1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstTerminator; 112 BlockSet FunctionBlocks; 113 114 BitVector regsReserved; 115 RegSet regsLive; 116 RegVector regsDefined, regsDead, regsKilled; 117 RegMaskVector regMasks; 118 119 SlotIndex lastIndex; 120 121 // Add Reg and any sub-registers to RV 122 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 123 RV.push_back(Reg); 124 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 125 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 126 RV.push_back(*SubRegs); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. 135 RegMap vregsLiveIn; 136 137 // Regs killed in MBB. They may be defined again, and will then be in both 138 // regsKilled and regsLiveOut. 139 RegSet regsKilled; 140 141 // Regs defined in MBB and live out. Note that vregs passing through may 142 // be live out without being mentioned here. 143 RegSet regsLiveOut; 144 145 // Vregs that pass through MBB untouched. This set is disjoint from 146 // regsKilled and regsLiveOut. 147 RegSet vregsPassed; 148 149 // Vregs that must pass through MBB because they are needed by a successor 150 // block. This set is disjoint from regsLiveOut. 151 RegSet vregsRequired; 152 153 // Set versions of block's predecessor and successor lists. 154 BlockSet Preds, Succs; 155 156 BBInfo() = default; 157 158 // Add register to vregsPassed if it belongs there. Return true if 159 // anything changed. 160 bool addPassed(unsigned Reg) { 161 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 162 return false; 163 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 164 return false; 165 return vregsPassed.insert(Reg).second; 166 } 167 168 // Same for a full set. 169 bool addPassed(const RegSet &RS) { 170 bool changed = false; 171 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 172 if (addPassed(*I)) 173 changed = true; 174 return changed; 175 } 176 177 // Add register to vregsRequired if it belongs there. Return true if 178 // anything changed. 179 bool addRequired(unsigned Reg) { 180 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 181 return false; 182 if (regsLiveOut.count(Reg)) 183 return false; 184 return vregsRequired.insert(Reg).second; 185 } 186 187 // Same for a full set. 188 bool addRequired(const RegSet &RS) { 189 bool changed = false; 190 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 191 if (addRequired(*I)) 192 changed = true; 193 return changed; 194 } 195 196 // Same for a full map. 197 bool addRequired(const RegMap &RM) { 198 bool changed = false; 199 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 200 if (addRequired(I->first)) 201 changed = true; 202 return changed; 203 } 204 205 // Live-out registers are either in regsLiveOut or vregsPassed. 206 bool isLiveOut(unsigned Reg) const { 207 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 208 } 209 }; 210 211 // Extra register info per MBB. 212 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 213 214 bool isReserved(unsigned Reg) { 215 return Reg < regsReserved.size() && regsReserved.test(Reg); 216 } 217 218 bool isAllocatable(unsigned Reg) const { 219 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 220 !regsReserved.test(Reg); 221 } 222 223 // Analysis information if available 224 LiveVariables *LiveVars; 225 LiveIntervals *LiveInts; 226 LiveStacks *LiveStks; 227 SlotIndexes *Indexes; 228 229 void visitMachineFunctionBefore(); 230 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 231 void visitMachineBundleBefore(const MachineInstr *MI); 232 void visitMachineInstrBefore(const MachineInstr *MI); 233 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 234 void visitMachineInstrAfter(const MachineInstr *MI); 235 void visitMachineBundleAfter(const MachineInstr *MI); 236 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 237 void visitMachineFunctionAfter(); 238 239 void report(const char *msg, const MachineFunction *MF); 240 void report(const char *msg, const MachineBasicBlock *MBB); 241 void report(const char *msg, const MachineInstr *MI); 242 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 243 244 void report_context(const LiveInterval &LI) const; 245 void report_context(const LiveRange &LR, unsigned VRegUnit, 246 LaneBitmask LaneMask) const; 247 void report_context(const LiveRange::Segment &S) const; 248 void report_context(const VNInfo &VNI) const; 249 void report_context(SlotIndex Pos) const; 250 void report_context_liverange(const LiveRange &LR) const; 251 void report_context_lanemask(LaneBitmask LaneMask) const; 252 void report_context_vreg(unsigned VReg) const; 253 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 254 255 void verifyInlineAsm(const MachineInstr *MI); 256 257 void checkLiveness(const MachineOperand *MO, unsigned MONum); 258 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 259 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 260 LaneBitmask LaneMask = LaneBitmask::getNone()); 261 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 262 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 265 void markReachable(const MachineBasicBlock *MBB); 266 void calcRegsPassed(); 267 void checkPHIOps(const MachineBasicBlock &MBB); 268 269 void calcRegsRequired(); 270 void verifyLiveVariables(); 271 void verifyLiveIntervals(); 272 void verifyLiveInterval(const LiveInterval&); 273 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 274 LaneBitmask); 275 void verifyLiveRangeSegment(const LiveRange&, 276 const LiveRange::const_iterator I, unsigned, 277 LaneBitmask); 278 void verifyLiveRange(const LiveRange&, unsigned, 279 LaneBitmask LaneMask = LaneBitmask::getNone()); 280 281 void verifyStackFrame(); 282 283 void verifySlotIndexes() const; 284 void verifyProperties(const MachineFunction &MF); 285 }; 286 287 struct MachineVerifierPass : public MachineFunctionPass { 288 static char ID; // Pass ID, replacement for typeid 289 290 const std::string Banner; 291 292 MachineVerifierPass(std::string banner = std::string()) 293 : MachineFunctionPass(ID), Banner(std::move(banner)) { 294 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 295 } 296 297 void getAnalysisUsage(AnalysisUsage &AU) const override { 298 AU.setPreservesAll(); 299 MachineFunctionPass::getAnalysisUsage(AU); 300 } 301 302 bool runOnMachineFunction(MachineFunction &MF) override { 303 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 304 if (FoundErrors) 305 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 306 return false; 307 } 308 }; 309 310 } // end anonymous namespace 311 312 char MachineVerifierPass::ID = 0; 313 314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 315 "Verify generated machine code", false, false) 316 317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 318 return new MachineVerifierPass(Banner); 319 } 320 321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 322 const { 323 MachineFunction &MF = const_cast<MachineFunction&>(*this); 324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 325 if (AbortOnErrors && FoundErrors) 326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 327 return FoundErrors == 0; 328 } 329 330 void MachineVerifier::verifySlotIndexes() const { 331 if (Indexes == nullptr) 332 return; 333 334 // Ensure the IdxMBB list is sorted by slot indexes. 335 SlotIndex Last; 336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 337 E = Indexes->MBBIndexEnd(); I != E; ++I) { 338 assert(!Last.isValid() || I->first > Last); 339 Last = I->first; 340 } 341 } 342 343 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 344 // If a pass has introduced virtual registers without clearing the 345 // NoVRegs property (or set it without allocating the vregs) 346 // then report an error. 347 if (MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::NoVRegs) && 349 MRI->getNumVirtRegs()) 350 report("Function has NoVRegs property but there are VReg operands", &MF); 351 } 352 353 unsigned MachineVerifier::verify(MachineFunction &MF) { 354 foundErrors = 0; 355 356 this->MF = &MF; 357 TM = &MF.getTarget(); 358 TII = MF.getSubtarget().getInstrInfo(); 359 TRI = MF.getSubtarget().getRegisterInfo(); 360 MRI = &MF.getRegInfo(); 361 362 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 363 MachineFunctionProperties::Property::FailedISel); 364 isFunctionRegBankSelected = 365 !isFunctionFailedISel && 366 MF.getProperties().hasProperty( 367 MachineFunctionProperties::Property::RegBankSelected); 368 isFunctionSelected = !isFunctionFailedISel && 369 MF.getProperties().hasProperty( 370 MachineFunctionProperties::Property::Selected); 371 LiveVars = nullptr; 372 LiveInts = nullptr; 373 LiveStks = nullptr; 374 Indexes = nullptr; 375 if (PASS) { 376 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 377 // We don't want to verify LiveVariables if LiveIntervals is available. 378 if (!LiveInts) 379 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 380 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 381 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 382 } 383 384 verifySlotIndexes(); 385 386 verifyProperties(MF); 387 388 visitMachineFunctionBefore(); 389 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 390 MFI!=MFE; ++MFI) { 391 visitMachineBasicBlockBefore(&*MFI); 392 // Keep track of the current bundle header. 393 const MachineInstr *CurBundle = nullptr; 394 // Do we expect the next instruction to be part of the same bundle? 395 bool InBundle = false; 396 397 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 398 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 399 if (MBBI->getParent() != &*MFI) { 400 report("Bad instruction parent pointer", &*MFI); 401 errs() << "Instruction: " << *MBBI; 402 continue; 403 } 404 405 // Check for consistent bundle flags. 406 if (InBundle && !MBBI->isBundledWithPred()) 407 report("Missing BundledPred flag, " 408 "BundledSucc was set on predecessor", 409 &*MBBI); 410 if (!InBundle && MBBI->isBundledWithPred()) 411 report("BundledPred flag is set, " 412 "but BundledSucc not set on predecessor", 413 &*MBBI); 414 415 // Is this a bundle header? 416 if (!MBBI->isInsideBundle()) { 417 if (CurBundle) 418 visitMachineBundleAfter(CurBundle); 419 CurBundle = &*MBBI; 420 visitMachineBundleBefore(CurBundle); 421 } else if (!CurBundle) 422 report("No bundle header", &*MBBI); 423 visitMachineInstrBefore(&*MBBI); 424 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 425 const MachineInstr &MI = *MBBI; 426 const MachineOperand &Op = MI.getOperand(I); 427 if (Op.getParent() != &MI) { 428 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 429 // functions when replacing operands of a MachineInstr. 430 report("Instruction has operand with wrong parent set", &MI); 431 } 432 433 visitMachineOperand(&Op, I); 434 } 435 436 visitMachineInstrAfter(&*MBBI); 437 438 // Was this the last bundled instruction? 439 InBundle = MBBI->isBundledWithSucc(); 440 } 441 if (CurBundle) 442 visitMachineBundleAfter(CurBundle); 443 if (InBundle) 444 report("BundledSucc flag set on last instruction in block", &MFI->back()); 445 visitMachineBasicBlockAfter(&*MFI); 446 } 447 visitMachineFunctionAfter(); 448 449 // Clean up. 450 regsLive.clear(); 451 regsDefined.clear(); 452 regsDead.clear(); 453 regsKilled.clear(); 454 regMasks.clear(); 455 MBBInfoMap.clear(); 456 457 return foundErrors; 458 } 459 460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 461 assert(MF); 462 errs() << '\n'; 463 if (!foundErrors++) { 464 if (Banner) 465 errs() << "# " << Banner << '\n'; 466 if (LiveInts != nullptr) 467 LiveInts->print(errs()); 468 else 469 MF->print(errs(), Indexes); 470 } 471 errs() << "*** Bad machine code: " << msg << " ***\n" 472 << "- function: " << MF->getName() << "\n"; 473 } 474 475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 476 assert(MBB); 477 report(msg, MBB->getParent()); 478 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 479 << MBB->getName() << " (" << (const void *)MBB << ')'; 480 if (Indexes) 481 errs() << " [" << Indexes->getMBBStartIdx(MBB) 482 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 483 errs() << '\n'; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 487 assert(MI); 488 report(msg, MI->getParent()); 489 errs() << "- instruction: "; 490 if (Indexes && Indexes->hasIndex(*MI)) 491 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 492 MI->print(errs(), /*SkipOpers=*/true); 493 errs() << '\n'; 494 } 495 496 void MachineVerifier::report(const char *msg, 497 const MachineOperand *MO, unsigned MONum) { 498 assert(MO); 499 report(msg, MO->getParent()); 500 errs() << "- operand " << MONum << ": "; 501 MO->print(errs(), TRI); 502 errs() << "\n"; 503 } 504 505 void MachineVerifier::report_context(SlotIndex Pos) const { 506 errs() << "- at: " << Pos << '\n'; 507 } 508 509 void MachineVerifier::report_context(const LiveInterval &LI) const { 510 errs() << "- interval: " << LI << '\n'; 511 } 512 513 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 514 LaneBitmask LaneMask) const { 515 report_context_liverange(LR); 516 report_context_vreg_regunit(VRegUnit); 517 if (LaneMask.any()) 518 report_context_lanemask(LaneMask); 519 } 520 521 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 522 errs() << "- segment: " << S << '\n'; 523 } 524 525 void MachineVerifier::report_context(const VNInfo &VNI) const { 526 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 527 } 528 529 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 530 errs() << "- liverange: " << LR << '\n'; 531 } 532 533 void MachineVerifier::report_context_vreg(unsigned VReg) const { 534 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 535 } 536 537 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 538 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 539 report_context_vreg(VRegOrUnit); 540 } else { 541 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 542 } 543 } 544 545 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 546 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 547 } 548 549 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 550 BBInfo &MInfo = MBBInfoMap[MBB]; 551 if (!MInfo.reachable) { 552 MInfo.reachable = true; 553 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 554 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 555 markReachable(*SuI); 556 } 557 } 558 559 void MachineVerifier::visitMachineFunctionBefore() { 560 lastIndex = SlotIndex(); 561 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 562 : TRI->getReservedRegs(*MF); 563 564 if (!MF->empty()) 565 markReachable(&MF->front()); 566 567 // Build a set of the basic blocks in the function. 568 FunctionBlocks.clear(); 569 for (const auto &MBB : *MF) { 570 FunctionBlocks.insert(&MBB); 571 BBInfo &MInfo = MBBInfoMap[&MBB]; 572 573 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 574 if (MInfo.Preds.size() != MBB.pred_size()) 575 report("MBB has duplicate entries in its predecessor list.", &MBB); 576 577 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 578 if (MInfo.Succs.size() != MBB.succ_size()) 579 report("MBB has duplicate entries in its successor list.", &MBB); 580 } 581 582 // Check that the register use lists are sane. 583 MRI->verifyUseLists(); 584 585 if (!MF->empty()) 586 verifyStackFrame(); 587 } 588 589 // Does iterator point to a and b as the first two elements? 590 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 591 const MachineBasicBlock *a, const MachineBasicBlock *b) { 592 if (*i == a) 593 return *++i == b; 594 if (*i == b) 595 return *++i == a; 596 return false; 597 } 598 599 void 600 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 601 FirstTerminator = nullptr; 602 603 if (!MF->getProperties().hasProperty( 604 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 605 // If this block has allocatable physical registers live-in, check that 606 // it is an entry block or landing pad. 607 for (const auto &LI : MBB->liveins()) { 608 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 609 MBB->getIterator() != MBB->getParent()->begin()) { 610 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 611 } 612 } 613 } 614 615 // Count the number of landing pad successors. 616 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 617 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 618 E = MBB->succ_end(); I != E; ++I) { 619 if ((*I)->isEHPad()) 620 LandingPadSuccs.insert(*I); 621 if (!FunctionBlocks.count(*I)) 622 report("MBB has successor that isn't part of the function.", MBB); 623 if (!MBBInfoMap[*I].Preds.count(MBB)) { 624 report("Inconsistent CFG", MBB); 625 errs() << "MBB is not in the predecessor list of the successor " 626 << printMBBReference(*(*I)) << ".\n"; 627 } 628 } 629 630 // Check the predecessor list. 631 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 632 E = MBB->pred_end(); I != E; ++I) { 633 if (!FunctionBlocks.count(*I)) 634 report("MBB has predecessor that isn't part of the function.", MBB); 635 if (!MBBInfoMap[*I].Succs.count(MBB)) { 636 report("Inconsistent CFG", MBB); 637 errs() << "MBB is not in the successor list of the predecessor " 638 << printMBBReference(*(*I)) << ".\n"; 639 } 640 } 641 642 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 643 const BasicBlock *BB = MBB->getBasicBlock(); 644 const Function &F = MF->getFunction(); 645 if (LandingPadSuccs.size() > 1 && 646 !(AsmInfo && 647 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 648 BB && isa<SwitchInst>(BB->getTerminator())) && 649 !isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 650 report("MBB has more than one landing pad successor", MBB); 651 652 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 653 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 654 SmallVector<MachineOperand, 4> Cond; 655 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 656 Cond)) { 657 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 658 // check whether its answers match up with reality. 659 if (!TBB && !FBB) { 660 // Block falls through to its successor. 661 MachineFunction::const_iterator MBBI = MBB->getIterator(); 662 ++MBBI; 663 if (MBBI == MF->end()) { 664 // It's possible that the block legitimately ends with a noreturn 665 // call or an unreachable, in which case it won't actually fall 666 // out the bottom of the function. 667 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 668 // It's possible that the block legitimately ends with a noreturn 669 // call or an unreachable, in which case it won't actuall fall 670 // out of the block. 671 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 672 report("MBB exits via unconditional fall-through but doesn't have " 673 "exactly one CFG successor!", MBB); 674 } else if (!MBB->isSuccessor(&*MBBI)) { 675 report("MBB exits via unconditional fall-through but its successor " 676 "differs from its CFG successor!", MBB); 677 } 678 if (!MBB->empty() && MBB->back().isBarrier() && 679 !TII->isPredicated(MBB->back())) { 680 report("MBB exits via unconditional fall-through but ends with a " 681 "barrier instruction!", MBB); 682 } 683 if (!Cond.empty()) { 684 report("MBB exits via unconditional fall-through but has a condition!", 685 MBB); 686 } 687 } else if (TBB && !FBB && Cond.empty()) { 688 // Block unconditionally branches somewhere. 689 // If the block has exactly one successor, that happens to be a 690 // landingpad, accept it as valid control flow. 691 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 692 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 693 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 694 report("MBB exits via unconditional branch but doesn't have " 695 "exactly one CFG successor!", MBB); 696 } else if (!MBB->isSuccessor(TBB)) { 697 report("MBB exits via unconditional branch but the CFG " 698 "successor doesn't match the actual successor!", MBB); 699 } 700 if (MBB->empty()) { 701 report("MBB exits via unconditional branch but doesn't contain " 702 "any instructions!", MBB); 703 } else if (!MBB->back().isBarrier()) { 704 report("MBB exits via unconditional branch but doesn't end with a " 705 "barrier instruction!", MBB); 706 } else if (!MBB->back().isTerminator()) { 707 report("MBB exits via unconditional branch but the branch isn't a " 708 "terminator instruction!", MBB); 709 } 710 } else if (TBB && !FBB && !Cond.empty()) { 711 // Block conditionally branches somewhere, otherwise falls through. 712 MachineFunction::const_iterator MBBI = MBB->getIterator(); 713 ++MBBI; 714 if (MBBI == MF->end()) { 715 report("MBB conditionally falls through out of function!", MBB); 716 } else if (MBB->succ_size() == 1) { 717 // A conditional branch with only one successor is weird, but allowed. 718 if (&*MBBI != TBB) 719 report("MBB exits via conditional branch/fall-through but only has " 720 "one CFG successor!", MBB); 721 else if (TBB != *MBB->succ_begin()) 722 report("MBB exits via conditional branch/fall-through but the CFG " 723 "successor don't match the actual successor!", MBB); 724 } else if (MBB->succ_size() != 2) { 725 report("MBB exits via conditional branch/fall-through but doesn't have " 726 "exactly two CFG successors!", MBB); 727 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 728 report("MBB exits via conditional branch/fall-through but the CFG " 729 "successors don't match the actual successors!", MBB); 730 } 731 if (MBB->empty()) { 732 report("MBB exits via conditional branch/fall-through but doesn't " 733 "contain any instructions!", MBB); 734 } else if (MBB->back().isBarrier()) { 735 report("MBB exits via conditional branch/fall-through but ends with a " 736 "barrier instruction!", MBB); 737 } else if (!MBB->back().isTerminator()) { 738 report("MBB exits via conditional branch/fall-through but the branch " 739 "isn't a terminator instruction!", MBB); 740 } 741 } else if (TBB && FBB) { 742 // Block conditionally branches somewhere, otherwise branches 743 // somewhere else. 744 if (MBB->succ_size() == 1) { 745 // A conditional branch with only one successor is weird, but allowed. 746 if (FBB != TBB) 747 report("MBB exits via conditional branch/branch through but only has " 748 "one CFG successor!", MBB); 749 else if (TBB != *MBB->succ_begin()) 750 report("MBB exits via conditional branch/branch through but the CFG " 751 "successor don't match the actual successor!", MBB); 752 } else if (MBB->succ_size() != 2) { 753 report("MBB exits via conditional branch/branch but doesn't have " 754 "exactly two CFG successors!", MBB); 755 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 756 report("MBB exits via conditional branch/branch but the CFG " 757 "successors don't match the actual successors!", MBB); 758 } 759 if (MBB->empty()) { 760 report("MBB exits via conditional branch/branch but doesn't " 761 "contain any instructions!", MBB); 762 } else if (!MBB->back().isBarrier()) { 763 report("MBB exits via conditional branch/branch but doesn't end with a " 764 "barrier instruction!", MBB); 765 } else if (!MBB->back().isTerminator()) { 766 report("MBB exits via conditional branch/branch but the branch " 767 "isn't a terminator instruction!", MBB); 768 } 769 if (Cond.empty()) { 770 report("MBB exits via conditinal branch/branch but there's no " 771 "condition!", MBB); 772 } 773 } else { 774 report("AnalyzeBranch returned invalid data!", MBB); 775 } 776 } 777 778 regsLive.clear(); 779 if (MRI->tracksLiveness()) { 780 for (const auto &LI : MBB->liveins()) { 781 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 782 report("MBB live-in list contains non-physical register", MBB); 783 continue; 784 } 785 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 786 SubRegs.isValid(); ++SubRegs) 787 regsLive.insert(*SubRegs); 788 } 789 } 790 791 const MachineFrameInfo &MFI = MF->getFrameInfo(); 792 BitVector PR = MFI.getPristineRegs(*MF); 793 for (unsigned I : PR.set_bits()) { 794 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 795 SubRegs.isValid(); ++SubRegs) 796 regsLive.insert(*SubRegs); 797 } 798 799 regsKilled.clear(); 800 regsDefined.clear(); 801 802 if (Indexes) 803 lastIndex = Indexes->getMBBStartIdx(MBB); 804 } 805 806 // This function gets called for all bundle headers, including normal 807 // stand-alone unbundled instructions. 808 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 809 if (Indexes && Indexes->hasIndex(*MI)) { 810 SlotIndex idx = Indexes->getInstructionIndex(*MI); 811 if (!(idx > lastIndex)) { 812 report("Instruction index out of order", MI); 813 errs() << "Last instruction was at " << lastIndex << '\n'; 814 } 815 lastIndex = idx; 816 } 817 818 // Ensure non-terminators don't follow terminators. 819 // Ignore predicated terminators formed by if conversion. 820 // FIXME: If conversion shouldn't need to violate this rule. 821 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 822 if (!FirstTerminator) 823 FirstTerminator = MI; 824 } else if (FirstTerminator) { 825 report("Non-terminator instruction after the first terminator", MI); 826 errs() << "First terminator was:\t" << *FirstTerminator; 827 } 828 } 829 830 // The operands on an INLINEASM instruction must follow a template. 831 // Verify that the flag operands make sense. 832 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 833 // The first two operands on INLINEASM are the asm string and global flags. 834 if (MI->getNumOperands() < 2) { 835 report("Too few operands on inline asm", MI); 836 return; 837 } 838 if (!MI->getOperand(0).isSymbol()) 839 report("Asm string must be an external symbol", MI); 840 if (!MI->getOperand(1).isImm()) 841 report("Asm flags must be an immediate", MI); 842 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 843 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 844 // and Extra_IsConvergent = 32. 845 if (!isUInt<6>(MI->getOperand(1).getImm())) 846 report("Unknown asm flags", &MI->getOperand(1), 1); 847 848 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 849 850 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 851 unsigned NumOps; 852 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 853 const MachineOperand &MO = MI->getOperand(OpNo); 854 // There may be implicit ops after the fixed operands. 855 if (!MO.isImm()) 856 break; 857 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 858 } 859 860 if (OpNo > MI->getNumOperands()) 861 report("Missing operands in last group", MI); 862 863 // An optional MDNode follows the groups. 864 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 865 ++OpNo; 866 867 // All trailing operands must be implicit registers. 868 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 869 const MachineOperand &MO = MI->getOperand(OpNo); 870 if (!MO.isReg() || !MO.isImplicit()) 871 report("Expected implicit register after groups", &MO, OpNo); 872 } 873 } 874 875 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 876 const MCInstrDesc &MCID = MI->getDesc(); 877 if (MI->getNumOperands() < MCID.getNumOperands()) { 878 report("Too few operands", MI); 879 errs() << MCID.getNumOperands() << " operands expected, but " 880 << MI->getNumOperands() << " given.\n"; 881 } 882 883 if (MI->isPHI() && MF->getProperties().hasProperty( 884 MachineFunctionProperties::Property::NoPHIs)) 885 report("Found PHI instruction with NoPHIs property set", MI); 886 887 // Check the tied operands. 888 if (MI->isInlineAsm()) 889 verifyInlineAsm(MI); 890 891 // Check the MachineMemOperands for basic consistency. 892 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 893 E = MI->memoperands_end(); I != E; ++I) { 894 if ((*I)->isLoad() && !MI->mayLoad()) 895 report("Missing mayLoad flag", MI); 896 if ((*I)->isStore() && !MI->mayStore()) 897 report("Missing mayStore flag", MI); 898 } 899 900 // Debug values must not have a slot index. 901 // Other instructions must have one, unless they are inside a bundle. 902 if (LiveInts) { 903 bool mapped = !LiveInts->isNotInMIMap(*MI); 904 if (MI->isDebugValue()) { 905 if (mapped) 906 report("Debug instruction has a slot index", MI); 907 } else if (MI->isInsideBundle()) { 908 if (mapped) 909 report("Instruction inside bundle has a slot index", MI); 910 } else { 911 if (!mapped) 912 report("Missing slot index", MI); 913 } 914 } 915 916 // Check types. 917 if (isPreISelGenericOpcode(MCID.getOpcode())) { 918 if (isFunctionSelected) 919 report("Unexpected generic instruction in a Selected function", MI); 920 921 // Generic instructions specify equality constraints between some 922 // of their operands. Make sure these are consistent. 923 SmallVector<LLT, 4> Types; 924 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 925 if (!MCID.OpInfo[i].isGenericType()) 926 continue; 927 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 928 Types.resize(std::max(TypeIdx + 1, Types.size())); 929 930 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 931 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 932 report("type mismatch in generic instruction", MI); 933 Types[TypeIdx] = OpTy; 934 } 935 } 936 937 // Generic opcodes must not have physical register operands. 938 if (isPreISelGenericOpcode(MCID.getOpcode())) { 939 for (auto &Op : MI->operands()) { 940 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 941 report("Generic instruction cannot have physical register", MI); 942 } 943 } 944 945 StringRef ErrorInfo; 946 if (!TII->verifyInstruction(*MI, ErrorInfo)) 947 report(ErrorInfo.data(), MI); 948 949 // Verify properties of various specific instruction types 950 switch(MI->getOpcode()) { 951 default: 952 break; 953 case TargetOpcode::G_LOAD: 954 case TargetOpcode::G_STORE: 955 // Generic loads and stores must have a single MachineMemOperand 956 // describing that access. 957 if (!MI->hasOneMemOperand()) 958 report("Generic instruction accessing memory must have one mem operand", 959 MI); 960 break; 961 case TargetOpcode::G_PHI: { 962 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 963 if (!DstTy.isValid() || 964 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 965 [this, &DstTy](const MachineOperand &MO) { 966 if (!MO.isReg()) 967 return true; 968 LLT Ty = MRI->getType(MO.getReg()); 969 if (!Ty.isValid() || (Ty != DstTy)) 970 return false; 971 return true; 972 })) 973 report("Generic Instruction G_PHI has operands with incompatible/missing " 974 "types", 975 MI); 976 break; 977 } 978 case TargetOpcode::COPY: { 979 if (foundErrors) 980 break; 981 const MachineOperand &DstOp = MI->getOperand(0); 982 const MachineOperand &SrcOp = MI->getOperand(1); 983 LLT DstTy = MRI->getType(DstOp.getReg()); 984 LLT SrcTy = MRI->getType(SrcOp.getReg()); 985 if (SrcTy.isValid() && DstTy.isValid()) { 986 // If both types are valid, check that the types are the same. 987 if (SrcTy != DstTy) { 988 report("Copy Instruction is illegal with mismatching types", MI); 989 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 990 } 991 } 992 if (SrcTy.isValid() || DstTy.isValid()) { 993 // If one of them have valid types, let's just check they have the same 994 // size. 995 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 996 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 997 assert(SrcSize && "Expecting size here"); 998 assert(DstSize && "Expecting size here"); 999 if (SrcSize != DstSize) 1000 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1001 report("Copy Instruction is illegal with mismatching sizes", MI); 1002 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1003 << "\n"; 1004 } 1005 } 1006 break; 1007 } 1008 case TargetOpcode::STATEPOINT: 1009 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1010 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1011 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1012 report("meta operands to STATEPOINT not constant!", MI); 1013 break; 1014 1015 auto VerifyStackMapConstant = [&](unsigned Offset) { 1016 if (!MI->getOperand(Offset).isImm() || 1017 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1018 !MI->getOperand(Offset + 1).isImm()) 1019 report("stack map constant to STATEPOINT not well formed!", MI); 1020 }; 1021 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1022 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1023 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1024 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1025 1026 // TODO: verify we have properly encoded deopt arguments 1027 }; 1028 } 1029 1030 void 1031 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1032 const MachineInstr *MI = MO->getParent(); 1033 const MCInstrDesc &MCID = MI->getDesc(); 1034 unsigned NumDefs = MCID.getNumDefs(); 1035 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1036 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1037 1038 // The first MCID.NumDefs operands must be explicit register defines 1039 if (MONum < NumDefs) { 1040 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1041 if (!MO->isReg()) 1042 report("Explicit definition must be a register", MO, MONum); 1043 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1044 report("Explicit definition marked as use", MO, MONum); 1045 else if (MO->isImplicit()) 1046 report("Explicit definition marked as implicit", MO, MONum); 1047 } else if (MONum < MCID.getNumOperands()) { 1048 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1049 // Don't check if it's the last operand in a variadic instruction. See, 1050 // e.g., LDM_RET in the arm back end. 1051 if (MO->isReg() && 1052 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1053 if (MO->isDef() && !MCOI.isOptionalDef()) 1054 report("Explicit operand marked as def", MO, MONum); 1055 if (MO->isImplicit()) 1056 report("Explicit operand marked as implicit", MO, MONum); 1057 } 1058 1059 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1060 if (TiedTo != -1) { 1061 if (!MO->isReg()) 1062 report("Tied use must be a register", MO, MONum); 1063 else if (!MO->isTied()) 1064 report("Operand should be tied", MO, MONum); 1065 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1066 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1067 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1068 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1069 if (!MOTied.isReg()) 1070 report("Tied counterpart must be a register", &MOTied, TiedTo); 1071 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1072 MO->getReg() != MOTied.getReg()) 1073 report("Tied physical registers must match.", &MOTied, TiedTo); 1074 } 1075 } else if (MO->isReg() && MO->isTied()) 1076 report("Explicit operand should not be tied", MO, MONum); 1077 } else { 1078 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1079 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1080 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1081 } 1082 1083 switch (MO->getType()) { 1084 case MachineOperand::MO_Register: { 1085 const unsigned Reg = MO->getReg(); 1086 if (!Reg) 1087 return; 1088 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1089 checkLiveness(MO, MONum); 1090 1091 // Verify the consistency of tied operands. 1092 if (MO->isTied()) { 1093 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1094 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1095 if (!OtherMO.isReg()) 1096 report("Must be tied to a register", MO, MONum); 1097 if (!OtherMO.isTied()) 1098 report("Missing tie flags on tied operand", MO, MONum); 1099 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1100 report("Inconsistent tie links", MO, MONum); 1101 if (MONum < MCID.getNumDefs()) { 1102 if (OtherIdx < MCID.getNumOperands()) { 1103 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1104 report("Explicit def tied to explicit use without tie constraint", 1105 MO, MONum); 1106 } else { 1107 if (!OtherMO.isImplicit()) 1108 report("Explicit def should be tied to implicit use", MO, MONum); 1109 } 1110 } 1111 } 1112 1113 // Verify two-address constraints after leaving SSA form. 1114 unsigned DefIdx; 1115 if (!MRI->isSSA() && MO->isUse() && 1116 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1117 Reg != MI->getOperand(DefIdx).getReg()) 1118 report("Two-address instruction operands must be identical", MO, MONum); 1119 1120 // Check register classes. 1121 unsigned SubIdx = MO->getSubReg(); 1122 1123 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1124 if (SubIdx) { 1125 report("Illegal subregister index for physical register", MO, MONum); 1126 return; 1127 } 1128 if (MONum < MCID.getNumOperands()) { 1129 if (const TargetRegisterClass *DRC = 1130 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1131 if (!DRC->contains(Reg)) { 1132 report("Illegal physical register for instruction", MO, MONum); 1133 errs() << printReg(Reg, TRI) << " is not a " 1134 << TRI->getRegClassName(DRC) << " register.\n"; 1135 } 1136 } 1137 } 1138 if (MO->isRenamable()) { 1139 if (MRI->isReserved(Reg)) { 1140 report("isRenamable set on reserved register", MO, MONum); 1141 return; 1142 } 1143 } 1144 } else { 1145 // Virtual register. 1146 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1147 if (!RC) { 1148 // This is a generic virtual register. 1149 1150 // If we're post-Select, we can't have gvregs anymore. 1151 if (isFunctionSelected) { 1152 report("Generic virtual register invalid in a Selected function", 1153 MO, MONum); 1154 return; 1155 } 1156 1157 // The gvreg must have a type and it must not have a SubIdx. 1158 LLT Ty = MRI->getType(Reg); 1159 if (!Ty.isValid()) { 1160 report("Generic virtual register must have a valid type", MO, 1161 MONum); 1162 return; 1163 } 1164 1165 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1166 1167 // If we're post-RegBankSelect, the gvreg must have a bank. 1168 if (!RegBank && isFunctionRegBankSelected) { 1169 report("Generic virtual register must have a bank in a " 1170 "RegBankSelected function", 1171 MO, MONum); 1172 return; 1173 } 1174 1175 // Make sure the register fits into its register bank if any. 1176 if (RegBank && Ty.isValid() && 1177 RegBank->getSize() < Ty.getSizeInBits()) { 1178 report("Register bank is too small for virtual register", MO, 1179 MONum); 1180 errs() << "Register bank " << RegBank->getName() << " too small(" 1181 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1182 << "-bits\n"; 1183 return; 1184 } 1185 if (SubIdx) { 1186 report("Generic virtual register does not subregister index", MO, 1187 MONum); 1188 return; 1189 } 1190 1191 // If this is a target specific instruction and this operand 1192 // has register class constraint, the virtual register must 1193 // comply to it. 1194 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1195 MONum < MCID.getNumOperands() && 1196 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1197 report("Virtual register does not match instruction constraint", MO, 1198 MONum); 1199 errs() << "Expect register class " 1200 << TRI->getRegClassName( 1201 TII->getRegClass(MCID, MONum, TRI, *MF)) 1202 << " but got nothing\n"; 1203 return; 1204 } 1205 1206 break; 1207 } 1208 if (SubIdx) { 1209 const TargetRegisterClass *SRC = 1210 TRI->getSubClassWithSubReg(RC, SubIdx); 1211 if (!SRC) { 1212 report("Invalid subregister index for virtual register", MO, MONum); 1213 errs() << "Register class " << TRI->getRegClassName(RC) 1214 << " does not support subreg index " << SubIdx << "\n"; 1215 return; 1216 } 1217 if (RC != SRC) { 1218 report("Invalid register class for subregister index", MO, MONum); 1219 errs() << "Register class " << TRI->getRegClassName(RC) 1220 << " does not fully support subreg index " << SubIdx << "\n"; 1221 return; 1222 } 1223 } 1224 if (MONum < MCID.getNumOperands()) { 1225 if (const TargetRegisterClass *DRC = 1226 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1227 if (SubIdx) { 1228 const TargetRegisterClass *SuperRC = 1229 TRI->getLargestLegalSuperClass(RC, *MF); 1230 if (!SuperRC) { 1231 report("No largest legal super class exists.", MO, MONum); 1232 return; 1233 } 1234 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1235 if (!DRC) { 1236 report("No matching super-reg register class.", MO, MONum); 1237 return; 1238 } 1239 } 1240 if (!RC->hasSuperClassEq(DRC)) { 1241 report("Illegal virtual register for instruction", MO, MONum); 1242 errs() << "Expected a " << TRI->getRegClassName(DRC) 1243 << " register, but got a " << TRI->getRegClassName(RC) 1244 << " register\n"; 1245 } 1246 } 1247 } 1248 } 1249 break; 1250 } 1251 1252 case MachineOperand::MO_RegisterMask: 1253 regMasks.push_back(MO->getRegMask()); 1254 break; 1255 1256 case MachineOperand::MO_MachineBasicBlock: 1257 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1258 report("PHI operand is not in the CFG", MO, MONum); 1259 break; 1260 1261 case MachineOperand::MO_FrameIndex: 1262 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1263 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1264 int FI = MO->getIndex(); 1265 LiveInterval &LI = LiveStks->getInterval(FI); 1266 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1267 1268 bool stores = MI->mayStore(); 1269 bool loads = MI->mayLoad(); 1270 // For a memory-to-memory move, we need to check if the frame 1271 // index is used for storing or loading, by inspecting the 1272 // memory operands. 1273 if (stores && loads) { 1274 for (auto *MMO : MI->memoperands()) { 1275 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1276 if (PSV == nullptr) continue; 1277 const FixedStackPseudoSourceValue *Value = 1278 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1279 if (Value == nullptr) continue; 1280 if (Value->getFrameIndex() != FI) continue; 1281 1282 if (MMO->isStore()) 1283 loads = false; 1284 else 1285 stores = false; 1286 break; 1287 } 1288 if (loads == stores) 1289 report("Missing fixed stack memoperand.", MI); 1290 } 1291 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1292 report("Instruction loads from dead spill slot", MO, MONum); 1293 errs() << "Live stack: " << LI << '\n'; 1294 } 1295 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1296 report("Instruction stores to dead spill slot", MO, MONum); 1297 errs() << "Live stack: " << LI << '\n'; 1298 } 1299 } 1300 break; 1301 1302 default: 1303 break; 1304 } 1305 } 1306 1307 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1308 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1309 LaneBitmask LaneMask) { 1310 LiveQueryResult LRQ = LR.Query(UseIdx); 1311 // Check if we have a segment at the use, note however that we only need one 1312 // live subregister range, the others may be dead. 1313 if (!LRQ.valueIn() && LaneMask.none()) { 1314 report("No live segment at use", MO, MONum); 1315 report_context_liverange(LR); 1316 report_context_vreg_regunit(VRegOrUnit); 1317 report_context(UseIdx); 1318 } 1319 if (MO->isKill() && !LRQ.isKill()) { 1320 report("Live range continues after kill flag", MO, MONum); 1321 report_context_liverange(LR); 1322 report_context_vreg_regunit(VRegOrUnit); 1323 if (LaneMask.any()) 1324 report_context_lanemask(LaneMask); 1325 report_context(UseIdx); 1326 } 1327 } 1328 1329 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1330 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1331 LaneBitmask LaneMask) { 1332 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1333 assert(VNI && "NULL valno is not allowed"); 1334 if (VNI->def != DefIdx) { 1335 report("Inconsistent valno->def", MO, MONum); 1336 report_context_liverange(LR); 1337 report_context_vreg_regunit(VRegOrUnit); 1338 if (LaneMask.any()) 1339 report_context_lanemask(LaneMask); 1340 report_context(*VNI); 1341 report_context(DefIdx); 1342 } 1343 } else { 1344 report("No live segment at def", MO, MONum); 1345 report_context_liverange(LR); 1346 report_context_vreg_regunit(VRegOrUnit); 1347 if (LaneMask.any()) 1348 report_context_lanemask(LaneMask); 1349 report_context(DefIdx); 1350 } 1351 // Check that, if the dead def flag is present, LiveInts agree. 1352 if (MO->isDead()) { 1353 LiveQueryResult LRQ = LR.Query(DefIdx); 1354 if (!LRQ.isDeadDef()) { 1355 // In case of physregs we can have a non-dead definition on another 1356 // operand. 1357 bool otherDef = false; 1358 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1359 const MachineInstr &MI = *MO->getParent(); 1360 for (const MachineOperand &MO : MI.operands()) { 1361 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1362 continue; 1363 unsigned Reg = MO.getReg(); 1364 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1365 if (*Units == VRegOrUnit) { 1366 otherDef = true; 1367 break; 1368 } 1369 } 1370 } 1371 } 1372 1373 if (!otherDef) { 1374 report("Live range continues after dead def flag", MO, MONum); 1375 report_context_liverange(LR); 1376 report_context_vreg_regunit(VRegOrUnit); 1377 if (LaneMask.any()) 1378 report_context_lanemask(LaneMask); 1379 } 1380 } 1381 } 1382 } 1383 1384 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1385 const MachineInstr *MI = MO->getParent(); 1386 const unsigned Reg = MO->getReg(); 1387 1388 // Both use and def operands can read a register. 1389 if (MO->readsReg()) { 1390 if (MO->isKill()) 1391 addRegWithSubRegs(regsKilled, Reg); 1392 1393 // Check that LiveVars knows this kill. 1394 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1395 MO->isKill()) { 1396 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1397 if (!is_contained(VI.Kills, MI)) 1398 report("Kill missing from LiveVariables", MO, MONum); 1399 } 1400 1401 // Check LiveInts liveness and kill. 1402 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1403 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1404 // Check the cached regunit intervals. 1405 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1406 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1407 if (MRI->isReservedRegUnit(*Units)) 1408 continue; 1409 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1410 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1411 } 1412 } 1413 1414 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1415 if (LiveInts->hasInterval(Reg)) { 1416 // This is a virtual register interval. 1417 const LiveInterval &LI = LiveInts->getInterval(Reg); 1418 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1419 1420 if (LI.hasSubRanges() && !MO->isDef()) { 1421 unsigned SubRegIdx = MO->getSubReg(); 1422 LaneBitmask MOMask = SubRegIdx != 0 1423 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1424 : MRI->getMaxLaneMaskForVReg(Reg); 1425 LaneBitmask LiveInMask; 1426 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1427 if ((MOMask & SR.LaneMask).none()) 1428 continue; 1429 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1430 LiveQueryResult LRQ = SR.Query(UseIdx); 1431 if (LRQ.valueIn()) 1432 LiveInMask |= SR.LaneMask; 1433 } 1434 // At least parts of the register has to be live at the use. 1435 if ((LiveInMask & MOMask).none()) { 1436 report("No live subrange at use", MO, MONum); 1437 report_context(LI); 1438 report_context(UseIdx); 1439 } 1440 } 1441 } else { 1442 report("Virtual register has no live interval", MO, MONum); 1443 } 1444 } 1445 } 1446 1447 // Use of a dead register. 1448 if (!regsLive.count(Reg)) { 1449 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1450 // Reserved registers may be used even when 'dead'. 1451 bool Bad = !isReserved(Reg); 1452 // We are fine if just any subregister has a defined value. 1453 if (Bad) { 1454 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1455 ++SubRegs) { 1456 if (regsLive.count(*SubRegs)) { 1457 Bad = false; 1458 break; 1459 } 1460 } 1461 } 1462 // If there is an additional implicit-use of a super register we stop 1463 // here. By definition we are fine if the super register is not 1464 // (completely) dead, if the complete super register is dead we will 1465 // get a report for its operand. 1466 if (Bad) { 1467 for (const MachineOperand &MOP : MI->uses()) { 1468 if (!MOP.isReg()) 1469 continue; 1470 if (!MOP.isImplicit()) 1471 continue; 1472 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1473 ++SubRegs) { 1474 if (*SubRegs == Reg) { 1475 Bad = false; 1476 break; 1477 } 1478 } 1479 } 1480 } 1481 if (Bad) 1482 report("Using an undefined physical register", MO, MONum); 1483 } else if (MRI->def_empty(Reg)) { 1484 report("Reading virtual register without a def", MO, MONum); 1485 } else { 1486 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1487 // We don't know which virtual registers are live in, so only complain 1488 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1489 // must be live in. PHI instructions are handled separately. 1490 if (MInfo.regsKilled.count(Reg)) 1491 report("Using a killed virtual register", MO, MONum); 1492 else if (!MI->isPHI()) 1493 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1494 } 1495 } 1496 } 1497 1498 if (MO->isDef()) { 1499 // Register defined. 1500 // TODO: verify that earlyclobber ops are not used. 1501 if (MO->isDead()) 1502 addRegWithSubRegs(regsDead, Reg); 1503 else 1504 addRegWithSubRegs(regsDefined, Reg); 1505 1506 // Verify SSA form. 1507 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1508 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1509 report("Multiple virtual register defs in SSA form", MO, MONum); 1510 1511 // Check LiveInts for a live segment, but only for virtual registers. 1512 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1513 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1514 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1515 1516 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1517 if (LiveInts->hasInterval(Reg)) { 1518 const LiveInterval &LI = LiveInts->getInterval(Reg); 1519 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1520 1521 if (LI.hasSubRanges()) { 1522 unsigned SubRegIdx = MO->getSubReg(); 1523 LaneBitmask MOMask = SubRegIdx != 0 1524 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1525 : MRI->getMaxLaneMaskForVReg(Reg); 1526 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1527 if ((SR.LaneMask & MOMask).none()) 1528 continue; 1529 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1530 } 1531 } 1532 } else { 1533 report("Virtual register has no Live interval", MO, MONum); 1534 } 1535 } 1536 } 1537 } 1538 } 1539 1540 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1541 1542 // This function gets called after visiting all instructions in a bundle. The 1543 // argument points to the bundle header. 1544 // Normal stand-alone instructions are also considered 'bundles', and this 1545 // function is called for all of them. 1546 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1547 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1548 set_union(MInfo.regsKilled, regsKilled); 1549 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1550 // Kill any masked registers. 1551 while (!regMasks.empty()) { 1552 const uint32_t *Mask = regMasks.pop_back_val(); 1553 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1554 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1555 MachineOperand::clobbersPhysReg(Mask, *I)) 1556 regsDead.push_back(*I); 1557 } 1558 set_subtract(regsLive, regsDead); regsDead.clear(); 1559 set_union(regsLive, regsDefined); regsDefined.clear(); 1560 } 1561 1562 void 1563 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1564 MBBInfoMap[MBB].regsLiveOut = regsLive; 1565 regsLive.clear(); 1566 1567 if (Indexes) { 1568 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1569 if (!(stop > lastIndex)) { 1570 report("Block ends before last instruction index", MBB); 1571 errs() << "Block ends at " << stop 1572 << " last instruction was at " << lastIndex << '\n'; 1573 } 1574 lastIndex = stop; 1575 } 1576 } 1577 1578 // Calculate the largest possible vregsPassed sets. These are the registers that 1579 // can pass through an MBB live, but may not be live every time. It is assumed 1580 // that all vregsPassed sets are empty before the call. 1581 void MachineVerifier::calcRegsPassed() { 1582 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1583 // have any vregsPassed. 1584 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1585 for (const auto &MBB : *MF) { 1586 BBInfo &MInfo = MBBInfoMap[&MBB]; 1587 if (!MInfo.reachable) 1588 continue; 1589 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1590 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1591 BBInfo &SInfo = MBBInfoMap[*SuI]; 1592 if (SInfo.addPassed(MInfo.regsLiveOut)) 1593 todo.insert(*SuI); 1594 } 1595 } 1596 1597 // Iteratively push vregsPassed to successors. This will converge to the same 1598 // final state regardless of DenseSet iteration order. 1599 while (!todo.empty()) { 1600 const MachineBasicBlock *MBB = *todo.begin(); 1601 todo.erase(MBB); 1602 BBInfo &MInfo = MBBInfoMap[MBB]; 1603 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1604 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1605 if (*SuI == MBB) 1606 continue; 1607 BBInfo &SInfo = MBBInfoMap[*SuI]; 1608 if (SInfo.addPassed(MInfo.vregsPassed)) 1609 todo.insert(*SuI); 1610 } 1611 } 1612 } 1613 1614 // Calculate the set of virtual registers that must be passed through each basic 1615 // block in order to satisfy the requirements of successor blocks. This is very 1616 // similar to calcRegsPassed, only backwards. 1617 void MachineVerifier::calcRegsRequired() { 1618 // First push live-in regs to predecessors' vregsRequired. 1619 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1620 for (const auto &MBB : *MF) { 1621 BBInfo &MInfo = MBBInfoMap[&MBB]; 1622 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1623 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1624 BBInfo &PInfo = MBBInfoMap[*PrI]; 1625 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1626 todo.insert(*PrI); 1627 } 1628 } 1629 1630 // Iteratively push vregsRequired to predecessors. This will converge to the 1631 // same final state regardless of DenseSet iteration order. 1632 while (!todo.empty()) { 1633 const MachineBasicBlock *MBB = *todo.begin(); 1634 todo.erase(MBB); 1635 BBInfo &MInfo = MBBInfoMap[MBB]; 1636 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1637 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1638 if (*PrI == MBB) 1639 continue; 1640 BBInfo &SInfo = MBBInfoMap[*PrI]; 1641 if (SInfo.addRequired(MInfo.vregsRequired)) 1642 todo.insert(*PrI); 1643 } 1644 } 1645 } 1646 1647 // Check PHI instructions at the beginning of MBB. It is assumed that 1648 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1649 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1650 BBInfo &MInfo = MBBInfoMap[&MBB]; 1651 1652 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1653 for (const MachineInstr &Phi : MBB) { 1654 if (!Phi.isPHI()) 1655 break; 1656 seen.clear(); 1657 1658 const MachineOperand &MODef = Phi.getOperand(0); 1659 if (!MODef.isReg() || !MODef.isDef()) { 1660 report("Expected first PHI operand to be a register def", &MODef, 0); 1661 continue; 1662 } 1663 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1664 MODef.isEarlyClobber() || MODef.isDebug()) 1665 report("Unexpected flag on PHI operand", &MODef, 0); 1666 unsigned DefReg = MODef.getReg(); 1667 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1668 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1669 1670 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1671 const MachineOperand &MO0 = Phi.getOperand(I); 1672 if (!MO0.isReg()) { 1673 report("Expected PHI operand to be a register", &MO0, I); 1674 continue; 1675 } 1676 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1677 MO0.isDebug() || MO0.isTied()) 1678 report("Unexpected flag on PHI operand", &MO0, I); 1679 1680 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1681 if (!MO1.isMBB()) { 1682 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1683 continue; 1684 } 1685 1686 const MachineBasicBlock &Pre = *MO1.getMBB(); 1687 if (!Pre.isSuccessor(&MBB)) { 1688 report("PHI input is not a predecessor block", &MO1, I + 1); 1689 continue; 1690 } 1691 1692 if (MInfo.reachable) { 1693 seen.insert(&Pre); 1694 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1695 if (!MO0.isUndef() && PrInfo.reachable && 1696 !PrInfo.isLiveOut(MO0.getReg())) 1697 report("PHI operand is not live-out from predecessor", &MO0, I); 1698 } 1699 } 1700 1701 // Did we see all predecessors? 1702 if (MInfo.reachable) { 1703 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1704 if (!seen.count(Pred)) { 1705 report("Missing PHI operand", &Phi); 1706 errs() << printMBBReference(*Pred) 1707 << " is a predecessor according to the CFG.\n"; 1708 } 1709 } 1710 } 1711 } 1712 } 1713 1714 void MachineVerifier::visitMachineFunctionAfter() { 1715 calcRegsPassed(); 1716 1717 for (const MachineBasicBlock &MBB : *MF) 1718 checkPHIOps(MBB); 1719 1720 // Now check liveness info if available 1721 calcRegsRequired(); 1722 1723 // Check for killed virtual registers that should be live out. 1724 for (const auto &MBB : *MF) { 1725 BBInfo &MInfo = MBBInfoMap[&MBB]; 1726 for (RegSet::iterator 1727 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1728 ++I) 1729 if (MInfo.regsKilled.count(*I)) { 1730 report("Virtual register killed in block, but needed live out.", &MBB); 1731 errs() << "Virtual register " << printReg(*I) 1732 << " is used after the block.\n"; 1733 } 1734 } 1735 1736 if (!MF->empty()) { 1737 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1738 for (RegSet::iterator 1739 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1740 ++I) { 1741 report("Virtual register defs don't dominate all uses.", MF); 1742 report_context_vreg(*I); 1743 } 1744 } 1745 1746 if (LiveVars) 1747 verifyLiveVariables(); 1748 if (LiveInts) 1749 verifyLiveIntervals(); 1750 } 1751 1752 void MachineVerifier::verifyLiveVariables() { 1753 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1754 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1755 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1756 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1757 for (const auto &MBB : *MF) { 1758 BBInfo &MInfo = MBBInfoMap[&MBB]; 1759 1760 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1761 if (MInfo.vregsRequired.count(Reg)) { 1762 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1763 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1764 errs() << "Virtual register " << printReg(Reg) 1765 << " must be live through the block.\n"; 1766 } 1767 } else { 1768 if (VI.AliveBlocks.test(MBB.getNumber())) { 1769 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1770 errs() << "Virtual register " << printReg(Reg) 1771 << " is not needed live through the block.\n"; 1772 } 1773 } 1774 } 1775 } 1776 } 1777 1778 void MachineVerifier::verifyLiveIntervals() { 1779 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1780 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1781 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1782 1783 // Spilling and splitting may leave unused registers around. Skip them. 1784 if (MRI->reg_nodbg_empty(Reg)) 1785 continue; 1786 1787 if (!LiveInts->hasInterval(Reg)) { 1788 report("Missing live interval for virtual register", MF); 1789 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1790 continue; 1791 } 1792 1793 const LiveInterval &LI = LiveInts->getInterval(Reg); 1794 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1795 verifyLiveInterval(LI); 1796 } 1797 1798 // Verify all the cached regunit intervals. 1799 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1800 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1801 verifyLiveRange(*LR, i); 1802 } 1803 1804 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1805 const VNInfo *VNI, unsigned Reg, 1806 LaneBitmask LaneMask) { 1807 if (VNI->isUnused()) 1808 return; 1809 1810 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1811 1812 if (!DefVNI) { 1813 report("Value not live at VNInfo def and not marked unused", MF); 1814 report_context(LR, Reg, LaneMask); 1815 report_context(*VNI); 1816 return; 1817 } 1818 1819 if (DefVNI != VNI) { 1820 report("Live segment at def has different VNInfo", MF); 1821 report_context(LR, Reg, LaneMask); 1822 report_context(*VNI); 1823 return; 1824 } 1825 1826 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1827 if (!MBB) { 1828 report("Invalid VNInfo definition index", MF); 1829 report_context(LR, Reg, LaneMask); 1830 report_context(*VNI); 1831 return; 1832 } 1833 1834 if (VNI->isPHIDef()) { 1835 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1836 report("PHIDef VNInfo is not defined at MBB start", MBB); 1837 report_context(LR, Reg, LaneMask); 1838 report_context(*VNI); 1839 } 1840 return; 1841 } 1842 1843 // Non-PHI def. 1844 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1845 if (!MI) { 1846 report("No instruction at VNInfo def index", MBB); 1847 report_context(LR, Reg, LaneMask); 1848 report_context(*VNI); 1849 return; 1850 } 1851 1852 if (Reg != 0) { 1853 bool hasDef = false; 1854 bool isEarlyClobber = false; 1855 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1856 if (!MOI->isReg() || !MOI->isDef()) 1857 continue; 1858 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1859 if (MOI->getReg() != Reg) 1860 continue; 1861 } else { 1862 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1863 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1864 continue; 1865 } 1866 if (LaneMask.any() && 1867 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1868 continue; 1869 hasDef = true; 1870 if (MOI->isEarlyClobber()) 1871 isEarlyClobber = true; 1872 } 1873 1874 if (!hasDef) { 1875 report("Defining instruction does not modify register", MI); 1876 report_context(LR, Reg, LaneMask); 1877 report_context(*VNI); 1878 } 1879 1880 // Early clobber defs begin at USE slots, but other defs must begin at 1881 // DEF slots. 1882 if (isEarlyClobber) { 1883 if (!VNI->def.isEarlyClobber()) { 1884 report("Early clobber def must be at an early-clobber slot", MBB); 1885 report_context(LR, Reg, LaneMask); 1886 report_context(*VNI); 1887 } 1888 } else if (!VNI->def.isRegister()) { 1889 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1890 report_context(LR, Reg, LaneMask); 1891 report_context(*VNI); 1892 } 1893 } 1894 } 1895 1896 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1897 const LiveRange::const_iterator I, 1898 unsigned Reg, LaneBitmask LaneMask) 1899 { 1900 const LiveRange::Segment &S = *I; 1901 const VNInfo *VNI = S.valno; 1902 assert(VNI && "Live segment has no valno"); 1903 1904 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1905 report("Foreign valno in live segment", MF); 1906 report_context(LR, Reg, LaneMask); 1907 report_context(S); 1908 report_context(*VNI); 1909 } 1910 1911 if (VNI->isUnused()) { 1912 report("Live segment valno is marked unused", MF); 1913 report_context(LR, Reg, LaneMask); 1914 report_context(S); 1915 } 1916 1917 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1918 if (!MBB) { 1919 report("Bad start of live segment, no basic block", MF); 1920 report_context(LR, Reg, LaneMask); 1921 report_context(S); 1922 return; 1923 } 1924 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1925 if (S.start != MBBStartIdx && S.start != VNI->def) { 1926 report("Live segment must begin at MBB entry or valno def", MBB); 1927 report_context(LR, Reg, LaneMask); 1928 report_context(S); 1929 } 1930 1931 const MachineBasicBlock *EndMBB = 1932 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1933 if (!EndMBB) { 1934 report("Bad end of live segment, no basic block", MF); 1935 report_context(LR, Reg, LaneMask); 1936 report_context(S); 1937 return; 1938 } 1939 1940 // No more checks for live-out segments. 1941 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1942 return; 1943 1944 // RegUnit intervals are allowed dead phis. 1945 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1946 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1947 return; 1948 1949 // The live segment is ending inside EndMBB 1950 const MachineInstr *MI = 1951 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1952 if (!MI) { 1953 report("Live segment doesn't end at a valid instruction", EndMBB); 1954 report_context(LR, Reg, LaneMask); 1955 report_context(S); 1956 return; 1957 } 1958 1959 // The block slot must refer to a basic block boundary. 1960 if (S.end.isBlock()) { 1961 report("Live segment ends at B slot of an instruction", EndMBB); 1962 report_context(LR, Reg, LaneMask); 1963 report_context(S); 1964 } 1965 1966 if (S.end.isDead()) { 1967 // Segment ends on the dead slot. 1968 // That means there must be a dead def. 1969 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1970 report("Live segment ending at dead slot spans instructions", EndMBB); 1971 report_context(LR, Reg, LaneMask); 1972 report_context(S); 1973 } 1974 } 1975 1976 // A live segment can only end at an early-clobber slot if it is being 1977 // redefined by an early-clobber def. 1978 if (S.end.isEarlyClobber()) { 1979 if (I+1 == LR.end() || (I+1)->start != S.end) { 1980 report("Live segment ending at early clobber slot must be " 1981 "redefined by an EC def in the same instruction", EndMBB); 1982 report_context(LR, Reg, LaneMask); 1983 report_context(S); 1984 } 1985 } 1986 1987 // The following checks only apply to virtual registers. Physreg liveness 1988 // is too weird to check. 1989 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1990 // A live segment can end with either a redefinition, a kill flag on a 1991 // use, or a dead flag on a def. 1992 bool hasRead = false; 1993 bool hasSubRegDef = false; 1994 bool hasDeadDef = false; 1995 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1996 if (!MOI->isReg() || MOI->getReg() != Reg) 1997 continue; 1998 unsigned Sub = MOI->getSubReg(); 1999 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2000 : LaneBitmask::getAll(); 2001 if (MOI->isDef()) { 2002 if (Sub != 0) { 2003 hasSubRegDef = true; 2004 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2005 // mask for subregister defs. Read-undef defs will be handled by 2006 // readsReg below. 2007 SLM = ~SLM; 2008 } 2009 if (MOI->isDead()) 2010 hasDeadDef = true; 2011 } 2012 if (LaneMask.any() && (LaneMask & SLM).none()) 2013 continue; 2014 if (MOI->readsReg()) 2015 hasRead = true; 2016 } 2017 if (S.end.isDead()) { 2018 // Make sure that the corresponding machine operand for a "dead" live 2019 // range has the dead flag. We cannot perform this check for subregister 2020 // liveranges as partially dead values are allowed. 2021 if (LaneMask.none() && !hasDeadDef) { 2022 report("Instruction ending live segment on dead slot has no dead flag", 2023 MI); 2024 report_context(LR, Reg, LaneMask); 2025 report_context(S); 2026 } 2027 } else { 2028 if (!hasRead) { 2029 // When tracking subregister liveness, the main range must start new 2030 // values on partial register writes, even if there is no read. 2031 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2032 !hasSubRegDef) { 2033 report("Instruction ending live segment doesn't read the register", 2034 MI); 2035 report_context(LR, Reg, LaneMask); 2036 report_context(S); 2037 } 2038 } 2039 } 2040 } 2041 2042 // Now check all the basic blocks in this live segment. 2043 MachineFunction::const_iterator MFI = MBB->getIterator(); 2044 // Is this live segment the beginning of a non-PHIDef VN? 2045 if (S.start == VNI->def && !VNI->isPHIDef()) { 2046 // Not live-in to any blocks. 2047 if (MBB == EndMBB) 2048 return; 2049 // Skip this block. 2050 ++MFI; 2051 } 2052 while (true) { 2053 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2054 // We don't know how to track physregs into a landing pad. 2055 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2056 MFI->isEHPad()) { 2057 if (&*MFI == EndMBB) 2058 break; 2059 ++MFI; 2060 continue; 2061 } 2062 2063 // Is VNI a PHI-def in the current block? 2064 bool IsPHI = VNI->isPHIDef() && 2065 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2066 2067 // Check that VNI is live-out of all predecessors. 2068 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2069 PE = MFI->pred_end(); PI != PE; ++PI) { 2070 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2071 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2072 2073 // All predecessors must have a live-out value. However for a phi 2074 // instruction with subregister intervals 2075 // only one of the subregisters (not necessarily the current one) needs to 2076 // be defined. 2077 if (!PVNI && (LaneMask.none() || !IsPHI) ) { 2078 report("Register not marked live out of predecessor", *PI); 2079 report_context(LR, Reg, LaneMask); 2080 report_context(*VNI); 2081 errs() << " live into " << printMBBReference(*MFI) << '@' 2082 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2083 << PEnd << '\n'; 2084 continue; 2085 } 2086 2087 // Only PHI-defs can take different predecessor values. 2088 if (!IsPHI && PVNI != VNI) { 2089 report("Different value live out of predecessor", *PI); 2090 report_context(LR, Reg, LaneMask); 2091 errs() << "Valno #" << PVNI->id << " live out of " 2092 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2093 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2094 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2095 } 2096 } 2097 if (&*MFI == EndMBB) 2098 break; 2099 ++MFI; 2100 } 2101 } 2102 2103 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2104 LaneBitmask LaneMask) { 2105 for (const VNInfo *VNI : LR.valnos) 2106 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2107 2108 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2109 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2110 } 2111 2112 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2113 unsigned Reg = LI.reg; 2114 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2115 verifyLiveRange(LI, Reg); 2116 2117 LaneBitmask Mask; 2118 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2119 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2120 if ((Mask & SR.LaneMask).any()) { 2121 report("Lane masks of sub ranges overlap in live interval", MF); 2122 report_context(LI); 2123 } 2124 if ((SR.LaneMask & ~MaxMask).any()) { 2125 report("Subrange lanemask is invalid", MF); 2126 report_context(LI); 2127 } 2128 if (SR.empty()) { 2129 report("Subrange must not be empty", MF); 2130 report_context(SR, LI.reg, SR.LaneMask); 2131 } 2132 Mask |= SR.LaneMask; 2133 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2134 if (!LI.covers(SR)) { 2135 report("A Subrange is not covered by the main range", MF); 2136 report_context(LI); 2137 } 2138 } 2139 2140 // Check the LI only has one connected component. 2141 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2142 unsigned NumComp = ConEQ.Classify(LI); 2143 if (NumComp > 1) { 2144 report("Multiple connected components in live interval", MF); 2145 report_context(LI); 2146 for (unsigned comp = 0; comp != NumComp; ++comp) { 2147 errs() << comp << ": valnos"; 2148 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2149 E = LI.vni_end(); I!=E; ++I) 2150 if (comp == ConEQ.getEqClass(*I)) 2151 errs() << ' ' << (*I)->id; 2152 errs() << '\n'; 2153 } 2154 } 2155 } 2156 2157 namespace { 2158 2159 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2160 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2161 // value is zero. 2162 // We use a bool plus an integer to capture the stack state. 2163 struct StackStateOfBB { 2164 StackStateOfBB() = default; 2165 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2166 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2167 ExitIsSetup(ExitSetup) {} 2168 2169 // Can be negative, which means we are setting up a frame. 2170 int EntryValue = 0; 2171 int ExitValue = 0; 2172 bool EntryIsSetup = false; 2173 bool ExitIsSetup = false; 2174 }; 2175 2176 } // end anonymous namespace 2177 2178 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2179 /// by a FrameDestroy <n>, stack adjustments are identical on all 2180 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2181 void MachineVerifier::verifyStackFrame() { 2182 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2183 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2184 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2185 return; 2186 2187 SmallVector<StackStateOfBB, 8> SPState; 2188 SPState.resize(MF->getNumBlockIDs()); 2189 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2190 2191 // Visit the MBBs in DFS order. 2192 for (df_ext_iterator<const MachineFunction *, 2193 df_iterator_default_set<const MachineBasicBlock *>> 2194 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2195 DFI != DFE; ++DFI) { 2196 const MachineBasicBlock *MBB = *DFI; 2197 2198 StackStateOfBB BBState; 2199 // Check the exit state of the DFS stack predecessor. 2200 if (DFI.getPathLength() >= 2) { 2201 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2202 assert(Reachable.count(StackPred) && 2203 "DFS stack predecessor is already visited.\n"); 2204 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2205 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2206 BBState.ExitValue = BBState.EntryValue; 2207 BBState.ExitIsSetup = BBState.EntryIsSetup; 2208 } 2209 2210 // Update stack state by checking contents of MBB. 2211 for (const auto &I : *MBB) { 2212 if (I.getOpcode() == FrameSetupOpcode) { 2213 if (BBState.ExitIsSetup) 2214 report("FrameSetup is after another FrameSetup", &I); 2215 BBState.ExitValue -= TII->getFrameTotalSize(I); 2216 BBState.ExitIsSetup = true; 2217 } 2218 2219 if (I.getOpcode() == FrameDestroyOpcode) { 2220 int Size = TII->getFrameTotalSize(I); 2221 if (!BBState.ExitIsSetup) 2222 report("FrameDestroy is not after a FrameSetup", &I); 2223 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2224 BBState.ExitValue; 2225 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2226 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2227 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2228 << AbsSPAdj << ">.\n"; 2229 } 2230 BBState.ExitValue += Size; 2231 BBState.ExitIsSetup = false; 2232 } 2233 } 2234 SPState[MBB->getNumber()] = BBState; 2235 2236 // Make sure the exit state of any predecessor is consistent with the entry 2237 // state. 2238 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2239 E = MBB->pred_end(); I != E; ++I) { 2240 if (Reachable.count(*I) && 2241 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2242 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2243 report("The exit stack state of a predecessor is inconsistent.", MBB); 2244 errs() << "Predecessor " << printMBBReference(*(*I)) 2245 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2246 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2247 << printMBBReference(*MBB) << " has entry state (" 2248 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2249 } 2250 } 2251 2252 // Make sure the entry state of any successor is consistent with the exit 2253 // state. 2254 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2255 E = MBB->succ_end(); I != E; ++I) { 2256 if (Reachable.count(*I) && 2257 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2258 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2259 report("The entry stack state of a successor is inconsistent.", MBB); 2260 errs() << "Successor " << printMBBReference(*(*I)) 2261 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2262 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2263 << printMBBReference(*MBB) << " has exit state (" 2264 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2265 } 2266 } 2267 2268 // Make sure a basic block with return ends with zero stack adjustment. 2269 if (!MBB->empty() && MBB->back().isReturn()) { 2270 if (BBState.ExitIsSetup) 2271 report("A return block ends with a FrameSetup.", MBB); 2272 if (BBState.ExitValue) 2273 report("A return block ends with a nonzero stack adjustment.", MBB); 2274 } 2275 } 2276 } 2277