1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 20 // command-line option -verify-machineinstrs, or by defining the environment 21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 22 // the verifier errors. 23 //===----------------------------------------------------------------------===// 24 25 #include "LiveRangeCalc.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 234 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 235 void verifyPreISelGenericInstruction(const MachineInstr *MI); 236 void visitMachineInstrBefore(const MachineInstr *MI); 237 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 238 void visitMachineInstrAfter(const MachineInstr *MI); 239 void visitMachineBundleAfter(const MachineInstr *MI); 240 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 241 void visitMachineFunctionAfter(); 242 243 void report(const char *msg, const MachineFunction *MF); 244 void report(const char *msg, const MachineBasicBlock *MBB); 245 void report(const char *msg, const MachineInstr *MI); 246 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 247 LLT MOVRegType = LLT{}); 248 249 void report_context(const LiveInterval &LI) const; 250 void report_context(const LiveRange &LR, unsigned VRegUnit, 251 LaneBitmask LaneMask) const; 252 void report_context(const LiveRange::Segment &S) const; 253 void report_context(const VNInfo &VNI) const; 254 void report_context(SlotIndex Pos) const; 255 void report_context(MCPhysReg PhysReg) const; 256 void report_context_liverange(const LiveRange &LR) const; 257 void report_context_lanemask(LaneBitmask LaneMask) const; 258 void report_context_vreg(unsigned VReg) const; 259 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 260 261 void verifyInlineAsm(const MachineInstr *MI); 262 263 void checkLiveness(const MachineOperand *MO, unsigned MONum); 264 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 265 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 LaneBitmask LaneMask = LaneBitmask::getNone()); 267 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 268 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 269 bool SubRangeCheck = false, 270 LaneBitmask LaneMask = LaneBitmask::getNone()); 271 272 void markReachable(const MachineBasicBlock *MBB); 273 void calcRegsPassed(); 274 void checkPHIOps(const MachineBasicBlock &MBB); 275 276 void calcRegsRequired(); 277 void verifyLiveVariables(); 278 void verifyLiveIntervals(); 279 void verifyLiveInterval(const LiveInterval&); 280 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 281 LaneBitmask); 282 void verifyLiveRangeSegment(const LiveRange&, 283 const LiveRange::const_iterator I, unsigned, 284 LaneBitmask); 285 void verifyLiveRange(const LiveRange&, unsigned, 286 LaneBitmask LaneMask = LaneBitmask::getNone()); 287 288 void verifyStackFrame(); 289 290 void verifySlotIndexes() const; 291 void verifyProperties(const MachineFunction &MF); 292 }; 293 294 struct MachineVerifierPass : public MachineFunctionPass { 295 static char ID; // Pass ID, replacement for typeid 296 297 const std::string Banner; 298 299 MachineVerifierPass(std::string banner = std::string()) 300 : MachineFunctionPass(ID), Banner(std::move(banner)) { 301 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 302 } 303 304 void getAnalysisUsage(AnalysisUsage &AU) const override { 305 AU.setPreservesAll(); 306 MachineFunctionPass::getAnalysisUsage(AU); 307 } 308 309 bool runOnMachineFunction(MachineFunction &MF) override { 310 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 311 if (FoundErrors) 312 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 313 return false; 314 } 315 }; 316 317 } // end anonymous namespace 318 319 char MachineVerifierPass::ID = 0; 320 321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 322 "Verify generated machine code", false, false) 323 324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 325 return new MachineVerifierPass(Banner); 326 } 327 328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 329 const { 330 MachineFunction &MF = const_cast<MachineFunction&>(*this); 331 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 332 if (AbortOnErrors && FoundErrors) 333 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 334 return FoundErrors == 0; 335 } 336 337 void MachineVerifier::verifySlotIndexes() const { 338 if (Indexes == nullptr) 339 return; 340 341 // Ensure the IdxMBB list is sorted by slot indexes. 342 SlotIndex Last; 343 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 344 E = Indexes->MBBIndexEnd(); I != E; ++I) { 345 assert(!Last.isValid() || I->first > Last); 346 Last = I->first; 347 } 348 } 349 350 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 351 // If a pass has introduced virtual registers without clearing the 352 // NoVRegs property (or set it without allocating the vregs) 353 // then report an error. 354 if (MF.getProperties().hasProperty( 355 MachineFunctionProperties::Property::NoVRegs) && 356 MRI->getNumVirtRegs()) 357 report("Function has NoVRegs property but there are VReg operands", &MF); 358 } 359 360 unsigned MachineVerifier::verify(MachineFunction &MF) { 361 foundErrors = 0; 362 363 this->MF = &MF; 364 TM = &MF.getTarget(); 365 TII = MF.getSubtarget().getInstrInfo(); 366 TRI = MF.getSubtarget().getRegisterInfo(); 367 MRI = &MF.getRegInfo(); 368 369 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 370 MachineFunctionProperties::Property::FailedISel); 371 372 // If we're mid-GlobalISel and we already triggered the fallback path then 373 // it's expected that the MIR is somewhat broken but that's ok since we'll 374 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 375 if (isFunctionFailedISel) 376 return foundErrors; 377 378 isFunctionRegBankSelected = 379 !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::RegBankSelected); 382 isFunctionSelected = !isFunctionFailedISel && 383 MF.getProperties().hasProperty( 384 MachineFunctionProperties::Property::Selected); 385 LiveVars = nullptr; 386 LiveInts = nullptr; 387 LiveStks = nullptr; 388 Indexes = nullptr; 389 if (PASS) { 390 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 391 // We don't want to verify LiveVariables if LiveIntervals is available. 392 if (!LiveInts) 393 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 394 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 395 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 396 } 397 398 verifySlotIndexes(); 399 400 verifyProperties(MF); 401 402 visitMachineFunctionBefore(); 403 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 404 MFI!=MFE; ++MFI) { 405 visitMachineBasicBlockBefore(&*MFI); 406 // Keep track of the current bundle header. 407 const MachineInstr *CurBundle = nullptr; 408 // Do we expect the next instruction to be part of the same bundle? 409 bool InBundle = false; 410 411 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 412 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 413 if (MBBI->getParent() != &*MFI) { 414 report("Bad instruction parent pointer", &*MFI); 415 errs() << "Instruction: " << *MBBI; 416 continue; 417 } 418 419 // Check for consistent bundle flags. 420 if (InBundle && !MBBI->isBundledWithPred()) 421 report("Missing BundledPred flag, " 422 "BundledSucc was set on predecessor", 423 &*MBBI); 424 if (!InBundle && MBBI->isBundledWithPred()) 425 report("BundledPred flag is set, " 426 "but BundledSucc not set on predecessor", 427 &*MBBI); 428 429 // Is this a bundle header? 430 if (!MBBI->isInsideBundle()) { 431 if (CurBundle) 432 visitMachineBundleAfter(CurBundle); 433 CurBundle = &*MBBI; 434 visitMachineBundleBefore(CurBundle); 435 } else if (!CurBundle) 436 report("No bundle header", &*MBBI); 437 visitMachineInstrBefore(&*MBBI); 438 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 439 const MachineInstr &MI = *MBBI; 440 const MachineOperand &Op = MI.getOperand(I); 441 if (Op.getParent() != &MI) { 442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 443 // functions when replacing operands of a MachineInstr. 444 report("Instruction has operand with wrong parent set", &MI); 445 } 446 447 visitMachineOperand(&Op, I); 448 } 449 450 visitMachineInstrAfter(&*MBBI); 451 452 // Was this the last bundled instruction? 453 InBundle = MBBI->isBundledWithSucc(); 454 } 455 if (CurBundle) 456 visitMachineBundleAfter(CurBundle); 457 if (InBundle) 458 report("BundledSucc flag set on last instruction in block", &MFI->back()); 459 visitMachineBasicBlockAfter(&*MFI); 460 } 461 visitMachineFunctionAfter(); 462 463 // Clean up. 464 regsLive.clear(); 465 regsDefined.clear(); 466 regsDead.clear(); 467 regsKilled.clear(); 468 regMasks.clear(); 469 MBBInfoMap.clear(); 470 471 return foundErrors; 472 } 473 474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 475 assert(MF); 476 errs() << '\n'; 477 if (!foundErrors++) { 478 if (Banner) 479 errs() << "# " << Banner << '\n'; 480 if (LiveInts != nullptr) 481 LiveInts->print(errs()); 482 else 483 MF->print(errs(), Indexes); 484 } 485 errs() << "*** Bad machine code: " << msg << " ***\n" 486 << "- function: " << MF->getName() << "\n"; 487 } 488 489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 490 assert(MBB); 491 report(msg, MBB->getParent()); 492 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 493 << MBB->getName() << " (" << (const void *)MBB << ')'; 494 if (Indexes) 495 errs() << " [" << Indexes->getMBBStartIdx(MBB) 496 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 497 errs() << '\n'; 498 } 499 500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 501 assert(MI); 502 report(msg, MI->getParent()); 503 errs() << "- instruction: "; 504 if (Indexes && Indexes->hasIndex(*MI)) 505 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 506 MI->print(errs(), /*SkipOpers=*/true); 507 } 508 509 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 510 unsigned MONum, LLT MOVRegType) { 511 assert(MO); 512 report(msg, MO->getParent()); 513 errs() << "- operand " << MONum << ": "; 514 MO->print(errs(), MOVRegType, TRI); 515 errs() << "\n"; 516 } 517 518 void MachineVerifier::report_context(SlotIndex Pos) const { 519 errs() << "- at: " << Pos << '\n'; 520 } 521 522 void MachineVerifier::report_context(const LiveInterval &LI) const { 523 errs() << "- interval: " << LI << '\n'; 524 } 525 526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 527 LaneBitmask LaneMask) const { 528 report_context_liverange(LR); 529 report_context_vreg_regunit(VRegUnit); 530 if (LaneMask.any()) 531 report_context_lanemask(LaneMask); 532 } 533 534 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 535 errs() << "- segment: " << S << '\n'; 536 } 537 538 void MachineVerifier::report_context(const VNInfo &VNI) const { 539 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 540 } 541 542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 543 errs() << "- liverange: " << LR << '\n'; 544 } 545 546 void MachineVerifier::report_context(MCPhysReg PReg) const { 547 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 548 } 549 550 void MachineVerifier::report_context_vreg(unsigned VReg) const { 551 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 552 } 553 554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 555 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 556 report_context_vreg(VRegOrUnit); 557 } else { 558 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 559 } 560 } 561 562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 563 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 564 } 565 566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 567 BBInfo &MInfo = MBBInfoMap[MBB]; 568 if (!MInfo.reachable) { 569 MInfo.reachable = true; 570 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 571 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 572 markReachable(*SuI); 573 } 574 } 575 576 void MachineVerifier::visitMachineFunctionBefore() { 577 lastIndex = SlotIndex(); 578 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 579 : TRI->getReservedRegs(*MF); 580 581 if (!MF->empty()) 582 markReachable(&MF->front()); 583 584 // Build a set of the basic blocks in the function. 585 FunctionBlocks.clear(); 586 for (const auto &MBB : *MF) { 587 FunctionBlocks.insert(&MBB); 588 BBInfo &MInfo = MBBInfoMap[&MBB]; 589 590 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 591 if (MInfo.Preds.size() != MBB.pred_size()) 592 report("MBB has duplicate entries in its predecessor list.", &MBB); 593 594 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 595 if (MInfo.Succs.size() != MBB.succ_size()) 596 report("MBB has duplicate entries in its successor list.", &MBB); 597 } 598 599 // Check that the register use lists are sane. 600 MRI->verifyUseLists(); 601 602 if (!MF->empty()) 603 verifyStackFrame(); 604 } 605 606 // Does iterator point to a and b as the first two elements? 607 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 608 const MachineBasicBlock *a, const MachineBasicBlock *b) { 609 if (*i == a) 610 return *++i == b; 611 if (*i == b) 612 return *++i == a; 613 return false; 614 } 615 616 void 617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 618 FirstTerminator = nullptr; 619 FirstNonPHI = nullptr; 620 621 if (!MF->getProperties().hasProperty( 622 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 623 // If this block has allocatable physical registers live-in, check that 624 // it is an entry block or landing pad. 625 for (const auto &LI : MBB->liveins()) { 626 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 627 MBB->getIterator() != MBB->getParent()->begin()) { 628 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 629 report_context(LI.PhysReg); 630 } 631 } 632 } 633 634 // Count the number of landing pad successors. 635 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 636 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 637 E = MBB->succ_end(); I != E; ++I) { 638 if ((*I)->isEHPad()) 639 LandingPadSuccs.insert(*I); 640 if (!FunctionBlocks.count(*I)) 641 report("MBB has successor that isn't part of the function.", MBB); 642 if (!MBBInfoMap[*I].Preds.count(MBB)) { 643 report("Inconsistent CFG", MBB); 644 errs() << "MBB is not in the predecessor list of the successor " 645 << printMBBReference(*(*I)) << ".\n"; 646 } 647 } 648 649 // Check the predecessor list. 650 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 651 E = MBB->pred_end(); I != E; ++I) { 652 if (!FunctionBlocks.count(*I)) 653 report("MBB has predecessor that isn't part of the function.", MBB); 654 if (!MBBInfoMap[*I].Succs.count(MBB)) { 655 report("Inconsistent CFG", MBB); 656 errs() << "MBB is not in the successor list of the predecessor " 657 << printMBBReference(*(*I)) << ".\n"; 658 } 659 } 660 661 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 662 const BasicBlock *BB = MBB->getBasicBlock(); 663 const Function &F = MF->getFunction(); 664 if (LandingPadSuccs.size() > 1 && 665 !(AsmInfo && 666 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 667 BB && isa<SwitchInst>(BB->getTerminator())) && 668 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 669 report("MBB has more than one landing pad successor", MBB); 670 671 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 672 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 673 SmallVector<MachineOperand, 4> Cond; 674 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 675 Cond)) { 676 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 677 // check whether its answers match up with reality. 678 if (!TBB && !FBB) { 679 // Block falls through to its successor. 680 MachineFunction::const_iterator MBBI = MBB->getIterator(); 681 ++MBBI; 682 if (MBBI == MF->end()) { 683 // It's possible that the block legitimately ends with a noreturn 684 // call or an unreachable, in which case it won't actually fall 685 // out the bottom of the function. 686 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 687 // It's possible that the block legitimately ends with a noreturn 688 // call or an unreachable, in which case it won't actually fall 689 // out of the block. 690 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 691 report("MBB exits via unconditional fall-through but doesn't have " 692 "exactly one CFG successor!", MBB); 693 } else if (!MBB->isSuccessor(&*MBBI)) { 694 report("MBB exits via unconditional fall-through but its successor " 695 "differs from its CFG successor!", MBB); 696 } 697 if (!MBB->empty() && MBB->back().isBarrier() && 698 !TII->isPredicated(MBB->back())) { 699 report("MBB exits via unconditional fall-through but ends with a " 700 "barrier instruction!", MBB); 701 } 702 if (!Cond.empty()) { 703 report("MBB exits via unconditional fall-through but has a condition!", 704 MBB); 705 } 706 } else if (TBB && !FBB && Cond.empty()) { 707 // Block unconditionally branches somewhere. 708 // If the block has exactly one successor, that happens to be a 709 // landingpad, accept it as valid control flow. 710 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 711 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 712 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 713 report("MBB exits via unconditional branch but doesn't have " 714 "exactly one CFG successor!", MBB); 715 } else if (!MBB->isSuccessor(TBB)) { 716 report("MBB exits via unconditional branch but the CFG " 717 "successor doesn't match the actual successor!", MBB); 718 } 719 if (MBB->empty()) { 720 report("MBB exits via unconditional branch but doesn't contain " 721 "any instructions!", MBB); 722 } else if (!MBB->back().isBarrier()) { 723 report("MBB exits via unconditional branch but doesn't end with a " 724 "barrier instruction!", MBB); 725 } else if (!MBB->back().isTerminator()) { 726 report("MBB exits via unconditional branch but the branch isn't a " 727 "terminator instruction!", MBB); 728 } 729 } else if (TBB && !FBB && !Cond.empty()) { 730 // Block conditionally branches somewhere, otherwise falls through. 731 MachineFunction::const_iterator MBBI = MBB->getIterator(); 732 ++MBBI; 733 if (MBBI == MF->end()) { 734 report("MBB conditionally falls through out of function!", MBB); 735 } else if (MBB->succ_size() == 1) { 736 // A conditional branch with only one successor is weird, but allowed. 737 if (&*MBBI != TBB) 738 report("MBB exits via conditional branch/fall-through but only has " 739 "one CFG successor!", MBB); 740 else if (TBB != *MBB->succ_begin()) 741 report("MBB exits via conditional branch/fall-through but the CFG " 742 "successor don't match the actual successor!", MBB); 743 } else if (MBB->succ_size() != 2) { 744 report("MBB exits via conditional branch/fall-through but doesn't have " 745 "exactly two CFG successors!", MBB); 746 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 747 report("MBB exits via conditional branch/fall-through but the CFG " 748 "successors don't match the actual successors!", MBB); 749 } 750 if (MBB->empty()) { 751 report("MBB exits via conditional branch/fall-through but doesn't " 752 "contain any instructions!", MBB); 753 } else if (MBB->back().isBarrier()) { 754 report("MBB exits via conditional branch/fall-through but ends with a " 755 "barrier instruction!", MBB); 756 } else if (!MBB->back().isTerminator()) { 757 report("MBB exits via conditional branch/fall-through but the branch " 758 "isn't a terminator instruction!", MBB); 759 } 760 } else if (TBB && FBB) { 761 // Block conditionally branches somewhere, otherwise branches 762 // somewhere else. 763 if (MBB->succ_size() == 1) { 764 // A conditional branch with only one successor is weird, but allowed. 765 if (FBB != TBB) 766 report("MBB exits via conditional branch/branch through but only has " 767 "one CFG successor!", MBB); 768 else if (TBB != *MBB->succ_begin()) 769 report("MBB exits via conditional branch/branch through but the CFG " 770 "successor don't match the actual successor!", MBB); 771 } else if (MBB->succ_size() != 2) { 772 report("MBB exits via conditional branch/branch but doesn't have " 773 "exactly two CFG successors!", MBB); 774 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 775 report("MBB exits via conditional branch/branch but the CFG " 776 "successors don't match the actual successors!", MBB); 777 } 778 if (MBB->empty()) { 779 report("MBB exits via conditional branch/branch but doesn't " 780 "contain any instructions!", MBB); 781 } else if (!MBB->back().isBarrier()) { 782 report("MBB exits via conditional branch/branch but doesn't end with a " 783 "barrier instruction!", MBB); 784 } else if (!MBB->back().isTerminator()) { 785 report("MBB exits via conditional branch/branch but the branch " 786 "isn't a terminator instruction!", MBB); 787 } 788 if (Cond.empty()) { 789 report("MBB exits via conditional branch/branch but there's no " 790 "condition!", MBB); 791 } 792 } else { 793 report("AnalyzeBranch returned invalid data!", MBB); 794 } 795 } 796 797 regsLive.clear(); 798 if (MRI->tracksLiveness()) { 799 for (const auto &LI : MBB->liveins()) { 800 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 801 report("MBB live-in list contains non-physical register", MBB); 802 continue; 803 } 804 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 805 SubRegs.isValid(); ++SubRegs) 806 regsLive.insert(*SubRegs); 807 } 808 } 809 810 const MachineFrameInfo &MFI = MF->getFrameInfo(); 811 BitVector PR = MFI.getPristineRegs(*MF); 812 for (unsigned I : PR.set_bits()) { 813 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 814 SubRegs.isValid(); ++SubRegs) 815 regsLive.insert(*SubRegs); 816 } 817 818 regsKilled.clear(); 819 regsDefined.clear(); 820 821 if (Indexes) 822 lastIndex = Indexes->getMBBStartIdx(MBB); 823 } 824 825 // This function gets called for all bundle headers, including normal 826 // stand-alone unbundled instructions. 827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 828 if (Indexes && Indexes->hasIndex(*MI)) { 829 SlotIndex idx = Indexes->getInstructionIndex(*MI); 830 if (!(idx > lastIndex)) { 831 report("Instruction index out of order", MI); 832 errs() << "Last instruction was at " << lastIndex << '\n'; 833 } 834 lastIndex = idx; 835 } 836 837 // Ensure non-terminators don't follow terminators. 838 // Ignore predicated terminators formed by if conversion. 839 // FIXME: If conversion shouldn't need to violate this rule. 840 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 841 if (!FirstTerminator) 842 FirstTerminator = MI; 843 } else if (FirstTerminator) { 844 report("Non-terminator instruction after the first terminator", MI); 845 errs() << "First terminator was:\t" << *FirstTerminator; 846 } 847 } 848 849 // The operands on an INLINEASM instruction must follow a template. 850 // Verify that the flag operands make sense. 851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 852 // The first two operands on INLINEASM are the asm string and global flags. 853 if (MI->getNumOperands() < 2) { 854 report("Too few operands on inline asm", MI); 855 return; 856 } 857 if (!MI->getOperand(0).isSymbol()) 858 report("Asm string must be an external symbol", MI); 859 if (!MI->getOperand(1).isImm()) 860 report("Asm flags must be an immediate", MI); 861 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 862 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 863 // and Extra_IsConvergent = 32. 864 if (!isUInt<6>(MI->getOperand(1).getImm())) 865 report("Unknown asm flags", &MI->getOperand(1), 1); 866 867 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 868 869 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 870 unsigned NumOps; 871 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 872 const MachineOperand &MO = MI->getOperand(OpNo); 873 // There may be implicit ops after the fixed operands. 874 if (!MO.isImm()) 875 break; 876 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 877 } 878 879 if (OpNo > MI->getNumOperands()) 880 report("Missing operands in last group", MI); 881 882 // An optional MDNode follows the groups. 883 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 884 ++OpNo; 885 886 // All trailing operands must be implicit registers. 887 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 888 const MachineOperand &MO = MI->getOperand(OpNo); 889 if (!MO.isReg() || !MO.isImplicit()) 890 report("Expected implicit register after groups", &MO, OpNo); 891 } 892 } 893 894 /// Check that types are consistent when two operands need to have the same 895 /// number of vector elements. 896 /// \return true if the types are valid. 897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 898 const MachineInstr *MI) { 899 if (Ty0.isVector() != Ty1.isVector()) { 900 report("operand types must be all-vector or all-scalar", MI); 901 // Generally we try to report as many issues as possible at once, but in 902 // this case it's not clear what should we be comparing the size of the 903 // scalar with: the size of the whole vector or its lane. Instead of 904 // making an arbitrary choice and emitting not so helpful message, let's 905 // avoid the extra noise and stop here. 906 return false; 907 } 908 909 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 910 report("operand types must preserve number of vector elements", MI); 911 return false; 912 } 913 914 return true; 915 } 916 917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 918 if (isFunctionSelected) 919 report("Unexpected generic instruction in a Selected function", MI); 920 921 const MCInstrDesc &MCID = MI->getDesc(); 922 unsigned NumOps = MI->getNumOperands(); 923 924 // Check types. 925 SmallVector<LLT, 4> Types; 926 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 927 I != E; ++I) { 928 if (!MCID.OpInfo[I].isGenericType()) 929 continue; 930 // Generic instructions specify type equality constraints between some of 931 // their operands. Make sure these are consistent. 932 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 933 Types.resize(std::max(TypeIdx + 1, Types.size())); 934 935 const MachineOperand *MO = &MI->getOperand(I); 936 if (!MO->isReg()) { 937 report("generic instruction must use register operands", MI); 938 continue; 939 } 940 941 LLT OpTy = MRI->getType(MO->getReg()); 942 // Don't report a type mismatch if there is no actual mismatch, only a 943 // type missing, to reduce noise: 944 if (OpTy.isValid()) { 945 // Only the first valid type for a type index will be printed: don't 946 // overwrite it later so it's always clear which type was expected: 947 if (!Types[TypeIdx].isValid()) 948 Types[TypeIdx] = OpTy; 949 else if (Types[TypeIdx] != OpTy) 950 report("Type mismatch in generic instruction", MO, I, OpTy); 951 } else { 952 // Generic instructions must have types attached to their operands. 953 report("Generic instruction is missing a virtual register type", MO, I); 954 } 955 } 956 957 // Generic opcodes must not have physical register operands. 958 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 959 const MachineOperand *MO = &MI->getOperand(I); 960 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 961 report("Generic instruction cannot have physical register", MO, I); 962 } 963 964 // Avoid out of bounds in checks below. This was already reported earlier. 965 if (MI->getNumOperands() < MCID.getNumOperands()) 966 return; 967 968 StringRef ErrorInfo; 969 if (!TII->verifyInstruction(*MI, ErrorInfo)) 970 report(ErrorInfo.data(), MI); 971 972 // Verify properties of various specific instruction types 973 switch (MI->getOpcode()) { 974 case TargetOpcode::G_CONSTANT: 975 case TargetOpcode::G_FCONSTANT: { 976 if (MI->getNumOperands() < MCID.getNumOperands()) 977 break; 978 979 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 980 if (DstTy.isVector()) 981 report("Instruction cannot use a vector result type", MI); 982 983 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 984 if (!MI->getOperand(1).isCImm()) { 985 report("G_CONSTANT operand must be cimm", MI); 986 break; 987 } 988 989 const ConstantInt *CI = MI->getOperand(1).getCImm(); 990 if (CI->getBitWidth() != DstTy.getSizeInBits()) 991 report("inconsistent constant size", MI); 992 } else { 993 if (!MI->getOperand(1).isFPImm()) { 994 report("G_FCONSTANT operand must be fpimm", MI); 995 break; 996 } 997 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 998 999 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1000 DstTy.getSizeInBits()) { 1001 report("inconsistent constant size", MI); 1002 } 1003 } 1004 1005 break; 1006 } 1007 case TargetOpcode::G_LOAD: 1008 case TargetOpcode::G_STORE: 1009 case TargetOpcode::G_ZEXTLOAD: 1010 case TargetOpcode::G_SEXTLOAD: { 1011 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1012 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1013 if (!PtrTy.isPointer()) 1014 report("Generic memory instruction must access a pointer", MI); 1015 1016 // Generic loads and stores must have a single MachineMemOperand 1017 // describing that access. 1018 if (!MI->hasOneMemOperand()) { 1019 report("Generic instruction accessing memory must have one mem operand", 1020 MI); 1021 } else { 1022 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1023 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1024 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1025 if (MMO.getSize() * 8 >= ValTy.getSizeInBits()) 1026 report("Generic extload must have a narrower memory type", MI); 1027 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1028 if (MMO.getSize() > (ValTy.getSizeInBits() + 7) / 8) 1029 report("load memory size cannot exceed result size", MI); 1030 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1031 if ((ValTy.getSizeInBits() + 7) / 8 < MMO.getSize()) 1032 report("store memory size cannot exceed value size", MI); 1033 } 1034 } 1035 1036 break; 1037 } 1038 case TargetOpcode::G_PHI: { 1039 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1040 if (!DstTy.isValid() || 1041 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1042 [this, &DstTy](const MachineOperand &MO) { 1043 if (!MO.isReg()) 1044 return true; 1045 LLT Ty = MRI->getType(MO.getReg()); 1046 if (!Ty.isValid() || (Ty != DstTy)) 1047 return false; 1048 return true; 1049 })) 1050 report("Generic Instruction G_PHI has operands with incompatible/missing " 1051 "types", 1052 MI); 1053 break; 1054 } 1055 case TargetOpcode::G_BITCAST: { 1056 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1057 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1058 if (!DstTy.isValid() || !SrcTy.isValid()) 1059 break; 1060 1061 if (SrcTy.isPointer() != DstTy.isPointer()) 1062 report("bitcast cannot convert between pointers and other types", MI); 1063 1064 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1065 report("bitcast sizes must match", MI); 1066 break; 1067 } 1068 case TargetOpcode::G_INTTOPTR: 1069 case TargetOpcode::G_PTRTOINT: 1070 case TargetOpcode::G_ADDRSPACE_CAST: { 1071 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1072 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1073 if (!DstTy.isValid() || !SrcTy.isValid()) 1074 break; 1075 1076 verifyVectorElementMatch(DstTy, SrcTy, MI); 1077 1078 DstTy = DstTy.getScalarType(); 1079 SrcTy = SrcTy.getScalarType(); 1080 1081 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1082 if (!DstTy.isPointer()) 1083 report("inttoptr result type must be a pointer", MI); 1084 if (SrcTy.isPointer()) 1085 report("inttoptr source type must not be a pointer", MI); 1086 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1087 if (!SrcTy.isPointer()) 1088 report("ptrtoint source type must be a pointer", MI); 1089 if (DstTy.isPointer()) 1090 report("ptrtoint result type must not be a pointer", MI); 1091 } else { 1092 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1093 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1094 report("addrspacecast types must be pointers", MI); 1095 else { 1096 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1097 report("addrspacecast must convert different address spaces", MI); 1098 } 1099 } 1100 1101 break; 1102 } 1103 case TargetOpcode::G_GEP: { 1104 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1105 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1106 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1107 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1108 break; 1109 1110 if (!PtrTy.getScalarType().isPointer()) 1111 report("gep first operand must be a pointer", MI); 1112 1113 if (OffsetTy.getScalarType().isPointer()) 1114 report("gep offset operand must not be a pointer", MI); 1115 1116 // TODO: Is the offset allowed to be a scalar with a vector? 1117 break; 1118 } 1119 case TargetOpcode::G_SEXT: 1120 case TargetOpcode::G_ZEXT: 1121 case TargetOpcode::G_ANYEXT: 1122 case TargetOpcode::G_TRUNC: 1123 case TargetOpcode::G_FPEXT: 1124 case TargetOpcode::G_FPTRUNC: { 1125 // Number of operands and presense of types is already checked (and 1126 // reported in case of any issues), so no need to report them again. As 1127 // we're trying to report as many issues as possible at once, however, the 1128 // instructions aren't guaranteed to have the right number of operands or 1129 // types attached to them at this point 1130 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1131 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1132 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1133 if (!DstTy.isValid() || !SrcTy.isValid()) 1134 break; 1135 1136 LLT DstElTy = DstTy.getScalarType(); 1137 LLT SrcElTy = SrcTy.getScalarType(); 1138 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1139 report("Generic extend/truncate can not operate on pointers", MI); 1140 1141 verifyVectorElementMatch(DstTy, SrcTy, MI); 1142 1143 unsigned DstSize = DstElTy.getSizeInBits(); 1144 unsigned SrcSize = SrcElTy.getSizeInBits(); 1145 switch (MI->getOpcode()) { 1146 default: 1147 if (DstSize <= SrcSize) 1148 report("Generic extend has destination type no larger than source", MI); 1149 break; 1150 case TargetOpcode::G_TRUNC: 1151 case TargetOpcode::G_FPTRUNC: 1152 if (DstSize >= SrcSize) 1153 report("Generic truncate has destination type no smaller than source", 1154 MI); 1155 break; 1156 } 1157 break; 1158 } 1159 case TargetOpcode::G_SELECT: { 1160 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1161 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1162 if (!SelTy.isValid() || !CondTy.isValid()) 1163 break; 1164 1165 // Scalar condition select on a vector is valid. 1166 if (CondTy.isVector()) 1167 verifyVectorElementMatch(SelTy, CondTy, MI); 1168 break; 1169 } 1170 case TargetOpcode::G_MERGE_VALUES: { 1171 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1172 // e.g. s2N = MERGE sN, sN 1173 // Merging multiple scalars into a vector is not allowed, should use 1174 // G_BUILD_VECTOR for that. 1175 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1176 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1177 if (DstTy.isVector() || SrcTy.isVector()) 1178 report("G_MERGE_VALUES cannot operate on vectors", MI); 1179 break; 1180 } 1181 case TargetOpcode::G_UNMERGE_VALUES: { 1182 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1183 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1184 // For now G_UNMERGE can split vectors. 1185 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1186 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1187 report("G_UNMERGE_VALUES destination types do not match", MI); 1188 } 1189 if (SrcTy.getSizeInBits() != 1190 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1191 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1192 MI); 1193 } 1194 break; 1195 } 1196 case TargetOpcode::G_BUILD_VECTOR: { 1197 // Source types must be scalars, dest type a vector. Total size of scalars 1198 // must match the dest vector size. 1199 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1200 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1201 if (!DstTy.isVector() || SrcEltTy.isVector()) 1202 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1203 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1204 if (MRI->getType(MI->getOperand(1).getReg()) != 1205 MRI->getType(MI->getOperand(i).getReg())) 1206 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1207 } 1208 if (DstTy.getSizeInBits() != 1209 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1210 report("G_BUILD_VECTOR src operands total size don't match dest " 1211 "size.", 1212 MI); 1213 break; 1214 } 1215 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1216 // Source types must be scalars, dest type a vector. Scalar types must be 1217 // larger than the dest vector elt type, as this is a truncating operation. 1218 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1219 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1220 if (!DstTy.isVector() || SrcEltTy.isVector()) 1221 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1222 MI); 1223 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1224 if (MRI->getType(MI->getOperand(1).getReg()) != 1225 MRI->getType(MI->getOperand(i).getReg())) 1226 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1227 MI); 1228 } 1229 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1230 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1231 "dest elt type", 1232 MI); 1233 break; 1234 } 1235 case TargetOpcode::G_CONCAT_VECTORS: { 1236 // Source types should be vectors, and total size should match the dest 1237 // vector size. 1238 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1239 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1240 if (!DstTy.isVector() || !SrcTy.isVector()) 1241 report("G_CONCAT_VECTOR requires vector source and destination operands", 1242 MI); 1243 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1244 if (MRI->getType(MI->getOperand(1).getReg()) != 1245 MRI->getType(MI->getOperand(i).getReg())) 1246 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1247 } 1248 if (DstTy.getNumElements() != 1249 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1250 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1251 break; 1252 } 1253 case TargetOpcode::G_ICMP: 1254 case TargetOpcode::G_FCMP: { 1255 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1256 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1257 1258 if ((DstTy.isVector() != SrcTy.isVector()) || 1259 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1260 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1261 1262 break; 1263 } 1264 case TargetOpcode::G_EXTRACT: { 1265 const MachineOperand &SrcOp = MI->getOperand(1); 1266 if (!SrcOp.isReg()) { 1267 report("extract source must be a register", MI); 1268 break; 1269 } 1270 1271 const MachineOperand &OffsetOp = MI->getOperand(2); 1272 if (!OffsetOp.isImm()) { 1273 report("extract offset must be a constant", MI); 1274 break; 1275 } 1276 1277 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1278 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1279 if (SrcSize == DstSize) 1280 report("extract source must be larger than result", MI); 1281 1282 if (DstSize + OffsetOp.getImm() > SrcSize) 1283 report("extract reads past end of register", MI); 1284 break; 1285 } 1286 default: 1287 break; 1288 } 1289 } 1290 1291 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1292 const MCInstrDesc &MCID = MI->getDesc(); 1293 if (MI->getNumOperands() < MCID.getNumOperands()) { 1294 report("Too few operands", MI); 1295 errs() << MCID.getNumOperands() << " operands expected, but " 1296 << MI->getNumOperands() << " given.\n"; 1297 } 1298 1299 if (MI->isPHI()) { 1300 if (MF->getProperties().hasProperty( 1301 MachineFunctionProperties::Property::NoPHIs)) 1302 report("Found PHI instruction with NoPHIs property set", MI); 1303 1304 if (FirstNonPHI) 1305 report("Found PHI instruction after non-PHI", MI); 1306 } else if (FirstNonPHI == nullptr) 1307 FirstNonPHI = MI; 1308 1309 // Check the tied operands. 1310 if (MI->isInlineAsm()) 1311 verifyInlineAsm(MI); 1312 1313 // Check the MachineMemOperands for basic consistency. 1314 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 1315 E = MI->memoperands_end(); 1316 I != E; ++I) { 1317 if ((*I)->isLoad() && !MI->mayLoad()) 1318 report("Missing mayLoad flag", MI); 1319 if ((*I)->isStore() && !MI->mayStore()) 1320 report("Missing mayStore flag", MI); 1321 } 1322 1323 // Debug values must not have a slot index. 1324 // Other instructions must have one, unless they are inside a bundle. 1325 if (LiveInts) { 1326 bool mapped = !LiveInts->isNotInMIMap(*MI); 1327 if (MI->isDebugInstr()) { 1328 if (mapped) 1329 report("Debug instruction has a slot index", MI); 1330 } else if (MI->isInsideBundle()) { 1331 if (mapped) 1332 report("Instruction inside bundle has a slot index", MI); 1333 } else { 1334 if (!mapped) 1335 report("Missing slot index", MI); 1336 } 1337 } 1338 1339 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1340 verifyPreISelGenericInstruction(MI); 1341 return; 1342 } 1343 1344 StringRef ErrorInfo; 1345 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1346 report(ErrorInfo.data(), MI); 1347 1348 // Verify properties of various specific instruction types 1349 switch (MI->getOpcode()) { 1350 case TargetOpcode::COPY: { 1351 if (foundErrors) 1352 break; 1353 const MachineOperand &DstOp = MI->getOperand(0); 1354 const MachineOperand &SrcOp = MI->getOperand(1); 1355 LLT DstTy = MRI->getType(DstOp.getReg()); 1356 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1357 if (SrcTy.isValid() && DstTy.isValid()) { 1358 // If both types are valid, check that the types are the same. 1359 if (SrcTy != DstTy) { 1360 report("Copy Instruction is illegal with mismatching types", MI); 1361 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1362 } 1363 } 1364 if (SrcTy.isValid() || DstTy.isValid()) { 1365 // If one of them have valid types, let's just check they have the same 1366 // size. 1367 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1368 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1369 assert(SrcSize && "Expecting size here"); 1370 assert(DstSize && "Expecting size here"); 1371 if (SrcSize != DstSize) 1372 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1373 report("Copy Instruction is illegal with mismatching sizes", MI); 1374 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1375 << "\n"; 1376 } 1377 } 1378 break; 1379 } 1380 case TargetOpcode::STATEPOINT: 1381 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1382 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1383 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1384 report("meta operands to STATEPOINT not constant!", MI); 1385 break; 1386 1387 auto VerifyStackMapConstant = [&](unsigned Offset) { 1388 if (!MI->getOperand(Offset).isImm() || 1389 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1390 !MI->getOperand(Offset + 1).isImm()) 1391 report("stack map constant to STATEPOINT not well formed!", MI); 1392 }; 1393 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1394 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1395 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1396 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1397 1398 // TODO: verify we have properly encoded deopt arguments 1399 break; 1400 } 1401 } 1402 1403 void 1404 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1405 const MachineInstr *MI = MO->getParent(); 1406 const MCInstrDesc &MCID = MI->getDesc(); 1407 unsigned NumDefs = MCID.getNumDefs(); 1408 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1409 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1410 1411 // The first MCID.NumDefs operands must be explicit register defines 1412 if (MONum < NumDefs) { 1413 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1414 if (!MO->isReg()) 1415 report("Explicit definition must be a register", MO, MONum); 1416 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1417 report("Explicit definition marked as use", MO, MONum); 1418 else if (MO->isImplicit()) 1419 report("Explicit definition marked as implicit", MO, MONum); 1420 } else if (MONum < MCID.getNumOperands()) { 1421 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1422 // Don't check if it's the last operand in a variadic instruction. See, 1423 // e.g., LDM_RET in the arm back end. 1424 if (MO->isReg() && 1425 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1426 if (MO->isDef() && !MCOI.isOptionalDef()) 1427 report("Explicit operand marked as def", MO, MONum); 1428 if (MO->isImplicit()) 1429 report("Explicit operand marked as implicit", MO, MONum); 1430 } 1431 1432 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1433 if (TiedTo != -1) { 1434 if (!MO->isReg()) 1435 report("Tied use must be a register", MO, MONum); 1436 else if (!MO->isTied()) 1437 report("Operand should be tied", MO, MONum); 1438 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1439 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1440 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1441 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1442 if (!MOTied.isReg()) 1443 report("Tied counterpart must be a register", &MOTied, TiedTo); 1444 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1445 MO->getReg() != MOTied.getReg()) 1446 report("Tied physical registers must match.", &MOTied, TiedTo); 1447 } 1448 } else if (MO->isReg() && MO->isTied()) 1449 report("Explicit operand should not be tied", MO, MONum); 1450 } else { 1451 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1452 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1453 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1454 } 1455 1456 switch (MO->getType()) { 1457 case MachineOperand::MO_Register: { 1458 const unsigned Reg = MO->getReg(); 1459 if (!Reg) 1460 return; 1461 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1462 checkLiveness(MO, MONum); 1463 1464 // Verify the consistency of tied operands. 1465 if (MO->isTied()) { 1466 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1467 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1468 if (!OtherMO.isReg()) 1469 report("Must be tied to a register", MO, MONum); 1470 if (!OtherMO.isTied()) 1471 report("Missing tie flags on tied operand", MO, MONum); 1472 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1473 report("Inconsistent tie links", MO, MONum); 1474 if (MONum < MCID.getNumDefs()) { 1475 if (OtherIdx < MCID.getNumOperands()) { 1476 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1477 report("Explicit def tied to explicit use without tie constraint", 1478 MO, MONum); 1479 } else { 1480 if (!OtherMO.isImplicit()) 1481 report("Explicit def should be tied to implicit use", MO, MONum); 1482 } 1483 } 1484 } 1485 1486 // Verify two-address constraints after leaving SSA form. 1487 unsigned DefIdx; 1488 if (!MRI->isSSA() && MO->isUse() && 1489 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1490 Reg != MI->getOperand(DefIdx).getReg()) 1491 report("Two-address instruction operands must be identical", MO, MONum); 1492 1493 // Check register classes. 1494 unsigned SubIdx = MO->getSubReg(); 1495 1496 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1497 if (SubIdx) { 1498 report("Illegal subregister index for physical register", MO, MONum); 1499 return; 1500 } 1501 if (MONum < MCID.getNumOperands()) { 1502 if (const TargetRegisterClass *DRC = 1503 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1504 if (!DRC->contains(Reg)) { 1505 report("Illegal physical register for instruction", MO, MONum); 1506 errs() << printReg(Reg, TRI) << " is not a " 1507 << TRI->getRegClassName(DRC) << " register.\n"; 1508 } 1509 } 1510 } 1511 if (MO->isRenamable()) { 1512 if (MRI->isReserved(Reg)) { 1513 report("isRenamable set on reserved register", MO, MONum); 1514 return; 1515 } 1516 } 1517 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1518 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1519 return; 1520 } 1521 } else { 1522 // Virtual register. 1523 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1524 if (!RC) { 1525 // This is a generic virtual register. 1526 1527 // If we're post-Select, we can't have gvregs anymore. 1528 if (isFunctionSelected) { 1529 report("Generic virtual register invalid in a Selected function", 1530 MO, MONum); 1531 return; 1532 } 1533 1534 // The gvreg must have a type and it must not have a SubIdx. 1535 LLT Ty = MRI->getType(Reg); 1536 if (!Ty.isValid()) { 1537 report("Generic virtual register must have a valid type", MO, 1538 MONum); 1539 return; 1540 } 1541 1542 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1543 1544 // If we're post-RegBankSelect, the gvreg must have a bank. 1545 if (!RegBank && isFunctionRegBankSelected) { 1546 report("Generic virtual register must have a bank in a " 1547 "RegBankSelected function", 1548 MO, MONum); 1549 return; 1550 } 1551 1552 // Make sure the register fits into its register bank if any. 1553 if (RegBank && Ty.isValid() && 1554 RegBank->getSize() < Ty.getSizeInBits()) { 1555 report("Register bank is too small for virtual register", MO, 1556 MONum); 1557 errs() << "Register bank " << RegBank->getName() << " too small(" 1558 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1559 << "-bits\n"; 1560 return; 1561 } 1562 if (SubIdx) { 1563 report("Generic virtual register does not allow subregister index", MO, 1564 MONum); 1565 return; 1566 } 1567 1568 // If this is a target specific instruction and this operand 1569 // has register class constraint, the virtual register must 1570 // comply to it. 1571 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1572 MONum < MCID.getNumOperands() && 1573 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1574 report("Virtual register does not match instruction constraint", MO, 1575 MONum); 1576 errs() << "Expect register class " 1577 << TRI->getRegClassName( 1578 TII->getRegClass(MCID, MONum, TRI, *MF)) 1579 << " but got nothing\n"; 1580 return; 1581 } 1582 1583 break; 1584 } 1585 if (SubIdx) { 1586 const TargetRegisterClass *SRC = 1587 TRI->getSubClassWithSubReg(RC, SubIdx); 1588 if (!SRC) { 1589 report("Invalid subregister index for virtual register", MO, MONum); 1590 errs() << "Register class " << TRI->getRegClassName(RC) 1591 << " does not support subreg index " << SubIdx << "\n"; 1592 return; 1593 } 1594 if (RC != SRC) { 1595 report("Invalid register class for subregister index", MO, MONum); 1596 errs() << "Register class " << TRI->getRegClassName(RC) 1597 << " does not fully support subreg index " << SubIdx << "\n"; 1598 return; 1599 } 1600 } 1601 if (MONum < MCID.getNumOperands()) { 1602 if (const TargetRegisterClass *DRC = 1603 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1604 if (SubIdx) { 1605 const TargetRegisterClass *SuperRC = 1606 TRI->getLargestLegalSuperClass(RC, *MF); 1607 if (!SuperRC) { 1608 report("No largest legal super class exists.", MO, MONum); 1609 return; 1610 } 1611 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1612 if (!DRC) { 1613 report("No matching super-reg register class.", MO, MONum); 1614 return; 1615 } 1616 } 1617 if (!RC->hasSuperClassEq(DRC)) { 1618 report("Illegal virtual register for instruction", MO, MONum); 1619 errs() << "Expected a " << TRI->getRegClassName(DRC) 1620 << " register, but got a " << TRI->getRegClassName(RC) 1621 << " register\n"; 1622 } 1623 } 1624 } 1625 } 1626 break; 1627 } 1628 1629 case MachineOperand::MO_RegisterMask: 1630 regMasks.push_back(MO->getRegMask()); 1631 break; 1632 1633 case MachineOperand::MO_MachineBasicBlock: 1634 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1635 report("PHI operand is not in the CFG", MO, MONum); 1636 break; 1637 1638 case MachineOperand::MO_FrameIndex: 1639 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1640 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1641 int FI = MO->getIndex(); 1642 LiveInterval &LI = LiveStks->getInterval(FI); 1643 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1644 1645 bool stores = MI->mayStore(); 1646 bool loads = MI->mayLoad(); 1647 // For a memory-to-memory move, we need to check if the frame 1648 // index is used for storing or loading, by inspecting the 1649 // memory operands. 1650 if (stores && loads) { 1651 for (auto *MMO : MI->memoperands()) { 1652 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1653 if (PSV == nullptr) continue; 1654 const FixedStackPseudoSourceValue *Value = 1655 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1656 if (Value == nullptr) continue; 1657 if (Value->getFrameIndex() != FI) continue; 1658 1659 if (MMO->isStore()) 1660 loads = false; 1661 else 1662 stores = false; 1663 break; 1664 } 1665 if (loads == stores) 1666 report("Missing fixed stack memoperand.", MI); 1667 } 1668 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1669 report("Instruction loads from dead spill slot", MO, MONum); 1670 errs() << "Live stack: " << LI << '\n'; 1671 } 1672 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1673 report("Instruction stores to dead spill slot", MO, MONum); 1674 errs() << "Live stack: " << LI << '\n'; 1675 } 1676 } 1677 break; 1678 1679 default: 1680 break; 1681 } 1682 } 1683 1684 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1685 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1686 LaneBitmask LaneMask) { 1687 LiveQueryResult LRQ = LR.Query(UseIdx); 1688 // Check if we have a segment at the use, note however that we only need one 1689 // live subregister range, the others may be dead. 1690 if (!LRQ.valueIn() && LaneMask.none()) { 1691 report("No live segment at use", MO, MONum); 1692 report_context_liverange(LR); 1693 report_context_vreg_regunit(VRegOrUnit); 1694 report_context(UseIdx); 1695 } 1696 if (MO->isKill() && !LRQ.isKill()) { 1697 report("Live range continues after kill flag", MO, MONum); 1698 report_context_liverange(LR); 1699 report_context_vreg_regunit(VRegOrUnit); 1700 if (LaneMask.any()) 1701 report_context_lanemask(LaneMask); 1702 report_context(UseIdx); 1703 } 1704 } 1705 1706 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1707 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1708 bool SubRangeCheck, LaneBitmask LaneMask) { 1709 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1710 assert(VNI && "NULL valno is not allowed"); 1711 if (VNI->def != DefIdx) { 1712 report("Inconsistent valno->def", MO, MONum); 1713 report_context_liverange(LR); 1714 report_context_vreg_regunit(VRegOrUnit); 1715 if (LaneMask.any()) 1716 report_context_lanemask(LaneMask); 1717 report_context(*VNI); 1718 report_context(DefIdx); 1719 } 1720 } else { 1721 report("No live segment at def", MO, MONum); 1722 report_context_liverange(LR); 1723 report_context_vreg_regunit(VRegOrUnit); 1724 if (LaneMask.any()) 1725 report_context_lanemask(LaneMask); 1726 report_context(DefIdx); 1727 } 1728 // Check that, if the dead def flag is present, LiveInts agree. 1729 if (MO->isDead()) { 1730 LiveQueryResult LRQ = LR.Query(DefIdx); 1731 if (!LRQ.isDeadDef()) { 1732 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1733 "Expecting a virtual register."); 1734 // A dead subreg def only tells us that the specific subreg is dead. There 1735 // could be other non-dead defs of other subregs, or we could have other 1736 // parts of the register being live through the instruction. So unless we 1737 // are checking liveness for a subrange it is ok for the live range to 1738 // continue, given that we have a dead def of a subregister. 1739 if (SubRangeCheck || MO->getSubReg() == 0) { 1740 report("Live range continues after dead def flag", MO, MONum); 1741 report_context_liverange(LR); 1742 report_context_vreg_regunit(VRegOrUnit); 1743 if (LaneMask.any()) 1744 report_context_lanemask(LaneMask); 1745 } 1746 } 1747 } 1748 } 1749 1750 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1751 const MachineInstr *MI = MO->getParent(); 1752 const unsigned Reg = MO->getReg(); 1753 1754 // Both use and def operands can read a register. 1755 if (MO->readsReg()) { 1756 if (MO->isKill()) 1757 addRegWithSubRegs(regsKilled, Reg); 1758 1759 // Check that LiveVars knows this kill. 1760 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1761 MO->isKill()) { 1762 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1763 if (!is_contained(VI.Kills, MI)) 1764 report("Kill missing from LiveVariables", MO, MONum); 1765 } 1766 1767 // Check LiveInts liveness and kill. 1768 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1769 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1770 // Check the cached regunit intervals. 1771 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1772 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1773 if (MRI->isReservedRegUnit(*Units)) 1774 continue; 1775 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1776 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1777 } 1778 } 1779 1780 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1781 if (LiveInts->hasInterval(Reg)) { 1782 // This is a virtual register interval. 1783 const LiveInterval &LI = LiveInts->getInterval(Reg); 1784 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1785 1786 if (LI.hasSubRanges() && !MO->isDef()) { 1787 unsigned SubRegIdx = MO->getSubReg(); 1788 LaneBitmask MOMask = SubRegIdx != 0 1789 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1790 : MRI->getMaxLaneMaskForVReg(Reg); 1791 LaneBitmask LiveInMask; 1792 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1793 if ((MOMask & SR.LaneMask).none()) 1794 continue; 1795 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1796 LiveQueryResult LRQ = SR.Query(UseIdx); 1797 if (LRQ.valueIn()) 1798 LiveInMask |= SR.LaneMask; 1799 } 1800 // At least parts of the register has to be live at the use. 1801 if ((LiveInMask & MOMask).none()) { 1802 report("No live subrange at use", MO, MONum); 1803 report_context(LI); 1804 report_context(UseIdx); 1805 } 1806 } 1807 } else { 1808 report("Virtual register has no live interval", MO, MONum); 1809 } 1810 } 1811 } 1812 1813 // Use of a dead register. 1814 if (!regsLive.count(Reg)) { 1815 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1816 // Reserved registers may be used even when 'dead'. 1817 bool Bad = !isReserved(Reg); 1818 // We are fine if just any subregister has a defined value. 1819 if (Bad) { 1820 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1821 ++SubRegs) { 1822 if (regsLive.count(*SubRegs)) { 1823 Bad = false; 1824 break; 1825 } 1826 } 1827 } 1828 // If there is an additional implicit-use of a super register we stop 1829 // here. By definition we are fine if the super register is not 1830 // (completely) dead, if the complete super register is dead we will 1831 // get a report for its operand. 1832 if (Bad) { 1833 for (const MachineOperand &MOP : MI->uses()) { 1834 if (!MOP.isReg() || !MOP.isImplicit()) 1835 continue; 1836 1837 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1838 continue; 1839 1840 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1841 ++SubRegs) { 1842 if (*SubRegs == Reg) { 1843 Bad = false; 1844 break; 1845 } 1846 } 1847 } 1848 } 1849 if (Bad) 1850 report("Using an undefined physical register", MO, MONum); 1851 } else if (MRI->def_empty(Reg)) { 1852 report("Reading virtual register without a def", MO, MONum); 1853 } else { 1854 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1855 // We don't know which virtual registers are live in, so only complain 1856 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1857 // must be live in. PHI instructions are handled separately. 1858 if (MInfo.regsKilled.count(Reg)) 1859 report("Using a killed virtual register", MO, MONum); 1860 else if (!MI->isPHI()) 1861 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1862 } 1863 } 1864 } 1865 1866 if (MO->isDef()) { 1867 // Register defined. 1868 // TODO: verify that earlyclobber ops are not used. 1869 if (MO->isDead()) 1870 addRegWithSubRegs(regsDead, Reg); 1871 else 1872 addRegWithSubRegs(regsDefined, Reg); 1873 1874 // Verify SSA form. 1875 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1876 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1877 report("Multiple virtual register defs in SSA form", MO, MONum); 1878 1879 // Check LiveInts for a live segment, but only for virtual registers. 1880 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1881 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1882 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1883 1884 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1885 if (LiveInts->hasInterval(Reg)) { 1886 const LiveInterval &LI = LiveInts->getInterval(Reg); 1887 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1888 1889 if (LI.hasSubRanges()) { 1890 unsigned SubRegIdx = MO->getSubReg(); 1891 LaneBitmask MOMask = SubRegIdx != 0 1892 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1893 : MRI->getMaxLaneMaskForVReg(Reg); 1894 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1895 if ((SR.LaneMask & MOMask).none()) 1896 continue; 1897 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1898 } 1899 } 1900 } else { 1901 report("Virtual register has no Live interval", MO, MONum); 1902 } 1903 } 1904 } 1905 } 1906 } 1907 1908 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1909 1910 // This function gets called after visiting all instructions in a bundle. The 1911 // argument points to the bundle header. 1912 // Normal stand-alone instructions are also considered 'bundles', and this 1913 // function is called for all of them. 1914 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1915 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1916 set_union(MInfo.regsKilled, regsKilled); 1917 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1918 // Kill any masked registers. 1919 while (!regMasks.empty()) { 1920 const uint32_t *Mask = regMasks.pop_back_val(); 1921 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1922 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1923 MachineOperand::clobbersPhysReg(Mask, *I)) 1924 regsDead.push_back(*I); 1925 } 1926 set_subtract(regsLive, regsDead); regsDead.clear(); 1927 set_union(regsLive, regsDefined); regsDefined.clear(); 1928 } 1929 1930 void 1931 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1932 MBBInfoMap[MBB].regsLiveOut = regsLive; 1933 regsLive.clear(); 1934 1935 if (Indexes) { 1936 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1937 if (!(stop > lastIndex)) { 1938 report("Block ends before last instruction index", MBB); 1939 errs() << "Block ends at " << stop 1940 << " last instruction was at " << lastIndex << '\n'; 1941 } 1942 lastIndex = stop; 1943 } 1944 } 1945 1946 // Calculate the largest possible vregsPassed sets. These are the registers that 1947 // can pass through an MBB live, but may not be live every time. It is assumed 1948 // that all vregsPassed sets are empty before the call. 1949 void MachineVerifier::calcRegsPassed() { 1950 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1951 // have any vregsPassed. 1952 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1953 for (const auto &MBB : *MF) { 1954 BBInfo &MInfo = MBBInfoMap[&MBB]; 1955 if (!MInfo.reachable) 1956 continue; 1957 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1958 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1959 BBInfo &SInfo = MBBInfoMap[*SuI]; 1960 if (SInfo.addPassed(MInfo.regsLiveOut)) 1961 todo.insert(*SuI); 1962 } 1963 } 1964 1965 // Iteratively push vregsPassed to successors. This will converge to the same 1966 // final state regardless of DenseSet iteration order. 1967 while (!todo.empty()) { 1968 const MachineBasicBlock *MBB = *todo.begin(); 1969 todo.erase(MBB); 1970 BBInfo &MInfo = MBBInfoMap[MBB]; 1971 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1972 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1973 if (*SuI == MBB) 1974 continue; 1975 BBInfo &SInfo = MBBInfoMap[*SuI]; 1976 if (SInfo.addPassed(MInfo.vregsPassed)) 1977 todo.insert(*SuI); 1978 } 1979 } 1980 } 1981 1982 // Calculate the set of virtual registers that must be passed through each basic 1983 // block in order to satisfy the requirements of successor blocks. This is very 1984 // similar to calcRegsPassed, only backwards. 1985 void MachineVerifier::calcRegsRequired() { 1986 // First push live-in regs to predecessors' vregsRequired. 1987 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1988 for (const auto &MBB : *MF) { 1989 BBInfo &MInfo = MBBInfoMap[&MBB]; 1990 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1991 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1992 BBInfo &PInfo = MBBInfoMap[*PrI]; 1993 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1994 todo.insert(*PrI); 1995 } 1996 } 1997 1998 // Iteratively push vregsRequired to predecessors. This will converge to the 1999 // same final state regardless of DenseSet iteration order. 2000 while (!todo.empty()) { 2001 const MachineBasicBlock *MBB = *todo.begin(); 2002 todo.erase(MBB); 2003 BBInfo &MInfo = MBBInfoMap[MBB]; 2004 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 2005 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 2006 if (*PrI == MBB) 2007 continue; 2008 BBInfo &SInfo = MBBInfoMap[*PrI]; 2009 if (SInfo.addRequired(MInfo.vregsRequired)) 2010 todo.insert(*PrI); 2011 } 2012 } 2013 } 2014 2015 // Check PHI instructions at the beginning of MBB. It is assumed that 2016 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2017 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2018 BBInfo &MInfo = MBBInfoMap[&MBB]; 2019 2020 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2021 for (const MachineInstr &Phi : MBB) { 2022 if (!Phi.isPHI()) 2023 break; 2024 seen.clear(); 2025 2026 const MachineOperand &MODef = Phi.getOperand(0); 2027 if (!MODef.isReg() || !MODef.isDef()) { 2028 report("Expected first PHI operand to be a register def", &MODef, 0); 2029 continue; 2030 } 2031 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2032 MODef.isEarlyClobber() || MODef.isDebug()) 2033 report("Unexpected flag on PHI operand", &MODef, 0); 2034 unsigned DefReg = MODef.getReg(); 2035 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 2036 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2037 2038 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2039 const MachineOperand &MO0 = Phi.getOperand(I); 2040 if (!MO0.isReg()) { 2041 report("Expected PHI operand to be a register", &MO0, I); 2042 continue; 2043 } 2044 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2045 MO0.isDebug() || MO0.isTied()) 2046 report("Unexpected flag on PHI operand", &MO0, I); 2047 2048 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2049 if (!MO1.isMBB()) { 2050 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2051 continue; 2052 } 2053 2054 const MachineBasicBlock &Pre = *MO1.getMBB(); 2055 if (!Pre.isSuccessor(&MBB)) { 2056 report("PHI input is not a predecessor block", &MO1, I + 1); 2057 continue; 2058 } 2059 2060 if (MInfo.reachable) { 2061 seen.insert(&Pre); 2062 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2063 if (!MO0.isUndef() && PrInfo.reachable && 2064 !PrInfo.isLiveOut(MO0.getReg())) 2065 report("PHI operand is not live-out from predecessor", &MO0, I); 2066 } 2067 } 2068 2069 // Did we see all predecessors? 2070 if (MInfo.reachable) { 2071 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2072 if (!seen.count(Pred)) { 2073 report("Missing PHI operand", &Phi); 2074 errs() << printMBBReference(*Pred) 2075 << " is a predecessor according to the CFG.\n"; 2076 } 2077 } 2078 } 2079 } 2080 } 2081 2082 void MachineVerifier::visitMachineFunctionAfter() { 2083 calcRegsPassed(); 2084 2085 for (const MachineBasicBlock &MBB : *MF) 2086 checkPHIOps(MBB); 2087 2088 // Now check liveness info if available 2089 calcRegsRequired(); 2090 2091 // Check for killed virtual registers that should be live out. 2092 for (const auto &MBB : *MF) { 2093 BBInfo &MInfo = MBBInfoMap[&MBB]; 2094 for (RegSet::iterator 2095 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2096 ++I) 2097 if (MInfo.regsKilled.count(*I)) { 2098 report("Virtual register killed in block, but needed live out.", &MBB); 2099 errs() << "Virtual register " << printReg(*I) 2100 << " is used after the block.\n"; 2101 } 2102 } 2103 2104 if (!MF->empty()) { 2105 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2106 for (RegSet::iterator 2107 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2108 ++I) { 2109 report("Virtual register defs don't dominate all uses.", MF); 2110 report_context_vreg(*I); 2111 } 2112 } 2113 2114 if (LiveVars) 2115 verifyLiveVariables(); 2116 if (LiveInts) 2117 verifyLiveIntervals(); 2118 } 2119 2120 void MachineVerifier::verifyLiveVariables() { 2121 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2122 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2123 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2124 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2125 for (const auto &MBB : *MF) { 2126 BBInfo &MInfo = MBBInfoMap[&MBB]; 2127 2128 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2129 if (MInfo.vregsRequired.count(Reg)) { 2130 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2131 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2132 errs() << "Virtual register " << printReg(Reg) 2133 << " must be live through the block.\n"; 2134 } 2135 } else { 2136 if (VI.AliveBlocks.test(MBB.getNumber())) { 2137 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2138 errs() << "Virtual register " << printReg(Reg) 2139 << " is not needed live through the block.\n"; 2140 } 2141 } 2142 } 2143 } 2144 } 2145 2146 void MachineVerifier::verifyLiveIntervals() { 2147 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2148 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2149 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2150 2151 // Spilling and splitting may leave unused registers around. Skip them. 2152 if (MRI->reg_nodbg_empty(Reg)) 2153 continue; 2154 2155 if (!LiveInts->hasInterval(Reg)) { 2156 report("Missing live interval for virtual register", MF); 2157 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2158 continue; 2159 } 2160 2161 const LiveInterval &LI = LiveInts->getInterval(Reg); 2162 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2163 verifyLiveInterval(LI); 2164 } 2165 2166 // Verify all the cached regunit intervals. 2167 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2168 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2169 verifyLiveRange(*LR, i); 2170 } 2171 2172 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2173 const VNInfo *VNI, unsigned Reg, 2174 LaneBitmask LaneMask) { 2175 if (VNI->isUnused()) 2176 return; 2177 2178 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2179 2180 if (!DefVNI) { 2181 report("Value not live at VNInfo def and not marked unused", MF); 2182 report_context(LR, Reg, LaneMask); 2183 report_context(*VNI); 2184 return; 2185 } 2186 2187 if (DefVNI != VNI) { 2188 report("Live segment at def has different VNInfo", MF); 2189 report_context(LR, Reg, LaneMask); 2190 report_context(*VNI); 2191 return; 2192 } 2193 2194 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2195 if (!MBB) { 2196 report("Invalid VNInfo definition index", MF); 2197 report_context(LR, Reg, LaneMask); 2198 report_context(*VNI); 2199 return; 2200 } 2201 2202 if (VNI->isPHIDef()) { 2203 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2204 report("PHIDef VNInfo is not defined at MBB start", MBB); 2205 report_context(LR, Reg, LaneMask); 2206 report_context(*VNI); 2207 } 2208 return; 2209 } 2210 2211 // Non-PHI def. 2212 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2213 if (!MI) { 2214 report("No instruction at VNInfo def index", MBB); 2215 report_context(LR, Reg, LaneMask); 2216 report_context(*VNI); 2217 return; 2218 } 2219 2220 if (Reg != 0) { 2221 bool hasDef = false; 2222 bool isEarlyClobber = false; 2223 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2224 if (!MOI->isReg() || !MOI->isDef()) 2225 continue; 2226 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2227 if (MOI->getReg() != Reg) 2228 continue; 2229 } else { 2230 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2231 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2232 continue; 2233 } 2234 if (LaneMask.any() && 2235 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2236 continue; 2237 hasDef = true; 2238 if (MOI->isEarlyClobber()) 2239 isEarlyClobber = true; 2240 } 2241 2242 if (!hasDef) { 2243 report("Defining instruction does not modify register", MI); 2244 report_context(LR, Reg, LaneMask); 2245 report_context(*VNI); 2246 } 2247 2248 // Early clobber defs begin at USE slots, but other defs must begin at 2249 // DEF slots. 2250 if (isEarlyClobber) { 2251 if (!VNI->def.isEarlyClobber()) { 2252 report("Early clobber def must be at an early-clobber slot", MBB); 2253 report_context(LR, Reg, LaneMask); 2254 report_context(*VNI); 2255 } 2256 } else if (!VNI->def.isRegister()) { 2257 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2258 report_context(LR, Reg, LaneMask); 2259 report_context(*VNI); 2260 } 2261 } 2262 } 2263 2264 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2265 const LiveRange::const_iterator I, 2266 unsigned Reg, LaneBitmask LaneMask) 2267 { 2268 const LiveRange::Segment &S = *I; 2269 const VNInfo *VNI = S.valno; 2270 assert(VNI && "Live segment has no valno"); 2271 2272 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2273 report("Foreign valno in live segment", MF); 2274 report_context(LR, Reg, LaneMask); 2275 report_context(S); 2276 report_context(*VNI); 2277 } 2278 2279 if (VNI->isUnused()) { 2280 report("Live segment valno is marked unused", MF); 2281 report_context(LR, Reg, LaneMask); 2282 report_context(S); 2283 } 2284 2285 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2286 if (!MBB) { 2287 report("Bad start of live segment, no basic block", MF); 2288 report_context(LR, Reg, LaneMask); 2289 report_context(S); 2290 return; 2291 } 2292 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2293 if (S.start != MBBStartIdx && S.start != VNI->def) { 2294 report("Live segment must begin at MBB entry or valno def", MBB); 2295 report_context(LR, Reg, LaneMask); 2296 report_context(S); 2297 } 2298 2299 const MachineBasicBlock *EndMBB = 2300 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2301 if (!EndMBB) { 2302 report("Bad end of live segment, no basic block", MF); 2303 report_context(LR, Reg, LaneMask); 2304 report_context(S); 2305 return; 2306 } 2307 2308 // No more checks for live-out segments. 2309 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2310 return; 2311 2312 // RegUnit intervals are allowed dead phis. 2313 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2314 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2315 return; 2316 2317 // The live segment is ending inside EndMBB 2318 const MachineInstr *MI = 2319 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2320 if (!MI) { 2321 report("Live segment doesn't end at a valid instruction", EndMBB); 2322 report_context(LR, Reg, LaneMask); 2323 report_context(S); 2324 return; 2325 } 2326 2327 // The block slot must refer to a basic block boundary. 2328 if (S.end.isBlock()) { 2329 report("Live segment ends at B slot of an instruction", EndMBB); 2330 report_context(LR, Reg, LaneMask); 2331 report_context(S); 2332 } 2333 2334 if (S.end.isDead()) { 2335 // Segment ends on the dead slot. 2336 // That means there must be a dead def. 2337 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2338 report("Live segment ending at dead slot spans instructions", EndMBB); 2339 report_context(LR, Reg, LaneMask); 2340 report_context(S); 2341 } 2342 } 2343 2344 // A live segment can only end at an early-clobber slot if it is being 2345 // redefined by an early-clobber def. 2346 if (S.end.isEarlyClobber()) { 2347 if (I+1 == LR.end() || (I+1)->start != S.end) { 2348 report("Live segment ending at early clobber slot must be " 2349 "redefined by an EC def in the same instruction", EndMBB); 2350 report_context(LR, Reg, LaneMask); 2351 report_context(S); 2352 } 2353 } 2354 2355 // The following checks only apply to virtual registers. Physreg liveness 2356 // is too weird to check. 2357 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2358 // A live segment can end with either a redefinition, a kill flag on a 2359 // use, or a dead flag on a def. 2360 bool hasRead = false; 2361 bool hasSubRegDef = false; 2362 bool hasDeadDef = false; 2363 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2364 if (!MOI->isReg() || MOI->getReg() != Reg) 2365 continue; 2366 unsigned Sub = MOI->getSubReg(); 2367 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2368 : LaneBitmask::getAll(); 2369 if (MOI->isDef()) { 2370 if (Sub != 0) { 2371 hasSubRegDef = true; 2372 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2373 // mask for subregister defs. Read-undef defs will be handled by 2374 // readsReg below. 2375 SLM = ~SLM; 2376 } 2377 if (MOI->isDead()) 2378 hasDeadDef = true; 2379 } 2380 if (LaneMask.any() && (LaneMask & SLM).none()) 2381 continue; 2382 if (MOI->readsReg()) 2383 hasRead = true; 2384 } 2385 if (S.end.isDead()) { 2386 // Make sure that the corresponding machine operand for a "dead" live 2387 // range has the dead flag. We cannot perform this check for subregister 2388 // liveranges as partially dead values are allowed. 2389 if (LaneMask.none() && !hasDeadDef) { 2390 report("Instruction ending live segment on dead slot has no dead flag", 2391 MI); 2392 report_context(LR, Reg, LaneMask); 2393 report_context(S); 2394 } 2395 } else { 2396 if (!hasRead) { 2397 // When tracking subregister liveness, the main range must start new 2398 // values on partial register writes, even if there is no read. 2399 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2400 !hasSubRegDef) { 2401 report("Instruction ending live segment doesn't read the register", 2402 MI); 2403 report_context(LR, Reg, LaneMask); 2404 report_context(S); 2405 } 2406 } 2407 } 2408 } 2409 2410 // Now check all the basic blocks in this live segment. 2411 MachineFunction::const_iterator MFI = MBB->getIterator(); 2412 // Is this live segment the beginning of a non-PHIDef VN? 2413 if (S.start == VNI->def && !VNI->isPHIDef()) { 2414 // Not live-in to any blocks. 2415 if (MBB == EndMBB) 2416 return; 2417 // Skip this block. 2418 ++MFI; 2419 } 2420 2421 SmallVector<SlotIndex, 4> Undefs; 2422 if (LaneMask.any()) { 2423 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2424 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2425 } 2426 2427 while (true) { 2428 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2429 // We don't know how to track physregs into a landing pad. 2430 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2431 MFI->isEHPad()) { 2432 if (&*MFI == EndMBB) 2433 break; 2434 ++MFI; 2435 continue; 2436 } 2437 2438 // Is VNI a PHI-def in the current block? 2439 bool IsPHI = VNI->isPHIDef() && 2440 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2441 2442 // Check that VNI is live-out of all predecessors. 2443 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2444 PE = MFI->pred_end(); PI != PE; ++PI) { 2445 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2446 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2447 2448 // All predecessors must have a live-out value. However for a phi 2449 // instruction with subregister intervals 2450 // only one of the subregisters (not necessarily the current one) needs to 2451 // be defined. 2452 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2453 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2454 continue; 2455 report("Register not marked live out of predecessor", *PI); 2456 report_context(LR, Reg, LaneMask); 2457 report_context(*VNI); 2458 errs() << " live into " << printMBBReference(*MFI) << '@' 2459 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2460 << PEnd << '\n'; 2461 continue; 2462 } 2463 2464 // Only PHI-defs can take different predecessor values. 2465 if (!IsPHI && PVNI != VNI) { 2466 report("Different value live out of predecessor", *PI); 2467 report_context(LR, Reg, LaneMask); 2468 errs() << "Valno #" << PVNI->id << " live out of " 2469 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2470 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2471 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2472 } 2473 } 2474 if (&*MFI == EndMBB) 2475 break; 2476 ++MFI; 2477 } 2478 } 2479 2480 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2481 LaneBitmask LaneMask) { 2482 for (const VNInfo *VNI : LR.valnos) 2483 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2484 2485 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2486 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2487 } 2488 2489 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2490 unsigned Reg = LI.reg; 2491 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2492 verifyLiveRange(LI, Reg); 2493 2494 LaneBitmask Mask; 2495 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2496 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2497 if ((Mask & SR.LaneMask).any()) { 2498 report("Lane masks of sub ranges overlap in live interval", MF); 2499 report_context(LI); 2500 } 2501 if ((SR.LaneMask & ~MaxMask).any()) { 2502 report("Subrange lanemask is invalid", MF); 2503 report_context(LI); 2504 } 2505 if (SR.empty()) { 2506 report("Subrange must not be empty", MF); 2507 report_context(SR, LI.reg, SR.LaneMask); 2508 } 2509 Mask |= SR.LaneMask; 2510 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2511 if (!LI.covers(SR)) { 2512 report("A Subrange is not covered by the main range", MF); 2513 report_context(LI); 2514 } 2515 } 2516 2517 // Check the LI only has one connected component. 2518 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2519 unsigned NumComp = ConEQ.Classify(LI); 2520 if (NumComp > 1) { 2521 report("Multiple connected components in live interval", MF); 2522 report_context(LI); 2523 for (unsigned comp = 0; comp != NumComp; ++comp) { 2524 errs() << comp << ": valnos"; 2525 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2526 E = LI.vni_end(); I!=E; ++I) 2527 if (comp == ConEQ.getEqClass(*I)) 2528 errs() << ' ' << (*I)->id; 2529 errs() << '\n'; 2530 } 2531 } 2532 } 2533 2534 namespace { 2535 2536 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2537 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2538 // value is zero. 2539 // We use a bool plus an integer to capture the stack state. 2540 struct StackStateOfBB { 2541 StackStateOfBB() = default; 2542 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2543 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2544 ExitIsSetup(ExitSetup) {} 2545 2546 // Can be negative, which means we are setting up a frame. 2547 int EntryValue = 0; 2548 int ExitValue = 0; 2549 bool EntryIsSetup = false; 2550 bool ExitIsSetup = false; 2551 }; 2552 2553 } // end anonymous namespace 2554 2555 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2556 /// by a FrameDestroy <n>, stack adjustments are identical on all 2557 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2558 void MachineVerifier::verifyStackFrame() { 2559 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2560 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2561 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2562 return; 2563 2564 SmallVector<StackStateOfBB, 8> SPState; 2565 SPState.resize(MF->getNumBlockIDs()); 2566 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2567 2568 // Visit the MBBs in DFS order. 2569 for (df_ext_iterator<const MachineFunction *, 2570 df_iterator_default_set<const MachineBasicBlock *>> 2571 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2572 DFI != DFE; ++DFI) { 2573 const MachineBasicBlock *MBB = *DFI; 2574 2575 StackStateOfBB BBState; 2576 // Check the exit state of the DFS stack predecessor. 2577 if (DFI.getPathLength() >= 2) { 2578 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2579 assert(Reachable.count(StackPred) && 2580 "DFS stack predecessor is already visited.\n"); 2581 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2582 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2583 BBState.ExitValue = BBState.EntryValue; 2584 BBState.ExitIsSetup = BBState.EntryIsSetup; 2585 } 2586 2587 // Update stack state by checking contents of MBB. 2588 for (const auto &I : *MBB) { 2589 if (I.getOpcode() == FrameSetupOpcode) { 2590 if (BBState.ExitIsSetup) 2591 report("FrameSetup is after another FrameSetup", &I); 2592 BBState.ExitValue -= TII->getFrameTotalSize(I); 2593 BBState.ExitIsSetup = true; 2594 } 2595 2596 if (I.getOpcode() == FrameDestroyOpcode) { 2597 int Size = TII->getFrameTotalSize(I); 2598 if (!BBState.ExitIsSetup) 2599 report("FrameDestroy is not after a FrameSetup", &I); 2600 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2601 BBState.ExitValue; 2602 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2603 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2604 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2605 << AbsSPAdj << ">.\n"; 2606 } 2607 BBState.ExitValue += Size; 2608 BBState.ExitIsSetup = false; 2609 } 2610 } 2611 SPState[MBB->getNumber()] = BBState; 2612 2613 // Make sure the exit state of any predecessor is consistent with the entry 2614 // state. 2615 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2616 E = MBB->pred_end(); I != E; ++I) { 2617 if (Reachable.count(*I) && 2618 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2619 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2620 report("The exit stack state of a predecessor is inconsistent.", MBB); 2621 errs() << "Predecessor " << printMBBReference(*(*I)) 2622 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2623 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2624 << printMBBReference(*MBB) << " has entry state (" 2625 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2626 } 2627 } 2628 2629 // Make sure the entry state of any successor is consistent with the exit 2630 // state. 2631 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2632 E = MBB->succ_end(); I != E; ++I) { 2633 if (Reachable.count(*I) && 2634 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2635 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2636 report("The entry stack state of a successor is inconsistent.", MBB); 2637 errs() << "Successor " << printMBBReference(*(*I)) 2638 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2639 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2640 << printMBBReference(*MBB) << " has exit state (" 2641 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2642 } 2643 } 2644 2645 // Make sure a basic block with return ends with zero stack adjustment. 2646 if (!MBB->empty() && MBB->back().isReturn()) { 2647 if (BBState.ExitIsSetup) 2648 report("A return block ends with a FrameSetup.", MBB); 2649 if (BBState.ExitValue) 2650 report("A return block ends with a nonzero stack adjustment.", MBB); 2651 } 2652 } 2653 } 2654