1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233 
234     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235     void verifyPreISelGenericInstruction(const MachineInstr *MI);
236     void visitMachineInstrBefore(const MachineInstr *MI);
237     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238     void visitMachineInstrAfter(const MachineInstr *MI);
239     void visitMachineBundleAfter(const MachineInstr *MI);
240     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241     void visitMachineFunctionAfter();
242 
243     void report(const char *msg, const MachineFunction *MF);
244     void report(const char *msg, const MachineBasicBlock *MBB);
245     void report(const char *msg, const MachineInstr *MI);
246     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247                 LLT MOVRegType = LLT{});
248 
249     void report_context(const LiveInterval &LI) const;
250     void report_context(const LiveRange &LR, unsigned VRegUnit,
251                         LaneBitmask LaneMask) const;
252     void report_context(const LiveRange::Segment &S) const;
253     void report_context(const VNInfo &VNI) const;
254     void report_context(SlotIndex Pos) const;
255     void report_context(MCPhysReg PhysReg) const;
256     void report_context_liverange(const LiveRange &LR) const;
257     void report_context_lanemask(LaneBitmask LaneMask) const;
258     void report_context_vreg(unsigned VReg) const;
259     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
260 
261     void verifyInlineAsm(const MachineInstr *MI);
262 
263     void checkLiveness(const MachineOperand *MO, unsigned MONum);
264     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             LaneBitmask LaneMask = LaneBitmask::getNone());
267     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269                             bool SubRangeCheck = false,
270                             LaneBitmask LaneMask = LaneBitmask::getNone());
271 
272     void markReachable(const MachineBasicBlock *MBB);
273     void calcRegsPassed();
274     void checkPHIOps(const MachineBasicBlock &MBB);
275 
276     void calcRegsRequired();
277     void verifyLiveVariables();
278     void verifyLiveIntervals();
279     void verifyLiveInterval(const LiveInterval&);
280     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281                               LaneBitmask);
282     void verifyLiveRangeSegment(const LiveRange&,
283                                 const LiveRange::const_iterator I, unsigned,
284                                 LaneBitmask);
285     void verifyLiveRange(const LiveRange&, unsigned,
286                          LaneBitmask LaneMask = LaneBitmask::getNone());
287 
288     void verifyStackFrame();
289 
290     void verifySlotIndexes() const;
291     void verifyProperties(const MachineFunction &MF);
292   };
293 
294   struct MachineVerifierPass : public MachineFunctionPass {
295     static char ID; // Pass ID, replacement for typeid
296 
297     const std::string Banner;
298 
299     MachineVerifierPass(std::string banner = std::string())
300       : MachineFunctionPass(ID), Banner(std::move(banner)) {
301         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
302       }
303 
304     void getAnalysisUsage(AnalysisUsage &AU) const override {
305       AU.setPreservesAll();
306       MachineFunctionPass::getAnalysisUsage(AU);
307     }
308 
309     bool runOnMachineFunction(MachineFunction &MF) override {
310       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311       if (FoundErrors)
312         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313       return false;
314     }
315   };
316 
317 } // end anonymous namespace
318 
319 char MachineVerifierPass::ID = 0;
320 
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322                 "Verify generated machine code", false, false)
323 
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325   return new MachineVerifierPass(Banner);
326 }
327 
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329     const {
330   MachineFunction &MF = const_cast<MachineFunction&>(*this);
331   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332   if (AbortOnErrors && FoundErrors)
333     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334   return FoundErrors == 0;
335 }
336 
337 void MachineVerifier::verifySlotIndexes() const {
338   if (Indexes == nullptr)
339     return;
340 
341   // Ensure the IdxMBB list is sorted by slot indexes.
342   SlotIndex Last;
343   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344        E = Indexes->MBBIndexEnd(); I != E; ++I) {
345     assert(!Last.isValid() || I->first > Last);
346     Last = I->first;
347   }
348 }
349 
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351   // If a pass has introduced virtual registers without clearing the
352   // NoVRegs property (or set it without allocating the vregs)
353   // then report an error.
354   if (MF.getProperties().hasProperty(
355           MachineFunctionProperties::Property::NoVRegs) &&
356       MRI->getNumVirtRegs())
357     report("Function has NoVRegs property but there are VReg operands", &MF);
358 }
359 
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361   foundErrors = 0;
362 
363   this->MF = &MF;
364   TM = &MF.getTarget();
365   TII = MF.getSubtarget().getInstrInfo();
366   TRI = MF.getSubtarget().getRegisterInfo();
367   MRI = &MF.getRegInfo();
368 
369   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370       MachineFunctionProperties::Property::FailedISel);
371 
372   // If we're mid-GlobalISel and we already triggered the fallback path then
373   // it's expected that the MIR is somewhat broken but that's ok since we'll
374   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375   if (isFunctionFailedISel)
376     return foundErrors;
377 
378   isFunctionRegBankSelected =
379       !isFunctionFailedISel &&
380       MF.getProperties().hasProperty(
381           MachineFunctionProperties::Property::RegBankSelected);
382   isFunctionSelected = !isFunctionFailedISel &&
383                        MF.getProperties().hasProperty(
384                            MachineFunctionProperties::Property::Selected);
385   LiveVars = nullptr;
386   LiveInts = nullptr;
387   LiveStks = nullptr;
388   Indexes = nullptr;
389   if (PASS) {
390     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391     // We don't want to verify LiveVariables if LiveIntervals is available.
392     if (!LiveInts)
393       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
396   }
397 
398   verifySlotIndexes();
399 
400   verifyProperties(MF);
401 
402   visitMachineFunctionBefore();
403   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404        MFI!=MFE; ++MFI) {
405     visitMachineBasicBlockBefore(&*MFI);
406     // Keep track of the current bundle header.
407     const MachineInstr *CurBundle = nullptr;
408     // Do we expect the next instruction to be part of the same bundle?
409     bool InBundle = false;
410 
411     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413       if (MBBI->getParent() != &*MFI) {
414         report("Bad instruction parent pointer", &*MFI);
415         errs() << "Instruction: " << *MBBI;
416         continue;
417       }
418 
419       // Check for consistent bundle flags.
420       if (InBundle && !MBBI->isBundledWithPred())
421         report("Missing BundledPred flag, "
422                "BundledSucc was set on predecessor",
423                &*MBBI);
424       if (!InBundle && MBBI->isBundledWithPred())
425         report("BundledPred flag is set, "
426                "but BundledSucc not set on predecessor",
427                &*MBBI);
428 
429       // Is this a bundle header?
430       if (!MBBI->isInsideBundle()) {
431         if (CurBundle)
432           visitMachineBundleAfter(CurBundle);
433         CurBundle = &*MBBI;
434         visitMachineBundleBefore(CurBundle);
435       } else if (!CurBundle)
436         report("No bundle header", &*MBBI);
437       visitMachineInstrBefore(&*MBBI);
438       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439         const MachineInstr &MI = *MBBI;
440         const MachineOperand &Op = MI.getOperand(I);
441         if (Op.getParent() != &MI) {
442           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443           // functions when replacing operands of a MachineInstr.
444           report("Instruction has operand with wrong parent set", &MI);
445         }
446 
447         visitMachineOperand(&Op, I);
448       }
449 
450       visitMachineInstrAfter(&*MBBI);
451 
452       // Was this the last bundled instruction?
453       InBundle = MBBI->isBundledWithSucc();
454     }
455     if (CurBundle)
456       visitMachineBundleAfter(CurBundle);
457     if (InBundle)
458       report("BundledSucc flag set on last instruction in block", &MFI->back());
459     visitMachineBasicBlockAfter(&*MFI);
460   }
461   visitMachineFunctionAfter();
462 
463   // Clean up.
464   regsLive.clear();
465   regsDefined.clear();
466   regsDead.clear();
467   regsKilled.clear();
468   regMasks.clear();
469   MBBInfoMap.clear();
470 
471   return foundErrors;
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475   assert(MF);
476   errs() << '\n';
477   if (!foundErrors++) {
478     if (Banner)
479       errs() << "# " << Banner << '\n';
480     if (LiveInts != nullptr)
481       LiveInts->print(errs());
482     else
483       MF->print(errs(), Indexes);
484   }
485   errs() << "*** Bad machine code: " << msg << " ***\n"
486       << "- function:    " << MF->getName() << "\n";
487 }
488 
489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490   assert(MBB);
491   report(msg, MBB->getParent());
492   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493          << MBB->getName() << " (" << (const void *)MBB << ')';
494   if (Indexes)
495     errs() << " [" << Indexes->getMBBStartIdx(MBB)
496         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
497   errs() << '\n';
498 }
499 
500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501   assert(MI);
502   report(msg, MI->getParent());
503   errs() << "- instruction: ";
504   if (Indexes && Indexes->hasIndex(*MI))
505     errs() << Indexes->getInstructionIndex(*MI) << '\t';
506   MI->print(errs(), /*SkipOpers=*/true);
507 }
508 
509 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510                              unsigned MONum, LLT MOVRegType) {
511   assert(MO);
512   report(msg, MO->getParent());
513   errs() << "- operand " << MONum << ":   ";
514   MO->print(errs(), MOVRegType, TRI);
515   errs() << "\n";
516 }
517 
518 void MachineVerifier::report_context(SlotIndex Pos) const {
519   errs() << "- at:          " << Pos << '\n';
520 }
521 
522 void MachineVerifier::report_context(const LiveInterval &LI) const {
523   errs() << "- interval:    " << LI << '\n';
524 }
525 
526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527                                      LaneBitmask LaneMask) const {
528   report_context_liverange(LR);
529   report_context_vreg_regunit(VRegUnit);
530   if (LaneMask.any())
531     report_context_lanemask(LaneMask);
532 }
533 
534 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535   errs() << "- segment:     " << S << '\n';
536 }
537 
538 void MachineVerifier::report_context(const VNInfo &VNI) const {
539   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
540 }
541 
542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543   errs() << "- liverange:   " << LR << '\n';
544 }
545 
546 void MachineVerifier::report_context(MCPhysReg PReg) const {
547   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
548 }
549 
550 void MachineVerifier::report_context_vreg(unsigned VReg) const {
551   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
552 }
553 
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
556     report_context_vreg(VRegOrUnit);
557   } else {
558     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
559   }
560 }
561 
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
564 }
565 
566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567   BBInfo &MInfo = MBBInfoMap[MBB];
568   if (!MInfo.reachable) {
569     MInfo.reachable = true;
570     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572       markReachable(*SuI);
573   }
574 }
575 
576 void MachineVerifier::visitMachineFunctionBefore() {
577   lastIndex = SlotIndex();
578   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579                                            : TRI->getReservedRegs(*MF);
580 
581   if (!MF->empty())
582     markReachable(&MF->front());
583 
584   // Build a set of the basic blocks in the function.
585   FunctionBlocks.clear();
586   for (const auto &MBB : *MF) {
587     FunctionBlocks.insert(&MBB);
588     BBInfo &MInfo = MBBInfoMap[&MBB];
589 
590     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591     if (MInfo.Preds.size() != MBB.pred_size())
592       report("MBB has duplicate entries in its predecessor list.", &MBB);
593 
594     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595     if (MInfo.Succs.size() != MBB.succ_size())
596       report("MBB has duplicate entries in its successor list.", &MBB);
597   }
598 
599   // Check that the register use lists are sane.
600   MRI->verifyUseLists();
601 
602   if (!MF->empty())
603     verifyStackFrame();
604 }
605 
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
609   if (*i == a)
610     return *++i == b;
611   if (*i == b)
612     return *++i == a;
613   return false;
614 }
615 
616 void
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618   FirstTerminator = nullptr;
619   FirstNonPHI = nullptr;
620 
621   if (!MF->getProperties().hasProperty(
622       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623     // If this block has allocatable physical registers live-in, check that
624     // it is an entry block or landing pad.
625     for (const auto &LI : MBB->liveins()) {
626       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627           MBB->getIterator() != MBB->getParent()->begin()) {
628         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629         report_context(LI.PhysReg);
630       }
631     }
632   }
633 
634   // Count the number of landing pad successors.
635   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637        E = MBB->succ_end(); I != E; ++I) {
638     if ((*I)->isEHPad())
639       LandingPadSuccs.insert(*I);
640     if (!FunctionBlocks.count(*I))
641       report("MBB has successor that isn't part of the function.", MBB);
642     if (!MBBInfoMap[*I].Preds.count(MBB)) {
643       report("Inconsistent CFG", MBB);
644       errs() << "MBB is not in the predecessor list of the successor "
645              << printMBBReference(*(*I)) << ".\n";
646     }
647   }
648 
649   // Check the predecessor list.
650   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651        E = MBB->pred_end(); I != E; ++I) {
652     if (!FunctionBlocks.count(*I))
653       report("MBB has predecessor that isn't part of the function.", MBB);
654     if (!MBBInfoMap[*I].Succs.count(MBB)) {
655       report("Inconsistent CFG", MBB);
656       errs() << "MBB is not in the successor list of the predecessor "
657              << printMBBReference(*(*I)) << ".\n";
658     }
659   }
660 
661   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662   const BasicBlock *BB = MBB->getBasicBlock();
663   const Function &F = MF->getFunction();
664   if (LandingPadSuccs.size() > 1 &&
665       !(AsmInfo &&
666         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667         BB && isa<SwitchInst>(BB->getTerminator())) &&
668       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669     report("MBB has more than one landing pad successor", MBB);
670 
671   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673   SmallVector<MachineOperand, 4> Cond;
674   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675                           Cond)) {
676     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677     // check whether its answers match up with reality.
678     if (!TBB && !FBB) {
679       // Block falls through to its successor.
680       MachineFunction::const_iterator MBBI = MBB->getIterator();
681       ++MBBI;
682       if (MBBI == MF->end()) {
683         // It's possible that the block legitimately ends with a noreturn
684         // call or an unreachable, in which case it won't actually fall
685         // out the bottom of the function.
686       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687         // It's possible that the block legitimately ends with a noreturn
688         // call or an unreachable, in which case it won't actually fall
689         // out of the block.
690       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691         report("MBB exits via unconditional fall-through but doesn't have "
692                "exactly one CFG successor!", MBB);
693       } else if (!MBB->isSuccessor(&*MBBI)) {
694         report("MBB exits via unconditional fall-through but its successor "
695                "differs from its CFG successor!", MBB);
696       }
697       if (!MBB->empty() && MBB->back().isBarrier() &&
698           !TII->isPredicated(MBB->back())) {
699         report("MBB exits via unconditional fall-through but ends with a "
700                "barrier instruction!", MBB);
701       }
702       if (!Cond.empty()) {
703         report("MBB exits via unconditional fall-through but has a condition!",
704                MBB);
705       }
706     } else if (TBB && !FBB && Cond.empty()) {
707       // Block unconditionally branches somewhere.
708       // If the block has exactly one successor, that happens to be a
709       // landingpad, accept it as valid control flow.
710       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713         report("MBB exits via unconditional branch but doesn't have "
714                "exactly one CFG successor!", MBB);
715       } else if (!MBB->isSuccessor(TBB)) {
716         report("MBB exits via unconditional branch but the CFG "
717                "successor doesn't match the actual successor!", MBB);
718       }
719       if (MBB->empty()) {
720         report("MBB exits via unconditional branch but doesn't contain "
721                "any instructions!", MBB);
722       } else if (!MBB->back().isBarrier()) {
723         report("MBB exits via unconditional branch but doesn't end with a "
724                "barrier instruction!", MBB);
725       } else if (!MBB->back().isTerminator()) {
726         report("MBB exits via unconditional branch but the branch isn't a "
727                "terminator instruction!", MBB);
728       }
729     } else if (TBB && !FBB && !Cond.empty()) {
730       // Block conditionally branches somewhere, otherwise falls through.
731       MachineFunction::const_iterator MBBI = MBB->getIterator();
732       ++MBBI;
733       if (MBBI == MF->end()) {
734         report("MBB conditionally falls through out of function!", MBB);
735       } else if (MBB->succ_size() == 1) {
736         // A conditional branch with only one successor is weird, but allowed.
737         if (&*MBBI != TBB)
738           report("MBB exits via conditional branch/fall-through but only has "
739                  "one CFG successor!", MBB);
740         else if (TBB != *MBB->succ_begin())
741           report("MBB exits via conditional branch/fall-through but the CFG "
742                  "successor don't match the actual successor!", MBB);
743       } else if (MBB->succ_size() != 2) {
744         report("MBB exits via conditional branch/fall-through but doesn't have "
745                "exactly two CFG successors!", MBB);
746       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747         report("MBB exits via conditional branch/fall-through but the CFG "
748                "successors don't match the actual successors!", MBB);
749       }
750       if (MBB->empty()) {
751         report("MBB exits via conditional branch/fall-through but doesn't "
752                "contain any instructions!", MBB);
753       } else if (MBB->back().isBarrier()) {
754         report("MBB exits via conditional branch/fall-through but ends with a "
755                "barrier instruction!", MBB);
756       } else if (!MBB->back().isTerminator()) {
757         report("MBB exits via conditional branch/fall-through but the branch "
758                "isn't a terminator instruction!", MBB);
759       }
760     } else if (TBB && FBB) {
761       // Block conditionally branches somewhere, otherwise branches
762       // somewhere else.
763       if (MBB->succ_size() == 1) {
764         // A conditional branch with only one successor is weird, but allowed.
765         if (FBB != TBB)
766           report("MBB exits via conditional branch/branch through but only has "
767                  "one CFG successor!", MBB);
768         else if (TBB != *MBB->succ_begin())
769           report("MBB exits via conditional branch/branch through but the CFG "
770                  "successor don't match the actual successor!", MBB);
771       } else if (MBB->succ_size() != 2) {
772         report("MBB exits via conditional branch/branch but doesn't have "
773                "exactly two CFG successors!", MBB);
774       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775         report("MBB exits via conditional branch/branch but the CFG "
776                "successors don't match the actual successors!", MBB);
777       }
778       if (MBB->empty()) {
779         report("MBB exits via conditional branch/branch but doesn't "
780                "contain any instructions!", MBB);
781       } else if (!MBB->back().isBarrier()) {
782         report("MBB exits via conditional branch/branch but doesn't end with a "
783                "barrier instruction!", MBB);
784       } else if (!MBB->back().isTerminator()) {
785         report("MBB exits via conditional branch/branch but the branch "
786                "isn't a terminator instruction!", MBB);
787       }
788       if (Cond.empty()) {
789         report("MBB exits via conditional branch/branch but there's no "
790                "condition!", MBB);
791       }
792     } else {
793       report("AnalyzeBranch returned invalid data!", MBB);
794     }
795   }
796 
797   regsLive.clear();
798   if (MRI->tracksLiveness()) {
799     for (const auto &LI : MBB->liveins()) {
800       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
801         report("MBB live-in list contains non-physical register", MBB);
802         continue;
803       }
804       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805            SubRegs.isValid(); ++SubRegs)
806         regsLive.insert(*SubRegs);
807     }
808   }
809 
810   const MachineFrameInfo &MFI = MF->getFrameInfo();
811   BitVector PR = MFI.getPristineRegs(*MF);
812   for (unsigned I : PR.set_bits()) {
813     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814          SubRegs.isValid(); ++SubRegs)
815       regsLive.insert(*SubRegs);
816   }
817 
818   regsKilled.clear();
819   regsDefined.clear();
820 
821   if (Indexes)
822     lastIndex = Indexes->getMBBStartIdx(MBB);
823 }
824 
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828   if (Indexes && Indexes->hasIndex(*MI)) {
829     SlotIndex idx = Indexes->getInstructionIndex(*MI);
830     if (!(idx > lastIndex)) {
831       report("Instruction index out of order", MI);
832       errs() << "Last instruction was at " << lastIndex << '\n';
833     }
834     lastIndex = idx;
835   }
836 
837   // Ensure non-terminators don't follow terminators.
838   // Ignore predicated terminators formed by if conversion.
839   // FIXME: If conversion shouldn't need to violate this rule.
840   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841     if (!FirstTerminator)
842       FirstTerminator = MI;
843   } else if (FirstTerminator) {
844     report("Non-terminator instruction after the first terminator", MI);
845     errs() << "First terminator was:\t" << *FirstTerminator;
846   }
847 }
848 
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852   // The first two operands on INLINEASM are the asm string and global flags.
853   if (MI->getNumOperands() < 2) {
854     report("Too few operands on inline asm", MI);
855     return;
856   }
857   if (!MI->getOperand(0).isSymbol())
858     report("Asm string must be an external symbol", MI);
859   if (!MI->getOperand(1).isImm())
860     report("Asm flags must be an immediate", MI);
861   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863   // and Extra_IsConvergent = 32.
864   if (!isUInt<6>(MI->getOperand(1).getImm()))
865     report("Unknown asm flags", &MI->getOperand(1), 1);
866 
867   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
868 
869   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870   unsigned NumOps;
871   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872     const MachineOperand &MO = MI->getOperand(OpNo);
873     // There may be implicit ops after the fixed operands.
874     if (!MO.isImm())
875       break;
876     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
877   }
878 
879   if (OpNo > MI->getNumOperands())
880     report("Missing operands in last group", MI);
881 
882   // An optional MDNode follows the groups.
883   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884     ++OpNo;
885 
886   // All trailing operands must be implicit registers.
887   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888     const MachineOperand &MO = MI->getOperand(OpNo);
889     if (!MO.isReg() || !MO.isImplicit())
890       report("Expected implicit register after groups", &MO, OpNo);
891   }
892 }
893 
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898                                                const MachineInstr *MI) {
899   if (Ty0.isVector() != Ty1.isVector()) {
900     report("operand types must be all-vector or all-scalar", MI);
901     // Generally we try to report as many issues as possible at once, but in
902     // this case it's not clear what should we be comparing the size of the
903     // scalar with: the size of the whole vector or its lane. Instead of
904     // making an arbitrary choice and emitting not so helpful message, let's
905     // avoid the extra noise and stop here.
906     return false;
907   }
908 
909   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910     report("operand types must preserve number of vector elements", MI);
911     return false;
912   }
913 
914   return true;
915 }
916 
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918   if (isFunctionSelected)
919     report("Unexpected generic instruction in a Selected function", MI);
920 
921   const MCInstrDesc &MCID = MI->getDesc();
922   unsigned NumOps = MI->getNumOperands();
923 
924   // Check types.
925   SmallVector<LLT, 4> Types;
926   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927        I != E; ++I) {
928     if (!MCID.OpInfo[I].isGenericType())
929       continue;
930     // Generic instructions specify type equality constraints between some of
931     // their operands. Make sure these are consistent.
932     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933     Types.resize(std::max(TypeIdx + 1, Types.size()));
934 
935     const MachineOperand *MO = &MI->getOperand(I);
936     if (!MO->isReg()) {
937       report("generic instruction must use register operands", MI);
938       continue;
939     }
940 
941     LLT OpTy = MRI->getType(MO->getReg());
942     // Don't report a type mismatch if there is no actual mismatch, only a
943     // type missing, to reduce noise:
944     if (OpTy.isValid()) {
945       // Only the first valid type for a type index will be printed: don't
946       // overwrite it later so it's always clear which type was expected:
947       if (!Types[TypeIdx].isValid())
948         Types[TypeIdx] = OpTy;
949       else if (Types[TypeIdx] != OpTy)
950         report("Type mismatch in generic instruction", MO, I, OpTy);
951     } else {
952       // Generic instructions must have types attached to their operands.
953       report("Generic instruction is missing a virtual register type", MO, I);
954     }
955   }
956 
957   // Generic opcodes must not have physical register operands.
958   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959     const MachineOperand *MO = &MI->getOperand(I);
960     if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
961       report("Generic instruction cannot have physical register", MO, I);
962   }
963 
964   // Avoid out of bounds in checks below. This was already reported earlier.
965   if (MI->getNumOperands() < MCID.getNumOperands())
966     return;
967 
968   StringRef ErrorInfo;
969   if (!TII->verifyInstruction(*MI, ErrorInfo))
970     report(ErrorInfo.data(), MI);
971 
972   // Verify properties of various specific instruction types
973   switch (MI->getOpcode()) {
974   case TargetOpcode::G_CONSTANT:
975   case TargetOpcode::G_FCONSTANT: {
976     if (MI->getNumOperands() < MCID.getNumOperands())
977       break;
978 
979     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980     if (DstTy.isVector())
981       report("Instruction cannot use a vector result type", MI);
982 
983     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984       if (!MI->getOperand(1).isCImm()) {
985         report("G_CONSTANT operand must be cimm", MI);
986         break;
987       }
988 
989       const ConstantInt *CI = MI->getOperand(1).getCImm();
990       if (CI->getBitWidth() != DstTy.getSizeInBits())
991         report("inconsistent constant size", MI);
992     } else {
993       if (!MI->getOperand(1).isFPImm()) {
994         report("G_FCONSTANT operand must be fpimm", MI);
995         break;
996       }
997       const ConstantFP *CF = MI->getOperand(1).getFPImm();
998 
999       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000           DstTy.getSizeInBits()) {
1001         report("inconsistent constant size", MI);
1002       }
1003     }
1004 
1005     break;
1006   }
1007   case TargetOpcode::G_LOAD:
1008   case TargetOpcode::G_STORE:
1009   case TargetOpcode::G_ZEXTLOAD:
1010   case TargetOpcode::G_SEXTLOAD: {
1011     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013     if (!PtrTy.isPointer())
1014       report("Generic memory instruction must access a pointer", MI);
1015 
1016     // Generic loads and stores must have a single MachineMemOperand
1017     // describing that access.
1018     if (!MI->hasOneMemOperand()) {
1019       report("Generic instruction accessing memory must have one mem operand",
1020              MI);
1021     } else {
1022       const MachineMemOperand &MMO = **MI->memoperands_begin();
1023       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025         if (MMO.getSize() * 8 >= ValTy.getSizeInBits())
1026           report("Generic extload must have a narrower memory type", MI);
1027       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028         if (MMO.getSize() > (ValTy.getSizeInBits() + 7) / 8)
1029           report("load memory size cannot exceed result size", MI);
1030       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031         if ((ValTy.getSizeInBits() + 7) / 8 < MMO.getSize())
1032           report("store memory size cannot exceed value size", MI);
1033       }
1034     }
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_PHI: {
1039     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040     if (!DstTy.isValid() ||
1041         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042                      [this, &DstTy](const MachineOperand &MO) {
1043                        if (!MO.isReg())
1044                          return true;
1045                        LLT Ty = MRI->getType(MO.getReg());
1046                        if (!Ty.isValid() || (Ty != DstTy))
1047                          return false;
1048                        return true;
1049                      }))
1050       report("Generic Instruction G_PHI has operands with incompatible/missing "
1051              "types",
1052              MI);
1053     break;
1054   }
1055   case TargetOpcode::G_BITCAST: {
1056     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058     if (!DstTy.isValid() || !SrcTy.isValid())
1059       break;
1060 
1061     if (SrcTy.isPointer() != DstTy.isPointer())
1062       report("bitcast cannot convert between pointers and other types", MI);
1063 
1064     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065       report("bitcast sizes must match", MI);
1066     break;
1067   }
1068   case TargetOpcode::G_INTTOPTR:
1069   case TargetOpcode::G_PTRTOINT:
1070   case TargetOpcode::G_ADDRSPACE_CAST: {
1071     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073     if (!DstTy.isValid() || !SrcTy.isValid())
1074       break;
1075 
1076     verifyVectorElementMatch(DstTy, SrcTy, MI);
1077 
1078     DstTy = DstTy.getScalarType();
1079     SrcTy = SrcTy.getScalarType();
1080 
1081     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082       if (!DstTy.isPointer())
1083         report("inttoptr result type must be a pointer", MI);
1084       if (SrcTy.isPointer())
1085         report("inttoptr source type must not be a pointer", MI);
1086     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087       if (!SrcTy.isPointer())
1088         report("ptrtoint source type must be a pointer", MI);
1089       if (DstTy.isPointer())
1090         report("ptrtoint result type must not be a pointer", MI);
1091     } else {
1092       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093       if (!SrcTy.isPointer() || !DstTy.isPointer())
1094         report("addrspacecast types must be pointers", MI);
1095       else {
1096         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097           report("addrspacecast must convert different address spaces", MI);
1098       }
1099     }
1100 
1101     break;
1102   }
1103   case TargetOpcode::G_GEP: {
1104     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108       break;
1109 
1110     if (!PtrTy.getScalarType().isPointer())
1111       report("gep first operand must be a pointer", MI);
1112 
1113     if (OffsetTy.getScalarType().isPointer())
1114       report("gep offset operand must not be a pointer", MI);
1115 
1116     // TODO: Is the offset allowed to be a scalar with a vector?
1117     break;
1118   }
1119   case TargetOpcode::G_SEXT:
1120   case TargetOpcode::G_ZEXT:
1121   case TargetOpcode::G_ANYEXT:
1122   case TargetOpcode::G_TRUNC:
1123   case TargetOpcode::G_FPEXT:
1124   case TargetOpcode::G_FPTRUNC: {
1125     // Number of operands and presense of types is already checked (and
1126     // reported in case of any issues), so no need to report them again. As
1127     // we're trying to report as many issues as possible at once, however, the
1128     // instructions aren't guaranteed to have the right number of operands or
1129     // types attached to them at this point
1130     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133     if (!DstTy.isValid() || !SrcTy.isValid())
1134       break;
1135 
1136     LLT DstElTy = DstTy.getScalarType();
1137     LLT SrcElTy = SrcTy.getScalarType();
1138     if (DstElTy.isPointer() || SrcElTy.isPointer())
1139       report("Generic extend/truncate can not operate on pointers", MI);
1140 
1141     verifyVectorElementMatch(DstTy, SrcTy, MI);
1142 
1143     unsigned DstSize = DstElTy.getSizeInBits();
1144     unsigned SrcSize = SrcElTy.getSizeInBits();
1145     switch (MI->getOpcode()) {
1146     default:
1147       if (DstSize <= SrcSize)
1148         report("Generic extend has destination type no larger than source", MI);
1149       break;
1150     case TargetOpcode::G_TRUNC:
1151     case TargetOpcode::G_FPTRUNC:
1152       if (DstSize >= SrcSize)
1153         report("Generic truncate has destination type no smaller than source",
1154                MI);
1155       break;
1156     }
1157     break;
1158   }
1159   case TargetOpcode::G_SELECT: {
1160     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162     if (!SelTy.isValid() || !CondTy.isValid())
1163       break;
1164 
1165     // Scalar condition select on a vector is valid.
1166     if (CondTy.isVector())
1167       verifyVectorElementMatch(SelTy, CondTy, MI);
1168     break;
1169   }
1170   case TargetOpcode::G_MERGE_VALUES: {
1171     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172     // e.g. s2N = MERGE sN, sN
1173     // Merging multiple scalars into a vector is not allowed, should use
1174     // G_BUILD_VECTOR for that.
1175     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177     if (DstTy.isVector() || SrcTy.isVector())
1178       report("G_MERGE_VALUES cannot operate on vectors", MI);
1179     break;
1180   }
1181   case TargetOpcode::G_UNMERGE_VALUES: {
1182     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1183     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1184     // For now G_UNMERGE can split vectors.
1185     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1186       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1187         report("G_UNMERGE_VALUES destination types do not match", MI);
1188     }
1189     if (SrcTy.getSizeInBits() !=
1190         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1191       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1192              MI);
1193     }
1194     break;
1195   }
1196   case TargetOpcode::G_BUILD_VECTOR: {
1197     // Source types must be scalars, dest type a vector. Total size of scalars
1198     // must match the dest vector size.
1199     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1200     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1201     if (!DstTy.isVector() || SrcEltTy.isVector())
1202       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1203     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1204       if (MRI->getType(MI->getOperand(1).getReg()) !=
1205           MRI->getType(MI->getOperand(i).getReg()))
1206         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1207     }
1208     if (DstTy.getSizeInBits() !=
1209         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1210       report("G_BUILD_VECTOR src operands total size don't match dest "
1211              "size.",
1212              MI);
1213     break;
1214   }
1215   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1216     // Source types must be scalars, dest type a vector. Scalar types must be
1217     // larger than the dest vector elt type, as this is a truncating operation.
1218     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1219     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1220     if (!DstTy.isVector() || SrcEltTy.isVector())
1221       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1222              MI);
1223     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1224       if (MRI->getType(MI->getOperand(1).getReg()) !=
1225           MRI->getType(MI->getOperand(i).getReg()))
1226         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1227                MI);
1228     }
1229     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1230       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1231              "dest elt type",
1232              MI);
1233     break;
1234   }
1235   case TargetOpcode::G_CONCAT_VECTORS: {
1236     // Source types should be vectors, and total size should match the dest
1237     // vector size.
1238     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1239     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1240     if (!DstTy.isVector() || !SrcTy.isVector())
1241       report("G_CONCAT_VECTOR requires vector source and destination operands",
1242              MI);
1243     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1244       if (MRI->getType(MI->getOperand(1).getReg()) !=
1245           MRI->getType(MI->getOperand(i).getReg()))
1246         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1247     }
1248     if (DstTy.getNumElements() !=
1249         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1250       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1251     break;
1252   }
1253   case TargetOpcode::G_ICMP:
1254   case TargetOpcode::G_FCMP: {
1255     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1256     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1257 
1258     if ((DstTy.isVector() != SrcTy.isVector()) ||
1259         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1260       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1261 
1262     break;
1263   }
1264   case TargetOpcode::G_EXTRACT: {
1265     const MachineOperand &SrcOp = MI->getOperand(1);
1266     if (!SrcOp.isReg()) {
1267       report("extract source must be a register", MI);
1268       break;
1269     }
1270 
1271     const MachineOperand &OffsetOp = MI->getOperand(2);
1272     if (!OffsetOp.isImm()) {
1273       report("extract offset must be a constant", MI);
1274       break;
1275     }
1276 
1277     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1278     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1279     if (SrcSize == DstSize)
1280       report("extract source must be larger than result", MI);
1281 
1282     if (DstSize + OffsetOp.getImm() > SrcSize)
1283       report("extract reads past end of register", MI);
1284     break;
1285   }
1286   default:
1287     break;
1288   }
1289 }
1290 
1291 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1292   const MCInstrDesc &MCID = MI->getDesc();
1293   if (MI->getNumOperands() < MCID.getNumOperands()) {
1294     report("Too few operands", MI);
1295     errs() << MCID.getNumOperands() << " operands expected, but "
1296            << MI->getNumOperands() << " given.\n";
1297   }
1298 
1299   if (MI->isPHI()) {
1300     if (MF->getProperties().hasProperty(
1301             MachineFunctionProperties::Property::NoPHIs))
1302       report("Found PHI instruction with NoPHIs property set", MI);
1303 
1304     if (FirstNonPHI)
1305       report("Found PHI instruction after non-PHI", MI);
1306   } else if (FirstNonPHI == nullptr)
1307     FirstNonPHI = MI;
1308 
1309   // Check the tied operands.
1310   if (MI->isInlineAsm())
1311     verifyInlineAsm(MI);
1312 
1313   // Check the MachineMemOperands for basic consistency.
1314   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1315                                   E = MI->memoperands_end();
1316        I != E; ++I) {
1317     if ((*I)->isLoad() && !MI->mayLoad())
1318       report("Missing mayLoad flag", MI);
1319     if ((*I)->isStore() && !MI->mayStore())
1320       report("Missing mayStore flag", MI);
1321   }
1322 
1323   // Debug values must not have a slot index.
1324   // Other instructions must have one, unless they are inside a bundle.
1325   if (LiveInts) {
1326     bool mapped = !LiveInts->isNotInMIMap(*MI);
1327     if (MI->isDebugInstr()) {
1328       if (mapped)
1329         report("Debug instruction has a slot index", MI);
1330     } else if (MI->isInsideBundle()) {
1331       if (mapped)
1332         report("Instruction inside bundle has a slot index", MI);
1333     } else {
1334       if (!mapped)
1335         report("Missing slot index", MI);
1336     }
1337   }
1338 
1339   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1340     verifyPreISelGenericInstruction(MI);
1341     return;
1342   }
1343 
1344   StringRef ErrorInfo;
1345   if (!TII->verifyInstruction(*MI, ErrorInfo))
1346     report(ErrorInfo.data(), MI);
1347 
1348   // Verify properties of various specific instruction types
1349   switch (MI->getOpcode()) {
1350   case TargetOpcode::COPY: {
1351     if (foundErrors)
1352       break;
1353     const MachineOperand &DstOp = MI->getOperand(0);
1354     const MachineOperand &SrcOp = MI->getOperand(1);
1355     LLT DstTy = MRI->getType(DstOp.getReg());
1356     LLT SrcTy = MRI->getType(SrcOp.getReg());
1357     if (SrcTy.isValid() && DstTy.isValid()) {
1358       // If both types are valid, check that the types are the same.
1359       if (SrcTy != DstTy) {
1360         report("Copy Instruction is illegal with mismatching types", MI);
1361         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1362       }
1363     }
1364     if (SrcTy.isValid() || DstTy.isValid()) {
1365       // If one of them have valid types, let's just check they have the same
1366       // size.
1367       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1368       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1369       assert(SrcSize && "Expecting size here");
1370       assert(DstSize && "Expecting size here");
1371       if (SrcSize != DstSize)
1372         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1373           report("Copy Instruction is illegal with mismatching sizes", MI);
1374           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1375                  << "\n";
1376         }
1377     }
1378     break;
1379   }
1380   case TargetOpcode::STATEPOINT:
1381     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1382         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1383         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1384       report("meta operands to STATEPOINT not constant!", MI);
1385     break;
1386 
1387     auto VerifyStackMapConstant = [&](unsigned Offset) {
1388       if (!MI->getOperand(Offset).isImm() ||
1389           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1390           !MI->getOperand(Offset + 1).isImm())
1391         report("stack map constant to STATEPOINT not well formed!", MI);
1392     };
1393     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1394     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1395     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1396     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1397 
1398     // TODO: verify we have properly encoded deopt arguments
1399     break;
1400   }
1401 }
1402 
1403 void
1404 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1405   const MachineInstr *MI = MO->getParent();
1406   const MCInstrDesc &MCID = MI->getDesc();
1407   unsigned NumDefs = MCID.getNumDefs();
1408   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1409     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1410 
1411   // The first MCID.NumDefs operands must be explicit register defines
1412   if (MONum < NumDefs) {
1413     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1414     if (!MO->isReg())
1415       report("Explicit definition must be a register", MO, MONum);
1416     else if (!MO->isDef() && !MCOI.isOptionalDef())
1417       report("Explicit definition marked as use", MO, MONum);
1418     else if (MO->isImplicit())
1419       report("Explicit definition marked as implicit", MO, MONum);
1420   } else if (MONum < MCID.getNumOperands()) {
1421     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1422     // Don't check if it's the last operand in a variadic instruction. See,
1423     // e.g., LDM_RET in the arm back end.
1424     if (MO->isReg() &&
1425         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1426       if (MO->isDef() && !MCOI.isOptionalDef())
1427         report("Explicit operand marked as def", MO, MONum);
1428       if (MO->isImplicit())
1429         report("Explicit operand marked as implicit", MO, MONum);
1430     }
1431 
1432     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1433     if (TiedTo != -1) {
1434       if (!MO->isReg())
1435         report("Tied use must be a register", MO, MONum);
1436       else if (!MO->isTied())
1437         report("Operand should be tied", MO, MONum);
1438       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1439         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1440       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1441         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1442         if (!MOTied.isReg())
1443           report("Tied counterpart must be a register", &MOTied, TiedTo);
1444         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1445                  MO->getReg() != MOTied.getReg())
1446           report("Tied physical registers must match.", &MOTied, TiedTo);
1447       }
1448     } else if (MO->isReg() && MO->isTied())
1449       report("Explicit operand should not be tied", MO, MONum);
1450   } else {
1451     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1452     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1453       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1454   }
1455 
1456   switch (MO->getType()) {
1457   case MachineOperand::MO_Register: {
1458     const unsigned Reg = MO->getReg();
1459     if (!Reg)
1460       return;
1461     if (MRI->tracksLiveness() && !MI->isDebugValue())
1462       checkLiveness(MO, MONum);
1463 
1464     // Verify the consistency of tied operands.
1465     if (MO->isTied()) {
1466       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1467       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1468       if (!OtherMO.isReg())
1469         report("Must be tied to a register", MO, MONum);
1470       if (!OtherMO.isTied())
1471         report("Missing tie flags on tied operand", MO, MONum);
1472       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1473         report("Inconsistent tie links", MO, MONum);
1474       if (MONum < MCID.getNumDefs()) {
1475         if (OtherIdx < MCID.getNumOperands()) {
1476           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1477             report("Explicit def tied to explicit use without tie constraint",
1478                    MO, MONum);
1479         } else {
1480           if (!OtherMO.isImplicit())
1481             report("Explicit def should be tied to implicit use", MO, MONum);
1482         }
1483       }
1484     }
1485 
1486     // Verify two-address constraints after leaving SSA form.
1487     unsigned DefIdx;
1488     if (!MRI->isSSA() && MO->isUse() &&
1489         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1490         Reg != MI->getOperand(DefIdx).getReg())
1491       report("Two-address instruction operands must be identical", MO, MONum);
1492 
1493     // Check register classes.
1494     unsigned SubIdx = MO->getSubReg();
1495 
1496     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1497       if (SubIdx) {
1498         report("Illegal subregister index for physical register", MO, MONum);
1499         return;
1500       }
1501       if (MONum < MCID.getNumOperands()) {
1502         if (const TargetRegisterClass *DRC =
1503               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1504           if (!DRC->contains(Reg)) {
1505             report("Illegal physical register for instruction", MO, MONum);
1506             errs() << printReg(Reg, TRI) << " is not a "
1507                    << TRI->getRegClassName(DRC) << " register.\n";
1508           }
1509         }
1510       }
1511       if (MO->isRenamable()) {
1512         if (MRI->isReserved(Reg)) {
1513           report("isRenamable set on reserved register", MO, MONum);
1514           return;
1515         }
1516       }
1517       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1518         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1519         return;
1520       }
1521     } else {
1522       // Virtual register.
1523       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1524       if (!RC) {
1525         // This is a generic virtual register.
1526 
1527         // If we're post-Select, we can't have gvregs anymore.
1528         if (isFunctionSelected) {
1529           report("Generic virtual register invalid in a Selected function",
1530                  MO, MONum);
1531           return;
1532         }
1533 
1534         // The gvreg must have a type and it must not have a SubIdx.
1535         LLT Ty = MRI->getType(Reg);
1536         if (!Ty.isValid()) {
1537           report("Generic virtual register must have a valid type", MO,
1538                  MONum);
1539           return;
1540         }
1541 
1542         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1543 
1544         // If we're post-RegBankSelect, the gvreg must have a bank.
1545         if (!RegBank && isFunctionRegBankSelected) {
1546           report("Generic virtual register must have a bank in a "
1547                  "RegBankSelected function",
1548                  MO, MONum);
1549           return;
1550         }
1551 
1552         // Make sure the register fits into its register bank if any.
1553         if (RegBank && Ty.isValid() &&
1554             RegBank->getSize() < Ty.getSizeInBits()) {
1555           report("Register bank is too small for virtual register", MO,
1556                  MONum);
1557           errs() << "Register bank " << RegBank->getName() << " too small("
1558                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1559                  << "-bits\n";
1560           return;
1561         }
1562         if (SubIdx)  {
1563           report("Generic virtual register does not allow subregister index", MO,
1564                  MONum);
1565           return;
1566         }
1567 
1568         // If this is a target specific instruction and this operand
1569         // has register class constraint, the virtual register must
1570         // comply to it.
1571         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1572             MONum < MCID.getNumOperands() &&
1573             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1574           report("Virtual register does not match instruction constraint", MO,
1575                  MONum);
1576           errs() << "Expect register class "
1577                  << TRI->getRegClassName(
1578                         TII->getRegClass(MCID, MONum, TRI, *MF))
1579                  << " but got nothing\n";
1580           return;
1581         }
1582 
1583         break;
1584       }
1585       if (SubIdx) {
1586         const TargetRegisterClass *SRC =
1587           TRI->getSubClassWithSubReg(RC, SubIdx);
1588         if (!SRC) {
1589           report("Invalid subregister index for virtual register", MO, MONum);
1590           errs() << "Register class " << TRI->getRegClassName(RC)
1591               << " does not support subreg index " << SubIdx << "\n";
1592           return;
1593         }
1594         if (RC != SRC) {
1595           report("Invalid register class for subregister index", MO, MONum);
1596           errs() << "Register class " << TRI->getRegClassName(RC)
1597               << " does not fully support subreg index " << SubIdx << "\n";
1598           return;
1599         }
1600       }
1601       if (MONum < MCID.getNumOperands()) {
1602         if (const TargetRegisterClass *DRC =
1603               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1604           if (SubIdx) {
1605             const TargetRegisterClass *SuperRC =
1606                 TRI->getLargestLegalSuperClass(RC, *MF);
1607             if (!SuperRC) {
1608               report("No largest legal super class exists.", MO, MONum);
1609               return;
1610             }
1611             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1612             if (!DRC) {
1613               report("No matching super-reg register class.", MO, MONum);
1614               return;
1615             }
1616           }
1617           if (!RC->hasSuperClassEq(DRC)) {
1618             report("Illegal virtual register for instruction", MO, MONum);
1619             errs() << "Expected a " << TRI->getRegClassName(DRC)
1620                 << " register, but got a " << TRI->getRegClassName(RC)
1621                 << " register\n";
1622           }
1623         }
1624       }
1625     }
1626     break;
1627   }
1628 
1629   case MachineOperand::MO_RegisterMask:
1630     regMasks.push_back(MO->getRegMask());
1631     break;
1632 
1633   case MachineOperand::MO_MachineBasicBlock:
1634     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1635       report("PHI operand is not in the CFG", MO, MONum);
1636     break;
1637 
1638   case MachineOperand::MO_FrameIndex:
1639     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1640         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1641       int FI = MO->getIndex();
1642       LiveInterval &LI = LiveStks->getInterval(FI);
1643       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1644 
1645       bool stores = MI->mayStore();
1646       bool loads = MI->mayLoad();
1647       // For a memory-to-memory move, we need to check if the frame
1648       // index is used for storing or loading, by inspecting the
1649       // memory operands.
1650       if (stores && loads) {
1651         for (auto *MMO : MI->memoperands()) {
1652           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1653           if (PSV == nullptr) continue;
1654           const FixedStackPseudoSourceValue *Value =
1655             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1656           if (Value == nullptr) continue;
1657           if (Value->getFrameIndex() != FI) continue;
1658 
1659           if (MMO->isStore())
1660             loads = false;
1661           else
1662             stores = false;
1663           break;
1664         }
1665         if (loads == stores)
1666           report("Missing fixed stack memoperand.", MI);
1667       }
1668       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1669         report("Instruction loads from dead spill slot", MO, MONum);
1670         errs() << "Live stack: " << LI << '\n';
1671       }
1672       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1673         report("Instruction stores to dead spill slot", MO, MONum);
1674         errs() << "Live stack: " << LI << '\n';
1675       }
1676     }
1677     break;
1678 
1679   default:
1680     break;
1681   }
1682 }
1683 
1684 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1685     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1686     LaneBitmask LaneMask) {
1687   LiveQueryResult LRQ = LR.Query(UseIdx);
1688   // Check if we have a segment at the use, note however that we only need one
1689   // live subregister range, the others may be dead.
1690   if (!LRQ.valueIn() && LaneMask.none()) {
1691     report("No live segment at use", MO, MONum);
1692     report_context_liverange(LR);
1693     report_context_vreg_regunit(VRegOrUnit);
1694     report_context(UseIdx);
1695   }
1696   if (MO->isKill() && !LRQ.isKill()) {
1697     report("Live range continues after kill flag", MO, MONum);
1698     report_context_liverange(LR);
1699     report_context_vreg_regunit(VRegOrUnit);
1700     if (LaneMask.any())
1701       report_context_lanemask(LaneMask);
1702     report_context(UseIdx);
1703   }
1704 }
1705 
1706 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1707     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1708     bool SubRangeCheck, LaneBitmask LaneMask) {
1709   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1710     assert(VNI && "NULL valno is not allowed");
1711     if (VNI->def != DefIdx) {
1712       report("Inconsistent valno->def", MO, MONum);
1713       report_context_liverange(LR);
1714       report_context_vreg_regunit(VRegOrUnit);
1715       if (LaneMask.any())
1716         report_context_lanemask(LaneMask);
1717       report_context(*VNI);
1718       report_context(DefIdx);
1719     }
1720   } else {
1721     report("No live segment at def", MO, MONum);
1722     report_context_liverange(LR);
1723     report_context_vreg_regunit(VRegOrUnit);
1724     if (LaneMask.any())
1725       report_context_lanemask(LaneMask);
1726     report_context(DefIdx);
1727   }
1728   // Check that, if the dead def flag is present, LiveInts agree.
1729   if (MO->isDead()) {
1730     LiveQueryResult LRQ = LR.Query(DefIdx);
1731     if (!LRQ.isDeadDef()) {
1732       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1733              "Expecting a virtual register.");
1734       // A dead subreg def only tells us that the specific subreg is dead. There
1735       // could be other non-dead defs of other subregs, or we could have other
1736       // parts of the register being live through the instruction. So unless we
1737       // are checking liveness for a subrange it is ok for the live range to
1738       // continue, given that we have a dead def of a subregister.
1739       if (SubRangeCheck || MO->getSubReg() == 0) {
1740         report("Live range continues after dead def flag", MO, MONum);
1741         report_context_liverange(LR);
1742         report_context_vreg_regunit(VRegOrUnit);
1743         if (LaneMask.any())
1744           report_context_lanemask(LaneMask);
1745       }
1746     }
1747   }
1748 }
1749 
1750 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1751   const MachineInstr *MI = MO->getParent();
1752   const unsigned Reg = MO->getReg();
1753 
1754   // Both use and def operands can read a register.
1755   if (MO->readsReg()) {
1756     if (MO->isKill())
1757       addRegWithSubRegs(regsKilled, Reg);
1758 
1759     // Check that LiveVars knows this kill.
1760     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1761         MO->isKill()) {
1762       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1763       if (!is_contained(VI.Kills, MI))
1764         report("Kill missing from LiveVariables", MO, MONum);
1765     }
1766 
1767     // Check LiveInts liveness and kill.
1768     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1769       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1770       // Check the cached regunit intervals.
1771       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1772         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1773           if (MRI->isReservedRegUnit(*Units))
1774             continue;
1775           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1776             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1777         }
1778       }
1779 
1780       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1781         if (LiveInts->hasInterval(Reg)) {
1782           // This is a virtual register interval.
1783           const LiveInterval &LI = LiveInts->getInterval(Reg);
1784           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1785 
1786           if (LI.hasSubRanges() && !MO->isDef()) {
1787             unsigned SubRegIdx = MO->getSubReg();
1788             LaneBitmask MOMask = SubRegIdx != 0
1789                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1790                                : MRI->getMaxLaneMaskForVReg(Reg);
1791             LaneBitmask LiveInMask;
1792             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1793               if ((MOMask & SR.LaneMask).none())
1794                 continue;
1795               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1796               LiveQueryResult LRQ = SR.Query(UseIdx);
1797               if (LRQ.valueIn())
1798                 LiveInMask |= SR.LaneMask;
1799             }
1800             // At least parts of the register has to be live at the use.
1801             if ((LiveInMask & MOMask).none()) {
1802               report("No live subrange at use", MO, MONum);
1803               report_context(LI);
1804               report_context(UseIdx);
1805             }
1806           }
1807         } else {
1808           report("Virtual register has no live interval", MO, MONum);
1809         }
1810       }
1811     }
1812 
1813     // Use of a dead register.
1814     if (!regsLive.count(Reg)) {
1815       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1816         // Reserved registers may be used even when 'dead'.
1817         bool Bad = !isReserved(Reg);
1818         // We are fine if just any subregister has a defined value.
1819         if (Bad) {
1820           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1821                ++SubRegs) {
1822             if (regsLive.count(*SubRegs)) {
1823               Bad = false;
1824               break;
1825             }
1826           }
1827         }
1828         // If there is an additional implicit-use of a super register we stop
1829         // here. By definition we are fine if the super register is not
1830         // (completely) dead, if the complete super register is dead we will
1831         // get a report for its operand.
1832         if (Bad) {
1833           for (const MachineOperand &MOP : MI->uses()) {
1834             if (!MOP.isReg() || !MOP.isImplicit())
1835               continue;
1836 
1837             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1838               continue;
1839 
1840             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1841                  ++SubRegs) {
1842               if (*SubRegs == Reg) {
1843                 Bad = false;
1844                 break;
1845               }
1846             }
1847           }
1848         }
1849         if (Bad)
1850           report("Using an undefined physical register", MO, MONum);
1851       } else if (MRI->def_empty(Reg)) {
1852         report("Reading virtual register without a def", MO, MONum);
1853       } else {
1854         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1855         // We don't know which virtual registers are live in, so only complain
1856         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1857         // must be live in. PHI instructions are handled separately.
1858         if (MInfo.regsKilled.count(Reg))
1859           report("Using a killed virtual register", MO, MONum);
1860         else if (!MI->isPHI())
1861           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1862       }
1863     }
1864   }
1865 
1866   if (MO->isDef()) {
1867     // Register defined.
1868     // TODO: verify that earlyclobber ops are not used.
1869     if (MO->isDead())
1870       addRegWithSubRegs(regsDead, Reg);
1871     else
1872       addRegWithSubRegs(regsDefined, Reg);
1873 
1874     // Verify SSA form.
1875     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1876         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1877       report("Multiple virtual register defs in SSA form", MO, MONum);
1878 
1879     // Check LiveInts for a live segment, but only for virtual registers.
1880     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1881       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1882       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1883 
1884       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1885         if (LiveInts->hasInterval(Reg)) {
1886           const LiveInterval &LI = LiveInts->getInterval(Reg);
1887           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1888 
1889           if (LI.hasSubRanges()) {
1890             unsigned SubRegIdx = MO->getSubReg();
1891             LaneBitmask MOMask = SubRegIdx != 0
1892               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1893               : MRI->getMaxLaneMaskForVReg(Reg);
1894             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1895               if ((SR.LaneMask & MOMask).none())
1896                 continue;
1897               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1898             }
1899           }
1900         } else {
1901           report("Virtual register has no Live interval", MO, MONum);
1902         }
1903       }
1904     }
1905   }
1906 }
1907 
1908 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1909 
1910 // This function gets called after visiting all instructions in a bundle. The
1911 // argument points to the bundle header.
1912 // Normal stand-alone instructions are also considered 'bundles', and this
1913 // function is called for all of them.
1914 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1915   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1916   set_union(MInfo.regsKilled, regsKilled);
1917   set_subtract(regsLive, regsKilled); regsKilled.clear();
1918   // Kill any masked registers.
1919   while (!regMasks.empty()) {
1920     const uint32_t *Mask = regMasks.pop_back_val();
1921     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1922       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1923           MachineOperand::clobbersPhysReg(Mask, *I))
1924         regsDead.push_back(*I);
1925   }
1926   set_subtract(regsLive, regsDead);   regsDead.clear();
1927   set_union(regsLive, regsDefined);   regsDefined.clear();
1928 }
1929 
1930 void
1931 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1932   MBBInfoMap[MBB].regsLiveOut = regsLive;
1933   regsLive.clear();
1934 
1935   if (Indexes) {
1936     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1937     if (!(stop > lastIndex)) {
1938       report("Block ends before last instruction index", MBB);
1939       errs() << "Block ends at " << stop
1940           << " last instruction was at " << lastIndex << '\n';
1941     }
1942     lastIndex = stop;
1943   }
1944 }
1945 
1946 // Calculate the largest possible vregsPassed sets. These are the registers that
1947 // can pass through an MBB live, but may not be live every time. It is assumed
1948 // that all vregsPassed sets are empty before the call.
1949 void MachineVerifier::calcRegsPassed() {
1950   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1951   // have any vregsPassed.
1952   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1953   for (const auto &MBB : *MF) {
1954     BBInfo &MInfo = MBBInfoMap[&MBB];
1955     if (!MInfo.reachable)
1956       continue;
1957     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1958            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1959       BBInfo &SInfo = MBBInfoMap[*SuI];
1960       if (SInfo.addPassed(MInfo.regsLiveOut))
1961         todo.insert(*SuI);
1962     }
1963   }
1964 
1965   // Iteratively push vregsPassed to successors. This will converge to the same
1966   // final state regardless of DenseSet iteration order.
1967   while (!todo.empty()) {
1968     const MachineBasicBlock *MBB = *todo.begin();
1969     todo.erase(MBB);
1970     BBInfo &MInfo = MBBInfoMap[MBB];
1971     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1972            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1973       if (*SuI == MBB)
1974         continue;
1975       BBInfo &SInfo = MBBInfoMap[*SuI];
1976       if (SInfo.addPassed(MInfo.vregsPassed))
1977         todo.insert(*SuI);
1978     }
1979   }
1980 }
1981 
1982 // Calculate the set of virtual registers that must be passed through each basic
1983 // block in order to satisfy the requirements of successor blocks. This is very
1984 // similar to calcRegsPassed, only backwards.
1985 void MachineVerifier::calcRegsRequired() {
1986   // First push live-in regs to predecessors' vregsRequired.
1987   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1988   for (const auto &MBB : *MF) {
1989     BBInfo &MInfo = MBBInfoMap[&MBB];
1990     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1991            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1992       BBInfo &PInfo = MBBInfoMap[*PrI];
1993       if (PInfo.addRequired(MInfo.vregsLiveIn))
1994         todo.insert(*PrI);
1995     }
1996   }
1997 
1998   // Iteratively push vregsRequired to predecessors. This will converge to the
1999   // same final state regardless of DenseSet iteration order.
2000   while (!todo.empty()) {
2001     const MachineBasicBlock *MBB = *todo.begin();
2002     todo.erase(MBB);
2003     BBInfo &MInfo = MBBInfoMap[MBB];
2004     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2005            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2006       if (*PrI == MBB)
2007         continue;
2008       BBInfo &SInfo = MBBInfoMap[*PrI];
2009       if (SInfo.addRequired(MInfo.vregsRequired))
2010         todo.insert(*PrI);
2011     }
2012   }
2013 }
2014 
2015 // Check PHI instructions at the beginning of MBB. It is assumed that
2016 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2017 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2018   BBInfo &MInfo = MBBInfoMap[&MBB];
2019 
2020   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2021   for (const MachineInstr &Phi : MBB) {
2022     if (!Phi.isPHI())
2023       break;
2024     seen.clear();
2025 
2026     const MachineOperand &MODef = Phi.getOperand(0);
2027     if (!MODef.isReg() || !MODef.isDef()) {
2028       report("Expected first PHI operand to be a register def", &MODef, 0);
2029       continue;
2030     }
2031     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2032         MODef.isEarlyClobber() || MODef.isDebug())
2033       report("Unexpected flag on PHI operand", &MODef, 0);
2034     unsigned DefReg = MODef.getReg();
2035     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
2036       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2037 
2038     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2039       const MachineOperand &MO0 = Phi.getOperand(I);
2040       if (!MO0.isReg()) {
2041         report("Expected PHI operand to be a register", &MO0, I);
2042         continue;
2043       }
2044       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2045           MO0.isDebug() || MO0.isTied())
2046         report("Unexpected flag on PHI operand", &MO0, I);
2047 
2048       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2049       if (!MO1.isMBB()) {
2050         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2051         continue;
2052       }
2053 
2054       const MachineBasicBlock &Pre = *MO1.getMBB();
2055       if (!Pre.isSuccessor(&MBB)) {
2056         report("PHI input is not a predecessor block", &MO1, I + 1);
2057         continue;
2058       }
2059 
2060       if (MInfo.reachable) {
2061         seen.insert(&Pre);
2062         BBInfo &PrInfo = MBBInfoMap[&Pre];
2063         if (!MO0.isUndef() && PrInfo.reachable &&
2064             !PrInfo.isLiveOut(MO0.getReg()))
2065           report("PHI operand is not live-out from predecessor", &MO0, I);
2066       }
2067     }
2068 
2069     // Did we see all predecessors?
2070     if (MInfo.reachable) {
2071       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2072         if (!seen.count(Pred)) {
2073           report("Missing PHI operand", &Phi);
2074           errs() << printMBBReference(*Pred)
2075                  << " is a predecessor according to the CFG.\n";
2076         }
2077       }
2078     }
2079   }
2080 }
2081 
2082 void MachineVerifier::visitMachineFunctionAfter() {
2083   calcRegsPassed();
2084 
2085   for (const MachineBasicBlock &MBB : *MF)
2086     checkPHIOps(MBB);
2087 
2088   // Now check liveness info if available
2089   calcRegsRequired();
2090 
2091   // Check for killed virtual registers that should be live out.
2092   for (const auto &MBB : *MF) {
2093     BBInfo &MInfo = MBBInfoMap[&MBB];
2094     for (RegSet::iterator
2095          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2096          ++I)
2097       if (MInfo.regsKilled.count(*I)) {
2098         report("Virtual register killed in block, but needed live out.", &MBB);
2099         errs() << "Virtual register " << printReg(*I)
2100                << " is used after the block.\n";
2101       }
2102   }
2103 
2104   if (!MF->empty()) {
2105     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2106     for (RegSet::iterator
2107          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2108          ++I) {
2109       report("Virtual register defs don't dominate all uses.", MF);
2110       report_context_vreg(*I);
2111     }
2112   }
2113 
2114   if (LiveVars)
2115     verifyLiveVariables();
2116   if (LiveInts)
2117     verifyLiveIntervals();
2118 }
2119 
2120 void MachineVerifier::verifyLiveVariables() {
2121   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2122   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2123     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2124     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2125     for (const auto &MBB : *MF) {
2126       BBInfo &MInfo = MBBInfoMap[&MBB];
2127 
2128       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2129       if (MInfo.vregsRequired.count(Reg)) {
2130         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2131           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2132           errs() << "Virtual register " << printReg(Reg)
2133                  << " must be live through the block.\n";
2134         }
2135       } else {
2136         if (VI.AliveBlocks.test(MBB.getNumber())) {
2137           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2138           errs() << "Virtual register " << printReg(Reg)
2139                  << " is not needed live through the block.\n";
2140         }
2141       }
2142     }
2143   }
2144 }
2145 
2146 void MachineVerifier::verifyLiveIntervals() {
2147   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2148   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2149     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2150 
2151     // Spilling and splitting may leave unused registers around. Skip them.
2152     if (MRI->reg_nodbg_empty(Reg))
2153       continue;
2154 
2155     if (!LiveInts->hasInterval(Reg)) {
2156       report("Missing live interval for virtual register", MF);
2157       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2158       continue;
2159     }
2160 
2161     const LiveInterval &LI = LiveInts->getInterval(Reg);
2162     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2163     verifyLiveInterval(LI);
2164   }
2165 
2166   // Verify all the cached regunit intervals.
2167   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2168     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2169       verifyLiveRange(*LR, i);
2170 }
2171 
2172 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2173                                            const VNInfo *VNI, unsigned Reg,
2174                                            LaneBitmask LaneMask) {
2175   if (VNI->isUnused())
2176     return;
2177 
2178   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2179 
2180   if (!DefVNI) {
2181     report("Value not live at VNInfo def and not marked unused", MF);
2182     report_context(LR, Reg, LaneMask);
2183     report_context(*VNI);
2184     return;
2185   }
2186 
2187   if (DefVNI != VNI) {
2188     report("Live segment at def has different VNInfo", MF);
2189     report_context(LR, Reg, LaneMask);
2190     report_context(*VNI);
2191     return;
2192   }
2193 
2194   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2195   if (!MBB) {
2196     report("Invalid VNInfo definition index", MF);
2197     report_context(LR, Reg, LaneMask);
2198     report_context(*VNI);
2199     return;
2200   }
2201 
2202   if (VNI->isPHIDef()) {
2203     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2204       report("PHIDef VNInfo is not defined at MBB start", MBB);
2205       report_context(LR, Reg, LaneMask);
2206       report_context(*VNI);
2207     }
2208     return;
2209   }
2210 
2211   // Non-PHI def.
2212   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2213   if (!MI) {
2214     report("No instruction at VNInfo def index", MBB);
2215     report_context(LR, Reg, LaneMask);
2216     report_context(*VNI);
2217     return;
2218   }
2219 
2220   if (Reg != 0) {
2221     bool hasDef = false;
2222     bool isEarlyClobber = false;
2223     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2224       if (!MOI->isReg() || !MOI->isDef())
2225         continue;
2226       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2227         if (MOI->getReg() != Reg)
2228           continue;
2229       } else {
2230         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2231             !TRI->hasRegUnit(MOI->getReg(), Reg))
2232           continue;
2233       }
2234       if (LaneMask.any() &&
2235           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2236         continue;
2237       hasDef = true;
2238       if (MOI->isEarlyClobber())
2239         isEarlyClobber = true;
2240     }
2241 
2242     if (!hasDef) {
2243       report("Defining instruction does not modify register", MI);
2244       report_context(LR, Reg, LaneMask);
2245       report_context(*VNI);
2246     }
2247 
2248     // Early clobber defs begin at USE slots, but other defs must begin at
2249     // DEF slots.
2250     if (isEarlyClobber) {
2251       if (!VNI->def.isEarlyClobber()) {
2252         report("Early clobber def must be at an early-clobber slot", MBB);
2253         report_context(LR, Reg, LaneMask);
2254         report_context(*VNI);
2255       }
2256     } else if (!VNI->def.isRegister()) {
2257       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2258       report_context(LR, Reg, LaneMask);
2259       report_context(*VNI);
2260     }
2261   }
2262 }
2263 
2264 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2265                                              const LiveRange::const_iterator I,
2266                                              unsigned Reg, LaneBitmask LaneMask)
2267 {
2268   const LiveRange::Segment &S = *I;
2269   const VNInfo *VNI = S.valno;
2270   assert(VNI && "Live segment has no valno");
2271 
2272   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2273     report("Foreign valno in live segment", MF);
2274     report_context(LR, Reg, LaneMask);
2275     report_context(S);
2276     report_context(*VNI);
2277   }
2278 
2279   if (VNI->isUnused()) {
2280     report("Live segment valno is marked unused", MF);
2281     report_context(LR, Reg, LaneMask);
2282     report_context(S);
2283   }
2284 
2285   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2286   if (!MBB) {
2287     report("Bad start of live segment, no basic block", MF);
2288     report_context(LR, Reg, LaneMask);
2289     report_context(S);
2290     return;
2291   }
2292   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2293   if (S.start != MBBStartIdx && S.start != VNI->def) {
2294     report("Live segment must begin at MBB entry or valno def", MBB);
2295     report_context(LR, Reg, LaneMask);
2296     report_context(S);
2297   }
2298 
2299   const MachineBasicBlock *EndMBB =
2300     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2301   if (!EndMBB) {
2302     report("Bad end of live segment, no basic block", MF);
2303     report_context(LR, Reg, LaneMask);
2304     report_context(S);
2305     return;
2306   }
2307 
2308   // No more checks for live-out segments.
2309   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2310     return;
2311 
2312   // RegUnit intervals are allowed dead phis.
2313   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2314       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2315     return;
2316 
2317   // The live segment is ending inside EndMBB
2318   const MachineInstr *MI =
2319     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2320   if (!MI) {
2321     report("Live segment doesn't end at a valid instruction", EndMBB);
2322     report_context(LR, Reg, LaneMask);
2323     report_context(S);
2324     return;
2325   }
2326 
2327   // The block slot must refer to a basic block boundary.
2328   if (S.end.isBlock()) {
2329     report("Live segment ends at B slot of an instruction", EndMBB);
2330     report_context(LR, Reg, LaneMask);
2331     report_context(S);
2332   }
2333 
2334   if (S.end.isDead()) {
2335     // Segment ends on the dead slot.
2336     // That means there must be a dead def.
2337     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2338       report("Live segment ending at dead slot spans instructions", EndMBB);
2339       report_context(LR, Reg, LaneMask);
2340       report_context(S);
2341     }
2342   }
2343 
2344   // A live segment can only end at an early-clobber slot if it is being
2345   // redefined by an early-clobber def.
2346   if (S.end.isEarlyClobber()) {
2347     if (I+1 == LR.end() || (I+1)->start != S.end) {
2348       report("Live segment ending at early clobber slot must be "
2349              "redefined by an EC def in the same instruction", EndMBB);
2350       report_context(LR, Reg, LaneMask);
2351       report_context(S);
2352     }
2353   }
2354 
2355   // The following checks only apply to virtual registers. Physreg liveness
2356   // is too weird to check.
2357   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2358     // A live segment can end with either a redefinition, a kill flag on a
2359     // use, or a dead flag on a def.
2360     bool hasRead = false;
2361     bool hasSubRegDef = false;
2362     bool hasDeadDef = false;
2363     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2364       if (!MOI->isReg() || MOI->getReg() != Reg)
2365         continue;
2366       unsigned Sub = MOI->getSubReg();
2367       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2368                                  : LaneBitmask::getAll();
2369       if (MOI->isDef()) {
2370         if (Sub != 0) {
2371           hasSubRegDef = true;
2372           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2373           // mask for subregister defs. Read-undef defs will be handled by
2374           // readsReg below.
2375           SLM = ~SLM;
2376         }
2377         if (MOI->isDead())
2378           hasDeadDef = true;
2379       }
2380       if (LaneMask.any() && (LaneMask & SLM).none())
2381         continue;
2382       if (MOI->readsReg())
2383         hasRead = true;
2384     }
2385     if (S.end.isDead()) {
2386       // Make sure that the corresponding machine operand for a "dead" live
2387       // range has the dead flag. We cannot perform this check for subregister
2388       // liveranges as partially dead values are allowed.
2389       if (LaneMask.none() && !hasDeadDef) {
2390         report("Instruction ending live segment on dead slot has no dead flag",
2391                MI);
2392         report_context(LR, Reg, LaneMask);
2393         report_context(S);
2394       }
2395     } else {
2396       if (!hasRead) {
2397         // When tracking subregister liveness, the main range must start new
2398         // values on partial register writes, even if there is no read.
2399         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2400             !hasSubRegDef) {
2401           report("Instruction ending live segment doesn't read the register",
2402                  MI);
2403           report_context(LR, Reg, LaneMask);
2404           report_context(S);
2405         }
2406       }
2407     }
2408   }
2409 
2410   // Now check all the basic blocks in this live segment.
2411   MachineFunction::const_iterator MFI = MBB->getIterator();
2412   // Is this live segment the beginning of a non-PHIDef VN?
2413   if (S.start == VNI->def && !VNI->isPHIDef()) {
2414     // Not live-in to any blocks.
2415     if (MBB == EndMBB)
2416       return;
2417     // Skip this block.
2418     ++MFI;
2419   }
2420 
2421   SmallVector<SlotIndex, 4> Undefs;
2422   if (LaneMask.any()) {
2423     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2424     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2425   }
2426 
2427   while (true) {
2428     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2429     // We don't know how to track physregs into a landing pad.
2430     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2431         MFI->isEHPad()) {
2432       if (&*MFI == EndMBB)
2433         break;
2434       ++MFI;
2435       continue;
2436     }
2437 
2438     // Is VNI a PHI-def in the current block?
2439     bool IsPHI = VNI->isPHIDef() &&
2440       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2441 
2442     // Check that VNI is live-out of all predecessors.
2443     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2444          PE = MFI->pred_end(); PI != PE; ++PI) {
2445       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2446       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2447 
2448       // All predecessors must have a live-out value. However for a phi
2449       // instruction with subregister intervals
2450       // only one of the subregisters (not necessarily the current one) needs to
2451       // be defined.
2452       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2453         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2454           continue;
2455         report("Register not marked live out of predecessor", *PI);
2456         report_context(LR, Reg, LaneMask);
2457         report_context(*VNI);
2458         errs() << " live into " << printMBBReference(*MFI) << '@'
2459                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2460                << PEnd << '\n';
2461         continue;
2462       }
2463 
2464       // Only PHI-defs can take different predecessor values.
2465       if (!IsPHI && PVNI != VNI) {
2466         report("Different value live out of predecessor", *PI);
2467         report_context(LR, Reg, LaneMask);
2468         errs() << "Valno #" << PVNI->id << " live out of "
2469                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2470                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2471                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2472       }
2473     }
2474     if (&*MFI == EndMBB)
2475       break;
2476     ++MFI;
2477   }
2478 }
2479 
2480 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2481                                       LaneBitmask LaneMask) {
2482   for (const VNInfo *VNI : LR.valnos)
2483     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2484 
2485   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2486     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2487 }
2488 
2489 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2490   unsigned Reg = LI.reg;
2491   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2492   verifyLiveRange(LI, Reg);
2493 
2494   LaneBitmask Mask;
2495   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2496   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2497     if ((Mask & SR.LaneMask).any()) {
2498       report("Lane masks of sub ranges overlap in live interval", MF);
2499       report_context(LI);
2500     }
2501     if ((SR.LaneMask & ~MaxMask).any()) {
2502       report("Subrange lanemask is invalid", MF);
2503       report_context(LI);
2504     }
2505     if (SR.empty()) {
2506       report("Subrange must not be empty", MF);
2507       report_context(SR, LI.reg, SR.LaneMask);
2508     }
2509     Mask |= SR.LaneMask;
2510     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2511     if (!LI.covers(SR)) {
2512       report("A Subrange is not covered by the main range", MF);
2513       report_context(LI);
2514     }
2515   }
2516 
2517   // Check the LI only has one connected component.
2518   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2519   unsigned NumComp = ConEQ.Classify(LI);
2520   if (NumComp > 1) {
2521     report("Multiple connected components in live interval", MF);
2522     report_context(LI);
2523     for (unsigned comp = 0; comp != NumComp; ++comp) {
2524       errs() << comp << ": valnos";
2525       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2526            E = LI.vni_end(); I!=E; ++I)
2527         if (comp == ConEQ.getEqClass(*I))
2528           errs() << ' ' << (*I)->id;
2529       errs() << '\n';
2530     }
2531   }
2532 }
2533 
2534 namespace {
2535 
2536   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2537   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2538   // value is zero.
2539   // We use a bool plus an integer to capture the stack state.
2540   struct StackStateOfBB {
2541     StackStateOfBB() = default;
2542     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2543       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2544       ExitIsSetup(ExitSetup) {}
2545 
2546     // Can be negative, which means we are setting up a frame.
2547     int EntryValue = 0;
2548     int ExitValue = 0;
2549     bool EntryIsSetup = false;
2550     bool ExitIsSetup = false;
2551   };
2552 
2553 } // end anonymous namespace
2554 
2555 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2556 /// by a FrameDestroy <n>, stack adjustments are identical on all
2557 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2558 void MachineVerifier::verifyStackFrame() {
2559   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2560   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2561   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2562     return;
2563 
2564   SmallVector<StackStateOfBB, 8> SPState;
2565   SPState.resize(MF->getNumBlockIDs());
2566   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2567 
2568   // Visit the MBBs in DFS order.
2569   for (df_ext_iterator<const MachineFunction *,
2570                        df_iterator_default_set<const MachineBasicBlock *>>
2571        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2572        DFI != DFE; ++DFI) {
2573     const MachineBasicBlock *MBB = *DFI;
2574 
2575     StackStateOfBB BBState;
2576     // Check the exit state of the DFS stack predecessor.
2577     if (DFI.getPathLength() >= 2) {
2578       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2579       assert(Reachable.count(StackPred) &&
2580              "DFS stack predecessor is already visited.\n");
2581       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2582       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2583       BBState.ExitValue = BBState.EntryValue;
2584       BBState.ExitIsSetup = BBState.EntryIsSetup;
2585     }
2586 
2587     // Update stack state by checking contents of MBB.
2588     for (const auto &I : *MBB) {
2589       if (I.getOpcode() == FrameSetupOpcode) {
2590         if (BBState.ExitIsSetup)
2591           report("FrameSetup is after another FrameSetup", &I);
2592         BBState.ExitValue -= TII->getFrameTotalSize(I);
2593         BBState.ExitIsSetup = true;
2594       }
2595 
2596       if (I.getOpcode() == FrameDestroyOpcode) {
2597         int Size = TII->getFrameTotalSize(I);
2598         if (!BBState.ExitIsSetup)
2599           report("FrameDestroy is not after a FrameSetup", &I);
2600         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2601                                                BBState.ExitValue;
2602         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2603           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2604           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2605               << AbsSPAdj << ">.\n";
2606         }
2607         BBState.ExitValue += Size;
2608         BBState.ExitIsSetup = false;
2609       }
2610     }
2611     SPState[MBB->getNumber()] = BBState;
2612 
2613     // Make sure the exit state of any predecessor is consistent with the entry
2614     // state.
2615     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2616          E = MBB->pred_end(); I != E; ++I) {
2617       if (Reachable.count(*I) &&
2618           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2619            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2620         report("The exit stack state of a predecessor is inconsistent.", MBB);
2621         errs() << "Predecessor " << printMBBReference(*(*I))
2622                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2623                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2624                << printMBBReference(*MBB) << " has entry state ("
2625                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2626       }
2627     }
2628 
2629     // Make sure the entry state of any successor is consistent with the exit
2630     // state.
2631     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2632          E = MBB->succ_end(); I != E; ++I) {
2633       if (Reachable.count(*I) &&
2634           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2635            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2636         report("The entry stack state of a successor is inconsistent.", MBB);
2637         errs() << "Successor " << printMBBReference(*(*I))
2638                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2639                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2640                << printMBBReference(*MBB) << " has exit state ("
2641                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2642       }
2643     }
2644 
2645     // Make sure a basic block with return ends with zero stack adjustment.
2646     if (!MBB->empty() && MBB->back().isReturn()) {
2647       if (BBState.ExitIsSetup)
2648         report("A return block ends with a FrameSetup.", MBB);
2649       if (BBState.ExitValue)
2650         report("A return block ends with a nonzero stack adjustment.", MBB);
2651     }
2652   }
2653 }
2654