1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 20 // command-line option -verify-machineinstrs, or by defining the environment 21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 22 // the verifier errors. 23 //===----------------------------------------------------------------------===// 24 25 #include "LiveRangeCalc.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 234 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 235 void verifyPreISelGenericInstruction(const MachineInstr *MI); 236 void visitMachineInstrBefore(const MachineInstr *MI); 237 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 238 void visitMachineInstrAfter(const MachineInstr *MI); 239 void visitMachineBundleAfter(const MachineInstr *MI); 240 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 241 void visitMachineFunctionAfter(); 242 243 void report(const char *msg, const MachineFunction *MF); 244 void report(const char *msg, const MachineBasicBlock *MBB); 245 void report(const char *msg, const MachineInstr *MI); 246 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 247 LLT MOVRegType = LLT{}); 248 249 void report_context(const LiveInterval &LI) const; 250 void report_context(const LiveRange &LR, unsigned VRegUnit, 251 LaneBitmask LaneMask) const; 252 void report_context(const LiveRange::Segment &S) const; 253 void report_context(const VNInfo &VNI) const; 254 void report_context(SlotIndex Pos) const; 255 void report_context(MCPhysReg PhysReg) const; 256 void report_context_liverange(const LiveRange &LR) const; 257 void report_context_lanemask(LaneBitmask LaneMask) const; 258 void report_context_vreg(unsigned VReg) const; 259 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 260 261 void verifyInlineAsm(const MachineInstr *MI); 262 263 void checkLiveness(const MachineOperand *MO, unsigned MONum); 264 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 265 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 268 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 269 bool SubRangeCheck = false, 270 LaneBitmask LaneMask = LaneBitmask::getNone()); 271 272 void markReachable(const MachineBasicBlock *MBB); 273 void calcRegsPassed(); 274 void checkPHIOps(const MachineBasicBlock &MBB); 275 276 void calcRegsRequired(); 277 void verifyLiveVariables(); 278 void verifyLiveIntervals(); 279 void verifyLiveInterval(const LiveInterval&); 280 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 281 LaneBitmask); 282 void verifyLiveRangeSegment(const LiveRange&, 283 const LiveRange::const_iterator I, unsigned, 284 LaneBitmask); 285 void verifyLiveRange(const LiveRange&, unsigned, 286 LaneBitmask LaneMask = LaneBitmask::getNone()); 287 288 void verifyStackFrame(); 289 290 void verifySlotIndexes() const; 291 void verifyProperties(const MachineFunction &MF); 292 }; 293 294 struct MachineVerifierPass : public MachineFunctionPass { 295 static char ID; // Pass ID, replacement for typeid 296 297 const std::string Banner; 298 299 MachineVerifierPass(std::string banner = std::string()) 300 : MachineFunctionPass(ID), Banner(std::move(banner)) { 301 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 302 } 303 304 void getAnalysisUsage(AnalysisUsage &AU) const override { 305 AU.setPreservesAll(); 306 MachineFunctionPass::getAnalysisUsage(AU); 307 } 308 309 bool runOnMachineFunction(MachineFunction &MF) override { 310 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 311 if (FoundErrors) 312 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 313 return false; 314 } 315 }; 316 317 } // end anonymous namespace 318 319 char MachineVerifierPass::ID = 0; 320 321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 322 "Verify generated machine code", false, false) 323 324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 325 return new MachineVerifierPass(Banner); 326 } 327 328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 329 const { 330 MachineFunction &MF = const_cast<MachineFunction&>(*this); 331 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 332 if (AbortOnErrors && FoundErrors) 333 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 334 return FoundErrors == 0; 335 } 336 337 void MachineVerifier::verifySlotIndexes() const { 338 if (Indexes == nullptr) 339 return; 340 341 // Ensure the IdxMBB list is sorted by slot indexes. 342 SlotIndex Last; 343 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 344 E = Indexes->MBBIndexEnd(); I != E; ++I) { 345 assert(!Last.isValid() || I->first > Last); 346 Last = I->first; 347 } 348 } 349 350 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 351 // If a pass has introduced virtual registers without clearing the 352 // NoVRegs property (or set it without allocating the vregs) 353 // then report an error. 354 if (MF.getProperties().hasProperty( 355 MachineFunctionProperties::Property::NoVRegs) && 356 MRI->getNumVirtRegs()) 357 report("Function has NoVRegs property but there are VReg operands", &MF); 358 } 359 360 unsigned MachineVerifier::verify(MachineFunction &MF) { 361 foundErrors = 0; 362 363 this->MF = &MF; 364 TM = &MF.getTarget(); 365 TII = MF.getSubtarget().getInstrInfo(); 366 TRI = MF.getSubtarget().getRegisterInfo(); 367 MRI = &MF.getRegInfo(); 368 369 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 370 MachineFunctionProperties::Property::FailedISel); 371 372 // If we're mid-GlobalISel and we already triggered the fallback path then 373 // it's expected that the MIR is somewhat broken but that's ok since we'll 374 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 375 if (isFunctionFailedISel) 376 return foundErrors; 377 378 isFunctionRegBankSelected = 379 !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::RegBankSelected); 382 isFunctionSelected = !isFunctionFailedISel && 383 MF.getProperties().hasProperty( 384 MachineFunctionProperties::Property::Selected); 385 LiveVars = nullptr; 386 LiveInts = nullptr; 387 LiveStks = nullptr; 388 Indexes = nullptr; 389 if (PASS) { 390 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 391 // We don't want to verify LiveVariables if LiveIntervals is available. 392 if (!LiveInts) 393 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 394 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 395 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 396 } 397 398 verifySlotIndexes(); 399 400 verifyProperties(MF); 401 402 visitMachineFunctionBefore(); 403 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 404 MFI!=MFE; ++MFI) { 405 visitMachineBasicBlockBefore(&*MFI); 406 // Keep track of the current bundle header. 407 const MachineInstr *CurBundle = nullptr; 408 // Do we expect the next instruction to be part of the same bundle? 409 bool InBundle = false; 410 411 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 412 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 413 if (MBBI->getParent() != &*MFI) { 414 report("Bad instruction parent pointer", &*MFI); 415 errs() << "Instruction: " << *MBBI; 416 continue; 417 } 418 419 // Check for consistent bundle flags. 420 if (InBundle && !MBBI->isBundledWithPred()) 421 report("Missing BundledPred flag, " 422 "BundledSucc was set on predecessor", 423 &*MBBI); 424 if (!InBundle && MBBI->isBundledWithPred()) 425 report("BundledPred flag is set, " 426 "but BundledSucc not set on predecessor", 427 &*MBBI); 428 429 // Is this a bundle header? 430 if (!MBBI->isInsideBundle()) { 431 if (CurBundle) 432 visitMachineBundleAfter(CurBundle); 433 CurBundle = &*MBBI; 434 visitMachineBundleBefore(CurBundle); 435 } else if (!CurBundle) 436 report("No bundle header", &*MBBI); 437 visitMachineInstrBefore(&*MBBI); 438 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 439 const MachineInstr &MI = *MBBI; 440 const MachineOperand &Op = MI.getOperand(I); 441 if (Op.getParent() != &MI) { 442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 443 // functions when replacing operands of a MachineInstr. 444 report("Instruction has operand with wrong parent set", &MI); 445 } 446 447 visitMachineOperand(&Op, I); 448 } 449 450 visitMachineInstrAfter(&*MBBI); 451 452 // Was this the last bundled instruction? 453 InBundle = MBBI->isBundledWithSucc(); 454 } 455 if (CurBundle) 456 visitMachineBundleAfter(CurBundle); 457 if (InBundle) 458 report("BundledSucc flag set on last instruction in block", &MFI->back()); 459 visitMachineBasicBlockAfter(&*MFI); 460 } 461 visitMachineFunctionAfter(); 462 463 // Clean up. 464 regsLive.clear(); 465 regsDefined.clear(); 466 regsDead.clear(); 467 regsKilled.clear(); 468 regMasks.clear(); 469 MBBInfoMap.clear(); 470 471 return foundErrors; 472 } 473 474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 475 assert(MF); 476 errs() << '\n'; 477 if (!foundErrors++) { 478 if (Banner) 479 errs() << "# " << Banner << '\n'; 480 if (LiveInts != nullptr) 481 LiveInts->print(errs()); 482 else 483 MF->print(errs(), Indexes); 484 } 485 errs() << "*** Bad machine code: " << msg << " ***\n" 486 << "- function: " << MF->getName() << "\n"; 487 } 488 489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 490 assert(MBB); 491 report(msg, MBB->getParent()); 492 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 493 << MBB->getName() << " (" << (const void *)MBB << ')'; 494 if (Indexes) 495 errs() << " [" << Indexes->getMBBStartIdx(MBB) 496 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 497 errs() << '\n'; 498 } 499 500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 501 assert(MI); 502 report(msg, MI->getParent()); 503 errs() << "- instruction: "; 504 if (Indexes && Indexes->hasIndex(*MI)) 505 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 506 MI->print(errs(), /*SkipOpers=*/true); 507 } 508 509 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 510 unsigned MONum, LLT MOVRegType) { 511 assert(MO); 512 report(msg, MO->getParent()); 513 errs() << "- operand " << MONum << ": "; 514 MO->print(errs(), MOVRegType, TRI); 515 errs() << "\n"; 516 } 517 518 void MachineVerifier::report_context(SlotIndex Pos) const { 519 errs() << "- at: " << Pos << '\n'; 520 } 521 522 void MachineVerifier::report_context(const LiveInterval &LI) const { 523 errs() << "- interval: " << LI << '\n'; 524 } 525 526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 527 LaneBitmask LaneMask) const { 528 report_context_liverange(LR); 529 report_context_vreg_regunit(VRegUnit); 530 if (LaneMask.any()) 531 report_context_lanemask(LaneMask); 532 } 533 534 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 535 errs() << "- segment: " << S << '\n'; 536 } 537 538 void MachineVerifier::report_context(const VNInfo &VNI) const { 539 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 540 } 541 542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 543 errs() << "- liverange: " << LR << '\n'; 544 } 545 546 void MachineVerifier::report_context(MCPhysReg PReg) const { 547 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 548 } 549 550 void MachineVerifier::report_context_vreg(unsigned VReg) const { 551 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 552 } 553 554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 555 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 556 report_context_vreg(VRegOrUnit); 557 } else { 558 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 559 } 560 } 561 562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 563 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 564 } 565 566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 567 BBInfo &MInfo = MBBInfoMap[MBB]; 568 if (!MInfo.reachable) { 569 MInfo.reachable = true; 570 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 571 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 572 markReachable(*SuI); 573 } 574 } 575 576 void MachineVerifier::visitMachineFunctionBefore() { 577 lastIndex = SlotIndex(); 578 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 579 : TRI->getReservedRegs(*MF); 580 581 if (!MF->empty()) 582 markReachable(&MF->front()); 583 584 // Build a set of the basic blocks in the function. 585 FunctionBlocks.clear(); 586 for (const auto &MBB : *MF) { 587 FunctionBlocks.insert(&MBB); 588 BBInfo &MInfo = MBBInfoMap[&MBB]; 589 590 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 591 if (MInfo.Preds.size() != MBB.pred_size()) 592 report("MBB has duplicate entries in its predecessor list.", &MBB); 593 594 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 595 if (MInfo.Succs.size() != MBB.succ_size()) 596 report("MBB has duplicate entries in its successor list.", &MBB); 597 } 598 599 // Check that the register use lists are sane. 600 MRI->verifyUseLists(); 601 602 if (!MF->empty()) 603 verifyStackFrame(); 604 } 605 606 // Does iterator point to a and b as the first two elements? 607 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 608 const MachineBasicBlock *a, const MachineBasicBlock *b) { 609 if (*i == a) 610 return *++i == b; 611 if (*i == b) 612 return *++i == a; 613 return false; 614 } 615 616 void 617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 618 FirstTerminator = nullptr; 619 FirstNonPHI = nullptr; 620 621 if (!MF->getProperties().hasProperty( 622 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 623 // If this block has allocatable physical registers live-in, check that 624 // it is an entry block or landing pad. 625 for (const auto &LI : MBB->liveins()) { 626 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 627 MBB->getIterator() != MBB->getParent()->begin()) { 628 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 629 report_context(LI.PhysReg); 630 } 631 } 632 } 633 634 // Count the number of landing pad successors. 635 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 636 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 637 E = MBB->succ_end(); I != E; ++I) { 638 if ((*I)->isEHPad()) 639 LandingPadSuccs.insert(*I); 640 if (!FunctionBlocks.count(*I)) 641 report("MBB has successor that isn't part of the function.", MBB); 642 if (!MBBInfoMap[*I].Preds.count(MBB)) { 643 report("Inconsistent CFG", MBB); 644 errs() << "MBB is not in the predecessor list of the successor " 645 << printMBBReference(*(*I)) << ".\n"; 646 } 647 } 648 649 // Check the predecessor list. 650 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 651 E = MBB->pred_end(); I != E; ++I) { 652 if (!FunctionBlocks.count(*I)) 653 report("MBB has predecessor that isn't part of the function.", MBB); 654 if (!MBBInfoMap[*I].Succs.count(MBB)) { 655 report("Inconsistent CFG", MBB); 656 errs() << "MBB is not in the successor list of the predecessor " 657 << printMBBReference(*(*I)) << ".\n"; 658 } 659 } 660 661 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 662 const BasicBlock *BB = MBB->getBasicBlock(); 663 const Function &F = MF->getFunction(); 664 if (LandingPadSuccs.size() > 1 && 665 !(AsmInfo && 666 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 667 BB && isa<SwitchInst>(BB->getTerminator())) && 668 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 669 report("MBB has more than one landing pad successor", MBB); 670 671 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 672 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 673 SmallVector<MachineOperand, 4> Cond; 674 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 675 Cond)) { 676 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 677 // check whether its answers match up with reality. 678 if (!TBB && !FBB) { 679 // Block falls through to its successor. 680 MachineFunction::const_iterator MBBI = MBB->getIterator(); 681 ++MBBI; 682 if (MBBI == MF->end()) { 683 // It's possible that the block legitimately ends with a noreturn 684 // call or an unreachable, in which case it won't actually fall 685 // out the bottom of the function. 686 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 687 // It's possible that the block legitimately ends with a noreturn 688 // call or an unreachable, in which case it won't actually fall 689 // out of the block. 690 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 691 report("MBB exits via unconditional fall-through but doesn't have " 692 "exactly one CFG successor!", MBB); 693 } else if (!MBB->isSuccessor(&*MBBI)) { 694 report("MBB exits via unconditional fall-through but its successor " 695 "differs from its CFG successor!", MBB); 696 } 697 if (!MBB->empty() && MBB->back().isBarrier() && 698 !TII->isPredicated(MBB->back())) { 699 report("MBB exits via unconditional fall-through but ends with a " 700 "barrier instruction!", MBB); 701 } 702 if (!Cond.empty()) { 703 report("MBB exits via unconditional fall-through but has a condition!", 704 MBB); 705 } 706 } else if (TBB && !FBB && Cond.empty()) { 707 // Block unconditionally branches somewhere. 708 // If the block has exactly one successor, that happens to be a 709 // landingpad, accept it as valid control flow. 710 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 711 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 712 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 713 report("MBB exits via unconditional branch but doesn't have " 714 "exactly one CFG successor!", MBB); 715 } else if (!MBB->isSuccessor(TBB)) { 716 report("MBB exits via unconditional branch but the CFG " 717 "successor doesn't match the actual successor!", MBB); 718 } 719 if (MBB->empty()) { 720 report("MBB exits via unconditional branch but doesn't contain " 721 "any instructions!", MBB); 722 } else if (!MBB->back().isBarrier()) { 723 report("MBB exits via unconditional branch but doesn't end with a " 724 "barrier instruction!", MBB); 725 } else if (!MBB->back().isTerminator()) { 726 report("MBB exits via unconditional branch but the branch isn't a " 727 "terminator instruction!", MBB); 728 } 729 } else if (TBB && !FBB && !Cond.empty()) { 730 // Block conditionally branches somewhere, otherwise falls through. 731 MachineFunction::const_iterator MBBI = MBB->getIterator(); 732 ++MBBI; 733 if (MBBI == MF->end()) { 734 report("MBB conditionally falls through out of function!", MBB); 735 } else if (MBB->succ_size() == 1) { 736 // A conditional branch with only one successor is weird, but allowed. 737 if (&*MBBI != TBB) 738 report("MBB exits via conditional branch/fall-through but only has " 739 "one CFG successor!", MBB); 740 else if (TBB != *MBB->succ_begin()) 741 report("MBB exits via conditional branch/fall-through but the CFG " 742 "successor don't match the actual successor!", MBB); 743 } else if (MBB->succ_size() != 2) { 744 report("MBB exits via conditional branch/fall-through but doesn't have " 745 "exactly two CFG successors!", MBB); 746 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 747 report("MBB exits via conditional branch/fall-through but the CFG " 748 "successors don't match the actual successors!", MBB); 749 } 750 if (MBB->empty()) { 751 report("MBB exits via conditional branch/fall-through but doesn't " 752 "contain any instructions!", MBB); 753 } else if (MBB->back().isBarrier()) { 754 report("MBB exits via conditional branch/fall-through but ends with a " 755 "barrier instruction!", MBB); 756 } else if (!MBB->back().isTerminator()) { 757 report("MBB exits via conditional branch/fall-through but the branch " 758 "isn't a terminator instruction!", MBB); 759 } 760 } else if (TBB && FBB) { 761 // Block conditionally branches somewhere, otherwise branches 762 // somewhere else. 763 if (MBB->succ_size() == 1) { 764 // A conditional branch with only one successor is weird, but allowed. 765 if (FBB != TBB) 766 report("MBB exits via conditional branch/branch through but only has " 767 "one CFG successor!", MBB); 768 else if (TBB != *MBB->succ_begin()) 769 report("MBB exits via conditional branch/branch through but the CFG " 770 "successor don't match the actual successor!", MBB); 771 } else if (MBB->succ_size() != 2) { 772 report("MBB exits via conditional branch/branch but doesn't have " 773 "exactly two CFG successors!", MBB); 774 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 775 report("MBB exits via conditional branch/branch but the CFG " 776 "successors don't match the actual successors!", MBB); 777 } 778 if (MBB->empty()) { 779 report("MBB exits via conditional branch/branch but doesn't " 780 "contain any instructions!", MBB); 781 } else if (!MBB->back().isBarrier()) { 782 report("MBB exits via conditional branch/branch but doesn't end with a " 783 "barrier instruction!", MBB); 784 } else if (!MBB->back().isTerminator()) { 785 report("MBB exits via conditional branch/branch but the branch " 786 "isn't a terminator instruction!", MBB); 787 } 788 if (Cond.empty()) { 789 report("MBB exits via conditional branch/branch but there's no " 790 "condition!", MBB); 791 } 792 } else { 793 report("AnalyzeBranch returned invalid data!", MBB); 794 } 795 } 796 797 regsLive.clear(); 798 if (MRI->tracksLiveness()) { 799 for (const auto &LI : MBB->liveins()) { 800 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 801 report("MBB live-in list contains non-physical register", MBB); 802 continue; 803 } 804 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 805 SubRegs.isValid(); ++SubRegs) 806 regsLive.insert(*SubRegs); 807 } 808 } 809 810 const MachineFrameInfo &MFI = MF->getFrameInfo(); 811 BitVector PR = MFI.getPristineRegs(*MF); 812 for (unsigned I : PR.set_bits()) { 813 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 814 SubRegs.isValid(); ++SubRegs) 815 regsLive.insert(*SubRegs); 816 } 817 818 regsKilled.clear(); 819 regsDefined.clear(); 820 821 if (Indexes) 822 lastIndex = Indexes->getMBBStartIdx(MBB); 823 } 824 825 // This function gets called for all bundle headers, including normal 826 // stand-alone unbundled instructions. 827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 828 if (Indexes && Indexes->hasIndex(*MI)) { 829 SlotIndex idx = Indexes->getInstructionIndex(*MI); 830 if (!(idx > lastIndex)) { 831 report("Instruction index out of order", MI); 832 errs() << "Last instruction was at " << lastIndex << '\n'; 833 } 834 lastIndex = idx; 835 } 836 837 // Ensure non-terminators don't follow terminators. 838 // Ignore predicated terminators formed by if conversion. 839 // FIXME: If conversion shouldn't need to violate this rule. 840 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 841 if (!FirstTerminator) 842 FirstTerminator = MI; 843 } else if (FirstTerminator) { 844 report("Non-terminator instruction after the first terminator", MI); 845 errs() << "First terminator was:\t" << *FirstTerminator; 846 } 847 } 848 849 // The operands on an INLINEASM instruction must follow a template. 850 // Verify that the flag operands make sense. 851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 852 // The first two operands on INLINEASM are the asm string and global flags. 853 if (MI->getNumOperands() < 2) { 854 report("Too few operands on inline asm", MI); 855 return; 856 } 857 if (!MI->getOperand(0).isSymbol()) 858 report("Asm string must be an external symbol", MI); 859 if (!MI->getOperand(1).isImm()) 860 report("Asm flags must be an immediate", MI); 861 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 862 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 863 // and Extra_IsConvergent = 32. 864 if (!isUInt<6>(MI->getOperand(1).getImm())) 865 report("Unknown asm flags", &MI->getOperand(1), 1); 866 867 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 868 869 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 870 unsigned NumOps; 871 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 872 const MachineOperand &MO = MI->getOperand(OpNo); 873 // There may be implicit ops after the fixed operands. 874 if (!MO.isImm()) 875 break; 876 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 877 } 878 879 if (OpNo > MI->getNumOperands()) 880 report("Missing operands in last group", MI); 881 882 // An optional MDNode follows the groups. 883 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 884 ++OpNo; 885 886 // All trailing operands must be implicit registers. 887 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 888 const MachineOperand &MO = MI->getOperand(OpNo); 889 if (!MO.isReg() || !MO.isImplicit()) 890 report("Expected implicit register after groups", &MO, OpNo); 891 } 892 } 893 894 /// Check that types are consistent when two operands need to have the same 895 /// number of vector elements. 896 /// \return true if the types are valid. 897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 898 const MachineInstr *MI) { 899 if (Ty0.isVector() != Ty1.isVector()) { 900 report("operand types must be all-vector or all-scalar", MI); 901 // Generally we try to report as many issues as possible at once, but in 902 // this case it's not clear what should we be comparing the size of the 903 // scalar with: the size of the whole vector or its lane. Instead of 904 // making an arbitrary choice and emitting not so helpful message, let's 905 // avoid the extra noise and stop here. 906 return false; 907 } 908 909 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 910 report("operand types must preserve number of vector elements", MI); 911 return false; 912 } 913 914 return true; 915 } 916 917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 918 if (isFunctionSelected) 919 report("Unexpected generic instruction in a Selected function", MI); 920 921 const MCInstrDesc &MCID = MI->getDesc(); 922 unsigned NumOps = MI->getNumOperands(); 923 924 // Check types. 925 SmallVector<LLT, 4> Types; 926 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 927 I != E; ++I) { 928 if (!MCID.OpInfo[I].isGenericType()) 929 continue; 930 // Generic instructions specify type equality constraints between some of 931 // their operands. Make sure these are consistent. 932 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 933 Types.resize(std::max(TypeIdx + 1, Types.size())); 934 935 const MachineOperand *MO = &MI->getOperand(I); 936 LLT OpTy = MRI->getType(MO->getReg()); 937 // Don't report a type mismatch if there is no actual mismatch, only a 938 // type missing, to reduce noise: 939 if (OpTy.isValid()) { 940 // Only the first valid type for a type index will be printed: don't 941 // overwrite it later so it's always clear which type was expected: 942 if (!Types[TypeIdx].isValid()) 943 Types[TypeIdx] = OpTy; 944 else if (Types[TypeIdx] != OpTy) 945 report("Type mismatch in generic instruction", MO, I, OpTy); 946 } else { 947 // Generic instructions must have types attached to their operands. 948 report("Generic instruction is missing a virtual register type", MO, I); 949 } 950 } 951 952 // Generic opcodes must not have physical register operands. 953 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 954 const MachineOperand *MO = &MI->getOperand(I); 955 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 956 report("Generic instruction cannot have physical register", MO, I); 957 } 958 959 // Avoid out of bounds in checks below. This was already reported earlier. 960 if (MI->getNumOperands() < MCID.getNumOperands()) 961 return; 962 963 StringRef ErrorInfo; 964 if (!TII->verifyInstruction(*MI, ErrorInfo)) 965 report(ErrorInfo.data(), MI); 966 967 // Verify properties of various specific instruction types 968 switch (MI->getOpcode()) { 969 case TargetOpcode::G_CONSTANT: 970 case TargetOpcode::G_FCONSTANT: { 971 if (MI->getNumOperands() < MCID.getNumOperands()) 972 break; 973 974 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 975 if (DstTy.isVector()) 976 report("Instruction cannot use a vector result type", MI); 977 978 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 979 if (!MI->getOperand(1).isCImm()) { 980 report("G_CONSTANT operand must be cimm", MI); 981 break; 982 } 983 984 const ConstantInt *CI = MI->getOperand(1).getCImm(); 985 if (CI->getBitWidth() != DstTy.getSizeInBits()) 986 report("inconsistent constant size", MI); 987 } else { 988 if (!MI->getOperand(1).isFPImm()) { 989 report("G_FCONSTANT operand must be fpimm", MI); 990 break; 991 } 992 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 993 994 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 995 DstTy.getSizeInBits()) { 996 report("inconsistent constant size", MI); 997 } 998 } 999 1000 break; 1001 } 1002 case TargetOpcode::G_LOAD: 1003 case TargetOpcode::G_STORE: 1004 case TargetOpcode::G_ZEXTLOAD: 1005 case TargetOpcode::G_SEXTLOAD: { 1006 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1007 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1008 if (!PtrTy.isPointer()) 1009 report("Generic memory instruction must access a pointer", MI); 1010 1011 // Generic loads and stores must have a single MachineMemOperand 1012 // describing that access. 1013 if (!MI->hasOneMemOperand()) { 1014 report("Generic instruction accessing memory must have one mem operand", 1015 MI); 1016 } else { 1017 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1018 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1019 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1020 if (MMO.getSize() * 8 >= ValTy.getSizeInBits()) 1021 report("Generic extload must have a narrower memory type", MI); 1022 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1023 if (MMO.getSize() > (ValTy.getSizeInBits() + 7) / 8) 1024 report("load memory size cannot exceed result size", MI); 1025 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1026 if ((ValTy.getSizeInBits() + 7) / 8 < MMO.getSize()) 1027 report("store memory size cannot exceed value size", MI); 1028 } 1029 } 1030 1031 break; 1032 } 1033 case TargetOpcode::G_PHI: { 1034 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1035 if (!DstTy.isValid() || 1036 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1037 [this, &DstTy](const MachineOperand &MO) { 1038 if (!MO.isReg()) 1039 return true; 1040 LLT Ty = MRI->getType(MO.getReg()); 1041 if (!Ty.isValid() || (Ty != DstTy)) 1042 return false; 1043 return true; 1044 })) 1045 report("Generic Instruction G_PHI has operands with incompatible/missing " 1046 "types", 1047 MI); 1048 break; 1049 } 1050 case TargetOpcode::G_BITCAST: { 1051 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1052 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1053 if (!DstTy.isValid() || !SrcTy.isValid()) 1054 break; 1055 1056 if (SrcTy.isPointer() != DstTy.isPointer()) 1057 report("bitcast cannot convert between pointers and other types", MI); 1058 1059 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1060 report("bitcast sizes must match", MI); 1061 break; 1062 } 1063 case TargetOpcode::G_INTTOPTR: 1064 case TargetOpcode::G_PTRTOINT: 1065 case TargetOpcode::G_ADDRSPACE_CAST: { 1066 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1067 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1068 if (!DstTy.isValid() || !SrcTy.isValid()) 1069 break; 1070 1071 verifyVectorElementMatch(DstTy, SrcTy, MI); 1072 1073 DstTy = DstTy.getScalarType(); 1074 SrcTy = SrcTy.getScalarType(); 1075 1076 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1077 if (!DstTy.isPointer()) 1078 report("inttoptr result type must be a pointer", MI); 1079 if (SrcTy.isPointer()) 1080 report("inttoptr source type must not be a pointer", MI); 1081 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1082 if (!SrcTy.isPointer()) 1083 report("ptrtoint source type must be a pointer", MI); 1084 if (DstTy.isPointer()) 1085 report("ptrtoint result type must not be a pointer", MI); 1086 } else { 1087 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1088 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1089 report("addrspacecast types must be pointers", MI); 1090 else { 1091 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1092 report("addrspacecast must convert different address spaces", MI); 1093 } 1094 } 1095 1096 break; 1097 } 1098 case TargetOpcode::G_SEXT: 1099 case TargetOpcode::G_ZEXT: 1100 case TargetOpcode::G_ANYEXT: 1101 case TargetOpcode::G_TRUNC: 1102 case TargetOpcode::G_FPEXT: 1103 case TargetOpcode::G_FPTRUNC: { 1104 // Number of operands and presense of types is already checked (and 1105 // reported in case of any issues), so no need to report them again. As 1106 // we're trying to report as many issues as possible at once, however, the 1107 // instructions aren't guaranteed to have the right number of operands or 1108 // types attached to them at this point 1109 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1110 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1111 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1112 if (!DstTy.isValid() || !SrcTy.isValid()) 1113 break; 1114 1115 LLT DstElTy = DstTy.getScalarType(); 1116 LLT SrcElTy = SrcTy.getScalarType(); 1117 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1118 report("Generic extend/truncate can not operate on pointers", MI); 1119 1120 verifyVectorElementMatch(DstTy, SrcTy, MI); 1121 1122 unsigned DstSize = DstElTy.getSizeInBits(); 1123 unsigned SrcSize = SrcElTy.getSizeInBits(); 1124 switch (MI->getOpcode()) { 1125 default: 1126 if (DstSize <= SrcSize) 1127 report("Generic extend has destination type no larger than source", MI); 1128 break; 1129 case TargetOpcode::G_TRUNC: 1130 case TargetOpcode::G_FPTRUNC: 1131 if (DstSize >= SrcSize) 1132 report("Generic truncate has destination type no smaller than source", 1133 MI); 1134 break; 1135 } 1136 break; 1137 } 1138 case TargetOpcode::G_SELECT: { 1139 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1140 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1141 if (!SelTy.isValid() || !CondTy.isValid()) 1142 break; 1143 1144 // Scalar condition select on a vector is valid. 1145 if (CondTy.isVector()) 1146 verifyVectorElementMatch(SelTy, CondTy, MI); 1147 break; 1148 } 1149 case TargetOpcode::G_MERGE_VALUES: { 1150 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1151 // e.g. s2N = MERGE sN, sN 1152 // Merging multiple scalars into a vector is not allowed, should use 1153 // G_BUILD_VECTOR for that. 1154 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1155 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1156 if (DstTy.isVector() || SrcTy.isVector()) 1157 report("G_MERGE_VALUES cannot operate on vectors", MI); 1158 break; 1159 } 1160 case TargetOpcode::G_UNMERGE_VALUES: { 1161 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1162 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1163 // For now G_UNMERGE can split vectors. 1164 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1165 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1166 report("G_UNMERGE_VALUES destination types do not match", MI); 1167 } 1168 if (SrcTy.getSizeInBits() != 1169 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1170 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1171 MI); 1172 } 1173 break; 1174 } 1175 case TargetOpcode::G_BUILD_VECTOR: { 1176 // Source types must be scalars, dest type a vector. Total size of scalars 1177 // must match the dest vector size. 1178 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1179 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1180 if (!DstTy.isVector() || SrcEltTy.isVector()) 1181 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1182 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1183 if (MRI->getType(MI->getOperand(1).getReg()) != 1184 MRI->getType(MI->getOperand(i).getReg())) 1185 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1186 } 1187 if (DstTy.getSizeInBits() != 1188 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1189 report("G_BUILD_VECTOR src operands total size don't match dest " 1190 "size.", 1191 MI); 1192 break; 1193 } 1194 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1195 // Source types must be scalars, dest type a vector. Scalar types must be 1196 // larger than the dest vector elt type, as this is a truncating operation. 1197 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1198 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1199 if (!DstTy.isVector() || SrcEltTy.isVector()) 1200 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1201 MI); 1202 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1203 if (MRI->getType(MI->getOperand(1).getReg()) != 1204 MRI->getType(MI->getOperand(i).getReg())) 1205 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1206 MI); 1207 } 1208 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1209 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1210 "dest elt type", 1211 MI); 1212 break; 1213 } 1214 case TargetOpcode::G_CONCAT_VECTORS: { 1215 // Source types should be vectors, and total size should match the dest 1216 // vector size. 1217 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1218 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1219 if (!DstTy.isVector() || !SrcTy.isVector()) 1220 report("G_CONCAT_VECTOR requires vector source and destination operands", 1221 MI); 1222 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1223 if (MRI->getType(MI->getOperand(1).getReg()) != 1224 MRI->getType(MI->getOperand(i).getReg())) 1225 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1226 } 1227 if (DstTy.getNumElements() != 1228 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1229 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1230 break; 1231 } 1232 case TargetOpcode::G_ICMP: 1233 case TargetOpcode::G_FCMP: { 1234 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1235 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1236 1237 if ((DstTy.isVector() != SrcTy.isVector()) || 1238 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1239 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1240 1241 break; 1242 } 1243 default: 1244 break; 1245 } 1246 } 1247 1248 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1249 const MCInstrDesc &MCID = MI->getDesc(); 1250 if (MI->getNumOperands() < MCID.getNumOperands()) { 1251 report("Too few operands", MI); 1252 errs() << MCID.getNumOperands() << " operands expected, but " 1253 << MI->getNumOperands() << " given.\n"; 1254 } 1255 1256 if (MI->isPHI()) { 1257 if (MF->getProperties().hasProperty( 1258 MachineFunctionProperties::Property::NoPHIs)) 1259 report("Found PHI instruction with NoPHIs property set", MI); 1260 1261 if (FirstNonPHI) 1262 report("Found PHI instruction after non-PHI", MI); 1263 } else if (FirstNonPHI == nullptr) 1264 FirstNonPHI = MI; 1265 1266 // Check the tied operands. 1267 if (MI->isInlineAsm()) 1268 verifyInlineAsm(MI); 1269 1270 // Check the MachineMemOperands for basic consistency. 1271 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 1272 E = MI->memoperands_end(); 1273 I != E; ++I) { 1274 if ((*I)->isLoad() && !MI->mayLoad()) 1275 report("Missing mayLoad flag", MI); 1276 if ((*I)->isStore() && !MI->mayStore()) 1277 report("Missing mayStore flag", MI); 1278 } 1279 1280 // Debug values must not have a slot index. 1281 // Other instructions must have one, unless they are inside a bundle. 1282 if (LiveInts) { 1283 bool mapped = !LiveInts->isNotInMIMap(*MI); 1284 if (MI->isDebugInstr()) { 1285 if (mapped) 1286 report("Debug instruction has a slot index", MI); 1287 } else if (MI->isInsideBundle()) { 1288 if (mapped) 1289 report("Instruction inside bundle has a slot index", MI); 1290 } else { 1291 if (!mapped) 1292 report("Missing slot index", MI); 1293 } 1294 } 1295 1296 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1297 verifyPreISelGenericInstruction(MI); 1298 return; 1299 } 1300 1301 StringRef ErrorInfo; 1302 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1303 report(ErrorInfo.data(), MI); 1304 1305 // Verify properties of various specific instruction types 1306 switch (MI->getOpcode()) { 1307 case TargetOpcode::COPY: { 1308 if (foundErrors) 1309 break; 1310 const MachineOperand &DstOp = MI->getOperand(0); 1311 const MachineOperand &SrcOp = MI->getOperand(1); 1312 LLT DstTy = MRI->getType(DstOp.getReg()); 1313 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1314 if (SrcTy.isValid() && DstTy.isValid()) { 1315 // If both types are valid, check that the types are the same. 1316 if (SrcTy != DstTy) { 1317 report("Copy Instruction is illegal with mismatching types", MI); 1318 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1319 } 1320 } 1321 if (SrcTy.isValid() || DstTy.isValid()) { 1322 // If one of them have valid types, let's just check they have the same 1323 // size. 1324 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1325 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1326 assert(SrcSize && "Expecting size here"); 1327 assert(DstSize && "Expecting size here"); 1328 if (SrcSize != DstSize) 1329 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1330 report("Copy Instruction is illegal with mismatching sizes", MI); 1331 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1332 << "\n"; 1333 } 1334 } 1335 break; 1336 } 1337 case TargetOpcode::STATEPOINT: 1338 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1339 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1340 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1341 report("meta operands to STATEPOINT not constant!", MI); 1342 break; 1343 1344 auto VerifyStackMapConstant = [&](unsigned Offset) { 1345 if (!MI->getOperand(Offset).isImm() || 1346 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1347 !MI->getOperand(Offset + 1).isImm()) 1348 report("stack map constant to STATEPOINT not well formed!", MI); 1349 }; 1350 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1351 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1352 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1353 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1354 1355 // TODO: verify we have properly encoded deopt arguments 1356 break; 1357 } 1358 } 1359 1360 void 1361 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1362 const MachineInstr *MI = MO->getParent(); 1363 const MCInstrDesc &MCID = MI->getDesc(); 1364 unsigned NumDefs = MCID.getNumDefs(); 1365 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1366 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1367 1368 // The first MCID.NumDefs operands must be explicit register defines 1369 if (MONum < NumDefs) { 1370 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1371 if (!MO->isReg()) 1372 report("Explicit definition must be a register", MO, MONum); 1373 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1374 report("Explicit definition marked as use", MO, MONum); 1375 else if (MO->isImplicit()) 1376 report("Explicit definition marked as implicit", MO, MONum); 1377 } else if (MONum < MCID.getNumOperands()) { 1378 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1379 // Don't check if it's the last operand in a variadic instruction. See, 1380 // e.g., LDM_RET in the arm back end. 1381 if (MO->isReg() && 1382 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1383 if (MO->isDef() && !MCOI.isOptionalDef()) 1384 report("Explicit operand marked as def", MO, MONum); 1385 if (MO->isImplicit()) 1386 report("Explicit operand marked as implicit", MO, MONum); 1387 } 1388 1389 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1390 if (TiedTo != -1) { 1391 if (!MO->isReg()) 1392 report("Tied use must be a register", MO, MONum); 1393 else if (!MO->isTied()) 1394 report("Operand should be tied", MO, MONum); 1395 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1396 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1397 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1398 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1399 if (!MOTied.isReg()) 1400 report("Tied counterpart must be a register", &MOTied, TiedTo); 1401 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1402 MO->getReg() != MOTied.getReg()) 1403 report("Tied physical registers must match.", &MOTied, TiedTo); 1404 } 1405 } else if (MO->isReg() && MO->isTied()) 1406 report("Explicit operand should not be tied", MO, MONum); 1407 } else { 1408 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1409 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1410 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1411 } 1412 1413 switch (MO->getType()) { 1414 case MachineOperand::MO_Register: { 1415 const unsigned Reg = MO->getReg(); 1416 if (!Reg) 1417 return; 1418 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1419 checkLiveness(MO, MONum); 1420 1421 // Verify the consistency of tied operands. 1422 if (MO->isTied()) { 1423 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1424 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1425 if (!OtherMO.isReg()) 1426 report("Must be tied to a register", MO, MONum); 1427 if (!OtherMO.isTied()) 1428 report("Missing tie flags on tied operand", MO, MONum); 1429 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1430 report("Inconsistent tie links", MO, MONum); 1431 if (MONum < MCID.getNumDefs()) { 1432 if (OtherIdx < MCID.getNumOperands()) { 1433 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1434 report("Explicit def tied to explicit use without tie constraint", 1435 MO, MONum); 1436 } else { 1437 if (!OtherMO.isImplicit()) 1438 report("Explicit def should be tied to implicit use", MO, MONum); 1439 } 1440 } 1441 } 1442 1443 // Verify two-address constraints after leaving SSA form. 1444 unsigned DefIdx; 1445 if (!MRI->isSSA() && MO->isUse() && 1446 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1447 Reg != MI->getOperand(DefIdx).getReg()) 1448 report("Two-address instruction operands must be identical", MO, MONum); 1449 1450 // Check register classes. 1451 unsigned SubIdx = MO->getSubReg(); 1452 1453 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1454 if (SubIdx) { 1455 report("Illegal subregister index for physical register", MO, MONum); 1456 return; 1457 } 1458 if (MONum < MCID.getNumOperands()) { 1459 if (const TargetRegisterClass *DRC = 1460 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1461 if (!DRC->contains(Reg)) { 1462 report("Illegal physical register for instruction", MO, MONum); 1463 errs() << printReg(Reg, TRI) << " is not a " 1464 << TRI->getRegClassName(DRC) << " register.\n"; 1465 } 1466 } 1467 } 1468 if (MO->isRenamable()) { 1469 if (MRI->isReserved(Reg)) { 1470 report("isRenamable set on reserved register", MO, MONum); 1471 return; 1472 } 1473 } 1474 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1475 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1476 return; 1477 } 1478 } else { 1479 // Virtual register. 1480 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1481 if (!RC) { 1482 // This is a generic virtual register. 1483 1484 // If we're post-Select, we can't have gvregs anymore. 1485 if (isFunctionSelected) { 1486 report("Generic virtual register invalid in a Selected function", 1487 MO, MONum); 1488 return; 1489 } 1490 1491 // The gvreg must have a type and it must not have a SubIdx. 1492 LLT Ty = MRI->getType(Reg); 1493 if (!Ty.isValid()) { 1494 report("Generic virtual register must have a valid type", MO, 1495 MONum); 1496 return; 1497 } 1498 1499 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1500 1501 // If we're post-RegBankSelect, the gvreg must have a bank. 1502 if (!RegBank && isFunctionRegBankSelected) { 1503 report("Generic virtual register must have a bank in a " 1504 "RegBankSelected function", 1505 MO, MONum); 1506 return; 1507 } 1508 1509 // Make sure the register fits into its register bank if any. 1510 if (RegBank && Ty.isValid() && 1511 RegBank->getSize() < Ty.getSizeInBits()) { 1512 report("Register bank is too small for virtual register", MO, 1513 MONum); 1514 errs() << "Register bank " << RegBank->getName() << " too small(" 1515 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1516 << "-bits\n"; 1517 return; 1518 } 1519 if (SubIdx) { 1520 report("Generic virtual register does not subregister index", MO, 1521 MONum); 1522 return; 1523 } 1524 1525 // If this is a target specific instruction and this operand 1526 // has register class constraint, the virtual register must 1527 // comply to it. 1528 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1529 MONum < MCID.getNumOperands() && 1530 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1531 report("Virtual register does not match instruction constraint", MO, 1532 MONum); 1533 errs() << "Expect register class " 1534 << TRI->getRegClassName( 1535 TII->getRegClass(MCID, MONum, TRI, *MF)) 1536 << " but got nothing\n"; 1537 return; 1538 } 1539 1540 break; 1541 } 1542 if (SubIdx) { 1543 const TargetRegisterClass *SRC = 1544 TRI->getSubClassWithSubReg(RC, SubIdx); 1545 if (!SRC) { 1546 report("Invalid subregister index for virtual register", MO, MONum); 1547 errs() << "Register class " << TRI->getRegClassName(RC) 1548 << " does not support subreg index " << SubIdx << "\n"; 1549 return; 1550 } 1551 if (RC != SRC) { 1552 report("Invalid register class for subregister index", MO, MONum); 1553 errs() << "Register class " << TRI->getRegClassName(RC) 1554 << " does not fully support subreg index " << SubIdx << "\n"; 1555 return; 1556 } 1557 } 1558 if (MONum < MCID.getNumOperands()) { 1559 if (const TargetRegisterClass *DRC = 1560 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1561 if (SubIdx) { 1562 const TargetRegisterClass *SuperRC = 1563 TRI->getLargestLegalSuperClass(RC, *MF); 1564 if (!SuperRC) { 1565 report("No largest legal super class exists.", MO, MONum); 1566 return; 1567 } 1568 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1569 if (!DRC) { 1570 report("No matching super-reg register class.", MO, MONum); 1571 return; 1572 } 1573 } 1574 if (!RC->hasSuperClassEq(DRC)) { 1575 report("Illegal virtual register for instruction", MO, MONum); 1576 errs() << "Expected a " << TRI->getRegClassName(DRC) 1577 << " register, but got a " << TRI->getRegClassName(RC) 1578 << " register\n"; 1579 } 1580 } 1581 } 1582 } 1583 break; 1584 } 1585 1586 case MachineOperand::MO_RegisterMask: 1587 regMasks.push_back(MO->getRegMask()); 1588 break; 1589 1590 case MachineOperand::MO_MachineBasicBlock: 1591 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1592 report("PHI operand is not in the CFG", MO, MONum); 1593 break; 1594 1595 case MachineOperand::MO_FrameIndex: 1596 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1597 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1598 int FI = MO->getIndex(); 1599 LiveInterval &LI = LiveStks->getInterval(FI); 1600 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1601 1602 bool stores = MI->mayStore(); 1603 bool loads = MI->mayLoad(); 1604 // For a memory-to-memory move, we need to check if the frame 1605 // index is used for storing or loading, by inspecting the 1606 // memory operands. 1607 if (stores && loads) { 1608 for (auto *MMO : MI->memoperands()) { 1609 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1610 if (PSV == nullptr) continue; 1611 const FixedStackPseudoSourceValue *Value = 1612 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1613 if (Value == nullptr) continue; 1614 if (Value->getFrameIndex() != FI) continue; 1615 1616 if (MMO->isStore()) 1617 loads = false; 1618 else 1619 stores = false; 1620 break; 1621 } 1622 if (loads == stores) 1623 report("Missing fixed stack memoperand.", MI); 1624 } 1625 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1626 report("Instruction loads from dead spill slot", MO, MONum); 1627 errs() << "Live stack: " << LI << '\n'; 1628 } 1629 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1630 report("Instruction stores to dead spill slot", MO, MONum); 1631 errs() << "Live stack: " << LI << '\n'; 1632 } 1633 } 1634 break; 1635 1636 default: 1637 break; 1638 } 1639 } 1640 1641 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1642 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1643 LaneBitmask LaneMask) { 1644 LiveQueryResult LRQ = LR.Query(UseIdx); 1645 // Check if we have a segment at the use, note however that we only need one 1646 // live subregister range, the others may be dead. 1647 if (!LRQ.valueIn() && LaneMask.none()) { 1648 report("No live segment at use", MO, MONum); 1649 report_context_liverange(LR); 1650 report_context_vreg_regunit(VRegOrUnit); 1651 report_context(UseIdx); 1652 } 1653 if (MO->isKill() && !LRQ.isKill()) { 1654 report("Live range continues after kill flag", MO, MONum); 1655 report_context_liverange(LR); 1656 report_context_vreg_regunit(VRegOrUnit); 1657 if (LaneMask.any()) 1658 report_context_lanemask(LaneMask); 1659 report_context(UseIdx); 1660 } 1661 } 1662 1663 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1664 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1665 bool SubRangeCheck, LaneBitmask LaneMask) { 1666 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1667 assert(VNI && "NULL valno is not allowed"); 1668 if (VNI->def != DefIdx) { 1669 report("Inconsistent valno->def", MO, MONum); 1670 report_context_liverange(LR); 1671 report_context_vreg_regunit(VRegOrUnit); 1672 if (LaneMask.any()) 1673 report_context_lanemask(LaneMask); 1674 report_context(*VNI); 1675 report_context(DefIdx); 1676 } 1677 } else { 1678 report("No live segment at def", MO, MONum); 1679 report_context_liverange(LR); 1680 report_context_vreg_regunit(VRegOrUnit); 1681 if (LaneMask.any()) 1682 report_context_lanemask(LaneMask); 1683 report_context(DefIdx); 1684 } 1685 // Check that, if the dead def flag is present, LiveInts agree. 1686 if (MO->isDead()) { 1687 LiveQueryResult LRQ = LR.Query(DefIdx); 1688 if (!LRQ.isDeadDef()) { 1689 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1690 "Expecting a virtual register."); 1691 // A dead subreg def only tells us that the specific subreg is dead. There 1692 // could be other non-dead defs of other subregs, or we could have other 1693 // parts of the register being live through the instruction. So unless we 1694 // are checking liveness for a subrange it is ok for the live range to 1695 // continue, given that we have a dead def of a subregister. 1696 if (SubRangeCheck || MO->getSubReg() == 0) { 1697 report("Live range continues after dead def flag", MO, MONum); 1698 report_context_liverange(LR); 1699 report_context_vreg_regunit(VRegOrUnit); 1700 if (LaneMask.any()) 1701 report_context_lanemask(LaneMask); 1702 } 1703 } 1704 } 1705 } 1706 1707 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1708 const MachineInstr *MI = MO->getParent(); 1709 const unsigned Reg = MO->getReg(); 1710 1711 // Both use and def operands can read a register. 1712 if (MO->readsReg()) { 1713 if (MO->isKill()) 1714 addRegWithSubRegs(regsKilled, Reg); 1715 1716 // Check that LiveVars knows this kill. 1717 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1718 MO->isKill()) { 1719 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1720 if (!is_contained(VI.Kills, MI)) 1721 report("Kill missing from LiveVariables", MO, MONum); 1722 } 1723 1724 // Check LiveInts liveness and kill. 1725 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1726 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1727 // Check the cached regunit intervals. 1728 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1729 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1730 if (MRI->isReservedRegUnit(*Units)) 1731 continue; 1732 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1733 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1734 } 1735 } 1736 1737 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1738 if (LiveInts->hasInterval(Reg)) { 1739 // This is a virtual register interval. 1740 const LiveInterval &LI = LiveInts->getInterval(Reg); 1741 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1742 1743 if (LI.hasSubRanges() && !MO->isDef()) { 1744 unsigned SubRegIdx = MO->getSubReg(); 1745 LaneBitmask MOMask = SubRegIdx != 0 1746 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1747 : MRI->getMaxLaneMaskForVReg(Reg); 1748 LaneBitmask LiveInMask; 1749 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1750 if ((MOMask & SR.LaneMask).none()) 1751 continue; 1752 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1753 LiveQueryResult LRQ = SR.Query(UseIdx); 1754 if (LRQ.valueIn()) 1755 LiveInMask |= SR.LaneMask; 1756 } 1757 // At least parts of the register has to be live at the use. 1758 if ((LiveInMask & MOMask).none()) { 1759 report("No live subrange at use", MO, MONum); 1760 report_context(LI); 1761 report_context(UseIdx); 1762 } 1763 } 1764 } else { 1765 report("Virtual register has no live interval", MO, MONum); 1766 } 1767 } 1768 } 1769 1770 // Use of a dead register. 1771 if (!regsLive.count(Reg)) { 1772 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1773 // Reserved registers may be used even when 'dead'. 1774 bool Bad = !isReserved(Reg); 1775 // We are fine if just any subregister has a defined value. 1776 if (Bad) { 1777 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1778 ++SubRegs) { 1779 if (regsLive.count(*SubRegs)) { 1780 Bad = false; 1781 break; 1782 } 1783 } 1784 } 1785 // If there is an additional implicit-use of a super register we stop 1786 // here. By definition we are fine if the super register is not 1787 // (completely) dead, if the complete super register is dead we will 1788 // get a report for its operand. 1789 if (Bad) { 1790 for (const MachineOperand &MOP : MI->uses()) { 1791 if (!MOP.isReg() || !MOP.isImplicit()) 1792 continue; 1793 1794 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1795 continue; 1796 1797 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1798 ++SubRegs) { 1799 if (*SubRegs == Reg) { 1800 Bad = false; 1801 break; 1802 } 1803 } 1804 } 1805 } 1806 if (Bad) 1807 report("Using an undefined physical register", MO, MONum); 1808 } else if (MRI->def_empty(Reg)) { 1809 report("Reading virtual register without a def", MO, MONum); 1810 } else { 1811 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1812 // We don't know which virtual registers are live in, so only complain 1813 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1814 // must be live in. PHI instructions are handled separately. 1815 if (MInfo.regsKilled.count(Reg)) 1816 report("Using a killed virtual register", MO, MONum); 1817 else if (!MI->isPHI()) 1818 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1819 } 1820 } 1821 } 1822 1823 if (MO->isDef()) { 1824 // Register defined. 1825 // TODO: verify that earlyclobber ops are not used. 1826 if (MO->isDead()) 1827 addRegWithSubRegs(regsDead, Reg); 1828 else 1829 addRegWithSubRegs(regsDefined, Reg); 1830 1831 // Verify SSA form. 1832 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1833 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1834 report("Multiple virtual register defs in SSA form", MO, MONum); 1835 1836 // Check LiveInts for a live segment, but only for virtual registers. 1837 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1838 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1839 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1840 1841 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1842 if (LiveInts->hasInterval(Reg)) { 1843 const LiveInterval &LI = LiveInts->getInterval(Reg); 1844 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1845 1846 if (LI.hasSubRanges()) { 1847 unsigned SubRegIdx = MO->getSubReg(); 1848 LaneBitmask MOMask = SubRegIdx != 0 1849 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1850 : MRI->getMaxLaneMaskForVReg(Reg); 1851 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1852 if ((SR.LaneMask & MOMask).none()) 1853 continue; 1854 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1855 } 1856 } 1857 } else { 1858 report("Virtual register has no Live interval", MO, MONum); 1859 } 1860 } 1861 } 1862 } 1863 } 1864 1865 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1866 1867 // This function gets called after visiting all instructions in a bundle. The 1868 // argument points to the bundle header. 1869 // Normal stand-alone instructions are also considered 'bundles', and this 1870 // function is called for all of them. 1871 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1872 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1873 set_union(MInfo.regsKilled, regsKilled); 1874 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1875 // Kill any masked registers. 1876 while (!regMasks.empty()) { 1877 const uint32_t *Mask = regMasks.pop_back_val(); 1878 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1879 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1880 MachineOperand::clobbersPhysReg(Mask, *I)) 1881 regsDead.push_back(*I); 1882 } 1883 set_subtract(regsLive, regsDead); regsDead.clear(); 1884 set_union(regsLive, regsDefined); regsDefined.clear(); 1885 } 1886 1887 void 1888 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1889 MBBInfoMap[MBB].regsLiveOut = regsLive; 1890 regsLive.clear(); 1891 1892 if (Indexes) { 1893 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1894 if (!(stop > lastIndex)) { 1895 report("Block ends before last instruction index", MBB); 1896 errs() << "Block ends at " << stop 1897 << " last instruction was at " << lastIndex << '\n'; 1898 } 1899 lastIndex = stop; 1900 } 1901 } 1902 1903 // Calculate the largest possible vregsPassed sets. These are the registers that 1904 // can pass through an MBB live, but may not be live every time. It is assumed 1905 // that all vregsPassed sets are empty before the call. 1906 void MachineVerifier::calcRegsPassed() { 1907 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1908 // have any vregsPassed. 1909 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1910 for (const auto &MBB : *MF) { 1911 BBInfo &MInfo = MBBInfoMap[&MBB]; 1912 if (!MInfo.reachable) 1913 continue; 1914 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1915 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1916 BBInfo &SInfo = MBBInfoMap[*SuI]; 1917 if (SInfo.addPassed(MInfo.regsLiveOut)) 1918 todo.insert(*SuI); 1919 } 1920 } 1921 1922 // Iteratively push vregsPassed to successors. This will converge to the same 1923 // final state regardless of DenseSet iteration order. 1924 while (!todo.empty()) { 1925 const MachineBasicBlock *MBB = *todo.begin(); 1926 todo.erase(MBB); 1927 BBInfo &MInfo = MBBInfoMap[MBB]; 1928 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1929 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1930 if (*SuI == MBB) 1931 continue; 1932 BBInfo &SInfo = MBBInfoMap[*SuI]; 1933 if (SInfo.addPassed(MInfo.vregsPassed)) 1934 todo.insert(*SuI); 1935 } 1936 } 1937 } 1938 1939 // Calculate the set of virtual registers that must be passed through each basic 1940 // block in order to satisfy the requirements of successor blocks. This is very 1941 // similar to calcRegsPassed, only backwards. 1942 void MachineVerifier::calcRegsRequired() { 1943 // First push live-in regs to predecessors' vregsRequired. 1944 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1945 for (const auto &MBB : *MF) { 1946 BBInfo &MInfo = MBBInfoMap[&MBB]; 1947 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1948 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1949 BBInfo &PInfo = MBBInfoMap[*PrI]; 1950 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1951 todo.insert(*PrI); 1952 } 1953 } 1954 1955 // Iteratively push vregsRequired to predecessors. This will converge to the 1956 // same final state regardless of DenseSet iteration order. 1957 while (!todo.empty()) { 1958 const MachineBasicBlock *MBB = *todo.begin(); 1959 todo.erase(MBB); 1960 BBInfo &MInfo = MBBInfoMap[MBB]; 1961 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1962 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1963 if (*PrI == MBB) 1964 continue; 1965 BBInfo &SInfo = MBBInfoMap[*PrI]; 1966 if (SInfo.addRequired(MInfo.vregsRequired)) 1967 todo.insert(*PrI); 1968 } 1969 } 1970 } 1971 1972 // Check PHI instructions at the beginning of MBB. It is assumed that 1973 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1974 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1975 BBInfo &MInfo = MBBInfoMap[&MBB]; 1976 1977 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1978 for (const MachineInstr &Phi : MBB) { 1979 if (!Phi.isPHI()) 1980 break; 1981 seen.clear(); 1982 1983 const MachineOperand &MODef = Phi.getOperand(0); 1984 if (!MODef.isReg() || !MODef.isDef()) { 1985 report("Expected first PHI operand to be a register def", &MODef, 0); 1986 continue; 1987 } 1988 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1989 MODef.isEarlyClobber() || MODef.isDebug()) 1990 report("Unexpected flag on PHI operand", &MODef, 0); 1991 unsigned DefReg = MODef.getReg(); 1992 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1993 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1994 1995 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1996 const MachineOperand &MO0 = Phi.getOperand(I); 1997 if (!MO0.isReg()) { 1998 report("Expected PHI operand to be a register", &MO0, I); 1999 continue; 2000 } 2001 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2002 MO0.isDebug() || MO0.isTied()) 2003 report("Unexpected flag on PHI operand", &MO0, I); 2004 2005 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2006 if (!MO1.isMBB()) { 2007 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2008 continue; 2009 } 2010 2011 const MachineBasicBlock &Pre = *MO1.getMBB(); 2012 if (!Pre.isSuccessor(&MBB)) { 2013 report("PHI input is not a predecessor block", &MO1, I + 1); 2014 continue; 2015 } 2016 2017 if (MInfo.reachable) { 2018 seen.insert(&Pre); 2019 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2020 if (!MO0.isUndef() && PrInfo.reachable && 2021 !PrInfo.isLiveOut(MO0.getReg())) 2022 report("PHI operand is not live-out from predecessor", &MO0, I); 2023 } 2024 } 2025 2026 // Did we see all predecessors? 2027 if (MInfo.reachable) { 2028 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2029 if (!seen.count(Pred)) { 2030 report("Missing PHI operand", &Phi); 2031 errs() << printMBBReference(*Pred) 2032 << " is a predecessor according to the CFG.\n"; 2033 } 2034 } 2035 } 2036 } 2037 } 2038 2039 void MachineVerifier::visitMachineFunctionAfter() { 2040 calcRegsPassed(); 2041 2042 for (const MachineBasicBlock &MBB : *MF) 2043 checkPHIOps(MBB); 2044 2045 // Now check liveness info if available 2046 calcRegsRequired(); 2047 2048 // Check for killed virtual registers that should be live out. 2049 for (const auto &MBB : *MF) { 2050 BBInfo &MInfo = MBBInfoMap[&MBB]; 2051 for (RegSet::iterator 2052 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2053 ++I) 2054 if (MInfo.regsKilled.count(*I)) { 2055 report("Virtual register killed in block, but needed live out.", &MBB); 2056 errs() << "Virtual register " << printReg(*I) 2057 << " is used after the block.\n"; 2058 } 2059 } 2060 2061 if (!MF->empty()) { 2062 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2063 for (RegSet::iterator 2064 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2065 ++I) { 2066 report("Virtual register defs don't dominate all uses.", MF); 2067 report_context_vreg(*I); 2068 } 2069 } 2070 2071 if (LiveVars) 2072 verifyLiveVariables(); 2073 if (LiveInts) 2074 verifyLiveIntervals(); 2075 } 2076 2077 void MachineVerifier::verifyLiveVariables() { 2078 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2079 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2080 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2081 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2082 for (const auto &MBB : *MF) { 2083 BBInfo &MInfo = MBBInfoMap[&MBB]; 2084 2085 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2086 if (MInfo.vregsRequired.count(Reg)) { 2087 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2088 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2089 errs() << "Virtual register " << printReg(Reg) 2090 << " must be live through the block.\n"; 2091 } 2092 } else { 2093 if (VI.AliveBlocks.test(MBB.getNumber())) { 2094 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2095 errs() << "Virtual register " << printReg(Reg) 2096 << " is not needed live through the block.\n"; 2097 } 2098 } 2099 } 2100 } 2101 } 2102 2103 void MachineVerifier::verifyLiveIntervals() { 2104 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2105 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2106 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2107 2108 // Spilling and splitting may leave unused registers around. Skip them. 2109 if (MRI->reg_nodbg_empty(Reg)) 2110 continue; 2111 2112 if (!LiveInts->hasInterval(Reg)) { 2113 report("Missing live interval for virtual register", MF); 2114 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2115 continue; 2116 } 2117 2118 const LiveInterval &LI = LiveInts->getInterval(Reg); 2119 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2120 verifyLiveInterval(LI); 2121 } 2122 2123 // Verify all the cached regunit intervals. 2124 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2125 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2126 verifyLiveRange(*LR, i); 2127 } 2128 2129 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2130 const VNInfo *VNI, unsigned Reg, 2131 LaneBitmask LaneMask) { 2132 if (VNI->isUnused()) 2133 return; 2134 2135 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2136 2137 if (!DefVNI) { 2138 report("Value not live at VNInfo def and not marked unused", MF); 2139 report_context(LR, Reg, LaneMask); 2140 report_context(*VNI); 2141 return; 2142 } 2143 2144 if (DefVNI != VNI) { 2145 report("Live segment at def has different VNInfo", MF); 2146 report_context(LR, Reg, LaneMask); 2147 report_context(*VNI); 2148 return; 2149 } 2150 2151 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2152 if (!MBB) { 2153 report("Invalid VNInfo definition index", MF); 2154 report_context(LR, Reg, LaneMask); 2155 report_context(*VNI); 2156 return; 2157 } 2158 2159 if (VNI->isPHIDef()) { 2160 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2161 report("PHIDef VNInfo is not defined at MBB start", MBB); 2162 report_context(LR, Reg, LaneMask); 2163 report_context(*VNI); 2164 } 2165 return; 2166 } 2167 2168 // Non-PHI def. 2169 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2170 if (!MI) { 2171 report("No instruction at VNInfo def index", MBB); 2172 report_context(LR, Reg, LaneMask); 2173 report_context(*VNI); 2174 return; 2175 } 2176 2177 if (Reg != 0) { 2178 bool hasDef = false; 2179 bool isEarlyClobber = false; 2180 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2181 if (!MOI->isReg() || !MOI->isDef()) 2182 continue; 2183 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2184 if (MOI->getReg() != Reg) 2185 continue; 2186 } else { 2187 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2188 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2189 continue; 2190 } 2191 if (LaneMask.any() && 2192 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2193 continue; 2194 hasDef = true; 2195 if (MOI->isEarlyClobber()) 2196 isEarlyClobber = true; 2197 } 2198 2199 if (!hasDef) { 2200 report("Defining instruction does not modify register", MI); 2201 report_context(LR, Reg, LaneMask); 2202 report_context(*VNI); 2203 } 2204 2205 // Early clobber defs begin at USE slots, but other defs must begin at 2206 // DEF slots. 2207 if (isEarlyClobber) { 2208 if (!VNI->def.isEarlyClobber()) { 2209 report("Early clobber def must be at an early-clobber slot", MBB); 2210 report_context(LR, Reg, LaneMask); 2211 report_context(*VNI); 2212 } 2213 } else if (!VNI->def.isRegister()) { 2214 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2215 report_context(LR, Reg, LaneMask); 2216 report_context(*VNI); 2217 } 2218 } 2219 } 2220 2221 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2222 const LiveRange::const_iterator I, 2223 unsigned Reg, LaneBitmask LaneMask) 2224 { 2225 const LiveRange::Segment &S = *I; 2226 const VNInfo *VNI = S.valno; 2227 assert(VNI && "Live segment has no valno"); 2228 2229 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2230 report("Foreign valno in live segment", MF); 2231 report_context(LR, Reg, LaneMask); 2232 report_context(S); 2233 report_context(*VNI); 2234 } 2235 2236 if (VNI->isUnused()) { 2237 report("Live segment valno is marked unused", MF); 2238 report_context(LR, Reg, LaneMask); 2239 report_context(S); 2240 } 2241 2242 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2243 if (!MBB) { 2244 report("Bad start of live segment, no basic block", MF); 2245 report_context(LR, Reg, LaneMask); 2246 report_context(S); 2247 return; 2248 } 2249 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2250 if (S.start != MBBStartIdx && S.start != VNI->def) { 2251 report("Live segment must begin at MBB entry or valno def", MBB); 2252 report_context(LR, Reg, LaneMask); 2253 report_context(S); 2254 } 2255 2256 const MachineBasicBlock *EndMBB = 2257 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2258 if (!EndMBB) { 2259 report("Bad end of live segment, no basic block", MF); 2260 report_context(LR, Reg, LaneMask); 2261 report_context(S); 2262 return; 2263 } 2264 2265 // No more checks for live-out segments. 2266 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2267 return; 2268 2269 // RegUnit intervals are allowed dead phis. 2270 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2271 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2272 return; 2273 2274 // The live segment is ending inside EndMBB 2275 const MachineInstr *MI = 2276 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2277 if (!MI) { 2278 report("Live segment doesn't end at a valid instruction", EndMBB); 2279 report_context(LR, Reg, LaneMask); 2280 report_context(S); 2281 return; 2282 } 2283 2284 // The block slot must refer to a basic block boundary. 2285 if (S.end.isBlock()) { 2286 report("Live segment ends at B slot of an instruction", EndMBB); 2287 report_context(LR, Reg, LaneMask); 2288 report_context(S); 2289 } 2290 2291 if (S.end.isDead()) { 2292 // Segment ends on the dead slot. 2293 // That means there must be a dead def. 2294 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2295 report("Live segment ending at dead slot spans instructions", EndMBB); 2296 report_context(LR, Reg, LaneMask); 2297 report_context(S); 2298 } 2299 } 2300 2301 // A live segment can only end at an early-clobber slot if it is being 2302 // redefined by an early-clobber def. 2303 if (S.end.isEarlyClobber()) { 2304 if (I+1 == LR.end() || (I+1)->start != S.end) { 2305 report("Live segment ending at early clobber slot must be " 2306 "redefined by an EC def in the same instruction", EndMBB); 2307 report_context(LR, Reg, LaneMask); 2308 report_context(S); 2309 } 2310 } 2311 2312 // The following checks only apply to virtual registers. Physreg liveness 2313 // is too weird to check. 2314 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2315 // A live segment can end with either a redefinition, a kill flag on a 2316 // use, or a dead flag on a def. 2317 bool hasRead = false; 2318 bool hasSubRegDef = false; 2319 bool hasDeadDef = false; 2320 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2321 if (!MOI->isReg() || MOI->getReg() != Reg) 2322 continue; 2323 unsigned Sub = MOI->getSubReg(); 2324 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2325 : LaneBitmask::getAll(); 2326 if (MOI->isDef()) { 2327 if (Sub != 0) { 2328 hasSubRegDef = true; 2329 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2330 // mask for subregister defs. Read-undef defs will be handled by 2331 // readsReg below. 2332 SLM = ~SLM; 2333 } 2334 if (MOI->isDead()) 2335 hasDeadDef = true; 2336 } 2337 if (LaneMask.any() && (LaneMask & SLM).none()) 2338 continue; 2339 if (MOI->readsReg()) 2340 hasRead = true; 2341 } 2342 if (S.end.isDead()) { 2343 // Make sure that the corresponding machine operand for a "dead" live 2344 // range has the dead flag. We cannot perform this check for subregister 2345 // liveranges as partially dead values are allowed. 2346 if (LaneMask.none() && !hasDeadDef) { 2347 report("Instruction ending live segment on dead slot has no dead flag", 2348 MI); 2349 report_context(LR, Reg, LaneMask); 2350 report_context(S); 2351 } 2352 } else { 2353 if (!hasRead) { 2354 // When tracking subregister liveness, the main range must start new 2355 // values on partial register writes, even if there is no read. 2356 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2357 !hasSubRegDef) { 2358 report("Instruction ending live segment doesn't read the register", 2359 MI); 2360 report_context(LR, Reg, LaneMask); 2361 report_context(S); 2362 } 2363 } 2364 } 2365 } 2366 2367 // Now check all the basic blocks in this live segment. 2368 MachineFunction::const_iterator MFI = MBB->getIterator(); 2369 // Is this live segment the beginning of a non-PHIDef VN? 2370 if (S.start == VNI->def && !VNI->isPHIDef()) { 2371 // Not live-in to any blocks. 2372 if (MBB == EndMBB) 2373 return; 2374 // Skip this block. 2375 ++MFI; 2376 } 2377 2378 SmallVector<SlotIndex, 4> Undefs; 2379 if (LaneMask.any()) { 2380 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2381 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2382 } 2383 2384 while (true) { 2385 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2386 // We don't know how to track physregs into a landing pad. 2387 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2388 MFI->isEHPad()) { 2389 if (&*MFI == EndMBB) 2390 break; 2391 ++MFI; 2392 continue; 2393 } 2394 2395 // Is VNI a PHI-def in the current block? 2396 bool IsPHI = VNI->isPHIDef() && 2397 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2398 2399 // Check that VNI is live-out of all predecessors. 2400 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2401 PE = MFI->pred_end(); PI != PE; ++PI) { 2402 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2403 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2404 2405 // All predecessors must have a live-out value. However for a phi 2406 // instruction with subregister intervals 2407 // only one of the subregisters (not necessarily the current one) needs to 2408 // be defined. 2409 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2410 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2411 continue; 2412 report("Register not marked live out of predecessor", *PI); 2413 report_context(LR, Reg, LaneMask); 2414 report_context(*VNI); 2415 errs() << " live into " << printMBBReference(*MFI) << '@' 2416 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2417 << PEnd << '\n'; 2418 continue; 2419 } 2420 2421 // Only PHI-defs can take different predecessor values. 2422 if (!IsPHI && PVNI != VNI) { 2423 report("Different value live out of predecessor", *PI); 2424 report_context(LR, Reg, LaneMask); 2425 errs() << "Valno #" << PVNI->id << " live out of " 2426 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2427 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2428 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2429 } 2430 } 2431 if (&*MFI == EndMBB) 2432 break; 2433 ++MFI; 2434 } 2435 } 2436 2437 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2438 LaneBitmask LaneMask) { 2439 for (const VNInfo *VNI : LR.valnos) 2440 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2441 2442 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2443 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2444 } 2445 2446 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2447 unsigned Reg = LI.reg; 2448 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2449 verifyLiveRange(LI, Reg); 2450 2451 LaneBitmask Mask; 2452 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2453 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2454 if ((Mask & SR.LaneMask).any()) { 2455 report("Lane masks of sub ranges overlap in live interval", MF); 2456 report_context(LI); 2457 } 2458 if ((SR.LaneMask & ~MaxMask).any()) { 2459 report("Subrange lanemask is invalid", MF); 2460 report_context(LI); 2461 } 2462 if (SR.empty()) { 2463 report("Subrange must not be empty", MF); 2464 report_context(SR, LI.reg, SR.LaneMask); 2465 } 2466 Mask |= SR.LaneMask; 2467 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2468 if (!LI.covers(SR)) { 2469 report("A Subrange is not covered by the main range", MF); 2470 report_context(LI); 2471 } 2472 } 2473 2474 // Check the LI only has one connected component. 2475 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2476 unsigned NumComp = ConEQ.Classify(LI); 2477 if (NumComp > 1) { 2478 report("Multiple connected components in live interval", MF); 2479 report_context(LI); 2480 for (unsigned comp = 0; comp != NumComp; ++comp) { 2481 errs() << comp << ": valnos"; 2482 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2483 E = LI.vni_end(); I!=E; ++I) 2484 if (comp == ConEQ.getEqClass(*I)) 2485 errs() << ' ' << (*I)->id; 2486 errs() << '\n'; 2487 } 2488 } 2489 } 2490 2491 namespace { 2492 2493 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2494 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2495 // value is zero. 2496 // We use a bool plus an integer to capture the stack state. 2497 struct StackStateOfBB { 2498 StackStateOfBB() = default; 2499 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2500 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2501 ExitIsSetup(ExitSetup) {} 2502 2503 // Can be negative, which means we are setting up a frame. 2504 int EntryValue = 0; 2505 int ExitValue = 0; 2506 bool EntryIsSetup = false; 2507 bool ExitIsSetup = false; 2508 }; 2509 2510 } // end anonymous namespace 2511 2512 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2513 /// by a FrameDestroy <n>, stack adjustments are identical on all 2514 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2515 void MachineVerifier::verifyStackFrame() { 2516 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2517 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2518 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2519 return; 2520 2521 SmallVector<StackStateOfBB, 8> SPState; 2522 SPState.resize(MF->getNumBlockIDs()); 2523 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2524 2525 // Visit the MBBs in DFS order. 2526 for (df_ext_iterator<const MachineFunction *, 2527 df_iterator_default_set<const MachineBasicBlock *>> 2528 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2529 DFI != DFE; ++DFI) { 2530 const MachineBasicBlock *MBB = *DFI; 2531 2532 StackStateOfBB BBState; 2533 // Check the exit state of the DFS stack predecessor. 2534 if (DFI.getPathLength() >= 2) { 2535 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2536 assert(Reachable.count(StackPred) && 2537 "DFS stack predecessor is already visited.\n"); 2538 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2539 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2540 BBState.ExitValue = BBState.EntryValue; 2541 BBState.ExitIsSetup = BBState.EntryIsSetup; 2542 } 2543 2544 // Update stack state by checking contents of MBB. 2545 for (const auto &I : *MBB) { 2546 if (I.getOpcode() == FrameSetupOpcode) { 2547 if (BBState.ExitIsSetup) 2548 report("FrameSetup is after another FrameSetup", &I); 2549 BBState.ExitValue -= TII->getFrameTotalSize(I); 2550 BBState.ExitIsSetup = true; 2551 } 2552 2553 if (I.getOpcode() == FrameDestroyOpcode) { 2554 int Size = TII->getFrameTotalSize(I); 2555 if (!BBState.ExitIsSetup) 2556 report("FrameDestroy is not after a FrameSetup", &I); 2557 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2558 BBState.ExitValue; 2559 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2560 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2561 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2562 << AbsSPAdj << ">.\n"; 2563 } 2564 BBState.ExitValue += Size; 2565 BBState.ExitIsSetup = false; 2566 } 2567 } 2568 SPState[MBB->getNumber()] = BBState; 2569 2570 // Make sure the exit state of any predecessor is consistent with the entry 2571 // state. 2572 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2573 E = MBB->pred_end(); I != E; ++I) { 2574 if (Reachable.count(*I) && 2575 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2576 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2577 report("The exit stack state of a predecessor is inconsistent.", MBB); 2578 errs() << "Predecessor " << printMBBReference(*(*I)) 2579 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2580 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2581 << printMBBReference(*MBB) << " has entry state (" 2582 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2583 } 2584 } 2585 2586 // Make sure the entry state of any successor is consistent with the exit 2587 // state. 2588 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2589 E = MBB->succ_end(); I != E; ++I) { 2590 if (Reachable.count(*I) && 2591 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2592 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2593 report("The entry stack state of a successor is inconsistent.", MBB); 2594 errs() << "Successor " << printMBBReference(*(*I)) 2595 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2596 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2597 << printMBBReference(*MBB) << " has exit state (" 2598 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2599 } 2600 } 2601 2602 // Make sure a basic block with return ends with zero stack adjustment. 2603 if (!MBB->empty() && MBB->back().isReturn()) { 2604 if (BBState.ExitIsSetup) 2605 report("A return block ends with a FrameSetup.", MBB); 2606 if (BBState.ExitValue) 2607 report("A return block ends with a nonzero stack adjustment.", MBB); 2608 } 2609 } 2610 } 2611