 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 574 if (MInfo.Succs.size() != MBB.succ_size()) 575 report("MBB has duplicate entries in its successor list.", &MBB); 576 } 577 578 // Check that the register use lists are sane. 579 MRI->verifyUseLists(); 580 581 if (!MF->empty()) 582 verifyStackFrame(); 583 } 584 585 // Does iterator point to a and b as the first two elements? 586 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 587 const MachineBasicBlock *a, const MachineBasicBlock *b) { 588 if (*i == a) 589 return *++i == b; 590 if (*i == b) 591 return *++i == a; 592 return false; 593 } 594 595 void 596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 597 FirstTerminator = nullptr; 598 FirstNonPHI = nullptr; 599 600 if (!MF->getProperties().hasProperty( 601 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 602 // If this block has allocatable physical registers live-in, check that 603 // it is an entry block or landing pad. 604 for (const auto &LI : MBB->liveins()) { 605 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 606 !MBB->isInlineAsmBrDefaultTarget() && 607 MBB->getIterator() != MBB->getParent()->begin()) { 608 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 609 report_context(LI.PhysReg); 610 } 611 } 612 } 613 614 // Count the number of landing pad successors. 615 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 616 for (const auto *succ : MBB->successors()) { 617 if (succ->isEHPad()) 618 LandingPadSuccs.insert(succ); 619 if (!FunctionBlocks.count(succ)) 620 report("MBB has successor that isn't part of the function.", MBB); 621 if (!MBBInfoMap[succ].Preds.count(MBB)) { 622 report("Inconsistent CFG", MBB); 623 errs() << "MBB is not in the predecessor list of the successor " 624 << printMBBReference(*succ) << ".\n"; 625 } 626 } 627 628 // Count the number of INLINEASM_BR indirect target successors. 629 SmallPtrSet<const MachineBasicBlock*, 4> IndirectTargetSuccs; 630 for (const auto *succ : MBB->successors()) { 631 if (MBB->isInlineAsmBrIndirectTarget(succ)) 632 IndirectTargetSuccs.insert(succ); 633 if (!FunctionBlocks.count(succ)) 634 report("MBB has successor that isn't part of the function.", MBB); 635 if (!MBBInfoMap[succ].Preds.count(MBB)) { 636 report("Inconsistent CFG", MBB); 637 errs() << "MBB is not in the predecessor list of the successor " 638 << printMBBReference(*succ) << ".\n"; 639 } 640 } 641 642 // Check the predecessor list. 643 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 644 E = MBB->pred_end(); I != E; ++I) { 645 if (!FunctionBlocks.count(*I)) 646 report("MBB has predecessor that isn't part of the function.", MBB); 647 if (!MBBInfoMap[*I].Succs.count(MBB)) { 648 report("Inconsistent CFG", MBB); 649 errs() << "MBB is not in the successor list of the predecessor " 650 << printMBBReference(*(*I)) << ".\n"; 651 } 652 } 653 654 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 655 const BasicBlock *BB = MBB->getBasicBlock(); 656 const Function &F = MF->getFunction(); 657 if (LandingPadSuccs.size() > 1 && 658 !(AsmInfo && 659 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 660 BB && isa<SwitchInst>(BB->getTerminator())) && 661 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 662 report("MBB has more than one landing pad successor", MBB); 663 664 // Call analyzeBranch. If it succeeds, there several more conditions to check. 665 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 666 SmallVector<MachineOperand, 4> Cond; 667 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 668 Cond)) { 669 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 670 // check whether its answers match up with reality. 671 if (!TBB && !FBB) { 672 // Block falls through to its successor. 673 MachineFunction::const_iterator MBBI = MBB->getIterator(); 674 ++MBBI; 675 if (MBBI == MF->end()) { 676 // It's possible that the block legitimately ends with a noreturn 677 // call or an unreachable, in which case it won't actually fall 678 // out the bottom of the function. 679 } else if (MBB->succ_size() == LandingPadSuccs.size() || 680 MBB->succ_size() == IndirectTargetSuccs.size()) { 681 // It's possible that the block legitimately ends with a noreturn 682 // call or an unreachable, in which case it won't actually fall 683 // out of the block. 684 } else if ((LandingPadSuccs.size() && 685 MBB->succ_size() != 1 + LandingPadSuccs.size()) || 686 (IndirectTargetSuccs.size() && 687 MBB->succ_size() != 1 + IndirectTargetSuccs.size())) { 688 report("MBB exits via unconditional fall-through but doesn't have " 689 "exactly one CFG successor!", MBB); 690 } else if (!MBB->isSuccessor(&*MBBI)) { 691 report("MBB exits via unconditional fall-through but its successor " 692 "differs from its CFG successor!", MBB); 693 } 694 if (!MBB->empty() && MBB->back().isBarrier() && 695 !TII->isPredicated(MBB->back())) { 696 report("MBB exits via unconditional fall-through but ends with a " 697 "barrier instruction!", MBB); 698 } 699 if (!Cond.empty()) { 700 report("MBB exits via unconditional fall-through but has a condition!", 701 MBB); 702 } 703 } else if (TBB && !FBB && Cond.empty()) { 704 // Block unconditionally branches somewhere. 705 // If the block has exactly one successor, that happens to be a 706 // landingpad, accept it as valid control flow. 707 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 708 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 709 *MBB->succ_begin() != *LandingPadSuccs.begin()) && 710 MBB->succ_size() != 1 + IndirectTargetSuccs.size() && 711 (MBB->succ_size() != 1 || IndirectTargetSuccs.size() != 1 || 712 *MBB->succ_begin() != *IndirectTargetSuccs.begin())) { 713 report("MBB exits via unconditional branch but doesn't have " 714 "exactly one CFG successor!", MBB); 715 } else if (!MBB->isSuccessor(TBB)) { 716 report("MBB exits via unconditional branch but the CFG " 717 "successor doesn't match the actual successor!", MBB); 718 } 719 if (MBB->empty()) { 720 report("MBB exits via unconditional branch but doesn't contain " 721 "any instructions!", MBB); 722 } else if (!MBB->back().isBarrier()) { 723 report("MBB exits via unconditional branch but doesn't end with a " 724 "barrier instruction!", MBB); 725 } else if (!MBB->back().isTerminator()) { 726 report("MBB exits via unconditional branch but the branch isn't a " 727 "terminator instruction!", MBB); 728 } 729 } else if (TBB && !FBB && !Cond.empty()) { 730 // Block conditionally branches somewhere, otherwise falls through. 731 MachineFunction::const_iterator MBBI = MBB->getIterator(); 732 ++MBBI; 733 if (MBBI == MF->end()) { 734 report("MBB conditionally falls through out of function!", MBB); 735 } else if (MBB->succ_size() == 1) { 736 // A conditional branch with only one successor is weird, but allowed. 737 if (&*MBBI != TBB) 738 report("MBB exits via conditional branch/fall-through but only has " 739 "one CFG successor!", MBB); 740 else if (TBB != *MBB->succ_begin()) 741 report("MBB exits via conditional branch/fall-through but the CFG " 742 "successor don't match the actual successor!", MBB); 743 } else if (MBB->succ_size() != 2) { 744 report("MBB exits via conditional branch/fall-through but doesn't have " 745 "exactly two CFG successors!", MBB); 746 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 747 report("MBB exits via conditional branch/fall-through but the CFG " 748 "successors don't match the actual successors!", MBB); 749 } 750 if (MBB->empty()) { 751 report("MBB exits via conditional branch/fall-through but doesn't " 752 "contain any instructions!", MBB); 753 } else if (MBB->back().isBarrier()) { 754 report("MBB exits via conditional branch/fall-through but ends with a " 755 "barrier instruction!", MBB); 756 } else if (!MBB->back().isTerminator()) { 757 report("MBB exits via conditional branch/fall-through but the branch " 758 "isn't a terminator instruction!", MBB); 759 } 760 } else if (TBB && FBB) { 761 // Block conditionally branches somewhere, otherwise branches 762 // somewhere else. 763 if (MBB->succ_size() == 1) { 764 // A conditional branch with only one successor is weird, but allowed. 765 if (FBB != TBB) 766 report("MBB exits via conditional branch/branch through but only has " 767 "one CFG successor!", MBB); 768 else if (TBB != *MBB->succ_begin()) 769 report("MBB exits via conditional branch/branch through but the CFG " 770 "successor don't match the actual successor!", MBB); 771 } else if (MBB->succ_size() != 2) { 772 report("MBB exits via conditional branch/branch but doesn't have " 773 "exactly two CFG successors!", MBB); 774 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 775 report("MBB exits via conditional branch/branch but the CFG " 776 "successors don't match the actual successors!", MBB); 777 } 778 if (MBB->empty()) { 779 report("MBB exits via conditional branch/branch but doesn't " 780 "contain any instructions!", MBB); 781 } else if (!MBB->back().isBarrier()) { 782 report("MBB exits via conditional branch/branch but doesn't end with a " 783 "barrier instruction!", MBB); 784 } else if (!MBB->back().isTerminator()) { 785 report("MBB exits via conditional branch/branch but the branch " 786 "isn't a terminator instruction!", MBB); 787 } 788 if (Cond.empty()) { 789 report("MBB exits via conditional branch/branch but there's no " 790 "condition!", MBB); 791 } 792 } else { 793 report("analyzeBranch returned invalid data!", MBB); 794 } 795 } 796 797 regsLive.clear(); 798 if (MRI->tracksLiveness()) { 799 for (const auto &LI : MBB->liveins()) { 800 if (!Register::isPhysicalRegister(LI.PhysReg)) { 801 report("MBB live-in list contains non-physical register", MBB); 802 continue; 803 } 804 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 805 regsLive.insert(SubReg); 806 } 807 } 808 809 const MachineFrameInfo &MFI = MF->getFrameInfo(); 810 BitVector PR = MFI.getPristineRegs(*MF); 811 for (unsigned I : PR.set_bits()) { 812 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 813 regsLive.insert(SubReg); 814 } 815 816 regsKilled.clear(); 817 regsDefined.clear(); 818 819 if (Indexes) 820 lastIndex = Indexes->getMBBStartIdx(MBB); 821 } 822 823 // This function gets called for all bundle headers, including normal 824 // stand-alone unbundled instructions. 825 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 826 if (Indexes && Indexes->hasIndex(*MI)) { 827 SlotIndex idx = Indexes->getInstructionIndex(*MI); 828 if (!(idx > lastIndex)) { 829 report("Instruction index out of order", MI); 830 errs() << "Last instruction was at " << lastIndex << '\n'; 831 } 832 lastIndex = idx; 833 } 834 835 // Ensure non-terminators don't follow terminators. 836 // Ignore predicated terminators formed by if conversion. 837 // FIXME: If conversion shouldn't need to violate this rule. 838 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 839 if (!FirstTerminator) 840 FirstTerminator = MI; 841 } else if (FirstTerminator) { 842 report("Non-terminator instruction after the first terminator", MI); 843 errs() << "First terminator was:\t" << *FirstTerminator; 844 } 845 } 846 847 // The operands on an INLINEASM instruction must follow a template. 848 // Verify that the flag operands make sense. 849 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 850 // The first two operands on INLINEASM are the asm string and global flags. 851 if (MI->getNumOperands() < 2) { 852 report("Too few operands on inline asm", MI); 853 return; 854 } 855 if (!MI->getOperand(0).isSymbol()) 856 report("Asm string must be an external symbol", MI); 857 if (!MI->getOperand(1).isImm()) 858 report("Asm flags must be an immediate", MI); 859 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 860 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 861 // and Extra_IsConvergent = 32. 862 if (!isUInt<6>(MI->getOperand(1).getImm())) 863 report("Unknown asm flags", &MI->getOperand(1), 1); 864 865 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 866 867 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 868 unsigned NumOps; 869 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 870 const MachineOperand &MO = MI->getOperand(OpNo); 871 // There may be implicit ops after the fixed operands. 872 if (!MO.isImm()) 873 break; 874 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 875 } 876 877 if (OpNo > MI->getNumOperands()) 878 report("Missing operands in last group", MI); 879 880 // An optional MDNode follows the groups. 881 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 882 ++OpNo; 883 884 // All trailing operands must be implicit registers. 885 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 886 const MachineOperand &MO = MI->getOperand(OpNo); 887 if (!MO.isReg() || !MO.isImplicit()) 888 report("Expected implicit register after groups", &MO, OpNo); 889 } 890 } 891 892 /// Check that types are consistent when two operands need to have the same 893 /// number of vector elements. 894 /// \return true if the types are valid. 895 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 896 const MachineInstr *MI) { 897 if (Ty0.isVector() != Ty1.isVector()) { 898 report("operand types must be all-vector or all-scalar", MI); 899 // Generally we try to report as many issues as possible at once, but in 900 // this case it's not clear what should we be comparing the size of the 901 // scalar with: the size of the whole vector or its lane. Instead of 902 // making an arbitrary choice and emitting not so helpful message, let's 903 // avoid the extra noise and stop here. 904 return false; 905 } 906 907 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 908 report("operand types must preserve number of vector elements", MI); 909 return false; 910 } 911 912 return true; 913 } 914 915 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 916 if (isFunctionSelected) 917 report("Unexpected generic instruction in a Selected function", MI); 918 919 const MCInstrDesc &MCID = MI->getDesc(); 920 unsigned NumOps = MI->getNumOperands(); 921 922 // Check types. 923 SmallVector<LLT, 4> Types; 924 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 925 I != E; ++I) { 926 if (!MCID.OpInfo[I].isGenericType()) 927 continue; 928 // Generic instructions specify type equality constraints between some of 929 // their operands. Make sure these are consistent. 930 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 931 Types.resize(std::max(TypeIdx + 1, Types.size())); 932 933 const MachineOperand *MO = &MI->getOperand(I); 934 if (!MO->isReg()) { 935 report("generic instruction must use register operands", MI); 936 continue; 937 } 938 939 LLT OpTy = MRI->getType(MO->getReg()); 940 // Don't report a type mismatch if there is no actual mismatch, only a 941 // type missing, to reduce noise: 942 if (OpTy.isValid()) { 943 // Only the first valid type for a type index will be printed: don't 944 // overwrite it later so it's always clear which type was expected: 945 if (!Types[TypeIdx].isValid()) 946 Types[TypeIdx] = OpTy; 947 else if (Types[TypeIdx] != OpTy) 948 report("Type mismatch in generic instruction", MO, I, OpTy); 949 } else { 950 // Generic instructions must have types attached to their operands. 951 report("Generic instruction is missing a virtual register type", MO, I); 952 } 953 } 954 955 // Generic opcodes must not have physical register operands. 956 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 957 const MachineOperand *MO = &MI->getOperand(I); 958 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 959 report("Generic instruction cannot have physical register", MO, I); 960 } 961 962 // Avoid out of bounds in checks below. This was already reported earlier. 963 if (MI->getNumOperands() < MCID.getNumOperands()) 964 return; 965 966 StringRef ErrorInfo; 967 if (!TII->verifyInstruction(*MI, ErrorInfo)) 968 report(ErrorInfo.data(), MI); 969 970 // Verify properties of various specific instruction types 971 switch (MI->getOpcode()) { 972 case TargetOpcode::G_CONSTANT: 973 case TargetOpcode::G_FCONSTANT: { 974 if (MI->getNumOperands() < MCID.getNumOperands()) 975 break; 976 977 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 978 if (DstTy.isVector()) 979 report("Instruction cannot use a vector result type", MI); 980 981 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 982 if (!MI->getOperand(1).isCImm()) { 983 report("G_CONSTANT operand must be cimm", MI); 984 break; 985 } 986 987 const ConstantInt *CI = MI->getOperand(1).getCImm(); 988 if (CI->getBitWidth() != DstTy.getSizeInBits()) 989 report("inconsistent constant size", MI); 990 } else { 991 if (!MI->getOperand(1).isFPImm()) { 992 report("G_FCONSTANT operand must be fpimm", MI); 993 break; 994 } 995 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 996 997 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 998 DstTy.getSizeInBits()) { 999 report("inconsistent constant size", MI); 1000 } 1001 } 1002 1003 break; 1004 } 1005 case TargetOpcode::G_LOAD: 1006 case TargetOpcode::G_STORE: 1007 case TargetOpcode::G_ZEXTLOAD: 1008 case TargetOpcode::G_SEXTLOAD: { 1009 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1010 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1011 if (!PtrTy.isPointer()) 1012 report("Generic memory instruction must access a pointer", MI); 1013 1014 // Generic loads and stores must have a single MachineMemOperand 1015 // describing that access. 1016 if (!MI->hasOneMemOperand()) { 1017 report("Generic instruction accessing memory must have one mem operand", 1018 MI); 1019 } else { 1020 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1021 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1022 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1023 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1024 report("Generic extload must have a narrower memory type", MI); 1025 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1026 if (MMO.getSize() > ValTy.getSizeInBytes()) 1027 report("load memory size cannot exceed result size", MI); 1028 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1029 if (ValTy.getSizeInBytes() < MMO.getSize()) 1030 report("store memory size cannot exceed value size", MI); 1031 } 1032 } 1033 1034 break; 1035 } 1036 case TargetOpcode::G_PHI: { 1037 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1038 if (!DstTy.isValid() || 1039 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1040 [this, &DstTy](const MachineOperand &MO) { 1041 if (!MO.isReg()) 1042 return true; 1043 LLT Ty = MRI->getType(MO.getReg()); 1044 if (!Ty.isValid() || (Ty != DstTy)) 1045 return false; 1046 return true; 1047 })) 1048 report("Generic Instruction G_PHI has operands with incompatible/missing " 1049 "types", 1050 MI); 1051 break; 1052 } 1053 case TargetOpcode::G_BITCAST: { 1054 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1055 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1056 if (!DstTy.isValid() || !SrcTy.isValid()) 1057 break; 1058 1059 if (SrcTy.isPointer() != DstTy.isPointer()) 1060 report("bitcast cannot convert between pointers and other types", MI); 1061 1062 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1063 report("bitcast sizes must match", MI); 1064 break; 1065 } 1066 case TargetOpcode::G_INTTOPTR: 1067 case TargetOpcode::G_PTRTOINT: 1068 case TargetOpcode::G_ADDRSPACE_CAST: { 1069 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1070 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1071 if (!DstTy.isValid() || !SrcTy.isValid()) 1072 break; 1073 1074 verifyVectorElementMatch(DstTy, SrcTy, MI); 1075 1076 DstTy = DstTy.getScalarType(); 1077 SrcTy = SrcTy.getScalarType(); 1078 1079 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1080 if (!DstTy.isPointer()) 1081 report("inttoptr result type must be a pointer", MI); 1082 if (SrcTy.isPointer()) 1083 report("inttoptr source type must not be a pointer", MI); 1084 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1085 if (!SrcTy.isPointer()) 1086 report("ptrtoint source type must be a pointer", MI); 1087 if (DstTy.isPointer()) 1088 report("ptrtoint result type must not be a pointer", MI); 1089 } else { 1090 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1091 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1092 report("addrspacecast types must be pointers", MI); 1093 else { 1094 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1095 report("addrspacecast must convert different address spaces", MI); 1096 } 1097 } 1098 1099 break; 1100 } 1101 case TargetOpcode::G_PTR_ADD: { 1102 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1103 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1104 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1105 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1106 break; 1107 1108 if (!PtrTy.getScalarType().isPointer()) 1109 report("gep first operand must be a pointer", MI); 1110 1111 if (OffsetTy.getScalarType().isPointer()) 1112 report("gep offset operand must not be a pointer", MI); 1113 1114 // TODO: Is the offset allowed to be a scalar with a vector? 1115 break; 1116 } 1117 case TargetOpcode::G_SEXT: 1118 case TargetOpcode::G_ZEXT: 1119 case TargetOpcode::G_ANYEXT: 1120 case TargetOpcode::G_TRUNC: 1121 case TargetOpcode::G_FPEXT: 1122 case TargetOpcode::G_FPTRUNC: { 1123 // Number of operands and presense of types is already checked (and 1124 // reported in case of any issues), so no need to report them again. As 1125 // we're trying to report as many issues as possible at once, however, the 1126 // instructions aren't guaranteed to have the right number of operands or 1127 // types attached to them at this point 1128 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1129 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1130 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1131 if (!DstTy.isValid() || !SrcTy.isValid()) 1132 break; 1133 1134 LLT DstElTy = DstTy.getScalarType(); 1135 LLT SrcElTy = SrcTy.getScalarType(); 1136 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1137 report("Generic extend/truncate can not operate on pointers", MI); 1138 1139 verifyVectorElementMatch(DstTy, SrcTy, MI); 1140 1141 unsigned DstSize = DstElTy.getSizeInBits(); 1142 unsigned SrcSize = SrcElTy.getSizeInBits(); 1143 switch (MI->getOpcode()) { 1144 default: 1145 if (DstSize <= SrcSize) 1146 report("Generic extend has destination type no larger than source", MI); 1147 break; 1148 case TargetOpcode::G_TRUNC: 1149 case TargetOpcode::G_FPTRUNC: 1150 if (DstSize >= SrcSize) 1151 report("Generic truncate has destination type no smaller than source", 1152 MI); 1153 break; 1154 } 1155 break; 1156 } 1157 case TargetOpcode::G_SELECT: { 1158 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1159 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1160 if (!SelTy.isValid() || !CondTy.isValid()) 1161 break; 1162 1163 // Scalar condition select on a vector is valid. 1164 if (CondTy.isVector()) 1165 verifyVectorElementMatch(SelTy, CondTy, MI); 1166 break; 1167 } 1168 case TargetOpcode::G_MERGE_VALUES: { 1169 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1170 // e.g. s2N = MERGE sN, sN 1171 // Merging multiple scalars into a vector is not allowed, should use 1172 // G_BUILD_VECTOR for that. 1173 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1174 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1175 if (DstTy.isVector() || SrcTy.isVector()) 1176 report("G_MERGE_VALUES cannot operate on vectors", MI); 1177 1178 const unsigned NumOps = MI->getNumOperands(); 1179 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1180 report("G_MERGE_VALUES result size is inconsistent", MI); 1181 1182 for (unsigned I = 2; I != NumOps; ++I) { 1183 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1184 report("G_MERGE_VALUES source types do not match", MI); 1185 } 1186 1187 break; 1188 } 1189 case TargetOpcode::G_UNMERGE_VALUES: { 1190 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1191 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1192 // For now G_UNMERGE can split vectors. 1193 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1194 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1195 report("G_UNMERGE_VALUES destination types do not match", MI); 1196 } 1197 if (SrcTy.getSizeInBits() != 1198 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1199 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1200 MI); 1201 } 1202 break; 1203 } 1204 case TargetOpcode::G_BUILD_VECTOR: { 1205 // Source types must be scalars, dest type a vector. Total size of scalars 1206 // must match the dest vector size. 1207 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1208 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1209 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1210 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1211 break; 1212 } 1213 1214 if (DstTy.getElementType() != SrcEltTy) 1215 report("G_BUILD_VECTOR result element type must match source type", MI); 1216 1217 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1218 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1219 1220 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1221 if (MRI->getType(MI->getOperand(1).getReg()) != 1222 MRI->getType(MI->getOperand(i).getReg())) 1223 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1224 } 1225 1226 break; 1227 } 1228 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1229 // Source types must be scalars, dest type a vector. Scalar types must be 1230 // larger than the dest vector elt type, as this is a truncating operation. 1231 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1232 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1233 if (!DstTy.isVector() || SrcEltTy.isVector()) 1234 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1235 MI); 1236 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1237 if (MRI->getType(MI->getOperand(1).getReg()) != 1238 MRI->getType(MI->getOperand(i).getReg())) 1239 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1240 MI); 1241 } 1242 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1243 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1244 "dest elt type", 1245 MI); 1246 break; 1247 } 1248 case TargetOpcode::G_CONCAT_VECTORS: { 1249 // Source types should be vectors, and total size should match the dest 1250 // vector size. 1251 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1252 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1253 if (!DstTy.isVector() || !SrcTy.isVector()) 1254 report("G_CONCAT_VECTOR requires vector source and destination operands", 1255 MI); 1256 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1257 if (MRI->getType(MI->getOperand(1).getReg()) != 1258 MRI->getType(MI->getOperand(i).getReg())) 1259 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1260 } 1261 if (DstTy.getNumElements() != 1262 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1263 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1264 break; 1265 } 1266 case TargetOpcode::G_ICMP: 1267 case TargetOpcode::G_FCMP: { 1268 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1269 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1270 1271 if ((DstTy.isVector() != SrcTy.isVector()) || 1272 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1273 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1274 1275 break; 1276 } 1277 case TargetOpcode::G_EXTRACT: { 1278 const MachineOperand &SrcOp = MI->getOperand(1); 1279 if (!SrcOp.isReg()) { 1280 report("extract source must be a register", MI); 1281 break; 1282 } 1283 1284 const MachineOperand &OffsetOp = MI->getOperand(2); 1285 if (!OffsetOp.isImm()) { 1286 report("extract offset must be a constant", MI); 1287 break; 1288 } 1289 1290 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1291 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1292 if (SrcSize == DstSize) 1293 report("extract source must be larger than result", MI); 1294 1295 if (DstSize + OffsetOp.getImm() > SrcSize) 1296 report("extract reads past end of register", MI); 1297 break; 1298 } 1299 case TargetOpcode::G_INSERT: { 1300 const MachineOperand &SrcOp = MI->getOperand(2); 1301 if (!SrcOp.isReg()) { 1302 report("insert source must be a register", MI); 1303 break; 1304 } 1305 1306 const MachineOperand &OffsetOp = MI->getOperand(3); 1307 if (!OffsetOp.isImm()) { 1308 report("insert offset must be a constant", MI); 1309 break; 1310 } 1311 1312 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1313 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1314 1315 if (DstSize <= SrcSize) 1316 report("inserted size must be smaller than total register", MI); 1317 1318 if (SrcSize + OffsetOp.getImm() > DstSize) 1319 report("insert writes past end of register", MI); 1320 1321 break; 1322 } 1323 case TargetOpcode::G_JUMP_TABLE: { 1324 if (!MI->getOperand(1).isJTI()) 1325 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1326 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1327 if (!DstTy.isPointer()) 1328 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1329 break; 1330 } 1331 case TargetOpcode::G_BRJT: { 1332 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1333 report("G_BRJT src operand 0 must be a pointer type", MI); 1334 1335 if (!MI->getOperand(1).isJTI()) 1336 report("G_BRJT src operand 1 must be a jump table index", MI); 1337 1338 const auto &IdxOp = MI->getOperand(2); 1339 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1340 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1341 break; 1342 } 1343 case TargetOpcode::G_INTRINSIC: 1344 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1345 // TODO: Should verify number of def and use operands, but the current 1346 // interface requires passing in IR types for mangling. 1347 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1348 if (!IntrIDOp.isIntrinsicID()) { 1349 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1350 break; 1351 } 1352 1353 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1354 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1355 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1356 AttributeList Attrs 1357 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1358 static_cast<Intrinsic::ID>(IntrID)); 1359 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1360 if (NoSideEffects && DeclHasSideEffects) { 1361 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1362 break; 1363 } 1364 if (!NoSideEffects && !DeclHasSideEffects) { 1365 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1366 break; 1367 } 1368 } 1369 switch (IntrID) { 1370 case Intrinsic::memcpy: 1371 if (MI->getNumOperands() != 5) 1372 report("Expected memcpy intrinsic to have 5 operands", MI); 1373 break; 1374 case Intrinsic::memmove: 1375 if (MI->getNumOperands() != 5) 1376 report("Expected memmove intrinsic to have 5 operands", MI); 1377 break; 1378 case Intrinsic::memset: 1379 if (MI->getNumOperands() != 5) 1380 report("Expected memset intrinsic to have 5 operands", MI); 1381 break; 1382 } 1383 break; 1384 } 1385 case TargetOpcode::G_SEXT_INREG: { 1386 if (!MI->getOperand(2).isImm()) { 1387 report("G_SEXT_INREG expects an immediate operand #2", MI); 1388 break; 1389 } 1390 1391 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1392 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1393 verifyVectorElementMatch(DstTy, SrcTy, MI); 1394 1395 int64_t Imm = MI->getOperand(2).getImm(); 1396 if (Imm <= 0) 1397 report("G_SEXT_INREG size must be >= 1", MI); 1398 if (Imm >= SrcTy.getScalarSizeInBits()) 1399 report("G_SEXT_INREG size must be less than source bit width", MI); 1400 break; 1401 } 1402 case TargetOpcode::G_SHUFFLE_VECTOR: { 1403 const MachineOperand &MaskOp = MI->getOperand(3); 1404 if (!MaskOp.isShuffleMask()) { 1405 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1406 break; 1407 } 1408 1409 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1410 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1411 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1412 1413 if (Src0Ty != Src1Ty) 1414 report("Source operands must be the same type", MI); 1415 1416 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1417 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1418 1419 // Don't check that all operands are vector because scalars are used in 1420 // place of 1 element vectors. 1421 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1422 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1423 1424 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1425 1426 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1427 report("Wrong result type for shufflemask", MI); 1428 1429 for (int Idx : MaskIdxes) { 1430 if (Idx < 0) 1431 continue; 1432 1433 if (Idx >= 2 * SrcNumElts) 1434 report("Out of bounds shuffle index", MI); 1435 } 1436 1437 break; 1438 } 1439 case TargetOpcode::G_DYN_STACKALLOC: { 1440 const MachineOperand &DstOp = MI->getOperand(0); 1441 const MachineOperand &AllocOp = MI->getOperand(1); 1442 const MachineOperand &AlignOp = MI->getOperand(2); 1443 1444 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1445 report("dst operand 0 must be a pointer type", MI); 1446 break; 1447 } 1448 1449 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1450 report("src operand 1 must be a scalar reg type", MI); 1451 break; 1452 } 1453 1454 if (!AlignOp.isImm()) { 1455 report("src operand 2 must be an immediate type", MI); 1456 break; 1457 } 1458 break; 1459 } 1460 default: 1461 break; 1462 } 1463 } 1464 1465 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1466 const MCInstrDesc &MCID = MI->getDesc(); 1467 if (MI->getNumOperands() < MCID.getNumOperands()) { 1468 report("Too few operands", MI); 1469 errs() << MCID.getNumOperands() << " operands expected, but " 1470 << MI->getNumOperands() << " given.\n"; 1471 } 1472 1473 if (MI->isPHI()) { 1474 if (MF->getProperties().hasProperty( 1475 MachineFunctionProperties::Property::NoPHIs)) 1476 report("Found PHI instruction with NoPHIs property set", MI); 1477 1478 if (FirstNonPHI) 1479 report("Found PHI instruction after non-PHI", MI); 1480 } else if (FirstNonPHI == nullptr) 1481 FirstNonPHI = MI; 1482 1483 // Check the tied operands. 1484 if (MI->isInlineAsm()) 1485 verifyInlineAsm(MI); 1486 1487 // Check the MachineMemOperands for basic consistency. 1488 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 1489 E = MI->memoperands_end(); 1490 I != E; ++I) { 1491 if ((*I)->isLoad() && !MI->mayLoad()) 1492 report("Missing mayLoad flag", MI); 1493 if ((*I)->isStore() && !MI->mayStore()) 1494 report("Missing mayStore flag", MI); 1495 } 1496 1497 // Debug values must not have a slot index. 1498 // Other instructions must have one, unless they are inside a bundle. 1499 if (LiveInts) { 1500 bool mapped = !LiveInts->isNotInMIMap(*MI); 1501 if (MI->isDebugInstr()) { 1502 if (mapped) 1503 report("Debug instruction has a slot index", MI); 1504 } else if (MI->isInsideBundle()) { 1505 if (mapped) 1506 report("Instruction inside bundle has a slot index", MI); 1507 } else { 1508 if (!mapped) 1509 report("Missing slot index", MI); 1510 } 1511 } 1512 1513 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1514 verifyPreISelGenericInstruction(MI); 1515 return; 1516 } 1517 1518 StringRef ErrorInfo; 1519 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1520 report(ErrorInfo.data(), MI); 1521 1522 // Verify properties of various specific instruction types 1523 switch (MI->getOpcode()) { 1524 case TargetOpcode::COPY: { 1525 if (foundErrors) 1526 break; 1527 const MachineOperand &DstOp = MI->getOperand(0); 1528 const MachineOperand &SrcOp = MI->getOperand(1); 1529 LLT DstTy = MRI->getType(DstOp.getReg()); 1530 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1531 if (SrcTy.isValid() && DstTy.isValid()) { 1532 // If both types are valid, check that the types are the same. 1533 if (SrcTy != DstTy) { 1534 report("Copy Instruction is illegal with mismatching types", MI); 1535 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1536 } 1537 } 1538 if (SrcTy.isValid() || DstTy.isValid()) { 1539 // If one of them have valid types, let's just check they have the same 1540 // size. 1541 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1542 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1543 assert(SrcSize && "Expecting size here"); 1544 assert(DstSize && "Expecting size here"); 1545 if (SrcSize != DstSize) 1546 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1547 report("Copy Instruction is illegal with mismatching sizes", MI); 1548 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1549 << "\n"; 1550 } 1551 } 1552 break; 1553 } 1554 case TargetOpcode::STATEPOINT: { 1555 StatepointOpers SO(MI); 1556 if (!MI->getOperand(SO.getIDPos()).isImm() || 1557 !MI->getOperand(SO.getNBytesPos()).isImm() || 1558 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1559 report("meta operands to STATEPOINT not constant!", MI); 1560 break; 1561 } 1562 1563 auto VerifyStackMapConstant = [&](unsigned Offset) { 1564 if (!MI->getOperand(Offset - 1).isImm() || 1565 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1566 !MI->getOperand(Offset).isImm()) 1567 report("stack map constant to STATEPOINT not well formed!", MI); 1568 }; 1569 VerifyStackMapConstant(SO.getCCIdx()); 1570 VerifyStackMapConstant(SO.getFlagsIdx()); 1571 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1572 1573 // TODO: verify we have properly encoded deopt arguments 1574 } break; 1575 } 1576 } 1577 1578 void 1579 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1580 const MachineInstr *MI = MO->getParent(); 1581 const MCInstrDesc &MCID = MI->getDesc(); 1582 unsigned NumDefs = MCID.getNumDefs(); 1583 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1584 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1585 1586 // The first MCID.NumDefs operands must be explicit register defines 1587 if (MONum < NumDefs) { 1588 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1589 if (!MO->isReg()) 1590 report("Explicit definition must be a register", MO, MONum); 1591 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1592 report("Explicit definition marked as use", MO, MONum); 1593 else if (MO->isImplicit()) 1594 report("Explicit definition marked as implicit", MO, MONum); 1595 } else if (MONum < MCID.getNumOperands()) { 1596 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1597 // Don't check if it's the last operand in a variadic instruction. See, 1598 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1599 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1600 if (!IsOptional) { 1601 if (MO->isReg()) { 1602 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1603 report("Explicit operand marked as def", MO, MONum); 1604 if (MO->isImplicit()) 1605 report("Explicit operand marked as implicit", MO, MONum); 1606 } 1607 1608 // Check that an instruction has register operands only as expected. 1609 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1610 !MO->isReg() && !MO->isFI()) 1611 report("Expected a register operand.", MO, MONum); 1612 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1613 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1614 report("Expected a non-register operand.", MO, MONum); 1615 } 1616 1617 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1618 if (TiedTo != -1) { 1619 if (!MO->isReg()) 1620 report("Tied use must be a register", MO, MONum); 1621 else if (!MO->isTied()) 1622 report("Operand should be tied", MO, MONum); 1623 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1624 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1625 else if (Register::isPhysicalRegister(MO->getReg())) { 1626 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1627 if (!MOTied.isReg()) 1628 report("Tied counterpart must be a register", &MOTied, TiedTo); 1629 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1630 MO->getReg() != MOTied.getReg()) 1631 report("Tied physical registers must match.", &MOTied, TiedTo); 1632 } 1633 } else if (MO->isReg() && MO->isTied()) 1634 report("Explicit operand should not be tied", MO, MONum); 1635 } else { 1636 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1637 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1638 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1639 } 1640 1641 switch (MO->getType()) { 1642 case MachineOperand::MO_Register: { 1643 const Register Reg = MO->getReg(); 1644 if (!Reg) 1645 return; 1646 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1647 checkLiveness(MO, MONum); 1648 1649 // Verify the consistency of tied operands. 1650 if (MO->isTied()) { 1651 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1652 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1653 if (!OtherMO.isReg()) 1654 report("Must be tied to a register", MO, MONum); 1655 if (!OtherMO.isTied()) 1656 report("Missing tie flags on tied operand", MO, MONum); 1657 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1658 report("Inconsistent tie links", MO, MONum); 1659 if (MONum < MCID.getNumDefs()) { 1660 if (OtherIdx < MCID.getNumOperands()) { 1661 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1662 report("Explicit def tied to explicit use without tie constraint", 1663 MO, MONum); 1664 } else { 1665 if (!OtherMO.isImplicit()) 1666 report("Explicit def should be tied to implicit use", MO, MONum); 1667 } 1668 } 1669 } 1670 1671 // Verify two-address constraints after leaving SSA form. 1672 unsigned DefIdx; 1673 if (!MRI->isSSA() && MO->isUse() && 1674 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1675 Reg != MI->getOperand(DefIdx).getReg()) 1676 report("Two-address instruction operands must be identical", MO, MONum); 1677 1678 // Check register classes. 1679 unsigned SubIdx = MO->getSubReg(); 1680 1681 if (Register::isPhysicalRegister(Reg)) { 1682 if (SubIdx) { 1683 report("Illegal subregister index for physical register", MO, MONum); 1684 return; 1685 } 1686 if (MONum < MCID.getNumOperands()) { 1687 if (const TargetRegisterClass *DRC = 1688 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1689 if (!DRC->contains(Reg)) { 1690 report("Illegal physical register for instruction", MO, MONum); 1691 errs() << printReg(Reg, TRI) << " is not a " 1692 << TRI->getRegClassName(DRC) << " register.\n"; 1693 } 1694 } 1695 } 1696 if (MO->isRenamable()) { 1697 if (MRI->isReserved(Reg)) { 1698 report("isRenamable set on reserved register", MO, MONum); 1699 return; 1700 } 1701 } 1702 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1703 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1704 return; 1705 } 1706 } else { 1707 // Virtual register. 1708 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1709 if (!RC) { 1710 // This is a generic virtual register. 1711 1712 // If we're post-Select, we can't have gvregs anymore. 1713 if (isFunctionSelected) { 1714 report("Generic virtual register invalid in a Selected function", 1715 MO, MONum); 1716 return; 1717 } 1718 1719 // The gvreg must have a type and it must not have a SubIdx. 1720 LLT Ty = MRI->getType(Reg); 1721 if (!Ty.isValid()) { 1722 report("Generic virtual register must have a valid type", MO, 1723 MONum); 1724 return; 1725 } 1726 1727 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1728 1729 // If we're post-RegBankSelect, the gvreg must have a bank. 1730 if (!RegBank && isFunctionRegBankSelected) { 1731 report("Generic virtual register must have a bank in a " 1732 "RegBankSelected function", 1733 MO, MONum); 1734 return; 1735 } 1736 1737 // Make sure the register fits into its register bank if any. 1738 if (RegBank && Ty.isValid() && 1739 RegBank->getSize() < Ty.getSizeInBits()) { 1740 report("Register bank is too small for virtual register", MO, 1741 MONum); 1742 errs() << "Register bank " << RegBank->getName() << " too small(" 1743 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1744 << "-bits\n"; 1745 return; 1746 } 1747 if (SubIdx) { 1748 report("Generic virtual register does not allow subregister index", MO, 1749 MONum); 1750 return; 1751 } 1752 1753 // If this is a target specific instruction and this operand 1754 // has register class constraint, the virtual register must 1755 // comply to it. 1756 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1757 MONum < MCID.getNumOperands() && 1758 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1759 report("Virtual register does not match instruction constraint", MO, 1760 MONum); 1761 errs() << "Expect register class " 1762 << TRI->getRegClassName( 1763 TII->getRegClass(MCID, MONum, TRI, *MF)) 1764 << " but got nothing\n"; 1765 return; 1766 } 1767 1768 break; 1769 } 1770 if (SubIdx) { 1771 const TargetRegisterClass *SRC = 1772 TRI->getSubClassWithSubReg(RC, SubIdx); 1773 if (!SRC) { 1774 report("Invalid subregister index for virtual register", MO, MONum); 1775 errs() << "Register class " << TRI->getRegClassName(RC) 1776 << " does not support subreg index " << SubIdx << "\n"; 1777 return; 1778 } 1779 if (RC != SRC) { 1780 report("Invalid register class for subregister index", MO, MONum); 1781 errs() << "Register class " << TRI->getRegClassName(RC) 1782 << " does not fully support subreg index " << SubIdx << "\n"; 1783 return; 1784 } 1785 } 1786 if (MONum < MCID.getNumOperands()) { 1787 if (const TargetRegisterClass *DRC = 1788 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1789 if (SubIdx) { 1790 const TargetRegisterClass *SuperRC = 1791 TRI->getLargestLegalSuperClass(RC, *MF); 1792 if (!SuperRC) { 1793 report("No largest legal super class exists.", MO, MONum); 1794 return; 1795 } 1796 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1797 if (!DRC) { 1798 report("No matching super-reg register class.", MO, MONum); 1799 return; 1800 } 1801 } 1802 if (!RC->hasSuperClassEq(DRC)) { 1803 report("Illegal virtual register for instruction", MO, MONum); 1804 errs() << "Expected a " << TRI->getRegClassName(DRC) 1805 << " register, but got a " << TRI->getRegClassName(RC) 1806 << " register\n"; 1807 } 1808 } 1809 } 1810 } 1811 break; 1812 } 1813 1814 case MachineOperand::MO_RegisterMask: 1815 regMasks.push_back(MO->getRegMask()); 1816 break; 1817 1818 case MachineOperand::MO_MachineBasicBlock: 1819 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1820 report("PHI operand is not in the CFG", MO, MONum); 1821 break; 1822 1823 case MachineOperand::MO_FrameIndex: 1824 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1825 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1826 int FI = MO->getIndex(); 1827 LiveInterval &LI = LiveStks->getInterval(FI); 1828 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1829 1830 bool stores = MI->mayStore(); 1831 bool loads = MI->mayLoad(); 1832 // For a memory-to-memory move, we need to check if the frame 1833 // index is used for storing or loading, by inspecting the 1834 // memory operands. 1835 if (stores && loads) { 1836 for (auto *MMO : MI->memoperands()) { 1837 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1838 if (PSV == nullptr) continue; 1839 const FixedStackPseudoSourceValue *Value = 1840 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1841 if (Value == nullptr) continue; 1842 if (Value->getFrameIndex() != FI) continue; 1843 1844 if (MMO->isStore()) 1845 loads = false; 1846 else 1847 stores = false; 1848 break; 1849 } 1850 if (loads == stores) 1851 report("Missing fixed stack memoperand.", MI); 1852 } 1853 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1854 report("Instruction loads from dead spill slot", MO, MONum); 1855 errs() << "Live stack: " << LI << '\n'; 1856 } 1857 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1858 report("Instruction stores to dead spill slot", MO, MONum); 1859 errs() << "Live stack: " << LI << '\n'; 1860 } 1861 } 1862 break; 1863 1864 default: 1865 break; 1866 } 1867 } 1868 1869 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1870 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1871 LaneBitmask LaneMask) { 1872 LiveQueryResult LRQ = LR.Query(UseIdx); 1873 // Check if we have a segment at the use, note however that we only need one 1874 // live subregister range, the others may be dead. 1875 if (!LRQ.valueIn() && LaneMask.none()) { 1876 report("No live segment at use", MO, MONum); 1877 report_context_liverange(LR); 1878 report_context_vreg_regunit(VRegOrUnit); 1879 report_context(UseIdx); 1880 } 1881 if (MO->isKill() && !LRQ.isKill()) { 1882 report("Live range continues after kill flag", MO, MONum); 1883 report_context_liverange(LR); 1884 report_context_vreg_regunit(VRegOrUnit); 1885 if (LaneMask.any()) 1886 report_context_lanemask(LaneMask); 1887 report_context(UseIdx); 1888 } 1889 } 1890 1891 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1892 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1893 bool SubRangeCheck, LaneBitmask LaneMask) { 1894 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1895 assert(VNI && "NULL valno is not allowed"); 1896 if (VNI->def != DefIdx) { 1897 report("Inconsistent valno->def", MO, MONum); 1898 report_context_liverange(LR); 1899 report_context_vreg_regunit(VRegOrUnit); 1900 if (LaneMask.any()) 1901 report_context_lanemask(LaneMask); 1902 report_context(*VNI); 1903 report_context(DefIdx); 1904 } 1905 } else { 1906 report("No live segment at def", MO, MONum); 1907 report_context_liverange(LR); 1908 report_context_vreg_regunit(VRegOrUnit); 1909 if (LaneMask.any()) 1910 report_context_lanemask(LaneMask); 1911 report_context(DefIdx); 1912 } 1913 // Check that, if the dead def flag is present, LiveInts agree. 1914 if (MO->isDead()) { 1915 LiveQueryResult LRQ = LR.Query(DefIdx); 1916 if (!LRQ.isDeadDef()) { 1917 assert(Register::isVirtualRegister(VRegOrUnit) && 1918 "Expecting a virtual register."); 1919 // A dead subreg def only tells us that the specific subreg is dead. There 1920 // could be other non-dead defs of other subregs, or we could have other 1921 // parts of the register being live through the instruction. So unless we 1922 // are checking liveness for a subrange it is ok for the live range to 1923 // continue, given that we have a dead def of a subregister. 1924 if (SubRangeCheck || MO->getSubReg() == 0) { 1925 report("Live range continues after dead def flag", MO, MONum); 1926 report_context_liverange(LR); 1927 report_context_vreg_regunit(VRegOrUnit); 1928 if (LaneMask.any()) 1929 report_context_lanemask(LaneMask); 1930 } 1931 } 1932 } 1933 } 1934 1935 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1936 const MachineInstr *MI = MO->getParent(); 1937 const unsigned Reg = MO->getReg(); 1938 1939 // Both use and def operands can read a register. 1940 if (MO->readsReg()) { 1941 if (MO->isKill()) 1942 addRegWithSubRegs(regsKilled, Reg); 1943 1944 // Check that LiveVars knows this kill. 1945 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1946 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1947 if (!is_contained(VI.Kills, MI)) 1948 report("Kill missing from LiveVariables", MO, MONum); 1949 } 1950 1951 // Check LiveInts liveness and kill. 1952 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1953 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1954 // Check the cached regunit intervals. 1955 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1956 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1957 if (MRI->isReservedRegUnit(*Units)) 1958 continue; 1959 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1960 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1961 } 1962 } 1963 1964 if (Register::isVirtualRegister(Reg)) { 1965 if (LiveInts->hasInterval(Reg)) { 1966 // This is a virtual register interval. 1967 const LiveInterval &LI = LiveInts->getInterval(Reg); 1968 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1969 1970 if (LI.hasSubRanges() && !MO->isDef()) { 1971 unsigned SubRegIdx = MO->getSubReg(); 1972 LaneBitmask MOMask = SubRegIdx != 0 1973 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1974 : MRI->getMaxLaneMaskForVReg(Reg); 1975 LaneBitmask LiveInMask; 1976 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1977 if ((MOMask & SR.LaneMask).none()) 1978 continue; 1979 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1980 LiveQueryResult LRQ = SR.Query(UseIdx); 1981 if (LRQ.valueIn()) 1982 LiveInMask |= SR.LaneMask; 1983 } 1984 // At least parts of the register has to be live at the use. 1985 if ((LiveInMask & MOMask).none()) { 1986 report("No live subrange at use", MO, MONum); 1987 report_context(LI); 1988 report_context(UseIdx); 1989 } 1990 } 1991 } else { 1992 report("Virtual register has no live interval", MO, MONum); 1993 } 1994 } 1995 } 1996 1997 // Use of a dead register. 1998 if (!regsLive.count(Reg)) { 1999 if (Register::isPhysicalRegister(Reg)) { 2000 // Reserved registers may be used even when 'dead'. 2001 bool Bad = !isReserved(Reg); 2002 // We are fine if just any subregister has a defined value. 2003 if (Bad) { 2004 2005 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2006 if (regsLive.count(SubReg)) { 2007 Bad = false; 2008 break; 2009 } 2010 } 2011 } 2012 // If there is an additional implicit-use of a super register we stop 2013 // here. By definition we are fine if the super register is not 2014 // (completely) dead, if the complete super register is dead we will 2015 // get a report for its operand. 2016 if (Bad) { 2017 for (const MachineOperand &MOP : MI->uses()) { 2018 if (!MOP.isReg() || !MOP.isImplicit()) 2019 continue; 2020 2021 if (!Register::isPhysicalRegister(MOP.getReg())) 2022 continue; 2023 2024 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2025 if (SubReg == Reg) { 2026 Bad = false; 2027 break; 2028 } 2029 } 2030 } 2031 } 2032 if (Bad) 2033 report("Using an undefined physical register", MO, MONum); 2034 } else if (MRI->def_empty(Reg)) { 2035 report("Reading virtual register without a def", MO, MONum); 2036 } else { 2037 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2038 // We don't know which virtual registers are live in, so only complain 2039 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2040 // must be live in. PHI instructions are handled separately. 2041 if (MInfo.regsKilled.count(Reg)) 2042 report("Using a killed virtual register", MO, MONum); 2043 else if (!MI->isPHI()) 2044 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2045 } 2046 } 2047 } 2048 2049 if (MO->isDef()) { 2050 // Register defined. 2051 // TODO: verify that earlyclobber ops are not used. 2052 if (MO->isDead()) 2053 addRegWithSubRegs(regsDead, Reg); 2054 else 2055 addRegWithSubRegs(regsDefined, Reg); 2056 2057 // Verify SSA form. 2058 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2059 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2060 report("Multiple virtual register defs in SSA form", MO, MONum); 2061 2062 // Check LiveInts for a live segment, but only for virtual registers. 2063 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2064 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2065 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2066 2067 if (Register::isVirtualRegister(Reg)) { 2068 if (LiveInts->hasInterval(Reg)) { 2069 const LiveInterval &LI = LiveInts->getInterval(Reg); 2070 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2071 2072 if (LI.hasSubRanges()) { 2073 unsigned SubRegIdx = MO->getSubReg(); 2074 LaneBitmask MOMask = SubRegIdx != 0 2075 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2076 : MRI->getMaxLaneMaskForVReg(Reg); 2077 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2078 if ((SR.LaneMask & MOMask).none()) 2079 continue; 2080 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2081 } 2082 } 2083 } else { 2084 report("Virtual register has no Live interval", MO, MONum); 2085 } 2086 } 2087 } 2088 } 2089 } 2090 2091 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 2092 2093 // This function gets called after visiting all instructions in a bundle. The 2094 // argument points to the bundle header. 2095 // Normal stand-alone instructions are also considered 'bundles', and this 2096 // function is called for all of them. 2097 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2098 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2099 set_union(MInfo.regsKilled, regsKilled); 2100 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2101 // Kill any masked registers. 2102 while (!regMasks.empty()) { 2103 const uint32_t *Mask = regMasks.pop_back_val(); 2104 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 2105 if (Register::isPhysicalRegister(*I) && 2106 MachineOperand::clobbersPhysReg(Mask, *I)) 2107 regsDead.push_back(*I); 2108 } 2109 set_subtract(regsLive, regsDead); regsDead.clear(); 2110 set_union(regsLive, regsDefined); regsDefined.clear(); 2111 } 2112 2113 void 2114 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2115 MBBInfoMap[MBB].regsLiveOut = regsLive; 2116 regsLive.clear(); 2117 2118 if (Indexes) { 2119 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2120 if (!(stop > lastIndex)) { 2121 report("Block ends before last instruction index", MBB); 2122 errs() << "Block ends at " << stop 2123 << " last instruction was at " << lastIndex << '\n'; 2124 } 2125 lastIndex = stop; 2126 } 2127 } 2128 2129 namespace { 2130 // This implements a set of registers that serves as a filter: can filter other 2131 // sets by passing through elements not in the filter and blocking those that 2132 // are. Any filter implicitly includes the full set of physical registers upon 2133 // creation, thus filtering them all out. The filter itself as a set only grows, 2134 // and needs to be as efficient as possible. 2135 struct VRegFilter { 2136 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2137 // no duplicates. Both virtual and physical registers are fine. 2138 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2139 SmallVector<unsigned, 0> VRegsBuffer; 2140 filterAndAdd(FromRegSet, VRegsBuffer); 2141 } 2142 // Filter \p FromRegSet through the filter and append passed elements into \p 2143 // ToVRegs. All elements appended are then added to the filter itself. 2144 // \returns true if anything changed. 2145 template <typename RegSetT> 2146 bool filterAndAdd(const RegSetT &FromRegSet, 2147 SmallVectorImpl<unsigned> &ToVRegs) { 2148 unsigned SparseUniverse = Sparse.size(); 2149 unsigned NewSparseUniverse = SparseUniverse; 2150 unsigned NewDenseSize = Dense.size(); 2151 size_t Begin = ToVRegs.size(); 2152 for (unsigned Reg : FromRegSet) { 2153 if (!Register::isVirtualRegister(Reg)) 2154 continue; 2155 unsigned Index = Register::virtReg2Index(Reg); 2156 if (Index < SparseUniverseMax) { 2157 if (Index < SparseUniverse && Sparse.test(Index)) 2158 continue; 2159 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2160 } else { 2161 if (Dense.count(Reg)) 2162 continue; 2163 ++NewDenseSize; 2164 } 2165 ToVRegs.push_back(Reg); 2166 } 2167 size_t End = ToVRegs.size(); 2168 if (Begin == End) 2169 return false; 2170 // Reserving space in sets once performs better than doing so continuously 2171 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2172 // tuned all the way down) and double iteration (the second one is over a 2173 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2174 Sparse.resize(NewSparseUniverse); 2175 Dense.reserve(NewDenseSize); 2176 for (unsigned I = Begin; I < End; ++I) { 2177 unsigned Reg = ToVRegs[I]; 2178 unsigned Index = Register::virtReg2Index(Reg); 2179 if (Index < SparseUniverseMax) 2180 Sparse.set(Index); 2181 else 2182 Dense.insert(Reg); 2183 } 2184 return true; 2185 } 2186 2187 private: 2188 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2189 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2190 // are tracked by Dense. The only purpose of the threashold and the Dense set 2191 // is to have a reasonably growing memory usage in pathological cases (large 2192 // number of very sparse VRegFilter instances live at the same time). In 2193 // practice even in the worst-by-execution time cases having all elements 2194 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2195 // space efficient than if tracked by Dense. The threashold is set to keep the 2196 // worst-case memory usage within 2x of figures determined empirically for 2197 // "all Dense" scenario in such worst-by-execution-time cases. 2198 BitVector Sparse; 2199 DenseSet<unsigned> Dense; 2200 }; 2201 2202 // Implements both a transfer function and a (binary, in-place) join operator 2203 // for a dataflow over register sets with set union join and filtering transfer 2204 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2205 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2206 // time, where n is the size of the set (as opposed to O(U) where U is the 2207 // universe). filter_b implicitly contains all physical registers at all times. 2208 class FilteringVRegSet { 2209 VRegFilter Filter; 2210 SmallVector<unsigned, 0> VRegs; 2211 2212 public: 2213 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2214 // Both virtual and physical registers are fine. 2215 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2216 Filter.add(RS); 2217 } 2218 // Passes \p RS through the filter_b (transfer function) and adds what's left 2219 // to itself (out_b). 2220 template <typename RegSetT> bool add(const RegSetT &RS) { 2221 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2222 // a set union) just add everything being added here to the Filter as well. 2223 return Filter.filterAndAdd(RS, VRegs); 2224 } 2225 using const_iterator = decltype(VRegs)::const_iterator; 2226 const_iterator begin() const { return VRegs.begin(); } 2227 const_iterator end() const { return VRegs.end(); } 2228 size_t size() const { return VRegs.size(); } 2229 }; 2230 } // namespace 2231 2232 // Calculate the largest possible vregsPassed sets. These are the registers that 2233 // can pass through an MBB live, but may not be live every time. It is assumed 2234 // that all vregsPassed sets are empty before the call. 2235 void MachineVerifier::calcRegsPassed() { 2236 // This is a forward dataflow, doing it in RPO. A standard map serves as a 2237 // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO 2238 // number to MBB mapping all at once. 2239 std::map<unsigned, const MachineBasicBlock *> RPOWorklist; 2240 DenseMap<const MachineBasicBlock *, unsigned> RPONumbers; 2241 if (MF->empty()) { 2242 // ReversePostOrderTraversal doesn't handle empty functions. 2243 return; 2244 } 2245 std::vector<FilteringVRegSet> VRegsPassedSets(MF->size()); 2246 for (const MachineBasicBlock *MBB : 2247 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2248 // Careful with the evaluation order, fetch next number before allocating. 2249 unsigned Number = RPONumbers.size(); 2250 RPONumbers[MBB] = Number; 2251 // Set-up the transfer functions for all blocks. 2252 const BBInfo &MInfo = MBBInfoMap[MBB]; 2253 VRegsPassedSets[Number].addToFilter(MInfo.regsKilled); 2254 VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut); 2255 } 2256 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 2257 // have any vregsPassed. 2258 for (const MachineBasicBlock &MBB : *MF) { 2259 const BBInfo &MInfo = MBBInfoMap[&MBB]; 2260 if (!MInfo.reachable) 2261 continue; 2262 for (const MachineBasicBlock *Succ : MBB.successors()) { 2263 unsigned SuccNumber = RPONumbers[Succ]; 2264 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2265 if (SuccSet.add(MInfo.regsLiveOut)) 2266 RPOWorklist.emplace(SuccNumber, Succ); 2267 } 2268 } 2269 2270 // Iteratively push vregsPassed to successors. 2271 while (!RPOWorklist.empty()) { 2272 auto Next = RPOWorklist.begin(); 2273 const MachineBasicBlock *MBB = Next->second; 2274 RPOWorklist.erase(Next); 2275 FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]]; 2276 for (const MachineBasicBlock *Succ : MBB->successors()) { 2277 if (Succ == MBB) 2278 continue; 2279 unsigned SuccNumber = RPONumbers[Succ]; 2280 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2281 if (SuccSet.add(MSet)) 2282 RPOWorklist.emplace(SuccNumber, Succ); 2283 } 2284 } 2285 // Copy the results back to BBInfos. 2286 for (const MachineBasicBlock &MBB : *MF) { 2287 BBInfo &MInfo = MBBInfoMap[&MBB]; 2288 if (!MInfo.reachable) 2289 continue; 2290 const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]]; 2291 MInfo.vregsPassed.reserve(MSet.size()); 2292 MInfo.vregsPassed.insert(MSet.begin(), MSet.end()); 2293 } 2294 } 2295 2296 // Calculate the set of virtual registers that must be passed through each basic 2297 // block in order to satisfy the requirements of successor blocks. This is very 2298 // similar to calcRegsPassed, only backwards. 2299 void MachineVerifier::calcRegsRequired() { 2300 // First push live-in regs to predecessors' vregsRequired. 2301 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2302 for (const auto &MBB : *MF) { 2303 BBInfo &MInfo = MBBInfoMap[&MBB]; 2304 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 2305 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 2306 BBInfo &PInfo = MBBInfoMap[*PrI]; 2307 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2308 todo.insert(*PrI); 2309 } 2310 } 2311 2312 // Iteratively push vregsRequired to predecessors. This will converge to the 2313 // same final state regardless of DenseSet iteration order. 2314 while (!todo.empty()) { 2315 const MachineBasicBlock *MBB = *todo.begin(); 2316 todo.erase(MBB); 2317 BBInfo &MInfo = MBBInfoMap[MBB]; 2318 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 2319 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 2320 if (*PrI == MBB) 2321 continue; 2322 BBInfo &SInfo = MBBInfoMap[*PrI]; 2323 if (SInfo.addRequired(MInfo.vregsRequired)) 2324 todo.insert(*PrI); 2325 } 2326 } 2327 } 2328 2329 // Check PHI instructions at the beginning of MBB. It is assumed that 2330 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2331 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2332 BBInfo &MInfo = MBBInfoMap[&MBB]; 2333 2334 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2335 for (const MachineInstr &Phi : MBB) { 2336 if (!Phi.isPHI()) 2337 break; 2338 seen.clear(); 2339 2340 const MachineOperand &MODef = Phi.getOperand(0); 2341 if (!MODef.isReg() || !MODef.isDef()) { 2342 report("Expected first PHI operand to be a register def", &MODef, 0); 2343 continue; 2344 } 2345 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2346 MODef.isEarlyClobber() || MODef.isDebug()) 2347 report("Unexpected flag on PHI operand", &MODef, 0); 2348 Register DefReg = MODef.getReg(); 2349 if (!Register::isVirtualRegister(DefReg)) 2350 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2351 2352 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2353 const MachineOperand &MO0 = Phi.getOperand(I); 2354 if (!MO0.isReg()) { 2355 report("Expected PHI operand to be a register", &MO0, I); 2356 continue; 2357 } 2358 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2359 MO0.isDebug() || MO0.isTied()) 2360 report("Unexpected flag on PHI operand", &MO0, I); 2361 2362 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2363 if (!MO1.isMBB()) { 2364 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2365 continue; 2366 } 2367 2368 const MachineBasicBlock &Pre = *MO1.getMBB(); 2369 if (!Pre.isSuccessor(&MBB)) { 2370 report("PHI input is not a predecessor block", &MO1, I + 1); 2371 continue; 2372 } 2373 2374 if (MInfo.reachable) { 2375 seen.insert(&Pre); 2376 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2377 if (!MO0.isUndef() && PrInfo.reachable && 2378 !PrInfo.isLiveOut(MO0.getReg())) 2379 report("PHI operand is not live-out from predecessor", &MO0, I); 2380 } 2381 } 2382 2383 // Did we see all predecessors? 2384 if (MInfo.reachable) { 2385 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2386 if (!seen.count(Pred)) { 2387 report("Missing PHI operand", &Phi); 2388 errs() << printMBBReference(*Pred) 2389 << " is a predecessor according to the CFG.\n"; 2390 } 2391 } 2392 } 2393 } 2394 } 2395 2396 void MachineVerifier::visitMachineFunctionAfter() { 2397 calcRegsPassed(); 2398 2399 for (const MachineBasicBlock &MBB : *MF) 2400 checkPHIOps(MBB); 2401 2402 // Now check liveness info if available 2403 calcRegsRequired(); 2404 2405 // Check for killed virtual registers that should be live out. 2406 for (const auto &MBB : *MF) { 2407 BBInfo &MInfo = MBBInfoMap[&MBB]; 2408 for (RegSet::iterator 2409 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2410 ++I) 2411 if (MInfo.regsKilled.count(*I)) { 2412 report("Virtual register killed in block, but needed live out.", &MBB); 2413 errs() << "Virtual register " << printReg(*I) 2414 << " is used after the block.\n"; 2415 } 2416 } 2417 2418 if (!MF->empty()) { 2419 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2420 for (RegSet::iterator 2421 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2422 ++I) { 2423 report("Virtual register defs don't dominate all uses.", MF); 2424 report_context_vreg(*I); 2425 } 2426 } 2427 2428 if (LiveVars) 2429 verifyLiveVariables(); 2430 if (LiveInts) 2431 verifyLiveIntervals(); 2432 2433 // Check live-in list of each MBB. If a register is live into MBB, check 2434 // that the register is in regsLiveOut of each predecessor block. Since 2435 // this must come from a definition in the predecesssor or its live-in 2436 // list, this will catch a live-through case where the predecessor does not 2437 // have the register in its live-in list. This currently only checks 2438 // registers that have no aliases, are not allocatable and are not 2439 // reserved, which could mean a condition code register for instance. 2440 if (MRI->tracksLiveness()) 2441 for (const auto &MBB : *MF) 2442 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2443 MCPhysReg LiveInReg = P.PhysReg; 2444 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2445 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2446 continue; 2447 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2448 BBInfo &PInfo = MBBInfoMap[Pred]; 2449 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2450 report("Live in register not found to be live out from predecessor.", 2451 &MBB); 2452 errs() << TRI->getName(LiveInReg) 2453 << " not found to be live out from " 2454 << printMBBReference(*Pred) << "\n"; 2455 } 2456 } 2457 } 2458 2459 for (auto CSInfo : MF->getCallSitesInfo()) 2460 if (!CSInfo.first->isCall()) 2461 report("Call site info referencing instruction that is not call", MF); 2462 } 2463 2464 void MachineVerifier::verifyLiveVariables() { 2465 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2466 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2467 unsigned Reg = Register::index2VirtReg(i); 2468 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2469 for (const auto &MBB : *MF) { 2470 BBInfo &MInfo = MBBInfoMap[&MBB]; 2471 2472 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2473 if (MInfo.vregsRequired.count(Reg)) { 2474 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2475 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2476 errs() << "Virtual register " << printReg(Reg) 2477 << " must be live through the block.\n"; 2478 } 2479 } else { 2480 if (VI.AliveBlocks.test(MBB.getNumber())) { 2481 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2482 errs() << "Virtual register " << printReg(Reg) 2483 << " is not needed live through the block.\n"; 2484 } 2485 } 2486 } 2487 } 2488 } 2489 2490 void MachineVerifier::verifyLiveIntervals() { 2491 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2492 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2493 unsigned Reg = Register::index2VirtReg(i); 2494 2495 // Spilling and splitting may leave unused registers around. Skip them. 2496 if (MRI->reg_nodbg_empty(Reg)) 2497 continue; 2498 2499 if (!LiveInts->hasInterval(Reg)) { 2500 report("Missing live interval for virtual register", MF); 2501 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2502 continue; 2503 } 2504 2505 const LiveInterval &LI = LiveInts->getInterval(Reg); 2506 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2507 verifyLiveInterval(LI); 2508 } 2509 2510 // Verify all the cached regunit intervals. 2511 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2512 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2513 verifyLiveRange(*LR, i); 2514 } 2515 2516 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2517 const VNInfo *VNI, unsigned Reg, 2518 LaneBitmask LaneMask) { 2519 if (VNI->isUnused()) 2520 return; 2521 2522 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2523 2524 if (!DefVNI) { 2525 report("Value not live at VNInfo def and not marked unused", MF); 2526 report_context(LR, Reg, LaneMask); 2527 report_context(*VNI); 2528 return; 2529 } 2530 2531 if (DefVNI != VNI) { 2532 report("Live segment at def has different VNInfo", MF); 2533 report_context(LR, Reg, LaneMask); 2534 report_context(*VNI); 2535 return; 2536 } 2537 2538 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2539 if (!MBB) { 2540 report("Invalid VNInfo definition index", MF); 2541 report_context(LR, Reg, LaneMask); 2542 report_context(*VNI); 2543 return; 2544 } 2545 2546 if (VNI->isPHIDef()) { 2547 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2548 report("PHIDef VNInfo is not defined at MBB start", MBB); 2549 report_context(LR, Reg, LaneMask); 2550 report_context(*VNI); 2551 } 2552 return; 2553 } 2554 2555 // Non-PHI def. 2556 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2557 if (!MI) { 2558 report("No instruction at VNInfo def index", MBB); 2559 report_context(LR, Reg, LaneMask); 2560 report_context(*VNI); 2561 return; 2562 } 2563 2564 if (Reg != 0) { 2565 bool hasDef = false; 2566 bool isEarlyClobber = false; 2567 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2568 if (!MOI->isReg() || !MOI->isDef()) 2569 continue; 2570 if (Register::isVirtualRegister(Reg)) { 2571 if (MOI->getReg() != Reg) 2572 continue; 2573 } else { 2574 if (!Register::isPhysicalRegister(MOI->getReg()) || 2575 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2576 continue; 2577 } 2578 if (LaneMask.any() && 2579 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2580 continue; 2581 hasDef = true; 2582 if (MOI->isEarlyClobber()) 2583 isEarlyClobber = true; 2584 } 2585 2586 if (!hasDef) { 2587 report("Defining instruction does not modify register", MI); 2588 report_context(LR, Reg, LaneMask); 2589 report_context(*VNI); 2590 } 2591 2592 // Early clobber defs begin at USE slots, but other defs must begin at 2593 // DEF slots. 2594 if (isEarlyClobber) { 2595 if (!VNI->def.isEarlyClobber()) { 2596 report("Early clobber def must be at an early-clobber slot", MBB); 2597 report_context(LR, Reg, LaneMask); 2598 report_context(*VNI); 2599 } 2600 } else if (!VNI->def.isRegister()) { 2601 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2602 report_context(LR, Reg, LaneMask); 2603 report_context(*VNI); 2604 } 2605 } 2606 } 2607 2608 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2609 const LiveRange::const_iterator I, 2610 unsigned Reg, LaneBitmask LaneMask) 2611 { 2612 const LiveRange::Segment &S = *I; 2613 const VNInfo *VNI = S.valno; 2614 assert(VNI && "Live segment has no valno"); 2615 2616 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2617 report("Foreign valno in live segment", MF); 2618 report_context(LR, Reg, LaneMask); 2619 report_context(S); 2620 report_context(*VNI); 2621 } 2622 2623 if (VNI->isUnused()) { 2624 report("Live segment valno is marked unused", MF); 2625 report_context(LR, Reg, LaneMask); 2626 report_context(S); 2627 } 2628 2629 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2630 if (!MBB) { 2631 report("Bad start of live segment, no basic block", MF); 2632 report_context(LR, Reg, LaneMask); 2633 report_context(S); 2634 return; 2635 } 2636 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2637 if (S.start != MBBStartIdx && S.start != VNI->def) { 2638 report("Live segment must begin at MBB entry or valno def", MBB); 2639 report_context(LR, Reg, LaneMask); 2640 report_context(S); 2641 } 2642 2643 const MachineBasicBlock *EndMBB = 2644 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2645 if (!EndMBB) { 2646 report("Bad end of live segment, no basic block", MF); 2647 report_context(LR, Reg, LaneMask); 2648 report_context(S); 2649 return; 2650 } 2651 2652 // No more checks for live-out segments. 2653 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2654 return; 2655 2656 // RegUnit intervals are allowed dead phis. 2657 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2658 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2659 return; 2660 2661 // The live segment is ending inside EndMBB 2662 const MachineInstr *MI = 2663 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2664 if (!MI) { 2665 report("Live segment doesn't end at a valid instruction", EndMBB); 2666 report_context(LR, Reg, LaneMask); 2667 report_context(S); 2668 return; 2669 } 2670 2671 // The block slot must refer to a basic block boundary. 2672 if (S.end.isBlock()) { 2673 report("Live segment ends at B slot of an instruction", EndMBB); 2674 report_context(LR, Reg, LaneMask); 2675 report_context(S); 2676 } 2677 2678 if (S.end.isDead()) { 2679 // Segment ends on the dead slot. 2680 // That means there must be a dead def. 2681 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2682 report("Live segment ending at dead slot spans instructions", EndMBB); 2683 report_context(LR, Reg, LaneMask); 2684 report_context(S); 2685 } 2686 } 2687 2688 // A live segment can only end at an early-clobber slot if it is being 2689 // redefined by an early-clobber def. 2690 if (S.end.isEarlyClobber()) { 2691 if (I+1 == LR.end() || (I+1)->start != S.end) { 2692 report("Live segment ending at early clobber slot must be " 2693 "redefined by an EC def in the same instruction", EndMBB); 2694 report_context(LR, Reg, LaneMask); 2695 report_context(S); 2696 } 2697 } 2698 2699 // The following checks only apply to virtual registers. Physreg liveness 2700 // is too weird to check. 2701 if (Register::isVirtualRegister(Reg)) { 2702 // A live segment can end with either a redefinition, a kill flag on a 2703 // use, or a dead flag on a def. 2704 bool hasRead = false; 2705 bool hasSubRegDef = false; 2706 bool hasDeadDef = false; 2707 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2708 if (!MOI->isReg() || MOI->getReg() != Reg) 2709 continue; 2710 unsigned Sub = MOI->getSubReg(); 2711 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2712 : LaneBitmask::getAll(); 2713 if (MOI->isDef()) { 2714 if (Sub != 0) { 2715 hasSubRegDef = true; 2716 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2717 // mask for subregister defs. Read-undef defs will be handled by 2718 // readsReg below. 2719 SLM = ~SLM; 2720 } 2721 if (MOI->isDead()) 2722 hasDeadDef = true; 2723 } 2724 if (LaneMask.any() && (LaneMask & SLM).none()) 2725 continue; 2726 if (MOI->readsReg()) 2727 hasRead = true; 2728 } 2729 if (S.end.isDead()) { 2730 // Make sure that the corresponding machine operand for a "dead" live 2731 // range has the dead flag. We cannot perform this check for subregister 2732 // liveranges as partially dead values are allowed. 2733 if (LaneMask.none() && !hasDeadDef) { 2734 report("Instruction ending live segment on dead slot has no dead flag", 2735 MI); 2736 report_context(LR, Reg, LaneMask); 2737 report_context(S); 2738 } 2739 } else { 2740 if (!hasRead) { 2741 // When tracking subregister liveness, the main range must start new 2742 // values on partial register writes, even if there is no read. 2743 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2744 !hasSubRegDef) { 2745 report("Instruction ending live segment doesn't read the register", 2746 MI); 2747 report_context(LR, Reg, LaneMask); 2748 report_context(S); 2749 } 2750 } 2751 } 2752 } 2753 2754 // Now check all the basic blocks in this live segment. 2755 MachineFunction::const_iterator MFI = MBB->getIterator(); 2756 // Is this live segment the beginning of a non-PHIDef VN? 2757 if (S.start == VNI->def && !VNI->isPHIDef()) { 2758 // Not live-in to any blocks. 2759 if (MBB == EndMBB) 2760 return; 2761 // Skip this block. 2762 ++MFI; 2763 } 2764 2765 SmallVector<SlotIndex, 4> Undefs; 2766 if (LaneMask.any()) { 2767 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2768 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2769 } 2770 2771 while (true) { 2772 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2773 // We don't know how to track physregs into a landing pad. 2774 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2775 if (&*MFI == EndMBB) 2776 break; 2777 ++MFI; 2778 continue; 2779 } 2780 2781 // Is VNI a PHI-def in the current block? 2782 bool IsPHI = VNI->isPHIDef() && 2783 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2784 2785 // Check that VNI is live-out of all predecessors. 2786 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2787 PE = MFI->pred_end(); PI != PE; ++PI) { 2788 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2789 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2790 2791 // All predecessors must have a live-out value. However for a phi 2792 // instruction with subregister intervals 2793 // only one of the subregisters (not necessarily the current one) needs to 2794 // be defined. 2795 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2796 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2797 continue; 2798 report("Register not marked live out of predecessor", *PI); 2799 report_context(LR, Reg, LaneMask); 2800 report_context(*VNI); 2801 errs() << " live into " << printMBBReference(*MFI) << '@' 2802 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2803 << PEnd << '\n'; 2804 continue; 2805 } 2806 2807 // Only PHI-defs can take different predecessor values. 2808 if (!IsPHI && PVNI != VNI) { 2809 report("Different value live out of predecessor", *PI); 2810 report_context(LR, Reg, LaneMask); 2811 errs() << "Valno #" << PVNI->id << " live out of " 2812 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2813 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2814 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2815 } 2816 } 2817 if (&*MFI == EndMBB) 2818 break; 2819 ++MFI; 2820 } 2821 } 2822 2823 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2824 LaneBitmask LaneMask) { 2825 for (const VNInfo *VNI : LR.valnos) 2826 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2827 2828 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2829 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2830 } 2831 2832 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2833 unsigned Reg = LI.reg; 2834 assert(Register::isVirtualRegister(Reg)); 2835 verifyLiveRange(LI, Reg); 2836 2837 LaneBitmask Mask; 2838 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2839 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2840 if ((Mask & SR.LaneMask).any()) { 2841 report("Lane masks of sub ranges overlap in live interval", MF); 2842 report_context(LI); 2843 } 2844 if ((SR.LaneMask & ~MaxMask).any()) { 2845 report("Subrange lanemask is invalid", MF); 2846 report_context(LI); 2847 } 2848 if (SR.empty()) { 2849 report("Subrange must not be empty", MF); 2850 report_context(SR, LI.reg, SR.LaneMask); 2851 } 2852 Mask |= SR.LaneMask; 2853 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2854 if (!LI.covers(SR)) { 2855 report("A Subrange is not covered by the main range", MF); 2856 report_context(LI); 2857 } 2858 } 2859 2860 // Check the LI only has one connected component. 2861 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2862 unsigned NumComp = ConEQ.Classify(LI); 2863 if (NumComp > 1) { 2864 report("Multiple connected components in live interval", MF); 2865 report_context(LI); 2866 for (unsigned comp = 0; comp != NumComp; ++comp) { 2867 errs() << comp << ": valnos"; 2868 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2869 E = LI.vni_end(); I!=E; ++I) 2870 if (comp == ConEQ.getEqClass(*I)) 2871 errs() << ' ' << (*I)->id; 2872 errs() << '\n'; 2873 } 2874 } 2875 } 2876 2877 namespace { 2878 2879 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2880 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2881 // value is zero. 2882 // We use a bool plus an integer to capture the stack state. 2883 struct StackStateOfBB { 2884 StackStateOfBB() = default; 2885 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2886 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2887 ExitIsSetup(ExitSetup) {} 2888 2889 // Can be negative, which means we are setting up a frame. 2890 int EntryValue = 0; 2891 int ExitValue = 0; 2892 bool EntryIsSetup = false; 2893 bool ExitIsSetup = false; 2894 }; 2895 2896 } // end anonymous namespace 2897 2898 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2899 /// by a FrameDestroy <n>, stack adjustments are identical on all 2900 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2901 void MachineVerifier::verifyStackFrame() { 2902 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2903 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2904 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2905 return; 2906 2907 SmallVector<StackStateOfBB, 8> SPState; 2908 SPState.resize(MF->getNumBlockIDs()); 2909 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2910 2911 // Visit the MBBs in DFS order. 2912 for (df_ext_iterator<const MachineFunction *, 2913 df_iterator_default_set<const MachineBasicBlock *>> 2914 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2915 DFI != DFE; ++DFI) { 2916 const MachineBasicBlock *MBB = *DFI; 2917 2918 StackStateOfBB BBState; 2919 // Check the exit state of the DFS stack predecessor. 2920 if (DFI.getPathLength() >= 2) { 2921 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2922 assert(Reachable.count(StackPred) && 2923 "DFS stack predecessor is already visited.\n"); 2924 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2925 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2926 BBState.ExitValue = BBState.EntryValue; 2927 BBState.ExitIsSetup = BBState.EntryIsSetup; 2928 } 2929 2930 // Update stack state by checking contents of MBB. 2931 for (const auto &I : *MBB) { 2932 if (I.getOpcode() == FrameSetupOpcode) { 2933 if (BBState.ExitIsSetup) 2934 report("FrameSetup is after another FrameSetup", &I); 2935 BBState.ExitValue -= TII->getFrameTotalSize(I); 2936 BBState.ExitIsSetup = true; 2937 } 2938 2939 if (I.getOpcode() == FrameDestroyOpcode) { 2940 int Size = TII->getFrameTotalSize(I); 2941 if (!BBState.ExitIsSetup) 2942 report("FrameDestroy is not after a FrameSetup", &I); 2943 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2944 BBState.ExitValue; 2945 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2946 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2947 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2948 << AbsSPAdj << ">.\n"; 2949 } 2950 BBState.ExitValue += Size; 2951 BBState.ExitIsSetup = false; 2952 } 2953 } 2954 SPState[MBB->getNumber()] = BBState; 2955 2956 // Make sure the exit state of any predecessor is consistent with the entry 2957 // state. 2958 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2959 E = MBB->pred_end(); I != E; ++I) { 2960 if (Reachable.count(*I) && 2961 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2962 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2963 report("The exit stack state of a predecessor is inconsistent.", MBB); 2964 errs() << "Predecessor " << printMBBReference(*(*I)) 2965 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2966 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2967 << printMBBReference(*MBB) << " has entry state (" 2968 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2969 } 2970 } 2971 2972 // Make sure the entry state of any successor is consistent with the exit 2973 // state. 2974 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2975 E = MBB->succ_end(); I != E; ++I) { 2976 if (Reachable.count(*I) && 2977 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2978 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2979 report("The entry stack state of a successor is inconsistent.", MBB); 2980 errs() << "Successor " << printMBBReference(*(*I)) 2981 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2982 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2983 << printMBBReference(*MBB) << " has exit state (" 2984 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2985 } 2986 } 2987 2988 // Make sure a basic block with return ends with zero stack adjustment. 2989 if (!MBB->empty() && MBB->back().isReturn()) { 2990 if (BBState.ExitIsSetup) 2991 report("A return block ends with a FrameSetup.", MBB); 2992 if (BBState.ExitValue) 2993 report("A return block ends with a nonzero stack adjustment.", MBB); 2994 } 2995 } 2996 } 2997