1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(const MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<Register, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<Register>; 108 using RegMap = DenseMap<Register, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, Register Reg) { 124 RV.push_back(Reg); 125 if (Reg.isPhysical()) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg.asMCReg())) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. vregsLiveIn doesn't include regs 136 // that only are used by PHI nodes. 137 RegMap vregsLiveIn; 138 139 // Regs killed in MBB. They may be defined again, and will then be in both 140 // regsKilled and regsLiveOut. 141 RegSet regsKilled; 142 143 // Regs defined in MBB and live out. Note that vregs passing through may 144 // be live out without being mentioned here. 145 RegSet regsLiveOut; 146 147 // Vregs that pass through MBB untouched. This set is disjoint from 148 // regsKilled and regsLiveOut. 149 RegSet vregsPassed; 150 151 // Vregs that must pass through MBB because they are needed by a successor 152 // block. This set is disjoint from regsLiveOut. 153 RegSet vregsRequired; 154 155 // Set versions of block's predecessor and successor lists. 156 BlockSet Preds, Succs; 157 158 BBInfo() = default; 159 160 // Add register to vregsRequired if it belongs there. Return true if 161 // anything changed. 162 bool addRequired(Register Reg) { 163 if (!Reg.isVirtual()) 164 return false; 165 if (regsLiveOut.count(Reg)) 166 return false; 167 return vregsRequired.insert(Reg).second; 168 } 169 170 // Same for a full set. 171 bool addRequired(const RegSet &RS) { 172 bool Changed = false; 173 for (Register Reg : RS) 174 Changed |= addRequired(Reg); 175 return Changed; 176 } 177 178 // Same for a full map. 179 bool addRequired(const RegMap &RM) { 180 bool Changed = false; 181 for (const auto &I : RM) 182 Changed |= addRequired(I.first); 183 return Changed; 184 } 185 186 // Live-out registers are either in regsLiveOut or vregsPassed. 187 bool isLiveOut(Register Reg) const { 188 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 189 } 190 }; 191 192 // Extra register info per MBB. 193 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 194 195 bool isReserved(Register Reg) { 196 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 197 } 198 199 bool isAllocatable(Register Reg) const { 200 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 201 !regsReserved.test(Reg.id()); 202 } 203 204 // Analysis information if available 205 LiveVariables *LiveVars; 206 LiveIntervals *LiveInts; 207 LiveStacks *LiveStks; 208 SlotIndexes *Indexes; 209 210 void visitMachineFunctionBefore(); 211 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 212 void visitMachineBundleBefore(const MachineInstr *MI); 213 214 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 215 void verifyPreISelGenericInstruction(const MachineInstr *MI); 216 void visitMachineInstrBefore(const MachineInstr *MI); 217 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 218 void visitMachineBundleAfter(const MachineInstr *MI); 219 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 220 void visitMachineFunctionAfter(); 221 222 void report(const char *msg, const MachineFunction *MF); 223 void report(const char *msg, const MachineBasicBlock *MBB); 224 void report(const char *msg, const MachineInstr *MI); 225 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 226 LLT MOVRegType = LLT{}); 227 228 void report_context(const LiveInterval &LI) const; 229 void report_context(const LiveRange &LR, Register VRegUnit, 230 LaneBitmask LaneMask) const; 231 void report_context(const LiveRange::Segment &S) const; 232 void report_context(const VNInfo &VNI) const; 233 void report_context(SlotIndex Pos) const; 234 void report_context(MCPhysReg PhysReg) const; 235 void report_context_liverange(const LiveRange &LR) const; 236 void report_context_lanemask(LaneBitmask LaneMask) const; 237 void report_context_vreg(Register VReg) const; 238 void report_context_vreg_regunit(Register VRegOrUnit) const; 239 240 void verifyInlineAsm(const MachineInstr *MI); 241 242 void checkLiveness(const MachineOperand *MO, unsigned MONum); 243 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 244 SlotIndex UseIdx, const LiveRange &LR, 245 Register VRegOrUnit, 246 LaneBitmask LaneMask = LaneBitmask::getNone()); 247 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 248 SlotIndex DefIdx, const LiveRange &LR, 249 Register VRegOrUnit, bool SubRangeCheck = false, 250 LaneBitmask LaneMask = LaneBitmask::getNone()); 251 252 void markReachable(const MachineBasicBlock *MBB); 253 void calcRegsPassed(); 254 void checkPHIOps(const MachineBasicBlock &MBB); 255 256 void calcRegsRequired(); 257 void verifyLiveVariables(); 258 void verifyLiveIntervals(); 259 void verifyLiveInterval(const LiveInterval&); 260 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 261 LaneBitmask); 262 void verifyLiveRangeSegment(const LiveRange &, 263 const LiveRange::const_iterator I, Register, 264 LaneBitmask); 265 void verifyLiveRange(const LiveRange &, Register, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 268 void verifyStackFrame(); 269 270 void verifySlotIndexes() const; 271 void verifyProperties(const MachineFunction &MF); 272 }; 273 274 struct MachineVerifierPass : public MachineFunctionPass { 275 static char ID; // Pass ID, replacement for typeid 276 277 const std::string Banner; 278 279 MachineVerifierPass(std::string banner = std::string()) 280 : MachineFunctionPass(ID), Banner(std::move(banner)) { 281 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 282 } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.setPreservesAll(); 286 MachineFunctionPass::getAnalysisUsage(AU); 287 } 288 289 bool runOnMachineFunction(MachineFunction &MF) override { 290 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 291 if (FoundErrors) 292 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 293 return false; 294 } 295 }; 296 297 } // end anonymous namespace 298 299 char MachineVerifierPass::ID = 0; 300 301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 302 "Verify generated machine code", false, false) 303 304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 305 return new MachineVerifierPass(Banner); 306 } 307 308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 309 const std::string &Banner, 310 const MachineFunction &MF) { 311 // TODO: Use MFAM after porting below analyses. 312 // LiveVariables *LiveVars; 313 // LiveIntervals *LiveInts; 314 // LiveStacks *LiveStks; 315 // SlotIndexes *Indexes; 316 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 317 if (FoundErrors) 318 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 319 } 320 321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 322 const { 323 MachineFunction &MF = const_cast<MachineFunction&>(*this); 324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 325 if (AbortOnErrors && FoundErrors) 326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 327 return FoundErrors == 0; 328 } 329 330 void MachineVerifier::verifySlotIndexes() const { 331 if (Indexes == nullptr) 332 return; 333 334 // Ensure the IdxMBB list is sorted by slot indexes. 335 SlotIndex Last; 336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 337 E = Indexes->MBBIndexEnd(); I != E; ++I) { 338 assert(!Last.isValid() || I->first > Last); 339 Last = I->first; 340 } 341 } 342 343 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 344 // If a pass has introduced virtual registers without clearing the 345 // NoVRegs property (or set it without allocating the vregs) 346 // then report an error. 347 if (MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::NoVRegs) && 349 MRI->getNumVirtRegs()) 350 report("Function has NoVRegs property but there are VReg operands", &MF); 351 } 352 353 unsigned MachineVerifier::verify(const MachineFunction &MF) { 354 foundErrors = 0; 355 356 this->MF = &MF; 357 TM = &MF.getTarget(); 358 TII = MF.getSubtarget().getInstrInfo(); 359 TRI = MF.getSubtarget().getRegisterInfo(); 360 MRI = &MF.getRegInfo(); 361 362 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 363 MachineFunctionProperties::Property::FailedISel); 364 365 // If we're mid-GlobalISel and we already triggered the fallback path then 366 // it's expected that the MIR is somewhat broken but that's ok since we'll 367 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 368 if (isFunctionFailedISel) 369 return foundErrors; 370 371 isFunctionRegBankSelected = MF.getProperties().hasProperty( 372 MachineFunctionProperties::Property::RegBankSelected); 373 isFunctionSelected = MF.getProperties().hasProperty( 374 MachineFunctionProperties::Property::Selected); 375 376 LiveVars = nullptr; 377 LiveInts = nullptr; 378 LiveStks = nullptr; 379 Indexes = nullptr; 380 if (PASS) { 381 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 382 // We don't want to verify LiveVariables if LiveIntervals is available. 383 if (!LiveInts) 384 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 385 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 386 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 387 } 388 389 verifySlotIndexes(); 390 391 verifyProperties(MF); 392 393 visitMachineFunctionBefore(); 394 for (const MachineBasicBlock &MBB : MF) { 395 visitMachineBasicBlockBefore(&MBB); 396 // Keep track of the current bundle header. 397 const MachineInstr *CurBundle = nullptr; 398 // Do we expect the next instruction to be part of the same bundle? 399 bool InBundle = false; 400 401 for (const MachineInstr &MI : MBB.instrs()) { 402 if (MI.getParent() != &MBB) { 403 report("Bad instruction parent pointer", &MBB); 404 errs() << "Instruction: " << MI; 405 continue; 406 } 407 408 // Check for consistent bundle flags. 409 if (InBundle && !MI.isBundledWithPred()) 410 report("Missing BundledPred flag, " 411 "BundledSucc was set on predecessor", 412 &MI); 413 if (!InBundle && MI.isBundledWithPred()) 414 report("BundledPred flag is set, " 415 "but BundledSucc not set on predecessor", 416 &MI); 417 418 // Is this a bundle header? 419 if (!MI.isInsideBundle()) { 420 if (CurBundle) 421 visitMachineBundleAfter(CurBundle); 422 CurBundle = &MI; 423 visitMachineBundleBefore(CurBundle); 424 } else if (!CurBundle) 425 report("No bundle header", &MI); 426 visitMachineInstrBefore(&MI); 427 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 428 const MachineOperand &Op = MI.getOperand(I); 429 if (Op.getParent() != &MI) { 430 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 431 // functions when replacing operands of a MachineInstr. 432 report("Instruction has operand with wrong parent set", &MI); 433 } 434 435 visitMachineOperand(&Op, I); 436 } 437 438 // Was this the last bundled instruction? 439 InBundle = MI.isBundledWithSucc(); 440 } 441 if (CurBundle) 442 visitMachineBundleAfter(CurBundle); 443 if (InBundle) 444 report("BundledSucc flag set on last instruction in block", &MBB.back()); 445 visitMachineBasicBlockAfter(&MBB); 446 } 447 visitMachineFunctionAfter(); 448 449 // Clean up. 450 regsLive.clear(); 451 regsDefined.clear(); 452 regsDead.clear(); 453 regsKilled.clear(); 454 regMasks.clear(); 455 MBBInfoMap.clear(); 456 457 return foundErrors; 458 } 459 460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 461 assert(MF); 462 errs() << '\n'; 463 if (!foundErrors++) { 464 if (Banner) 465 errs() << "# " << Banner << '\n'; 466 if (LiveInts != nullptr) 467 LiveInts->print(errs()); 468 else 469 MF->print(errs(), Indexes); 470 } 471 errs() << "*** Bad machine code: " << msg << " ***\n" 472 << "- function: " << MF->getName() << "\n"; 473 } 474 475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 476 assert(MBB); 477 report(msg, MBB->getParent()); 478 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 479 << MBB->getName() << " (" << (const void *)MBB << ')'; 480 if (Indexes) 481 errs() << " [" << Indexes->getMBBStartIdx(MBB) 482 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 483 errs() << '\n'; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 487 assert(MI); 488 report(msg, MI->getParent()); 489 errs() << "- instruction: "; 490 if (Indexes && Indexes->hasIndex(*MI)) 491 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 492 MI->print(errs(), /*IsStandalone=*/true); 493 } 494 495 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 496 unsigned MONum, LLT MOVRegType) { 497 assert(MO); 498 report(msg, MO->getParent()); 499 errs() << "- operand " << MONum << ": "; 500 MO->print(errs(), MOVRegType, TRI); 501 errs() << "\n"; 502 } 503 504 void MachineVerifier::report_context(SlotIndex Pos) const { 505 errs() << "- at: " << Pos << '\n'; 506 } 507 508 void MachineVerifier::report_context(const LiveInterval &LI) const { 509 errs() << "- interval: " << LI << '\n'; 510 } 511 512 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 513 LaneBitmask LaneMask) const { 514 report_context_liverange(LR); 515 report_context_vreg_regunit(VRegUnit); 516 if (LaneMask.any()) 517 report_context_lanemask(LaneMask); 518 } 519 520 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 521 errs() << "- segment: " << S << '\n'; 522 } 523 524 void MachineVerifier::report_context(const VNInfo &VNI) const { 525 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 526 } 527 528 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 529 errs() << "- liverange: " << LR << '\n'; 530 } 531 532 void MachineVerifier::report_context(MCPhysReg PReg) const { 533 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 534 } 535 536 void MachineVerifier::report_context_vreg(Register VReg) const { 537 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 538 } 539 540 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 541 if (Register::isVirtualRegister(VRegOrUnit)) { 542 report_context_vreg(VRegOrUnit); 543 } else { 544 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 545 } 546 } 547 548 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 549 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 550 } 551 552 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 553 BBInfo &MInfo = MBBInfoMap[MBB]; 554 if (!MInfo.reachable) { 555 MInfo.reachable = true; 556 for (const MachineBasicBlock *Succ : MBB->successors()) 557 markReachable(Succ); 558 } 559 } 560 561 void MachineVerifier::visitMachineFunctionBefore() { 562 lastIndex = SlotIndex(); 563 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 564 : TRI->getReservedRegs(*MF); 565 566 if (!MF->empty()) 567 markReachable(&MF->front()); 568 569 // Build a set of the basic blocks in the function. 570 FunctionBlocks.clear(); 571 for (const auto &MBB : *MF) { 572 FunctionBlocks.insert(&MBB); 573 BBInfo &MInfo = MBBInfoMap[&MBB]; 574 575 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 576 if (MInfo.Preds.size() != MBB.pred_size()) 577 report("MBB has duplicate entries in its predecessor list.", &MBB); 578 579 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 580 if (MInfo.Succs.size() != MBB.succ_size()) 581 report("MBB has duplicate entries in its successor list.", &MBB); 582 } 583 584 // Check that the register use lists are sane. 585 MRI->verifyUseLists(); 586 587 if (!MF->empty()) 588 verifyStackFrame(); 589 } 590 591 void 592 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 593 FirstTerminator = nullptr; 594 FirstNonPHI = nullptr; 595 596 if (!MF->getProperties().hasProperty( 597 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 598 // If this block has allocatable physical registers live-in, check that 599 // it is an entry block or landing pad. 600 for (const auto &LI : MBB->liveins()) { 601 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 602 MBB->getIterator() != MBB->getParent()->begin()) { 603 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 604 report_context(LI.PhysReg); 605 } 606 } 607 } 608 609 // Count the number of landing pad successors. 610 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 611 for (const auto *succ : MBB->successors()) { 612 if (succ->isEHPad()) 613 LandingPadSuccs.insert(succ); 614 if (!FunctionBlocks.count(succ)) 615 report("MBB has successor that isn't part of the function.", MBB); 616 if (!MBBInfoMap[succ].Preds.count(MBB)) { 617 report("Inconsistent CFG", MBB); 618 errs() << "MBB is not in the predecessor list of the successor " 619 << printMBBReference(*succ) << ".\n"; 620 } 621 } 622 623 // Check the predecessor list. 624 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 625 if (!FunctionBlocks.count(Pred)) 626 report("MBB has predecessor that isn't part of the function.", MBB); 627 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 628 report("Inconsistent CFG", MBB); 629 errs() << "MBB is not in the successor list of the predecessor " 630 << printMBBReference(*Pred) << ".\n"; 631 } 632 } 633 634 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 635 const BasicBlock *BB = MBB->getBasicBlock(); 636 const Function &F = MF->getFunction(); 637 if (LandingPadSuccs.size() > 1 && 638 !(AsmInfo && 639 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 640 BB && isa<SwitchInst>(BB->getTerminator())) && 641 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 642 report("MBB has more than one landing pad successor", MBB); 643 644 // Call analyzeBranch. If it succeeds, there several more conditions to check. 645 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 646 SmallVector<MachineOperand, 4> Cond; 647 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 648 Cond)) { 649 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 650 // check whether its answers match up with reality. 651 if (!TBB && !FBB) { 652 // Block falls through to its successor. 653 if (!MBB->empty() && MBB->back().isBarrier() && 654 !TII->isPredicated(MBB->back())) { 655 report("MBB exits via unconditional fall-through but ends with a " 656 "barrier instruction!", MBB); 657 } 658 if (!Cond.empty()) { 659 report("MBB exits via unconditional fall-through but has a condition!", 660 MBB); 661 } 662 } else if (TBB && !FBB && Cond.empty()) { 663 // Block unconditionally branches somewhere. 664 if (MBB->empty()) { 665 report("MBB exits via unconditional branch but doesn't contain " 666 "any instructions!", MBB); 667 } else if (!MBB->back().isBarrier()) { 668 report("MBB exits via unconditional branch but doesn't end with a " 669 "barrier instruction!", MBB); 670 } else if (!MBB->back().isTerminator()) { 671 report("MBB exits via unconditional branch but the branch isn't a " 672 "terminator instruction!", MBB); 673 } 674 } else if (TBB && !FBB && !Cond.empty()) { 675 // Block conditionally branches somewhere, otherwise falls through. 676 if (MBB->empty()) { 677 report("MBB exits via conditional branch/fall-through but doesn't " 678 "contain any instructions!", MBB); 679 } else if (MBB->back().isBarrier()) { 680 report("MBB exits via conditional branch/fall-through but ends with a " 681 "barrier instruction!", MBB); 682 } else if (!MBB->back().isTerminator()) { 683 report("MBB exits via conditional branch/fall-through but the branch " 684 "isn't a terminator instruction!", MBB); 685 } 686 } else if (TBB && FBB) { 687 // Block conditionally branches somewhere, otherwise branches 688 // somewhere else. 689 if (MBB->empty()) { 690 report("MBB exits via conditional branch/branch but doesn't " 691 "contain any instructions!", MBB); 692 } else if (!MBB->back().isBarrier()) { 693 report("MBB exits via conditional branch/branch but doesn't end with a " 694 "barrier instruction!", MBB); 695 } else if (!MBB->back().isTerminator()) { 696 report("MBB exits via conditional branch/branch but the branch " 697 "isn't a terminator instruction!", MBB); 698 } 699 if (Cond.empty()) { 700 report("MBB exits via conditional branch/branch but there's no " 701 "condition!", MBB); 702 } 703 } else { 704 report("analyzeBranch returned invalid data!", MBB); 705 } 706 707 // Now check that the successors match up with the answers reported by 708 // analyzeBranch. 709 if (TBB && !MBB->isSuccessor(TBB)) 710 report("MBB exits via jump or conditional branch, but its target isn't a " 711 "CFG successor!", 712 MBB); 713 if (FBB && !MBB->isSuccessor(FBB)) 714 report("MBB exits via conditional branch, but its target isn't a CFG " 715 "successor!", 716 MBB); 717 718 // There might be a fallthrough to the next block if there's either no 719 // unconditional true branch, or if there's a condition, and one of the 720 // branches is missing. 721 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 722 723 // A conditional fallthrough must be an actual CFG successor, not 724 // unreachable. (Conversely, an unconditional fallthrough might not really 725 // be a successor, because the block might end in unreachable.) 726 if (!Cond.empty() && !FBB) { 727 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 728 if (MBBI == MF->end()) { 729 report("MBB conditionally falls through out of function!", MBB); 730 } else if (!MBB->isSuccessor(&*MBBI)) 731 report("MBB exits via conditional branch/fall-through but the CFG " 732 "successors don't match the actual successors!", 733 MBB); 734 } 735 736 // Verify that there aren't any extra un-accounted-for successors. 737 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 738 // If this successor is one of the branch targets, it's okay. 739 if (SuccMBB == TBB || SuccMBB == FBB) 740 continue; 741 // If we might have a fallthrough, and the successor is the fallthrough 742 // block, that's also ok. 743 if (Fallthrough && SuccMBB == MBB->getNextNode()) 744 continue; 745 // Also accept successors which are for exception-handling or might be 746 // inlineasm_br targets. 747 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 748 continue; 749 report("MBB has unexpected successors which are not branch targets, " 750 "fallthrough, EHPads, or inlineasm_br targets.", 751 MBB); 752 } 753 } 754 755 regsLive.clear(); 756 if (MRI->tracksLiveness()) { 757 for (const auto &LI : MBB->liveins()) { 758 if (!Register::isPhysicalRegister(LI.PhysReg)) { 759 report("MBB live-in list contains non-physical register", MBB); 760 continue; 761 } 762 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 763 regsLive.insert(SubReg); 764 } 765 } 766 767 const MachineFrameInfo &MFI = MF->getFrameInfo(); 768 BitVector PR = MFI.getPristineRegs(*MF); 769 for (unsigned I : PR.set_bits()) { 770 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 771 regsLive.insert(SubReg); 772 } 773 774 regsKilled.clear(); 775 regsDefined.clear(); 776 777 if (Indexes) 778 lastIndex = Indexes->getMBBStartIdx(MBB); 779 } 780 781 // This function gets called for all bundle headers, including normal 782 // stand-alone unbundled instructions. 783 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 784 if (Indexes && Indexes->hasIndex(*MI)) { 785 SlotIndex idx = Indexes->getInstructionIndex(*MI); 786 if (!(idx > lastIndex)) { 787 report("Instruction index out of order", MI); 788 errs() << "Last instruction was at " << lastIndex << '\n'; 789 } 790 lastIndex = idx; 791 } 792 793 // Ensure non-terminators don't follow terminators. 794 if (MI->isTerminator()) { 795 if (!FirstTerminator) 796 FirstTerminator = MI; 797 } else if (FirstTerminator) { 798 report("Non-terminator instruction after the first terminator", MI); 799 errs() << "First terminator was:\t" << *FirstTerminator; 800 } 801 } 802 803 // The operands on an INLINEASM instruction must follow a template. 804 // Verify that the flag operands make sense. 805 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 806 // The first two operands on INLINEASM are the asm string and global flags. 807 if (MI->getNumOperands() < 2) { 808 report("Too few operands on inline asm", MI); 809 return; 810 } 811 if (!MI->getOperand(0).isSymbol()) 812 report("Asm string must be an external symbol", MI); 813 if (!MI->getOperand(1).isImm()) 814 report("Asm flags must be an immediate", MI); 815 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 816 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 817 // and Extra_IsConvergent = 32. 818 if (!isUInt<6>(MI->getOperand(1).getImm())) 819 report("Unknown asm flags", &MI->getOperand(1), 1); 820 821 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 822 823 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 824 unsigned NumOps; 825 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 826 const MachineOperand &MO = MI->getOperand(OpNo); 827 // There may be implicit ops after the fixed operands. 828 if (!MO.isImm()) 829 break; 830 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 831 } 832 833 if (OpNo > MI->getNumOperands()) 834 report("Missing operands in last group", MI); 835 836 // An optional MDNode follows the groups. 837 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 838 ++OpNo; 839 840 // All trailing operands must be implicit registers. 841 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 842 const MachineOperand &MO = MI->getOperand(OpNo); 843 if (!MO.isReg() || !MO.isImplicit()) 844 report("Expected implicit register after groups", &MO, OpNo); 845 } 846 } 847 848 /// Check that types are consistent when two operands need to have the same 849 /// number of vector elements. 850 /// \return true if the types are valid. 851 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 852 const MachineInstr *MI) { 853 if (Ty0.isVector() != Ty1.isVector()) { 854 report("operand types must be all-vector or all-scalar", MI); 855 // Generally we try to report as many issues as possible at once, but in 856 // this case it's not clear what should we be comparing the size of the 857 // scalar with: the size of the whole vector or its lane. Instead of 858 // making an arbitrary choice and emitting not so helpful message, let's 859 // avoid the extra noise and stop here. 860 return false; 861 } 862 863 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 864 report("operand types must preserve number of vector elements", MI); 865 return false; 866 } 867 868 return true; 869 } 870 871 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 872 if (isFunctionSelected) 873 report("Unexpected generic instruction in a Selected function", MI); 874 875 const MCInstrDesc &MCID = MI->getDesc(); 876 unsigned NumOps = MI->getNumOperands(); 877 878 // Branches must reference a basic block if they are not indirect 879 if (MI->isBranch() && !MI->isIndirectBranch()) { 880 bool HasMBB = false; 881 for (const MachineOperand &Op : MI->operands()) { 882 if (Op.isMBB()) { 883 HasMBB = true; 884 break; 885 } 886 } 887 888 if (!HasMBB) { 889 report("Branch instruction is missing a basic block operand or " 890 "isIndirectBranch property", 891 MI); 892 } 893 } 894 895 // Check types. 896 SmallVector<LLT, 4> Types; 897 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 898 I != E; ++I) { 899 if (!MCID.OpInfo[I].isGenericType()) 900 continue; 901 // Generic instructions specify type equality constraints between some of 902 // their operands. Make sure these are consistent. 903 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 904 Types.resize(std::max(TypeIdx + 1, Types.size())); 905 906 const MachineOperand *MO = &MI->getOperand(I); 907 if (!MO->isReg()) { 908 report("generic instruction must use register operands", MI); 909 continue; 910 } 911 912 LLT OpTy = MRI->getType(MO->getReg()); 913 // Don't report a type mismatch if there is no actual mismatch, only a 914 // type missing, to reduce noise: 915 if (OpTy.isValid()) { 916 // Only the first valid type for a type index will be printed: don't 917 // overwrite it later so it's always clear which type was expected: 918 if (!Types[TypeIdx].isValid()) 919 Types[TypeIdx] = OpTy; 920 else if (Types[TypeIdx] != OpTy) 921 report("Type mismatch in generic instruction", MO, I, OpTy); 922 } else { 923 // Generic instructions must have types attached to their operands. 924 report("Generic instruction is missing a virtual register type", MO, I); 925 } 926 } 927 928 // Generic opcodes must not have physical register operands. 929 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 930 const MachineOperand *MO = &MI->getOperand(I); 931 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 932 report("Generic instruction cannot have physical register", MO, I); 933 } 934 935 // Avoid out of bounds in checks below. This was already reported earlier. 936 if (MI->getNumOperands() < MCID.getNumOperands()) 937 return; 938 939 StringRef ErrorInfo; 940 if (!TII->verifyInstruction(*MI, ErrorInfo)) 941 report(ErrorInfo.data(), MI); 942 943 // Verify properties of various specific instruction types 944 switch (MI->getOpcode()) { 945 case TargetOpcode::G_CONSTANT: 946 case TargetOpcode::G_FCONSTANT: { 947 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 948 if (DstTy.isVector()) 949 report("Instruction cannot use a vector result type", MI); 950 951 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 952 if (!MI->getOperand(1).isCImm()) { 953 report("G_CONSTANT operand must be cimm", MI); 954 break; 955 } 956 957 const ConstantInt *CI = MI->getOperand(1).getCImm(); 958 if (CI->getBitWidth() != DstTy.getSizeInBits()) 959 report("inconsistent constant size", MI); 960 } else { 961 if (!MI->getOperand(1).isFPImm()) { 962 report("G_FCONSTANT operand must be fpimm", MI); 963 break; 964 } 965 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 966 967 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 968 DstTy.getSizeInBits()) { 969 report("inconsistent constant size", MI); 970 } 971 } 972 973 break; 974 } 975 case TargetOpcode::G_LOAD: 976 case TargetOpcode::G_STORE: 977 case TargetOpcode::G_ZEXTLOAD: 978 case TargetOpcode::G_SEXTLOAD: { 979 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 980 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 981 if (!PtrTy.isPointer()) 982 report("Generic memory instruction must access a pointer", MI); 983 984 // Generic loads and stores must have a single MachineMemOperand 985 // describing that access. 986 if (!MI->hasOneMemOperand()) { 987 report("Generic instruction accessing memory must have one mem operand", 988 MI); 989 } else { 990 const MachineMemOperand &MMO = **MI->memoperands_begin(); 991 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 992 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 993 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 994 report("Generic extload must have a narrower memory type", MI); 995 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 996 if (MMO.getSize() > ValTy.getSizeInBytes()) 997 report("load memory size cannot exceed result size", MI); 998 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 999 if (ValTy.getSizeInBytes() < MMO.getSize()) 1000 report("store memory size cannot exceed value size", MI); 1001 } 1002 } 1003 1004 break; 1005 } 1006 case TargetOpcode::G_PHI: { 1007 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1008 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1009 [this, &DstTy](const MachineOperand &MO) { 1010 if (!MO.isReg()) 1011 return true; 1012 LLT Ty = MRI->getType(MO.getReg()); 1013 if (!Ty.isValid() || (Ty != DstTy)) 1014 return false; 1015 return true; 1016 })) 1017 report("Generic Instruction G_PHI has operands with incompatible/missing " 1018 "types", 1019 MI); 1020 break; 1021 } 1022 case TargetOpcode::G_BITCAST: { 1023 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1024 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1025 if (!DstTy.isValid() || !SrcTy.isValid()) 1026 break; 1027 1028 if (SrcTy.isPointer() != DstTy.isPointer()) 1029 report("bitcast cannot convert between pointers and other types", MI); 1030 1031 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1032 report("bitcast sizes must match", MI); 1033 1034 if (SrcTy == DstTy) 1035 report("bitcast must change the type", MI); 1036 1037 break; 1038 } 1039 case TargetOpcode::G_INTTOPTR: 1040 case TargetOpcode::G_PTRTOINT: 1041 case TargetOpcode::G_ADDRSPACE_CAST: { 1042 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1043 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1044 if (!DstTy.isValid() || !SrcTy.isValid()) 1045 break; 1046 1047 verifyVectorElementMatch(DstTy, SrcTy, MI); 1048 1049 DstTy = DstTy.getScalarType(); 1050 SrcTy = SrcTy.getScalarType(); 1051 1052 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1053 if (!DstTy.isPointer()) 1054 report("inttoptr result type must be a pointer", MI); 1055 if (SrcTy.isPointer()) 1056 report("inttoptr source type must not be a pointer", MI); 1057 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1058 if (!SrcTy.isPointer()) 1059 report("ptrtoint source type must be a pointer", MI); 1060 if (DstTy.isPointer()) 1061 report("ptrtoint result type must not be a pointer", MI); 1062 } else { 1063 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1064 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1065 report("addrspacecast types must be pointers", MI); 1066 else { 1067 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1068 report("addrspacecast must convert different address spaces", MI); 1069 } 1070 } 1071 1072 break; 1073 } 1074 case TargetOpcode::G_PTR_ADD: { 1075 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1076 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1077 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1078 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1079 break; 1080 1081 if (!PtrTy.getScalarType().isPointer()) 1082 report("gep first operand must be a pointer", MI); 1083 1084 if (OffsetTy.getScalarType().isPointer()) 1085 report("gep offset operand must not be a pointer", MI); 1086 1087 // TODO: Is the offset allowed to be a scalar with a vector? 1088 break; 1089 } 1090 case TargetOpcode::G_PTRMASK: { 1091 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1092 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1093 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1094 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1095 break; 1096 1097 if (!DstTy.getScalarType().isPointer()) 1098 report("ptrmask result type must be a pointer", MI); 1099 1100 if (!MaskTy.getScalarType().isScalar()) 1101 report("ptrmask mask type must be an integer", MI); 1102 1103 verifyVectorElementMatch(DstTy, MaskTy, MI); 1104 break; 1105 } 1106 case TargetOpcode::G_SEXT: 1107 case TargetOpcode::G_ZEXT: 1108 case TargetOpcode::G_ANYEXT: 1109 case TargetOpcode::G_TRUNC: 1110 case TargetOpcode::G_FPEXT: 1111 case TargetOpcode::G_FPTRUNC: { 1112 // Number of operands and presense of types is already checked (and 1113 // reported in case of any issues), so no need to report them again. As 1114 // we're trying to report as many issues as possible at once, however, the 1115 // instructions aren't guaranteed to have the right number of operands or 1116 // types attached to them at this point 1117 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1118 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1119 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1120 if (!DstTy.isValid() || !SrcTy.isValid()) 1121 break; 1122 1123 LLT DstElTy = DstTy.getScalarType(); 1124 LLT SrcElTy = SrcTy.getScalarType(); 1125 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1126 report("Generic extend/truncate can not operate on pointers", MI); 1127 1128 verifyVectorElementMatch(DstTy, SrcTy, MI); 1129 1130 unsigned DstSize = DstElTy.getSizeInBits(); 1131 unsigned SrcSize = SrcElTy.getSizeInBits(); 1132 switch (MI->getOpcode()) { 1133 default: 1134 if (DstSize <= SrcSize) 1135 report("Generic extend has destination type no larger than source", MI); 1136 break; 1137 case TargetOpcode::G_TRUNC: 1138 case TargetOpcode::G_FPTRUNC: 1139 if (DstSize >= SrcSize) 1140 report("Generic truncate has destination type no smaller than source", 1141 MI); 1142 break; 1143 } 1144 break; 1145 } 1146 case TargetOpcode::G_SELECT: { 1147 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1148 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1149 if (!SelTy.isValid() || !CondTy.isValid()) 1150 break; 1151 1152 // Scalar condition select on a vector is valid. 1153 if (CondTy.isVector()) 1154 verifyVectorElementMatch(SelTy, CondTy, MI); 1155 break; 1156 } 1157 case TargetOpcode::G_MERGE_VALUES: { 1158 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1159 // e.g. s2N = MERGE sN, sN 1160 // Merging multiple scalars into a vector is not allowed, should use 1161 // G_BUILD_VECTOR for that. 1162 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1163 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1164 if (DstTy.isVector() || SrcTy.isVector()) 1165 report("G_MERGE_VALUES cannot operate on vectors", MI); 1166 1167 const unsigned NumOps = MI->getNumOperands(); 1168 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1169 report("G_MERGE_VALUES result size is inconsistent", MI); 1170 1171 for (unsigned I = 2; I != NumOps; ++I) { 1172 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1173 report("G_MERGE_VALUES source types do not match", MI); 1174 } 1175 1176 break; 1177 } 1178 case TargetOpcode::G_UNMERGE_VALUES: { 1179 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1180 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1181 // For now G_UNMERGE can split vectors. 1182 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1183 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1184 report("G_UNMERGE_VALUES destination types do not match", MI); 1185 } 1186 if (SrcTy.getSizeInBits() != 1187 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1188 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1189 MI); 1190 } 1191 break; 1192 } 1193 case TargetOpcode::G_BUILD_VECTOR: { 1194 // Source types must be scalars, dest type a vector. Total size of scalars 1195 // must match the dest vector size. 1196 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1197 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1198 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1199 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1200 break; 1201 } 1202 1203 if (DstTy.getElementType() != SrcEltTy) 1204 report("G_BUILD_VECTOR result element type must match source type", MI); 1205 1206 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1207 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1208 1209 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1210 if (MRI->getType(MI->getOperand(1).getReg()) != 1211 MRI->getType(MI->getOperand(i).getReg())) 1212 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1213 } 1214 1215 break; 1216 } 1217 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1218 // Source types must be scalars, dest type a vector. Scalar types must be 1219 // larger than the dest vector elt type, as this is a truncating operation. 1220 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1221 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1222 if (!DstTy.isVector() || SrcEltTy.isVector()) 1223 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1224 MI); 1225 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1226 if (MRI->getType(MI->getOperand(1).getReg()) != 1227 MRI->getType(MI->getOperand(i).getReg())) 1228 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1229 MI); 1230 } 1231 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1232 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1233 "dest elt type", 1234 MI); 1235 break; 1236 } 1237 case TargetOpcode::G_CONCAT_VECTORS: { 1238 // Source types should be vectors, and total size should match the dest 1239 // vector size. 1240 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1241 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1242 if (!DstTy.isVector() || !SrcTy.isVector()) 1243 report("G_CONCAT_VECTOR requires vector source and destination operands", 1244 MI); 1245 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1246 if (MRI->getType(MI->getOperand(1).getReg()) != 1247 MRI->getType(MI->getOperand(i).getReg())) 1248 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1249 } 1250 if (DstTy.getNumElements() != 1251 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1252 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1253 break; 1254 } 1255 case TargetOpcode::G_ICMP: 1256 case TargetOpcode::G_FCMP: { 1257 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1258 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1259 1260 if ((DstTy.isVector() != SrcTy.isVector()) || 1261 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1262 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1263 1264 break; 1265 } 1266 case TargetOpcode::G_EXTRACT: { 1267 const MachineOperand &SrcOp = MI->getOperand(1); 1268 if (!SrcOp.isReg()) { 1269 report("extract source must be a register", MI); 1270 break; 1271 } 1272 1273 const MachineOperand &OffsetOp = MI->getOperand(2); 1274 if (!OffsetOp.isImm()) { 1275 report("extract offset must be a constant", MI); 1276 break; 1277 } 1278 1279 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1280 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1281 if (SrcSize == DstSize) 1282 report("extract source must be larger than result", MI); 1283 1284 if (DstSize + OffsetOp.getImm() > SrcSize) 1285 report("extract reads past end of register", MI); 1286 break; 1287 } 1288 case TargetOpcode::G_INSERT: { 1289 const MachineOperand &SrcOp = MI->getOperand(2); 1290 if (!SrcOp.isReg()) { 1291 report("insert source must be a register", MI); 1292 break; 1293 } 1294 1295 const MachineOperand &OffsetOp = MI->getOperand(3); 1296 if (!OffsetOp.isImm()) { 1297 report("insert offset must be a constant", MI); 1298 break; 1299 } 1300 1301 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1302 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1303 1304 if (DstSize <= SrcSize) 1305 report("inserted size must be smaller than total register", MI); 1306 1307 if (SrcSize + OffsetOp.getImm() > DstSize) 1308 report("insert writes past end of register", MI); 1309 1310 break; 1311 } 1312 case TargetOpcode::G_JUMP_TABLE: { 1313 if (!MI->getOperand(1).isJTI()) 1314 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1315 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1316 if (!DstTy.isPointer()) 1317 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1318 break; 1319 } 1320 case TargetOpcode::G_BRJT: { 1321 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1322 report("G_BRJT src operand 0 must be a pointer type", MI); 1323 1324 if (!MI->getOperand(1).isJTI()) 1325 report("G_BRJT src operand 1 must be a jump table index", MI); 1326 1327 const auto &IdxOp = MI->getOperand(2); 1328 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1329 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1330 break; 1331 } 1332 case TargetOpcode::G_INTRINSIC: 1333 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1334 // TODO: Should verify number of def and use operands, but the current 1335 // interface requires passing in IR types for mangling. 1336 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1337 if (!IntrIDOp.isIntrinsicID()) { 1338 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1339 break; 1340 } 1341 1342 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1343 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1344 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1345 AttributeList Attrs 1346 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1347 static_cast<Intrinsic::ID>(IntrID)); 1348 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1349 if (NoSideEffects && DeclHasSideEffects) { 1350 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1351 break; 1352 } 1353 if (!NoSideEffects && !DeclHasSideEffects) { 1354 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1355 break; 1356 } 1357 } 1358 1359 break; 1360 } 1361 case TargetOpcode::G_SEXT_INREG: { 1362 if (!MI->getOperand(2).isImm()) { 1363 report("G_SEXT_INREG expects an immediate operand #2", MI); 1364 break; 1365 } 1366 1367 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1368 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1369 verifyVectorElementMatch(DstTy, SrcTy, MI); 1370 1371 int64_t Imm = MI->getOperand(2).getImm(); 1372 if (Imm <= 0) 1373 report("G_SEXT_INREG size must be >= 1", MI); 1374 if (Imm >= SrcTy.getScalarSizeInBits()) 1375 report("G_SEXT_INREG size must be less than source bit width", MI); 1376 break; 1377 } 1378 case TargetOpcode::G_SHUFFLE_VECTOR: { 1379 const MachineOperand &MaskOp = MI->getOperand(3); 1380 if (!MaskOp.isShuffleMask()) { 1381 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1382 break; 1383 } 1384 1385 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1386 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1387 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1388 1389 if (Src0Ty != Src1Ty) 1390 report("Source operands must be the same type", MI); 1391 1392 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1393 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1394 1395 // Don't check that all operands are vector because scalars are used in 1396 // place of 1 element vectors. 1397 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1398 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1399 1400 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1401 1402 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1403 report("Wrong result type for shufflemask", MI); 1404 1405 for (int Idx : MaskIdxes) { 1406 if (Idx < 0) 1407 continue; 1408 1409 if (Idx >= 2 * SrcNumElts) 1410 report("Out of bounds shuffle index", MI); 1411 } 1412 1413 break; 1414 } 1415 case TargetOpcode::G_DYN_STACKALLOC: { 1416 const MachineOperand &DstOp = MI->getOperand(0); 1417 const MachineOperand &AllocOp = MI->getOperand(1); 1418 const MachineOperand &AlignOp = MI->getOperand(2); 1419 1420 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1421 report("dst operand 0 must be a pointer type", MI); 1422 break; 1423 } 1424 1425 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1426 report("src operand 1 must be a scalar reg type", MI); 1427 break; 1428 } 1429 1430 if (!AlignOp.isImm()) { 1431 report("src operand 2 must be an immediate type", MI); 1432 break; 1433 } 1434 break; 1435 } 1436 case TargetOpcode::G_MEMCPY: 1437 case TargetOpcode::G_MEMMOVE: { 1438 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1439 if (MMOs.size() != 2) { 1440 report("memcpy/memmove must have 2 memory operands", MI); 1441 break; 1442 } 1443 1444 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1445 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1446 report("wrong memory operand types", MI); 1447 break; 1448 } 1449 1450 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1451 report("inconsistent memory operand sizes", MI); 1452 1453 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1454 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1455 1456 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1457 report("memory instruction operand must be a pointer", MI); 1458 break; 1459 } 1460 1461 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1462 report("inconsistent store address space", MI); 1463 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1464 report("inconsistent load address space", MI); 1465 1466 break; 1467 } 1468 case TargetOpcode::G_MEMSET: { 1469 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1470 if (MMOs.size() != 1) { 1471 report("memset must have 1 memory operand", MI); 1472 break; 1473 } 1474 1475 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1476 report("memset memory operand must be a store", MI); 1477 break; 1478 } 1479 1480 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1481 if (!DstPtrTy.isPointer()) { 1482 report("memset operand must be a pointer", MI); 1483 break; 1484 } 1485 1486 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1487 report("inconsistent memset address space", MI); 1488 1489 break; 1490 } 1491 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1492 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1493 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1494 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1495 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1496 if (!DstTy.isScalar()) 1497 report("Vector reduction requires a scalar destination type", MI); 1498 if (!Src1Ty.isScalar()) 1499 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1500 if (!Src2Ty.isVector()) 1501 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1502 break; 1503 } 1504 case TargetOpcode::G_VECREDUCE_FADD: 1505 case TargetOpcode::G_VECREDUCE_FMUL: 1506 case TargetOpcode::G_VECREDUCE_FMAX: 1507 case TargetOpcode::G_VECREDUCE_FMIN: 1508 case TargetOpcode::G_VECREDUCE_ADD: 1509 case TargetOpcode::G_VECREDUCE_MUL: 1510 case TargetOpcode::G_VECREDUCE_AND: 1511 case TargetOpcode::G_VECREDUCE_OR: 1512 case TargetOpcode::G_VECREDUCE_XOR: 1513 case TargetOpcode::G_VECREDUCE_SMAX: 1514 case TargetOpcode::G_VECREDUCE_SMIN: 1515 case TargetOpcode::G_VECREDUCE_UMAX: 1516 case TargetOpcode::G_VECREDUCE_UMIN: { 1517 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1518 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1519 if (!DstTy.isScalar()) 1520 report("Vector reduction requires a scalar destination type", MI); 1521 if (!SrcTy.isVector()) 1522 report("Vector reduction requires vector source=", MI); 1523 break; 1524 } 1525 default: 1526 break; 1527 } 1528 } 1529 1530 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1531 const MCInstrDesc &MCID = MI->getDesc(); 1532 if (MI->getNumOperands() < MCID.getNumOperands()) { 1533 report("Too few operands", MI); 1534 errs() << MCID.getNumOperands() << " operands expected, but " 1535 << MI->getNumOperands() << " given.\n"; 1536 } 1537 1538 if (MI->isPHI()) { 1539 if (MF->getProperties().hasProperty( 1540 MachineFunctionProperties::Property::NoPHIs)) 1541 report("Found PHI instruction with NoPHIs property set", MI); 1542 1543 if (FirstNonPHI) 1544 report("Found PHI instruction after non-PHI", MI); 1545 } else if (FirstNonPHI == nullptr) 1546 FirstNonPHI = MI; 1547 1548 // Check the tied operands. 1549 if (MI->isInlineAsm()) 1550 verifyInlineAsm(MI); 1551 1552 // Check that unspillable terminators define a reg and have at most one use. 1553 if (TII->isUnspillableTerminator(MI)) { 1554 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1555 report("Unspillable Terminator does not define a reg", MI); 1556 Register Def = MI->getOperand(0).getReg(); 1557 if (Def.isVirtual() && 1558 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1559 report("Unspillable Terminator expected to have at most one use!", MI); 1560 } 1561 1562 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1563 // DBG_VALUEs: these are convenient to use in tests, but should never get 1564 // generated. 1565 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1566 if (!MI->getDebugLoc()) 1567 report("Missing DebugLoc for debug instruction", MI); 1568 1569 // Meta instructions should never be the subject of debug value tracking, 1570 // they don't create a value in the output program at all. 1571 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1572 report("Metadata instruction should not have a value tracking number", MI); 1573 1574 // Check the MachineMemOperands for basic consistency. 1575 for (MachineMemOperand *Op : MI->memoperands()) { 1576 if (Op->isLoad() && !MI->mayLoad()) 1577 report("Missing mayLoad flag", MI); 1578 if (Op->isStore() && !MI->mayStore()) 1579 report("Missing mayStore flag", MI); 1580 } 1581 1582 // Debug values must not have a slot index. 1583 // Other instructions must have one, unless they are inside a bundle. 1584 if (LiveInts) { 1585 bool mapped = !LiveInts->isNotInMIMap(*MI); 1586 if (MI->isDebugInstr()) { 1587 if (mapped) 1588 report("Debug instruction has a slot index", MI); 1589 } else if (MI->isInsideBundle()) { 1590 if (mapped) 1591 report("Instruction inside bundle has a slot index", MI); 1592 } else { 1593 if (!mapped) 1594 report("Missing slot index", MI); 1595 } 1596 } 1597 1598 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1599 verifyPreISelGenericInstruction(MI); 1600 return; 1601 } 1602 1603 StringRef ErrorInfo; 1604 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1605 report(ErrorInfo.data(), MI); 1606 1607 // Verify properties of various specific instruction types 1608 switch (MI->getOpcode()) { 1609 case TargetOpcode::COPY: { 1610 if (foundErrors) 1611 break; 1612 const MachineOperand &DstOp = MI->getOperand(0); 1613 const MachineOperand &SrcOp = MI->getOperand(1); 1614 LLT DstTy = MRI->getType(DstOp.getReg()); 1615 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1616 if (SrcTy.isValid() && DstTy.isValid()) { 1617 // If both types are valid, check that the types are the same. 1618 if (SrcTy != DstTy) { 1619 report("Copy Instruction is illegal with mismatching types", MI); 1620 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1621 } 1622 } 1623 if (SrcTy.isValid() || DstTy.isValid()) { 1624 // If one of them have valid types, let's just check they have the same 1625 // size. 1626 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1627 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1628 assert(SrcSize && "Expecting size here"); 1629 assert(DstSize && "Expecting size here"); 1630 if (SrcSize != DstSize) 1631 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1632 report("Copy Instruction is illegal with mismatching sizes", MI); 1633 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1634 << "\n"; 1635 } 1636 } 1637 break; 1638 } 1639 case TargetOpcode::STATEPOINT: { 1640 StatepointOpers SO(MI); 1641 if (!MI->getOperand(SO.getIDPos()).isImm() || 1642 !MI->getOperand(SO.getNBytesPos()).isImm() || 1643 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1644 report("meta operands to STATEPOINT not constant!", MI); 1645 break; 1646 } 1647 1648 auto VerifyStackMapConstant = [&](unsigned Offset) { 1649 if (Offset >= MI->getNumOperands()) { 1650 report("stack map constant to STATEPOINT is out of range!", MI); 1651 return; 1652 } 1653 if (!MI->getOperand(Offset - 1).isImm() || 1654 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1655 !MI->getOperand(Offset).isImm()) 1656 report("stack map constant to STATEPOINT not well formed!", MI); 1657 }; 1658 VerifyStackMapConstant(SO.getCCIdx()); 1659 VerifyStackMapConstant(SO.getFlagsIdx()); 1660 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1661 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1662 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1663 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1664 1665 // Verify that all explicit statepoint defs are tied to gc operands as 1666 // they are expected to be a relocation of gc operands. 1667 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1668 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1669 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1670 unsigned UseOpIdx; 1671 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1672 report("STATEPOINT defs expected to be tied", MI); 1673 break; 1674 } 1675 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1676 report("STATEPOINT def tied to non-gc operand", MI); 1677 break; 1678 } 1679 } 1680 1681 // TODO: verify we have properly encoded deopt arguments 1682 } break; 1683 } 1684 } 1685 1686 void 1687 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1688 const MachineInstr *MI = MO->getParent(); 1689 const MCInstrDesc &MCID = MI->getDesc(); 1690 unsigned NumDefs = MCID.getNumDefs(); 1691 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1692 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1693 1694 // The first MCID.NumDefs operands must be explicit register defines 1695 if (MONum < NumDefs) { 1696 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1697 if (!MO->isReg()) 1698 report("Explicit definition must be a register", MO, MONum); 1699 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1700 report("Explicit definition marked as use", MO, MONum); 1701 else if (MO->isImplicit()) 1702 report("Explicit definition marked as implicit", MO, MONum); 1703 } else if (MONum < MCID.getNumOperands()) { 1704 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1705 // Don't check if it's the last operand in a variadic instruction. See, 1706 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1707 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1708 if (!IsOptional) { 1709 if (MO->isReg()) { 1710 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1711 report("Explicit operand marked as def", MO, MONum); 1712 if (MO->isImplicit()) 1713 report("Explicit operand marked as implicit", MO, MONum); 1714 } 1715 1716 // Check that an instruction has register operands only as expected. 1717 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1718 !MO->isReg() && !MO->isFI()) 1719 report("Expected a register operand.", MO, MONum); 1720 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1721 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1722 report("Expected a non-register operand.", MO, MONum); 1723 } 1724 1725 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1726 if (TiedTo != -1) { 1727 if (!MO->isReg()) 1728 report("Tied use must be a register", MO, MONum); 1729 else if (!MO->isTied()) 1730 report("Operand should be tied", MO, MONum); 1731 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1732 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1733 else if (Register::isPhysicalRegister(MO->getReg())) { 1734 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1735 if (!MOTied.isReg()) 1736 report("Tied counterpart must be a register", &MOTied, TiedTo); 1737 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1738 MO->getReg() != MOTied.getReg()) 1739 report("Tied physical registers must match.", &MOTied, TiedTo); 1740 } 1741 } else if (MO->isReg() && MO->isTied()) 1742 report("Explicit operand should not be tied", MO, MONum); 1743 } else { 1744 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1745 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1746 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1747 } 1748 1749 switch (MO->getType()) { 1750 case MachineOperand::MO_Register: { 1751 const Register Reg = MO->getReg(); 1752 if (!Reg) 1753 return; 1754 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1755 checkLiveness(MO, MONum); 1756 1757 // Verify the consistency of tied operands. 1758 if (MO->isTied()) { 1759 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1760 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1761 if (!OtherMO.isReg()) 1762 report("Must be tied to a register", MO, MONum); 1763 if (!OtherMO.isTied()) 1764 report("Missing tie flags on tied operand", MO, MONum); 1765 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1766 report("Inconsistent tie links", MO, MONum); 1767 if (MONum < MCID.getNumDefs()) { 1768 if (OtherIdx < MCID.getNumOperands()) { 1769 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1770 report("Explicit def tied to explicit use without tie constraint", 1771 MO, MONum); 1772 } else { 1773 if (!OtherMO.isImplicit()) 1774 report("Explicit def should be tied to implicit use", MO, MONum); 1775 } 1776 } 1777 } 1778 1779 // Verify two-address constraints after the twoaddressinstruction pass. 1780 // Both twoaddressinstruction pass and phi-node-elimination pass call 1781 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1782 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1783 // shouldn't use the NoSSA as the condition, we should based on 1784 // TiedOpsRewritten property to verify two-address constraints, this 1785 // property will be set in twoaddressinstruction pass. 1786 unsigned DefIdx; 1787 if (MF->getProperties().hasProperty( 1788 MachineFunctionProperties::Property::TiedOpsRewritten) && 1789 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1790 Reg != MI->getOperand(DefIdx).getReg()) 1791 report("Two-address instruction operands must be identical", MO, MONum); 1792 1793 // Check register classes. 1794 unsigned SubIdx = MO->getSubReg(); 1795 1796 if (Register::isPhysicalRegister(Reg)) { 1797 if (SubIdx) { 1798 report("Illegal subregister index for physical register", MO, MONum); 1799 return; 1800 } 1801 if (MONum < MCID.getNumOperands()) { 1802 if (const TargetRegisterClass *DRC = 1803 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1804 if (!DRC->contains(Reg)) { 1805 report("Illegal physical register for instruction", MO, MONum); 1806 errs() << printReg(Reg, TRI) << " is not a " 1807 << TRI->getRegClassName(DRC) << " register.\n"; 1808 } 1809 } 1810 } 1811 if (MO->isRenamable()) { 1812 if (MRI->isReserved(Reg)) { 1813 report("isRenamable set on reserved register", MO, MONum); 1814 return; 1815 } 1816 } 1817 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1818 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1819 return; 1820 } 1821 } else { 1822 // Virtual register. 1823 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1824 if (!RC) { 1825 // This is a generic virtual register. 1826 1827 // Do not allow undef uses for generic virtual registers. This ensures 1828 // getVRegDef can never fail and return null on a generic register. 1829 // 1830 // FIXME: This restriction should probably be broadened to all SSA 1831 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 1832 // run on the SSA function just before phi elimination. 1833 if (MO->isUndef()) 1834 report("Generic virtual register use cannot be undef", MO, MONum); 1835 1836 // If we're post-Select, we can't have gvregs anymore. 1837 if (isFunctionSelected) { 1838 report("Generic virtual register invalid in a Selected function", 1839 MO, MONum); 1840 return; 1841 } 1842 1843 // The gvreg must have a type and it must not have a SubIdx. 1844 LLT Ty = MRI->getType(Reg); 1845 if (!Ty.isValid()) { 1846 report("Generic virtual register must have a valid type", MO, 1847 MONum); 1848 return; 1849 } 1850 1851 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1852 1853 // If we're post-RegBankSelect, the gvreg must have a bank. 1854 if (!RegBank && isFunctionRegBankSelected) { 1855 report("Generic virtual register must have a bank in a " 1856 "RegBankSelected function", 1857 MO, MONum); 1858 return; 1859 } 1860 1861 // Make sure the register fits into its register bank if any. 1862 if (RegBank && Ty.isValid() && 1863 RegBank->getSize() < Ty.getSizeInBits()) { 1864 report("Register bank is too small for virtual register", MO, 1865 MONum); 1866 errs() << "Register bank " << RegBank->getName() << " too small(" 1867 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1868 << "-bits\n"; 1869 return; 1870 } 1871 if (SubIdx) { 1872 report("Generic virtual register does not allow subregister index", MO, 1873 MONum); 1874 return; 1875 } 1876 1877 // If this is a target specific instruction and this operand 1878 // has register class constraint, the virtual register must 1879 // comply to it. 1880 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1881 MONum < MCID.getNumOperands() && 1882 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1883 report("Virtual register does not match instruction constraint", MO, 1884 MONum); 1885 errs() << "Expect register class " 1886 << TRI->getRegClassName( 1887 TII->getRegClass(MCID, MONum, TRI, *MF)) 1888 << " but got nothing\n"; 1889 return; 1890 } 1891 1892 break; 1893 } 1894 if (SubIdx) { 1895 const TargetRegisterClass *SRC = 1896 TRI->getSubClassWithSubReg(RC, SubIdx); 1897 if (!SRC) { 1898 report("Invalid subregister index for virtual register", MO, MONum); 1899 errs() << "Register class " << TRI->getRegClassName(RC) 1900 << " does not support subreg index " << SubIdx << "\n"; 1901 return; 1902 } 1903 if (RC != SRC) { 1904 report("Invalid register class for subregister index", MO, MONum); 1905 errs() << "Register class " << TRI->getRegClassName(RC) 1906 << " does not fully support subreg index " << SubIdx << "\n"; 1907 return; 1908 } 1909 } 1910 if (MONum < MCID.getNumOperands()) { 1911 if (const TargetRegisterClass *DRC = 1912 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1913 if (SubIdx) { 1914 const TargetRegisterClass *SuperRC = 1915 TRI->getLargestLegalSuperClass(RC, *MF); 1916 if (!SuperRC) { 1917 report("No largest legal super class exists.", MO, MONum); 1918 return; 1919 } 1920 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1921 if (!DRC) { 1922 report("No matching super-reg register class.", MO, MONum); 1923 return; 1924 } 1925 } 1926 if (!RC->hasSuperClassEq(DRC)) { 1927 report("Illegal virtual register for instruction", MO, MONum); 1928 errs() << "Expected a " << TRI->getRegClassName(DRC) 1929 << " register, but got a " << TRI->getRegClassName(RC) 1930 << " register\n"; 1931 } 1932 } 1933 } 1934 } 1935 break; 1936 } 1937 1938 case MachineOperand::MO_RegisterMask: 1939 regMasks.push_back(MO->getRegMask()); 1940 break; 1941 1942 case MachineOperand::MO_MachineBasicBlock: 1943 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1944 report("PHI operand is not in the CFG", MO, MONum); 1945 break; 1946 1947 case MachineOperand::MO_FrameIndex: 1948 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1949 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1950 int FI = MO->getIndex(); 1951 LiveInterval &LI = LiveStks->getInterval(FI); 1952 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1953 1954 bool stores = MI->mayStore(); 1955 bool loads = MI->mayLoad(); 1956 // For a memory-to-memory move, we need to check if the frame 1957 // index is used for storing or loading, by inspecting the 1958 // memory operands. 1959 if (stores && loads) { 1960 for (auto *MMO : MI->memoperands()) { 1961 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1962 if (PSV == nullptr) continue; 1963 const FixedStackPseudoSourceValue *Value = 1964 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1965 if (Value == nullptr) continue; 1966 if (Value->getFrameIndex() != FI) continue; 1967 1968 if (MMO->isStore()) 1969 loads = false; 1970 else 1971 stores = false; 1972 break; 1973 } 1974 if (loads == stores) 1975 report("Missing fixed stack memoperand.", MI); 1976 } 1977 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1978 report("Instruction loads from dead spill slot", MO, MONum); 1979 errs() << "Live stack: " << LI << '\n'; 1980 } 1981 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1982 report("Instruction stores to dead spill slot", MO, MONum); 1983 errs() << "Live stack: " << LI << '\n'; 1984 } 1985 } 1986 break; 1987 1988 default: 1989 break; 1990 } 1991 } 1992 1993 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1994 unsigned MONum, SlotIndex UseIdx, 1995 const LiveRange &LR, 1996 Register VRegOrUnit, 1997 LaneBitmask LaneMask) { 1998 LiveQueryResult LRQ = LR.Query(UseIdx); 1999 // Check if we have a segment at the use, note however that we only need one 2000 // live subregister range, the others may be dead. 2001 if (!LRQ.valueIn() && LaneMask.none()) { 2002 report("No live segment at use", MO, MONum); 2003 report_context_liverange(LR); 2004 report_context_vreg_regunit(VRegOrUnit); 2005 report_context(UseIdx); 2006 } 2007 if (MO->isKill() && !LRQ.isKill()) { 2008 report("Live range continues after kill flag", MO, MONum); 2009 report_context_liverange(LR); 2010 report_context_vreg_regunit(VRegOrUnit); 2011 if (LaneMask.any()) 2012 report_context_lanemask(LaneMask); 2013 report_context(UseIdx); 2014 } 2015 } 2016 2017 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2018 unsigned MONum, SlotIndex DefIdx, 2019 const LiveRange &LR, 2020 Register VRegOrUnit, 2021 bool SubRangeCheck, 2022 LaneBitmask LaneMask) { 2023 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2024 assert(VNI && "NULL valno is not allowed"); 2025 if (VNI->def != DefIdx) { 2026 report("Inconsistent valno->def", MO, MONum); 2027 report_context_liverange(LR); 2028 report_context_vreg_regunit(VRegOrUnit); 2029 if (LaneMask.any()) 2030 report_context_lanemask(LaneMask); 2031 report_context(*VNI); 2032 report_context(DefIdx); 2033 } 2034 } else { 2035 report("No live segment at def", MO, MONum); 2036 report_context_liverange(LR); 2037 report_context_vreg_regunit(VRegOrUnit); 2038 if (LaneMask.any()) 2039 report_context_lanemask(LaneMask); 2040 report_context(DefIdx); 2041 } 2042 // Check that, if the dead def flag is present, LiveInts agree. 2043 if (MO->isDead()) { 2044 LiveQueryResult LRQ = LR.Query(DefIdx); 2045 if (!LRQ.isDeadDef()) { 2046 assert(Register::isVirtualRegister(VRegOrUnit) && 2047 "Expecting a virtual register."); 2048 // A dead subreg def only tells us that the specific subreg is dead. There 2049 // could be other non-dead defs of other subregs, or we could have other 2050 // parts of the register being live through the instruction. So unless we 2051 // are checking liveness for a subrange it is ok for the live range to 2052 // continue, given that we have a dead def of a subregister. 2053 if (SubRangeCheck || MO->getSubReg() == 0) { 2054 report("Live range continues after dead def flag", MO, MONum); 2055 report_context_liverange(LR); 2056 report_context_vreg_regunit(VRegOrUnit); 2057 if (LaneMask.any()) 2058 report_context_lanemask(LaneMask); 2059 } 2060 } 2061 } 2062 } 2063 2064 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2065 const MachineInstr *MI = MO->getParent(); 2066 const Register Reg = MO->getReg(); 2067 2068 // Both use and def operands can read a register. 2069 if (MO->readsReg()) { 2070 if (MO->isKill()) 2071 addRegWithSubRegs(regsKilled, Reg); 2072 2073 // Check that LiveVars knows this kill. 2074 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 2075 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2076 if (!is_contained(VI.Kills, MI)) 2077 report("Kill missing from LiveVariables", MO, MONum); 2078 } 2079 2080 // Check LiveInts liveness and kill. 2081 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2082 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2083 // Check the cached regunit intervals. 2084 if (Reg.isPhysical() && !isReserved(Reg)) { 2085 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2086 ++Units) { 2087 if (MRI->isReservedRegUnit(*Units)) 2088 continue; 2089 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2090 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2091 } 2092 } 2093 2094 if (Register::isVirtualRegister(Reg)) { 2095 if (LiveInts->hasInterval(Reg)) { 2096 // This is a virtual register interval. 2097 const LiveInterval &LI = LiveInts->getInterval(Reg); 2098 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 2099 2100 if (LI.hasSubRanges() && !MO->isDef()) { 2101 unsigned SubRegIdx = MO->getSubReg(); 2102 LaneBitmask MOMask = SubRegIdx != 0 2103 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2104 : MRI->getMaxLaneMaskForVReg(Reg); 2105 LaneBitmask LiveInMask; 2106 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2107 if ((MOMask & SR.LaneMask).none()) 2108 continue; 2109 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2110 LiveQueryResult LRQ = SR.Query(UseIdx); 2111 if (LRQ.valueIn()) 2112 LiveInMask |= SR.LaneMask; 2113 } 2114 // At least parts of the register has to be live at the use. 2115 if ((LiveInMask & MOMask).none()) { 2116 report("No live subrange at use", MO, MONum); 2117 report_context(LI); 2118 report_context(UseIdx); 2119 } 2120 } 2121 } else { 2122 report("Virtual register has no live interval", MO, MONum); 2123 } 2124 } 2125 } 2126 2127 // Use of a dead register. 2128 if (!regsLive.count(Reg)) { 2129 if (Register::isPhysicalRegister(Reg)) { 2130 // Reserved registers may be used even when 'dead'. 2131 bool Bad = !isReserved(Reg); 2132 // We are fine if just any subregister has a defined value. 2133 if (Bad) { 2134 2135 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2136 if (regsLive.count(SubReg)) { 2137 Bad = false; 2138 break; 2139 } 2140 } 2141 } 2142 // If there is an additional implicit-use of a super register we stop 2143 // here. By definition we are fine if the super register is not 2144 // (completely) dead, if the complete super register is dead we will 2145 // get a report for its operand. 2146 if (Bad) { 2147 for (const MachineOperand &MOP : MI->uses()) { 2148 if (!MOP.isReg() || !MOP.isImplicit()) 2149 continue; 2150 2151 if (!Register::isPhysicalRegister(MOP.getReg())) 2152 continue; 2153 2154 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2155 if (SubReg == Reg) { 2156 Bad = false; 2157 break; 2158 } 2159 } 2160 } 2161 } 2162 if (Bad) 2163 report("Using an undefined physical register", MO, MONum); 2164 } else if (MRI->def_empty(Reg)) { 2165 report("Reading virtual register without a def", MO, MONum); 2166 } else { 2167 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2168 // We don't know which virtual registers are live in, so only complain 2169 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2170 // must be live in. PHI instructions are handled separately. 2171 if (MInfo.regsKilled.count(Reg)) 2172 report("Using a killed virtual register", MO, MONum); 2173 else if (!MI->isPHI()) 2174 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2175 } 2176 } 2177 } 2178 2179 if (MO->isDef()) { 2180 // Register defined. 2181 // TODO: verify that earlyclobber ops are not used. 2182 if (MO->isDead()) 2183 addRegWithSubRegs(regsDead, Reg); 2184 else 2185 addRegWithSubRegs(regsDefined, Reg); 2186 2187 // Verify SSA form. 2188 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2189 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2190 report("Multiple virtual register defs in SSA form", MO, MONum); 2191 2192 // Check LiveInts for a live segment, but only for virtual registers. 2193 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2194 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2195 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2196 2197 if (Register::isVirtualRegister(Reg)) { 2198 if (LiveInts->hasInterval(Reg)) { 2199 const LiveInterval &LI = LiveInts->getInterval(Reg); 2200 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2201 2202 if (LI.hasSubRanges()) { 2203 unsigned SubRegIdx = MO->getSubReg(); 2204 LaneBitmask MOMask = SubRegIdx != 0 2205 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2206 : MRI->getMaxLaneMaskForVReg(Reg); 2207 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2208 if ((SR.LaneMask & MOMask).none()) 2209 continue; 2210 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2211 } 2212 } 2213 } else { 2214 report("Virtual register has no Live interval", MO, MONum); 2215 } 2216 } 2217 } 2218 } 2219 } 2220 2221 // This function gets called after visiting all instructions in a bundle. The 2222 // argument points to the bundle header. 2223 // Normal stand-alone instructions are also considered 'bundles', and this 2224 // function is called for all of them. 2225 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2226 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2227 set_union(MInfo.regsKilled, regsKilled); 2228 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2229 // Kill any masked registers. 2230 while (!regMasks.empty()) { 2231 const uint32_t *Mask = regMasks.pop_back_val(); 2232 for (Register Reg : regsLive) 2233 if (Reg.isPhysical() && 2234 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2235 regsDead.push_back(Reg); 2236 } 2237 set_subtract(regsLive, regsDead); regsDead.clear(); 2238 set_union(regsLive, regsDefined); regsDefined.clear(); 2239 } 2240 2241 void 2242 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2243 MBBInfoMap[MBB].regsLiveOut = regsLive; 2244 regsLive.clear(); 2245 2246 if (Indexes) { 2247 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2248 if (!(stop > lastIndex)) { 2249 report("Block ends before last instruction index", MBB); 2250 errs() << "Block ends at " << stop 2251 << " last instruction was at " << lastIndex << '\n'; 2252 } 2253 lastIndex = stop; 2254 } 2255 } 2256 2257 namespace { 2258 // This implements a set of registers that serves as a filter: can filter other 2259 // sets by passing through elements not in the filter and blocking those that 2260 // are. Any filter implicitly includes the full set of physical registers upon 2261 // creation, thus filtering them all out. The filter itself as a set only grows, 2262 // and needs to be as efficient as possible. 2263 struct VRegFilter { 2264 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2265 // no duplicates. Both virtual and physical registers are fine. 2266 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2267 SmallVector<Register, 0> VRegsBuffer; 2268 filterAndAdd(FromRegSet, VRegsBuffer); 2269 } 2270 // Filter \p FromRegSet through the filter and append passed elements into \p 2271 // ToVRegs. All elements appended are then added to the filter itself. 2272 // \returns true if anything changed. 2273 template <typename RegSetT> 2274 bool filterAndAdd(const RegSetT &FromRegSet, 2275 SmallVectorImpl<Register> &ToVRegs) { 2276 unsigned SparseUniverse = Sparse.size(); 2277 unsigned NewSparseUniverse = SparseUniverse; 2278 unsigned NewDenseSize = Dense.size(); 2279 size_t Begin = ToVRegs.size(); 2280 for (Register Reg : FromRegSet) { 2281 if (!Reg.isVirtual()) 2282 continue; 2283 unsigned Index = Register::virtReg2Index(Reg); 2284 if (Index < SparseUniverseMax) { 2285 if (Index < SparseUniverse && Sparse.test(Index)) 2286 continue; 2287 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2288 } else { 2289 if (Dense.count(Reg)) 2290 continue; 2291 ++NewDenseSize; 2292 } 2293 ToVRegs.push_back(Reg); 2294 } 2295 size_t End = ToVRegs.size(); 2296 if (Begin == End) 2297 return false; 2298 // Reserving space in sets once performs better than doing so continuously 2299 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2300 // tuned all the way down) and double iteration (the second one is over a 2301 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2302 Sparse.resize(NewSparseUniverse); 2303 Dense.reserve(NewDenseSize); 2304 for (unsigned I = Begin; I < End; ++I) { 2305 Register Reg = ToVRegs[I]; 2306 unsigned Index = Register::virtReg2Index(Reg); 2307 if (Index < SparseUniverseMax) 2308 Sparse.set(Index); 2309 else 2310 Dense.insert(Reg); 2311 } 2312 return true; 2313 } 2314 2315 private: 2316 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2317 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2318 // are tracked by Dense. The only purpose of the threashold and the Dense set 2319 // is to have a reasonably growing memory usage in pathological cases (large 2320 // number of very sparse VRegFilter instances live at the same time). In 2321 // practice even in the worst-by-execution time cases having all elements 2322 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2323 // space efficient than if tracked by Dense. The threashold is set to keep the 2324 // worst-case memory usage within 2x of figures determined empirically for 2325 // "all Dense" scenario in such worst-by-execution-time cases. 2326 BitVector Sparse; 2327 DenseSet<unsigned> Dense; 2328 }; 2329 2330 // Implements both a transfer function and a (binary, in-place) join operator 2331 // for a dataflow over register sets with set union join and filtering transfer 2332 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2333 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2334 // time, where n is the size of the set (as opposed to O(U) where U is the 2335 // universe). filter_b implicitly contains all physical registers at all times. 2336 class FilteringVRegSet { 2337 VRegFilter Filter; 2338 SmallVector<Register, 0> VRegs; 2339 2340 public: 2341 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2342 // Both virtual and physical registers are fine. 2343 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2344 Filter.add(RS); 2345 } 2346 // Passes \p RS through the filter_b (transfer function) and adds what's left 2347 // to itself (out_b). 2348 template <typename RegSetT> bool add(const RegSetT &RS) { 2349 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2350 // a set union) just add everything being added here to the Filter as well. 2351 return Filter.filterAndAdd(RS, VRegs); 2352 } 2353 using const_iterator = decltype(VRegs)::const_iterator; 2354 const_iterator begin() const { return VRegs.begin(); } 2355 const_iterator end() const { return VRegs.end(); } 2356 size_t size() const { return VRegs.size(); } 2357 }; 2358 } // namespace 2359 2360 // Calculate the largest possible vregsPassed sets. These are the registers that 2361 // can pass through an MBB live, but may not be live every time. It is assumed 2362 // that all vregsPassed sets are empty before the call. 2363 void MachineVerifier::calcRegsPassed() { 2364 if (MF->empty()) 2365 // ReversePostOrderTraversal doesn't handle empty functions. 2366 return; 2367 2368 for (const MachineBasicBlock *MB : 2369 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2370 FilteringVRegSet VRegs; 2371 BBInfo &Info = MBBInfoMap[MB]; 2372 assert(Info.reachable); 2373 2374 VRegs.addToFilter(Info.regsKilled); 2375 VRegs.addToFilter(Info.regsLiveOut); 2376 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2377 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2378 if (!PredInfo.reachable) 2379 continue; 2380 2381 VRegs.add(PredInfo.regsLiveOut); 2382 VRegs.add(PredInfo.vregsPassed); 2383 } 2384 Info.vregsPassed.reserve(VRegs.size()); 2385 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2386 } 2387 } 2388 2389 // Calculate the set of virtual registers that must be passed through each basic 2390 // block in order to satisfy the requirements of successor blocks. This is very 2391 // similar to calcRegsPassed, only backwards. 2392 void MachineVerifier::calcRegsRequired() { 2393 // First push live-in regs to predecessors' vregsRequired. 2394 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2395 for (const auto &MBB : *MF) { 2396 BBInfo &MInfo = MBBInfoMap[&MBB]; 2397 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2398 BBInfo &PInfo = MBBInfoMap[Pred]; 2399 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2400 todo.insert(Pred); 2401 } 2402 2403 // Handle the PHI node. 2404 for (const MachineInstr &MI : MBB.phis()) { 2405 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2406 // Skip those Operands which are undef regs or not regs. 2407 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2408 continue; 2409 2410 // Get register and predecessor for one PHI edge. 2411 Register Reg = MI.getOperand(i).getReg(); 2412 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2413 2414 BBInfo &PInfo = MBBInfoMap[Pred]; 2415 if (PInfo.addRequired(Reg)) 2416 todo.insert(Pred); 2417 } 2418 } 2419 } 2420 2421 // Iteratively push vregsRequired to predecessors. This will converge to the 2422 // same final state regardless of DenseSet iteration order. 2423 while (!todo.empty()) { 2424 const MachineBasicBlock *MBB = *todo.begin(); 2425 todo.erase(MBB); 2426 BBInfo &MInfo = MBBInfoMap[MBB]; 2427 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2428 if (Pred == MBB) 2429 continue; 2430 BBInfo &SInfo = MBBInfoMap[Pred]; 2431 if (SInfo.addRequired(MInfo.vregsRequired)) 2432 todo.insert(Pred); 2433 } 2434 } 2435 } 2436 2437 // Check PHI instructions at the beginning of MBB. It is assumed that 2438 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2439 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2440 BBInfo &MInfo = MBBInfoMap[&MBB]; 2441 2442 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2443 for (const MachineInstr &Phi : MBB) { 2444 if (!Phi.isPHI()) 2445 break; 2446 seen.clear(); 2447 2448 const MachineOperand &MODef = Phi.getOperand(0); 2449 if (!MODef.isReg() || !MODef.isDef()) { 2450 report("Expected first PHI operand to be a register def", &MODef, 0); 2451 continue; 2452 } 2453 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2454 MODef.isEarlyClobber() || MODef.isDebug()) 2455 report("Unexpected flag on PHI operand", &MODef, 0); 2456 Register DefReg = MODef.getReg(); 2457 if (!Register::isVirtualRegister(DefReg)) 2458 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2459 2460 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2461 const MachineOperand &MO0 = Phi.getOperand(I); 2462 if (!MO0.isReg()) { 2463 report("Expected PHI operand to be a register", &MO0, I); 2464 continue; 2465 } 2466 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2467 MO0.isDebug() || MO0.isTied()) 2468 report("Unexpected flag on PHI operand", &MO0, I); 2469 2470 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2471 if (!MO1.isMBB()) { 2472 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2473 continue; 2474 } 2475 2476 const MachineBasicBlock &Pre = *MO1.getMBB(); 2477 if (!Pre.isSuccessor(&MBB)) { 2478 report("PHI input is not a predecessor block", &MO1, I + 1); 2479 continue; 2480 } 2481 2482 if (MInfo.reachable) { 2483 seen.insert(&Pre); 2484 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2485 if (!MO0.isUndef() && PrInfo.reachable && 2486 !PrInfo.isLiveOut(MO0.getReg())) 2487 report("PHI operand is not live-out from predecessor", &MO0, I); 2488 } 2489 } 2490 2491 // Did we see all predecessors? 2492 if (MInfo.reachable) { 2493 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2494 if (!seen.count(Pred)) { 2495 report("Missing PHI operand", &Phi); 2496 errs() << printMBBReference(*Pred) 2497 << " is a predecessor according to the CFG.\n"; 2498 } 2499 } 2500 } 2501 } 2502 } 2503 2504 void MachineVerifier::visitMachineFunctionAfter() { 2505 calcRegsPassed(); 2506 2507 for (const MachineBasicBlock &MBB : *MF) 2508 checkPHIOps(MBB); 2509 2510 // Now check liveness info if available 2511 calcRegsRequired(); 2512 2513 // Check for killed virtual registers that should be live out. 2514 for (const auto &MBB : *MF) { 2515 BBInfo &MInfo = MBBInfoMap[&MBB]; 2516 for (Register VReg : MInfo.vregsRequired) 2517 if (MInfo.regsKilled.count(VReg)) { 2518 report("Virtual register killed in block, but needed live out.", &MBB); 2519 errs() << "Virtual register " << printReg(VReg) 2520 << " is used after the block.\n"; 2521 } 2522 } 2523 2524 if (!MF->empty()) { 2525 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2526 for (Register VReg : MInfo.vregsRequired) { 2527 report("Virtual register defs don't dominate all uses.", MF); 2528 report_context_vreg(VReg); 2529 } 2530 } 2531 2532 if (LiveVars) 2533 verifyLiveVariables(); 2534 if (LiveInts) 2535 verifyLiveIntervals(); 2536 2537 // Check live-in list of each MBB. If a register is live into MBB, check 2538 // that the register is in regsLiveOut of each predecessor block. Since 2539 // this must come from a definition in the predecesssor or its live-in 2540 // list, this will catch a live-through case where the predecessor does not 2541 // have the register in its live-in list. This currently only checks 2542 // registers that have no aliases, are not allocatable and are not 2543 // reserved, which could mean a condition code register for instance. 2544 if (MRI->tracksLiveness()) 2545 for (const auto &MBB : *MF) 2546 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2547 MCPhysReg LiveInReg = P.PhysReg; 2548 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2549 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2550 continue; 2551 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2552 BBInfo &PInfo = MBBInfoMap[Pred]; 2553 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2554 report("Live in register not found to be live out from predecessor.", 2555 &MBB); 2556 errs() << TRI->getName(LiveInReg) 2557 << " not found to be live out from " 2558 << printMBBReference(*Pred) << "\n"; 2559 } 2560 } 2561 } 2562 2563 for (auto CSInfo : MF->getCallSitesInfo()) 2564 if (!CSInfo.first->isCall()) 2565 report("Call site info referencing instruction that is not call", MF); 2566 2567 // If there's debug-info, check that we don't have any duplicate value 2568 // tracking numbers. 2569 if (MF->getFunction().getSubprogram()) { 2570 DenseSet<unsigned> SeenNumbers; 2571 for (auto &MBB : *MF) { 2572 for (auto &MI : MBB) { 2573 if (auto Num = MI.peekDebugInstrNum()) { 2574 auto Result = SeenNumbers.insert((unsigned)Num); 2575 if (!Result.second) 2576 report("Instruction has a duplicated value tracking number", &MI); 2577 } 2578 } 2579 } 2580 } 2581 } 2582 2583 void MachineVerifier::verifyLiveVariables() { 2584 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2585 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2586 Register Reg = Register::index2VirtReg(I); 2587 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2588 for (const auto &MBB : *MF) { 2589 BBInfo &MInfo = MBBInfoMap[&MBB]; 2590 2591 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2592 if (MInfo.vregsRequired.count(Reg)) { 2593 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2594 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2595 errs() << "Virtual register " << printReg(Reg) 2596 << " must be live through the block.\n"; 2597 } 2598 } else { 2599 if (VI.AliveBlocks.test(MBB.getNumber())) { 2600 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2601 errs() << "Virtual register " << printReg(Reg) 2602 << " is not needed live through the block.\n"; 2603 } 2604 } 2605 } 2606 } 2607 } 2608 2609 void MachineVerifier::verifyLiveIntervals() { 2610 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2611 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2612 Register Reg = Register::index2VirtReg(I); 2613 2614 // Spilling and splitting may leave unused registers around. Skip them. 2615 if (MRI->reg_nodbg_empty(Reg)) 2616 continue; 2617 2618 if (!LiveInts->hasInterval(Reg)) { 2619 report("Missing live interval for virtual register", MF); 2620 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2621 continue; 2622 } 2623 2624 const LiveInterval &LI = LiveInts->getInterval(Reg); 2625 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2626 verifyLiveInterval(LI); 2627 } 2628 2629 // Verify all the cached regunit intervals. 2630 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2631 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2632 verifyLiveRange(*LR, i); 2633 } 2634 2635 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2636 const VNInfo *VNI, Register Reg, 2637 LaneBitmask LaneMask) { 2638 if (VNI->isUnused()) 2639 return; 2640 2641 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2642 2643 if (!DefVNI) { 2644 report("Value not live at VNInfo def and not marked unused", MF); 2645 report_context(LR, Reg, LaneMask); 2646 report_context(*VNI); 2647 return; 2648 } 2649 2650 if (DefVNI != VNI) { 2651 report("Live segment at def has different VNInfo", MF); 2652 report_context(LR, Reg, LaneMask); 2653 report_context(*VNI); 2654 return; 2655 } 2656 2657 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2658 if (!MBB) { 2659 report("Invalid VNInfo definition index", MF); 2660 report_context(LR, Reg, LaneMask); 2661 report_context(*VNI); 2662 return; 2663 } 2664 2665 if (VNI->isPHIDef()) { 2666 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2667 report("PHIDef VNInfo is not defined at MBB start", MBB); 2668 report_context(LR, Reg, LaneMask); 2669 report_context(*VNI); 2670 } 2671 return; 2672 } 2673 2674 // Non-PHI def. 2675 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2676 if (!MI) { 2677 report("No instruction at VNInfo def index", MBB); 2678 report_context(LR, Reg, LaneMask); 2679 report_context(*VNI); 2680 return; 2681 } 2682 2683 if (Reg != 0) { 2684 bool hasDef = false; 2685 bool isEarlyClobber = false; 2686 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2687 if (!MOI->isReg() || !MOI->isDef()) 2688 continue; 2689 if (Register::isVirtualRegister(Reg)) { 2690 if (MOI->getReg() != Reg) 2691 continue; 2692 } else { 2693 if (!Register::isPhysicalRegister(MOI->getReg()) || 2694 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2695 continue; 2696 } 2697 if (LaneMask.any() && 2698 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2699 continue; 2700 hasDef = true; 2701 if (MOI->isEarlyClobber()) 2702 isEarlyClobber = true; 2703 } 2704 2705 if (!hasDef) { 2706 report("Defining instruction does not modify register", MI); 2707 report_context(LR, Reg, LaneMask); 2708 report_context(*VNI); 2709 } 2710 2711 // Early clobber defs begin at USE slots, but other defs must begin at 2712 // DEF slots. 2713 if (isEarlyClobber) { 2714 if (!VNI->def.isEarlyClobber()) { 2715 report("Early clobber def must be at an early-clobber slot", MBB); 2716 report_context(LR, Reg, LaneMask); 2717 report_context(*VNI); 2718 } 2719 } else if (!VNI->def.isRegister()) { 2720 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2721 report_context(LR, Reg, LaneMask); 2722 report_context(*VNI); 2723 } 2724 } 2725 } 2726 2727 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2728 const LiveRange::const_iterator I, 2729 Register Reg, 2730 LaneBitmask LaneMask) { 2731 const LiveRange::Segment &S = *I; 2732 const VNInfo *VNI = S.valno; 2733 assert(VNI && "Live segment has no valno"); 2734 2735 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2736 report("Foreign valno in live segment", MF); 2737 report_context(LR, Reg, LaneMask); 2738 report_context(S); 2739 report_context(*VNI); 2740 } 2741 2742 if (VNI->isUnused()) { 2743 report("Live segment valno is marked unused", MF); 2744 report_context(LR, Reg, LaneMask); 2745 report_context(S); 2746 } 2747 2748 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2749 if (!MBB) { 2750 report("Bad start of live segment, no basic block", MF); 2751 report_context(LR, Reg, LaneMask); 2752 report_context(S); 2753 return; 2754 } 2755 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2756 if (S.start != MBBStartIdx && S.start != VNI->def) { 2757 report("Live segment must begin at MBB entry or valno def", MBB); 2758 report_context(LR, Reg, LaneMask); 2759 report_context(S); 2760 } 2761 2762 const MachineBasicBlock *EndMBB = 2763 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2764 if (!EndMBB) { 2765 report("Bad end of live segment, no basic block", MF); 2766 report_context(LR, Reg, LaneMask); 2767 report_context(S); 2768 return; 2769 } 2770 2771 // No more checks for live-out segments. 2772 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2773 return; 2774 2775 // RegUnit intervals are allowed dead phis. 2776 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2777 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2778 return; 2779 2780 // The live segment is ending inside EndMBB 2781 const MachineInstr *MI = 2782 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2783 if (!MI) { 2784 report("Live segment doesn't end at a valid instruction", EndMBB); 2785 report_context(LR, Reg, LaneMask); 2786 report_context(S); 2787 return; 2788 } 2789 2790 // The block slot must refer to a basic block boundary. 2791 if (S.end.isBlock()) { 2792 report("Live segment ends at B slot of an instruction", EndMBB); 2793 report_context(LR, Reg, LaneMask); 2794 report_context(S); 2795 } 2796 2797 if (S.end.isDead()) { 2798 // Segment ends on the dead slot. 2799 // That means there must be a dead def. 2800 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2801 report("Live segment ending at dead slot spans instructions", EndMBB); 2802 report_context(LR, Reg, LaneMask); 2803 report_context(S); 2804 } 2805 } 2806 2807 // A live segment can only end at an early-clobber slot if it is being 2808 // redefined by an early-clobber def. 2809 if (S.end.isEarlyClobber()) { 2810 if (I+1 == LR.end() || (I+1)->start != S.end) { 2811 report("Live segment ending at early clobber slot must be " 2812 "redefined by an EC def in the same instruction", EndMBB); 2813 report_context(LR, Reg, LaneMask); 2814 report_context(S); 2815 } 2816 } 2817 2818 // The following checks only apply to virtual registers. Physreg liveness 2819 // is too weird to check. 2820 if (Register::isVirtualRegister(Reg)) { 2821 // A live segment can end with either a redefinition, a kill flag on a 2822 // use, or a dead flag on a def. 2823 bool hasRead = false; 2824 bool hasSubRegDef = false; 2825 bool hasDeadDef = false; 2826 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2827 if (!MOI->isReg() || MOI->getReg() != Reg) 2828 continue; 2829 unsigned Sub = MOI->getSubReg(); 2830 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2831 : LaneBitmask::getAll(); 2832 if (MOI->isDef()) { 2833 if (Sub != 0) { 2834 hasSubRegDef = true; 2835 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2836 // mask for subregister defs. Read-undef defs will be handled by 2837 // readsReg below. 2838 SLM = ~SLM; 2839 } 2840 if (MOI->isDead()) 2841 hasDeadDef = true; 2842 } 2843 if (LaneMask.any() && (LaneMask & SLM).none()) 2844 continue; 2845 if (MOI->readsReg()) 2846 hasRead = true; 2847 } 2848 if (S.end.isDead()) { 2849 // Make sure that the corresponding machine operand for a "dead" live 2850 // range has the dead flag. We cannot perform this check for subregister 2851 // liveranges as partially dead values are allowed. 2852 if (LaneMask.none() && !hasDeadDef) { 2853 report("Instruction ending live segment on dead slot has no dead flag", 2854 MI); 2855 report_context(LR, Reg, LaneMask); 2856 report_context(S); 2857 } 2858 } else { 2859 if (!hasRead) { 2860 // When tracking subregister liveness, the main range must start new 2861 // values on partial register writes, even if there is no read. 2862 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2863 !hasSubRegDef) { 2864 report("Instruction ending live segment doesn't read the register", 2865 MI); 2866 report_context(LR, Reg, LaneMask); 2867 report_context(S); 2868 } 2869 } 2870 } 2871 } 2872 2873 // Now check all the basic blocks in this live segment. 2874 MachineFunction::const_iterator MFI = MBB->getIterator(); 2875 // Is this live segment the beginning of a non-PHIDef VN? 2876 if (S.start == VNI->def && !VNI->isPHIDef()) { 2877 // Not live-in to any blocks. 2878 if (MBB == EndMBB) 2879 return; 2880 // Skip this block. 2881 ++MFI; 2882 } 2883 2884 SmallVector<SlotIndex, 4> Undefs; 2885 if (LaneMask.any()) { 2886 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2887 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2888 } 2889 2890 while (true) { 2891 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2892 // We don't know how to track physregs into a landing pad. 2893 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2894 if (&*MFI == EndMBB) 2895 break; 2896 ++MFI; 2897 continue; 2898 } 2899 2900 // Is VNI a PHI-def in the current block? 2901 bool IsPHI = VNI->isPHIDef() && 2902 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2903 2904 // Check that VNI is live-out of all predecessors. 2905 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2906 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2907 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2908 2909 // All predecessors must have a live-out value. However for a phi 2910 // instruction with subregister intervals 2911 // only one of the subregisters (not necessarily the current one) needs to 2912 // be defined. 2913 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2914 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2915 continue; 2916 report("Register not marked live out of predecessor", Pred); 2917 report_context(LR, Reg, LaneMask); 2918 report_context(*VNI); 2919 errs() << " live into " << printMBBReference(*MFI) << '@' 2920 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2921 << PEnd << '\n'; 2922 continue; 2923 } 2924 2925 // Only PHI-defs can take different predecessor values. 2926 if (!IsPHI && PVNI != VNI) { 2927 report("Different value live out of predecessor", Pred); 2928 report_context(LR, Reg, LaneMask); 2929 errs() << "Valno #" << PVNI->id << " live out of " 2930 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2931 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2932 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2933 } 2934 } 2935 if (&*MFI == EndMBB) 2936 break; 2937 ++MFI; 2938 } 2939 } 2940 2941 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 2942 LaneBitmask LaneMask) { 2943 for (const VNInfo *VNI : LR.valnos) 2944 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2945 2946 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2947 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2948 } 2949 2950 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2951 Register Reg = LI.reg(); 2952 assert(Register::isVirtualRegister(Reg)); 2953 verifyLiveRange(LI, Reg); 2954 2955 LaneBitmask Mask; 2956 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2957 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2958 if ((Mask & SR.LaneMask).any()) { 2959 report("Lane masks of sub ranges overlap in live interval", MF); 2960 report_context(LI); 2961 } 2962 if ((SR.LaneMask & ~MaxMask).any()) { 2963 report("Subrange lanemask is invalid", MF); 2964 report_context(LI); 2965 } 2966 if (SR.empty()) { 2967 report("Subrange must not be empty", MF); 2968 report_context(SR, LI.reg(), SR.LaneMask); 2969 } 2970 Mask |= SR.LaneMask; 2971 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 2972 if (!LI.covers(SR)) { 2973 report("A Subrange is not covered by the main range", MF); 2974 report_context(LI); 2975 } 2976 } 2977 2978 // Check the LI only has one connected component. 2979 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2980 unsigned NumComp = ConEQ.Classify(LI); 2981 if (NumComp > 1) { 2982 report("Multiple connected components in live interval", MF); 2983 report_context(LI); 2984 for (unsigned comp = 0; comp != NumComp; ++comp) { 2985 errs() << comp << ": valnos"; 2986 for (const VNInfo *I : LI.valnos) 2987 if (comp == ConEQ.getEqClass(I)) 2988 errs() << ' ' << I->id; 2989 errs() << '\n'; 2990 } 2991 } 2992 } 2993 2994 namespace { 2995 2996 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2997 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2998 // value is zero. 2999 // We use a bool plus an integer to capture the stack state. 3000 struct StackStateOfBB { 3001 StackStateOfBB() = default; 3002 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3003 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3004 ExitIsSetup(ExitSetup) {} 3005 3006 // Can be negative, which means we are setting up a frame. 3007 int EntryValue = 0; 3008 int ExitValue = 0; 3009 bool EntryIsSetup = false; 3010 bool ExitIsSetup = false; 3011 }; 3012 3013 } // end anonymous namespace 3014 3015 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3016 /// by a FrameDestroy <n>, stack adjustments are identical on all 3017 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3018 void MachineVerifier::verifyStackFrame() { 3019 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3020 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3021 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3022 return; 3023 3024 SmallVector<StackStateOfBB, 8> SPState; 3025 SPState.resize(MF->getNumBlockIDs()); 3026 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3027 3028 // Visit the MBBs in DFS order. 3029 for (df_ext_iterator<const MachineFunction *, 3030 df_iterator_default_set<const MachineBasicBlock *>> 3031 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3032 DFI != DFE; ++DFI) { 3033 const MachineBasicBlock *MBB = *DFI; 3034 3035 StackStateOfBB BBState; 3036 // Check the exit state of the DFS stack predecessor. 3037 if (DFI.getPathLength() >= 2) { 3038 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3039 assert(Reachable.count(StackPred) && 3040 "DFS stack predecessor is already visited.\n"); 3041 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3042 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3043 BBState.ExitValue = BBState.EntryValue; 3044 BBState.ExitIsSetup = BBState.EntryIsSetup; 3045 } 3046 3047 // Update stack state by checking contents of MBB. 3048 for (const auto &I : *MBB) { 3049 if (I.getOpcode() == FrameSetupOpcode) { 3050 if (BBState.ExitIsSetup) 3051 report("FrameSetup is after another FrameSetup", &I); 3052 BBState.ExitValue -= TII->getFrameTotalSize(I); 3053 BBState.ExitIsSetup = true; 3054 } 3055 3056 if (I.getOpcode() == FrameDestroyOpcode) { 3057 int Size = TII->getFrameTotalSize(I); 3058 if (!BBState.ExitIsSetup) 3059 report("FrameDestroy is not after a FrameSetup", &I); 3060 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3061 BBState.ExitValue; 3062 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3063 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3064 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3065 << AbsSPAdj << ">.\n"; 3066 } 3067 BBState.ExitValue += Size; 3068 BBState.ExitIsSetup = false; 3069 } 3070 } 3071 SPState[MBB->getNumber()] = BBState; 3072 3073 // Make sure the exit state of any predecessor is consistent with the entry 3074 // state. 3075 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3076 if (Reachable.count(Pred) && 3077 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3078 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3079 report("The exit stack state of a predecessor is inconsistent.", MBB); 3080 errs() << "Predecessor " << printMBBReference(*Pred) 3081 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3082 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3083 << printMBBReference(*MBB) << " has entry state (" 3084 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3085 } 3086 } 3087 3088 // Make sure the entry state of any successor is consistent with the exit 3089 // state. 3090 for (const MachineBasicBlock *Succ : MBB->successors()) { 3091 if (Reachable.count(Succ) && 3092 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3093 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3094 report("The entry stack state of a successor is inconsistent.", MBB); 3095 errs() << "Successor " << printMBBReference(*Succ) 3096 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3097 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3098 << printMBBReference(*MBB) << " has exit state (" 3099 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3100 } 3101 } 3102 3103 // Make sure a basic block with return ends with zero stack adjustment. 3104 if (!MBB->empty() && MBB->back().isReturn()) { 3105 if (BBState.ExitIsSetup) 3106 report("A return block ends with a FrameSetup.", MBB); 3107 if (BBState.ExitValue) 3108 report("A return block ends with a nonzero stack adjustment.", MBB); 3109 } 3110 } 3111 } 3112