1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/SetOperations.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/MC/MCAsmInfo.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 using namespace llvm; 53 54 namespace { 55 struct MachineVerifier { 56 57 MachineVerifier(Pass *pass, const char *b) : 58 PASS(pass), 59 Banner(b) 60 {} 61 62 unsigned verify(MachineFunction &MF); 63 64 Pass *const PASS; 65 const char *Banner; 66 const MachineFunction *MF; 67 const TargetMachine *TM; 68 const TargetInstrInfo *TII; 69 const TargetRegisterInfo *TRI; 70 const MachineRegisterInfo *MRI; 71 72 unsigned foundErrors; 73 74 // Avoid querying the MachineFunctionProperties for each operand. 75 bool isFunctionRegBankSelected; 76 bool isFunctionSelected; 77 78 typedef SmallVector<unsigned, 16> RegVector; 79 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 80 typedef DenseSet<unsigned> RegSet; 81 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 82 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 83 84 const MachineInstr *FirstTerminator; 85 BlockSet FunctionBlocks; 86 87 BitVector regsReserved; 88 RegSet regsLive; 89 RegVector regsDefined, regsDead, regsKilled; 90 RegMaskVector regMasks; 91 92 SlotIndex lastIndex; 93 94 // Add Reg and any sub-registers to RV 95 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 96 RV.push_back(Reg); 97 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 98 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 99 RV.push_back(*SubRegs); 100 } 101 102 struct BBInfo { 103 // Is this MBB reachable from the MF entry point? 104 bool reachable; 105 106 // Vregs that must be live in because they are used without being 107 // defined. Map value is the user. 108 RegMap vregsLiveIn; 109 110 // Regs killed in MBB. They may be defined again, and will then be in both 111 // regsKilled and regsLiveOut. 112 RegSet regsKilled; 113 114 // Regs defined in MBB and live out. Note that vregs passing through may 115 // be live out without being mentioned here. 116 RegSet regsLiveOut; 117 118 // Vregs that pass through MBB untouched. This set is disjoint from 119 // regsKilled and regsLiveOut. 120 RegSet vregsPassed; 121 122 // Vregs that must pass through MBB because they are needed by a successor 123 // block. This set is disjoint from regsLiveOut. 124 RegSet vregsRequired; 125 126 // Set versions of block's predecessor and successor lists. 127 BlockSet Preds, Succs; 128 129 BBInfo() : reachable(false) {} 130 131 // Add register to vregsPassed if it belongs there. Return true if 132 // anything changed. 133 bool addPassed(unsigned Reg) { 134 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 135 return false; 136 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 137 return false; 138 return vregsPassed.insert(Reg).second; 139 } 140 141 // Same for a full set. 142 bool addPassed(const RegSet &RS) { 143 bool changed = false; 144 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 145 if (addPassed(*I)) 146 changed = true; 147 return changed; 148 } 149 150 // Add register to vregsRequired if it belongs there. Return true if 151 // anything changed. 152 bool addRequired(unsigned Reg) { 153 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 154 return false; 155 if (regsLiveOut.count(Reg)) 156 return false; 157 return vregsRequired.insert(Reg).second; 158 } 159 160 // Same for a full set. 161 bool addRequired(const RegSet &RS) { 162 bool changed = false; 163 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 164 if (addRequired(*I)) 165 changed = true; 166 return changed; 167 } 168 169 // Same for a full map. 170 bool addRequired(const RegMap &RM) { 171 bool changed = false; 172 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 173 if (addRequired(I->first)) 174 changed = true; 175 return changed; 176 } 177 178 // Live-out registers are either in regsLiveOut or vregsPassed. 179 bool isLiveOut(unsigned Reg) const { 180 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 181 } 182 }; 183 184 // Extra register info per MBB. 185 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 186 187 bool isReserved(unsigned Reg) { 188 return Reg < regsReserved.size() && regsReserved.test(Reg); 189 } 190 191 bool isAllocatable(unsigned Reg) const { 192 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 193 !regsReserved.test(Reg); 194 } 195 196 // Analysis information if available 197 LiveVariables *LiveVars; 198 LiveIntervals *LiveInts; 199 LiveStacks *LiveStks; 200 SlotIndexes *Indexes; 201 202 void visitMachineFunctionBefore(); 203 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 204 void visitMachineBundleBefore(const MachineInstr *MI); 205 void visitMachineInstrBefore(const MachineInstr *MI); 206 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 207 void visitMachineInstrAfter(const MachineInstr *MI); 208 void visitMachineBundleAfter(const MachineInstr *MI); 209 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 210 void visitMachineFunctionAfter(); 211 212 void report(const char *msg, const MachineFunction *MF); 213 void report(const char *msg, const MachineBasicBlock *MBB); 214 void report(const char *msg, const MachineInstr *MI); 215 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 216 217 void report_context(const LiveInterval &LI) const; 218 void report_context(const LiveRange &LR, unsigned VRegUnit, 219 LaneBitmask LaneMask) const; 220 void report_context(const LiveRange::Segment &S) const; 221 void report_context(const VNInfo &VNI) const; 222 void report_context(SlotIndex Pos) const; 223 void report_context_liverange(const LiveRange &LR) const; 224 void report_context_lanemask(LaneBitmask LaneMask) const; 225 void report_context_vreg(unsigned VReg) const; 226 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 227 228 void verifyInlineAsm(const MachineInstr *MI); 229 230 void checkLiveness(const MachineOperand *MO, unsigned MONum); 231 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 232 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 233 LaneBitmask LaneMask = LaneBitmask::getNone()); 234 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 235 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 236 LaneBitmask LaneMask = LaneBitmask::getNone()); 237 238 void markReachable(const MachineBasicBlock *MBB); 239 void calcRegsPassed(); 240 void checkPHIOps(const MachineBasicBlock *MBB); 241 242 void calcRegsRequired(); 243 void verifyLiveVariables(); 244 void verifyLiveIntervals(); 245 void verifyLiveInterval(const LiveInterval&); 246 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 247 LaneBitmask); 248 void verifyLiveRangeSegment(const LiveRange&, 249 const LiveRange::const_iterator I, unsigned, 250 LaneBitmask); 251 void verifyLiveRange(const LiveRange&, unsigned, 252 LaneBitmask LaneMask = LaneBitmask::getNone()); 253 254 void verifyStackFrame(); 255 256 void verifySlotIndexes() const; 257 void verifyProperties(const MachineFunction &MF); 258 }; 259 260 struct MachineVerifierPass : public MachineFunctionPass { 261 static char ID; // Pass ID, replacement for typeid 262 const std::string Banner; 263 264 MachineVerifierPass(std::string banner = std::string()) 265 : MachineFunctionPass(ID), Banner(std::move(banner)) { 266 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 267 } 268 269 void getAnalysisUsage(AnalysisUsage &AU) const override { 270 AU.setPreservesAll(); 271 MachineFunctionPass::getAnalysisUsage(AU); 272 } 273 274 bool runOnMachineFunction(MachineFunction &MF) override { 275 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 276 if (FoundErrors) 277 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 278 return false; 279 } 280 }; 281 282 } 283 284 char MachineVerifierPass::ID = 0; 285 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 286 "Verify generated machine code", false, false) 287 288 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 289 return new MachineVerifierPass(Banner); 290 } 291 292 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 293 const { 294 MachineFunction &MF = const_cast<MachineFunction&>(*this); 295 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 296 if (AbortOnErrors && FoundErrors) 297 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 298 return FoundErrors == 0; 299 } 300 301 void MachineVerifier::verifySlotIndexes() const { 302 if (Indexes == nullptr) 303 return; 304 305 // Ensure the IdxMBB list is sorted by slot indexes. 306 SlotIndex Last; 307 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 308 E = Indexes->MBBIndexEnd(); I != E; ++I) { 309 assert(!Last.isValid() || I->first > Last); 310 Last = I->first; 311 } 312 } 313 314 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 315 // If a pass has introduced virtual registers without clearing the 316 // NoVRegs property (or set it without allocating the vregs) 317 // then report an error. 318 if (MF.getProperties().hasProperty( 319 MachineFunctionProperties::Property::NoVRegs) && 320 MRI->getNumVirtRegs()) 321 report("Function has NoVRegs property but there are VReg operands", &MF); 322 } 323 324 unsigned MachineVerifier::verify(MachineFunction &MF) { 325 foundErrors = 0; 326 327 this->MF = &MF; 328 TM = &MF.getTarget(); 329 TII = MF.getSubtarget().getInstrInfo(); 330 TRI = MF.getSubtarget().getRegisterInfo(); 331 MRI = &MF.getRegInfo(); 332 333 isFunctionRegBankSelected = MF.getProperties().hasProperty( 334 MachineFunctionProperties::Property::RegBankSelected); 335 isFunctionSelected = MF.getProperties().hasProperty( 336 MachineFunctionProperties::Property::Selected); 337 338 LiveVars = nullptr; 339 LiveInts = nullptr; 340 LiveStks = nullptr; 341 Indexes = nullptr; 342 if (PASS) { 343 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 344 // We don't want to verify LiveVariables if LiveIntervals is available. 345 if (!LiveInts) 346 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 347 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 348 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 349 } 350 351 verifySlotIndexes(); 352 353 verifyProperties(MF); 354 355 visitMachineFunctionBefore(); 356 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 357 MFI!=MFE; ++MFI) { 358 visitMachineBasicBlockBefore(&*MFI); 359 // Keep track of the current bundle header. 360 const MachineInstr *CurBundle = nullptr; 361 // Do we expect the next instruction to be part of the same bundle? 362 bool InBundle = false; 363 364 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 365 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 366 if (MBBI->getParent() != &*MFI) { 367 report("Bad instruction parent pointer", &*MFI); 368 errs() << "Instruction: " << *MBBI; 369 continue; 370 } 371 372 // Check for consistent bundle flags. 373 if (InBundle && !MBBI->isBundledWithPred()) 374 report("Missing BundledPred flag, " 375 "BundledSucc was set on predecessor", 376 &*MBBI); 377 if (!InBundle && MBBI->isBundledWithPred()) 378 report("BundledPred flag is set, " 379 "but BundledSucc not set on predecessor", 380 &*MBBI); 381 382 // Is this a bundle header? 383 if (!MBBI->isInsideBundle()) { 384 if (CurBundle) 385 visitMachineBundleAfter(CurBundle); 386 CurBundle = &*MBBI; 387 visitMachineBundleBefore(CurBundle); 388 } else if (!CurBundle) 389 report("No bundle header", &*MBBI); 390 visitMachineInstrBefore(&*MBBI); 391 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 392 const MachineInstr &MI = *MBBI; 393 const MachineOperand &Op = MI.getOperand(I); 394 if (Op.getParent() != &MI) { 395 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 396 // functions when replacing operands of a MachineInstr. 397 report("Instruction has operand with wrong parent set", &MI); 398 } 399 400 visitMachineOperand(&Op, I); 401 } 402 403 visitMachineInstrAfter(&*MBBI); 404 405 // Was this the last bundled instruction? 406 InBundle = MBBI->isBundledWithSucc(); 407 } 408 if (CurBundle) 409 visitMachineBundleAfter(CurBundle); 410 if (InBundle) 411 report("BundledSucc flag set on last instruction in block", &MFI->back()); 412 visitMachineBasicBlockAfter(&*MFI); 413 } 414 visitMachineFunctionAfter(); 415 416 // Clean up. 417 regsLive.clear(); 418 regsDefined.clear(); 419 regsDead.clear(); 420 regsKilled.clear(); 421 regMasks.clear(); 422 MBBInfoMap.clear(); 423 424 return foundErrors; 425 } 426 427 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 428 assert(MF); 429 errs() << '\n'; 430 if (!foundErrors++) { 431 if (Banner) 432 errs() << "# " << Banner << '\n'; 433 if (LiveInts != nullptr) 434 LiveInts->print(errs()); 435 else 436 MF->print(errs(), Indexes); 437 } 438 errs() << "*** Bad machine code: " << msg << " ***\n" 439 << "- function: " << MF->getName() << "\n"; 440 } 441 442 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 443 assert(MBB); 444 report(msg, MBB->getParent()); 445 errs() << "- basic block: BB#" << MBB->getNumber() 446 << ' ' << MBB->getName() 447 << " (" << (const void*)MBB << ')'; 448 if (Indexes) 449 errs() << " [" << Indexes->getMBBStartIdx(MBB) 450 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 451 errs() << '\n'; 452 } 453 454 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 455 assert(MI); 456 report(msg, MI->getParent()); 457 errs() << "- instruction: "; 458 if (Indexes && Indexes->hasIndex(*MI)) 459 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 460 MI->print(errs(), /*SkipOpers=*/true); 461 errs() << '\n'; 462 } 463 464 void MachineVerifier::report(const char *msg, 465 const MachineOperand *MO, unsigned MONum) { 466 assert(MO); 467 report(msg, MO->getParent()); 468 errs() << "- operand " << MONum << ": "; 469 MO->print(errs(), TRI); 470 errs() << "\n"; 471 } 472 473 void MachineVerifier::report_context(SlotIndex Pos) const { 474 errs() << "- at: " << Pos << '\n'; 475 } 476 477 void MachineVerifier::report_context(const LiveInterval &LI) const { 478 errs() << "- interval: " << LI << '\n'; 479 } 480 481 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 482 LaneBitmask LaneMask) const { 483 report_context_liverange(LR); 484 report_context_vreg_regunit(VRegUnit); 485 if (LaneMask.any()) 486 report_context_lanemask(LaneMask); 487 } 488 489 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 490 errs() << "- segment: " << S << '\n'; 491 } 492 493 void MachineVerifier::report_context(const VNInfo &VNI) const { 494 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 495 } 496 497 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 498 errs() << "- liverange: " << LR << '\n'; 499 } 500 501 void MachineVerifier::report_context_vreg(unsigned VReg) const { 502 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 503 } 504 505 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 506 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 507 report_context_vreg(VRegOrUnit); 508 } else { 509 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 510 } 511 } 512 513 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 514 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 515 } 516 517 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 518 BBInfo &MInfo = MBBInfoMap[MBB]; 519 if (!MInfo.reachable) { 520 MInfo.reachable = true; 521 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 522 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 523 markReachable(*SuI); 524 } 525 } 526 527 void MachineVerifier::visitMachineFunctionBefore() { 528 lastIndex = SlotIndex(); 529 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 530 : TRI->getReservedRegs(*MF); 531 532 if (!MF->empty()) 533 markReachable(&MF->front()); 534 535 // Build a set of the basic blocks in the function. 536 FunctionBlocks.clear(); 537 for (const auto &MBB : *MF) { 538 FunctionBlocks.insert(&MBB); 539 BBInfo &MInfo = MBBInfoMap[&MBB]; 540 541 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 542 if (MInfo.Preds.size() != MBB.pred_size()) 543 report("MBB has duplicate entries in its predecessor list.", &MBB); 544 545 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 546 if (MInfo.Succs.size() != MBB.succ_size()) 547 report("MBB has duplicate entries in its successor list.", &MBB); 548 } 549 550 // Check that the register use lists are sane. 551 MRI->verifyUseLists(); 552 553 if (!MF->empty()) 554 verifyStackFrame(); 555 } 556 557 // Does iterator point to a and b as the first two elements? 558 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 559 const MachineBasicBlock *a, const MachineBasicBlock *b) { 560 if (*i == a) 561 return *++i == b; 562 if (*i == b) 563 return *++i == a; 564 return false; 565 } 566 567 void 568 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 569 FirstTerminator = nullptr; 570 571 if (!MF->getProperties().hasProperty( 572 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 573 // If this block has allocatable physical registers live-in, check that 574 // it is an entry block or landing pad. 575 for (const auto &LI : MBB->liveins()) { 576 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 577 MBB->getIterator() != MBB->getParent()->begin()) { 578 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 579 } 580 } 581 } 582 583 // Count the number of landing pad successors. 584 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 585 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 586 E = MBB->succ_end(); I != E; ++I) { 587 if ((*I)->isEHPad()) 588 LandingPadSuccs.insert(*I); 589 if (!FunctionBlocks.count(*I)) 590 report("MBB has successor that isn't part of the function.", MBB); 591 if (!MBBInfoMap[*I].Preds.count(MBB)) { 592 report("Inconsistent CFG", MBB); 593 errs() << "MBB is not in the predecessor list of the successor BB#" 594 << (*I)->getNumber() << ".\n"; 595 } 596 } 597 598 // Check the predecessor list. 599 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 600 E = MBB->pred_end(); I != E; ++I) { 601 if (!FunctionBlocks.count(*I)) 602 report("MBB has predecessor that isn't part of the function.", MBB); 603 if (!MBBInfoMap[*I].Succs.count(MBB)) { 604 report("Inconsistent CFG", MBB); 605 errs() << "MBB is not in the successor list of the predecessor BB#" 606 << (*I)->getNumber() << ".\n"; 607 } 608 } 609 610 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 611 const BasicBlock *BB = MBB->getBasicBlock(); 612 const Function *Fn = MF->getFunction(); 613 if (LandingPadSuccs.size() > 1 && 614 !(AsmInfo && 615 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 616 BB && isa<SwitchInst>(BB->getTerminator())) && 617 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 618 report("MBB has more than one landing pad successor", MBB); 619 620 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 621 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 622 SmallVector<MachineOperand, 4> Cond; 623 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 624 Cond)) { 625 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 626 // check whether its answers match up with reality. 627 if (!TBB && !FBB) { 628 // Block falls through to its successor. 629 MachineFunction::const_iterator MBBI = MBB->getIterator(); 630 ++MBBI; 631 if (MBBI == MF->end()) { 632 // It's possible that the block legitimately ends with a noreturn 633 // call or an unreachable, in which case it won't actually fall 634 // out the bottom of the function. 635 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 636 // It's possible that the block legitimately ends with a noreturn 637 // call or an unreachable, in which case it won't actuall fall 638 // out of the block. 639 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 640 report("MBB exits via unconditional fall-through but doesn't have " 641 "exactly one CFG successor!", MBB); 642 } else if (!MBB->isSuccessor(&*MBBI)) { 643 report("MBB exits via unconditional fall-through but its successor " 644 "differs from its CFG successor!", MBB); 645 } 646 if (!MBB->empty() && MBB->back().isBarrier() && 647 !TII->isPredicated(MBB->back())) { 648 report("MBB exits via unconditional fall-through but ends with a " 649 "barrier instruction!", MBB); 650 } 651 if (!Cond.empty()) { 652 report("MBB exits via unconditional fall-through but has a condition!", 653 MBB); 654 } 655 } else if (TBB && !FBB && Cond.empty()) { 656 // Block unconditionally branches somewhere. 657 // If the block has exactly one successor, that happens to be a 658 // landingpad, accept it as valid control flow. 659 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 660 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 661 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 662 report("MBB exits via unconditional branch but doesn't have " 663 "exactly one CFG successor!", MBB); 664 } else if (!MBB->isSuccessor(TBB)) { 665 report("MBB exits via unconditional branch but the CFG " 666 "successor doesn't match the actual successor!", MBB); 667 } 668 if (MBB->empty()) { 669 report("MBB exits via unconditional branch but doesn't contain " 670 "any instructions!", MBB); 671 } else if (!MBB->back().isBarrier()) { 672 report("MBB exits via unconditional branch but doesn't end with a " 673 "barrier instruction!", MBB); 674 } else if (!MBB->back().isTerminator()) { 675 report("MBB exits via unconditional branch but the branch isn't a " 676 "terminator instruction!", MBB); 677 } 678 } else if (TBB && !FBB && !Cond.empty()) { 679 // Block conditionally branches somewhere, otherwise falls through. 680 MachineFunction::const_iterator MBBI = MBB->getIterator(); 681 ++MBBI; 682 if (MBBI == MF->end()) { 683 report("MBB conditionally falls through out of function!", MBB); 684 } else if (MBB->succ_size() == 1) { 685 // A conditional branch with only one successor is weird, but allowed. 686 if (&*MBBI != TBB) 687 report("MBB exits via conditional branch/fall-through but only has " 688 "one CFG successor!", MBB); 689 else if (TBB != *MBB->succ_begin()) 690 report("MBB exits via conditional branch/fall-through but the CFG " 691 "successor don't match the actual successor!", MBB); 692 } else if (MBB->succ_size() != 2) { 693 report("MBB exits via conditional branch/fall-through but doesn't have " 694 "exactly two CFG successors!", MBB); 695 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 696 report("MBB exits via conditional branch/fall-through but the CFG " 697 "successors don't match the actual successors!", MBB); 698 } 699 if (MBB->empty()) { 700 report("MBB exits via conditional branch/fall-through but doesn't " 701 "contain any instructions!", MBB); 702 } else if (MBB->back().isBarrier()) { 703 report("MBB exits via conditional branch/fall-through but ends with a " 704 "barrier instruction!", MBB); 705 } else if (!MBB->back().isTerminator()) { 706 report("MBB exits via conditional branch/fall-through but the branch " 707 "isn't a terminator instruction!", MBB); 708 } 709 } else if (TBB && FBB) { 710 // Block conditionally branches somewhere, otherwise branches 711 // somewhere else. 712 if (MBB->succ_size() == 1) { 713 // A conditional branch with only one successor is weird, but allowed. 714 if (FBB != TBB) 715 report("MBB exits via conditional branch/branch through but only has " 716 "one CFG successor!", MBB); 717 else if (TBB != *MBB->succ_begin()) 718 report("MBB exits via conditional branch/branch through but the CFG " 719 "successor don't match the actual successor!", MBB); 720 } else if (MBB->succ_size() != 2) { 721 report("MBB exits via conditional branch/branch but doesn't have " 722 "exactly two CFG successors!", MBB); 723 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 724 report("MBB exits via conditional branch/branch but the CFG " 725 "successors don't match the actual successors!", MBB); 726 } 727 if (MBB->empty()) { 728 report("MBB exits via conditional branch/branch but doesn't " 729 "contain any instructions!", MBB); 730 } else if (!MBB->back().isBarrier()) { 731 report("MBB exits via conditional branch/branch but doesn't end with a " 732 "barrier instruction!", MBB); 733 } else if (!MBB->back().isTerminator()) { 734 report("MBB exits via conditional branch/branch but the branch " 735 "isn't a terminator instruction!", MBB); 736 } 737 if (Cond.empty()) { 738 report("MBB exits via conditinal branch/branch but there's no " 739 "condition!", MBB); 740 } 741 } else { 742 report("AnalyzeBranch returned invalid data!", MBB); 743 } 744 } 745 746 regsLive.clear(); 747 if (MRI->tracksLiveness()) { 748 for (const auto &LI : MBB->liveins()) { 749 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 750 report("MBB live-in list contains non-physical register", MBB); 751 continue; 752 } 753 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 754 SubRegs.isValid(); ++SubRegs) 755 regsLive.insert(*SubRegs); 756 } 757 } 758 759 const MachineFrameInfo &MFI = MF->getFrameInfo(); 760 BitVector PR = MFI.getPristineRegs(*MF); 761 for (unsigned I : PR.set_bits()) { 762 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 763 SubRegs.isValid(); ++SubRegs) 764 regsLive.insert(*SubRegs); 765 } 766 767 regsKilled.clear(); 768 regsDefined.clear(); 769 770 if (Indexes) 771 lastIndex = Indexes->getMBBStartIdx(MBB); 772 } 773 774 // This function gets called for all bundle headers, including normal 775 // stand-alone unbundled instructions. 776 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 777 if (Indexes && Indexes->hasIndex(*MI)) { 778 SlotIndex idx = Indexes->getInstructionIndex(*MI); 779 if (!(idx > lastIndex)) { 780 report("Instruction index out of order", MI); 781 errs() << "Last instruction was at " << lastIndex << '\n'; 782 } 783 lastIndex = idx; 784 } 785 786 // Ensure non-terminators don't follow terminators. 787 // Ignore predicated terminators formed by if conversion. 788 // FIXME: If conversion shouldn't need to violate this rule. 789 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 790 if (!FirstTerminator) 791 FirstTerminator = MI; 792 } else if (FirstTerminator) { 793 report("Non-terminator instruction after the first terminator", MI); 794 errs() << "First terminator was:\t" << *FirstTerminator; 795 } 796 } 797 798 // The operands on an INLINEASM instruction must follow a template. 799 // Verify that the flag operands make sense. 800 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 801 // The first two operands on INLINEASM are the asm string and global flags. 802 if (MI->getNumOperands() < 2) { 803 report("Too few operands on inline asm", MI); 804 return; 805 } 806 if (!MI->getOperand(0).isSymbol()) 807 report("Asm string must be an external symbol", MI); 808 if (!MI->getOperand(1).isImm()) 809 report("Asm flags must be an immediate", MI); 810 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 811 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 812 // and Extra_IsConvergent = 32. 813 if (!isUInt<6>(MI->getOperand(1).getImm())) 814 report("Unknown asm flags", &MI->getOperand(1), 1); 815 816 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 817 818 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 819 unsigned NumOps; 820 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 821 const MachineOperand &MO = MI->getOperand(OpNo); 822 // There may be implicit ops after the fixed operands. 823 if (!MO.isImm()) 824 break; 825 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 826 } 827 828 if (OpNo > MI->getNumOperands()) 829 report("Missing operands in last group", MI); 830 831 // An optional MDNode follows the groups. 832 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 833 ++OpNo; 834 835 // All trailing operands must be implicit registers. 836 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 837 const MachineOperand &MO = MI->getOperand(OpNo); 838 if (!MO.isReg() || !MO.isImplicit()) 839 report("Expected implicit register after groups", &MO, OpNo); 840 } 841 } 842 843 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 844 const MCInstrDesc &MCID = MI->getDesc(); 845 if (MI->getNumOperands() < MCID.getNumOperands()) { 846 report("Too few operands", MI); 847 errs() << MCID.getNumOperands() << " operands expected, but " 848 << MI->getNumOperands() << " given.\n"; 849 } 850 851 if (MI->isPHI() && MF->getProperties().hasProperty( 852 MachineFunctionProperties::Property::NoPHIs)) 853 report("Found PHI instruction with NoPHIs property set", MI); 854 855 // Check the tied operands. 856 if (MI->isInlineAsm()) 857 verifyInlineAsm(MI); 858 859 // Check the MachineMemOperands for basic consistency. 860 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 861 E = MI->memoperands_end(); I != E; ++I) { 862 if ((*I)->isLoad() && !MI->mayLoad()) 863 report("Missing mayLoad flag", MI); 864 if ((*I)->isStore() && !MI->mayStore()) 865 report("Missing mayStore flag", MI); 866 } 867 868 // Debug values must not have a slot index. 869 // Other instructions must have one, unless they are inside a bundle. 870 if (LiveInts) { 871 bool mapped = !LiveInts->isNotInMIMap(*MI); 872 if (MI->isDebugValue()) { 873 if (mapped) 874 report("Debug instruction has a slot index", MI); 875 } else if (MI->isInsideBundle()) { 876 if (mapped) 877 report("Instruction inside bundle has a slot index", MI); 878 } else { 879 if (!mapped) 880 report("Missing slot index", MI); 881 } 882 } 883 884 // Check types. 885 if (isPreISelGenericOpcode(MCID.getOpcode())) { 886 if (isFunctionSelected) 887 report("Unexpected generic instruction in a Selected function", MI); 888 889 // Generic instructions specify equality constraints between some 890 // of their operands. Make sure these are consistent. 891 SmallVector<LLT, 4> Types; 892 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 893 if (!MCID.OpInfo[i].isGenericType()) 894 continue; 895 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 896 Types.resize(std::max(TypeIdx + 1, Types.size())); 897 898 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 899 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 900 report("type mismatch in generic instruction", MI); 901 Types[TypeIdx] = OpTy; 902 } 903 } 904 905 // Generic opcodes must not have physical register operands. 906 if (isPreISelGenericOpcode(MCID.getOpcode())) { 907 for (auto &Op : MI->operands()) { 908 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 909 report("Generic instruction cannot have physical register", MI); 910 } 911 } 912 913 StringRef ErrorInfo; 914 if (!TII->verifyInstruction(*MI, ErrorInfo)) 915 report(ErrorInfo.data(), MI); 916 917 // Verify properties of various specific instruction types 918 switch(MI->getOpcode()) { 919 default: 920 break; 921 case TargetOpcode::G_LOAD: 922 case TargetOpcode::G_STORE: 923 // Generic loads and stores must have a single MachineMemOperand 924 // describing that access. 925 if (!MI->hasOneMemOperand()) 926 report("Generic instruction accessing memory must have one mem operand", 927 MI); 928 break; 929 case TargetOpcode::G_PHI: { 930 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 931 if (!DstTy.isValid() || 932 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 933 [this, &DstTy](const MachineOperand &MO) { 934 if (!MO.isReg()) 935 return true; 936 LLT Ty = MRI->getType(MO.getReg()); 937 if (!Ty.isValid() || (Ty != DstTy)) 938 return false; 939 return true; 940 })) 941 report("Generic Instruction G_PHI has operands with incompatible/missing " 942 "types", 943 MI); 944 break; 945 } 946 case TargetOpcode::STATEPOINT: 947 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 948 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 949 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 950 report("meta operands to STATEPOINT not constant!", MI); 951 break; 952 953 auto VerifyStackMapConstant = [&](unsigned Offset) { 954 if (!MI->getOperand(Offset).isImm() || 955 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 956 !MI->getOperand(Offset + 1).isImm()) 957 report("stack map constant to STATEPOINT not well formed!", MI); 958 }; 959 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 960 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 961 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 962 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 963 964 // TODO: verify we have properly encoded deopt arguments 965 }; 966 } 967 968 void 969 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 970 const MachineInstr *MI = MO->getParent(); 971 const MCInstrDesc &MCID = MI->getDesc(); 972 unsigned NumDefs = MCID.getNumDefs(); 973 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 974 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 975 976 // The first MCID.NumDefs operands must be explicit register defines 977 if (MONum < NumDefs) { 978 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 979 if (!MO->isReg()) 980 report("Explicit definition must be a register", MO, MONum); 981 else if (!MO->isDef() && !MCOI.isOptionalDef()) 982 report("Explicit definition marked as use", MO, MONum); 983 else if (MO->isImplicit()) 984 report("Explicit definition marked as implicit", MO, MONum); 985 } else if (MONum < MCID.getNumOperands()) { 986 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 987 // Don't check if it's the last operand in a variadic instruction. See, 988 // e.g., LDM_RET in the arm back end. 989 if (MO->isReg() && 990 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 991 if (MO->isDef() && !MCOI.isOptionalDef()) 992 report("Explicit operand marked as def", MO, MONum); 993 if (MO->isImplicit()) 994 report("Explicit operand marked as implicit", MO, MONum); 995 } 996 997 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 998 if (TiedTo != -1) { 999 if (!MO->isReg()) 1000 report("Tied use must be a register", MO, MONum); 1001 else if (!MO->isTied()) 1002 report("Operand should be tied", MO, MONum); 1003 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1004 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1005 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1006 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1007 if (!MOTied.isReg()) 1008 report("Tied counterpart must be a register", &MOTied, TiedTo); 1009 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1010 MO->getReg() != MOTied.getReg()) 1011 report("Tied physical registers must match.", &MOTied, TiedTo); 1012 } 1013 } else if (MO->isReg() && MO->isTied()) 1014 report("Explicit operand should not be tied", MO, MONum); 1015 } else { 1016 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1017 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1018 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1019 } 1020 1021 switch (MO->getType()) { 1022 case MachineOperand::MO_Register: { 1023 const unsigned Reg = MO->getReg(); 1024 if (!Reg) 1025 return; 1026 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1027 checkLiveness(MO, MONum); 1028 1029 // Verify the consistency of tied operands. 1030 if (MO->isTied()) { 1031 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1032 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1033 if (!OtherMO.isReg()) 1034 report("Must be tied to a register", MO, MONum); 1035 if (!OtherMO.isTied()) 1036 report("Missing tie flags on tied operand", MO, MONum); 1037 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1038 report("Inconsistent tie links", MO, MONum); 1039 if (MONum < MCID.getNumDefs()) { 1040 if (OtherIdx < MCID.getNumOperands()) { 1041 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1042 report("Explicit def tied to explicit use without tie constraint", 1043 MO, MONum); 1044 } else { 1045 if (!OtherMO.isImplicit()) 1046 report("Explicit def should be tied to implicit use", MO, MONum); 1047 } 1048 } 1049 } 1050 1051 // Verify two-address constraints after leaving SSA form. 1052 unsigned DefIdx; 1053 if (!MRI->isSSA() && MO->isUse() && 1054 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1055 Reg != MI->getOperand(DefIdx).getReg()) 1056 report("Two-address instruction operands must be identical", MO, MONum); 1057 1058 // Check register classes. 1059 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 1060 unsigned SubIdx = MO->getSubReg(); 1061 1062 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1063 if (SubIdx) { 1064 report("Illegal subregister index for physical register", MO, MONum); 1065 return; 1066 } 1067 if (const TargetRegisterClass *DRC = 1068 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1069 if (!DRC->contains(Reg)) { 1070 report("Illegal physical register for instruction", MO, MONum); 1071 errs() << TRI->getName(Reg) << " is not a " 1072 << TRI->getRegClassName(DRC) << " register.\n"; 1073 } 1074 } 1075 } else { 1076 // Virtual register. 1077 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1078 if (!RC) { 1079 // This is a generic virtual register. 1080 1081 // If we're post-Select, we can't have gvregs anymore. 1082 if (isFunctionSelected) { 1083 report("Generic virtual register invalid in a Selected function", 1084 MO, MONum); 1085 return; 1086 } 1087 1088 // The gvreg must have a type and it must not have a SubIdx. 1089 LLT Ty = MRI->getType(Reg); 1090 if (!Ty.isValid()) { 1091 report("Generic virtual register must have a valid type", MO, 1092 MONum); 1093 return; 1094 } 1095 1096 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1097 1098 // If we're post-RegBankSelect, the gvreg must have a bank. 1099 if (!RegBank && isFunctionRegBankSelected) { 1100 report("Generic virtual register must have a bank in a " 1101 "RegBankSelected function", 1102 MO, MONum); 1103 return; 1104 } 1105 1106 // Make sure the register fits into its register bank if any. 1107 if (RegBank && Ty.isValid() && 1108 RegBank->getSize() < Ty.getSizeInBits()) { 1109 report("Register bank is too small for virtual register", MO, 1110 MONum); 1111 errs() << "Register bank " << RegBank->getName() << " too small(" 1112 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1113 << "-bits\n"; 1114 return; 1115 } 1116 if (SubIdx) { 1117 report("Generic virtual register does not subregister index", MO, 1118 MONum); 1119 return; 1120 } 1121 1122 // If this is a target specific instruction and this operand 1123 // has register class constraint, the virtual register must 1124 // comply to it. 1125 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1126 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1127 report("Virtual register does not match instruction constraint", MO, 1128 MONum); 1129 errs() << "Expect register class " 1130 << TRI->getRegClassName( 1131 TII->getRegClass(MCID, MONum, TRI, *MF)) 1132 << " but got nothing\n"; 1133 return; 1134 } 1135 1136 break; 1137 } 1138 if (SubIdx) { 1139 const TargetRegisterClass *SRC = 1140 TRI->getSubClassWithSubReg(RC, SubIdx); 1141 if (!SRC) { 1142 report("Invalid subregister index for virtual register", MO, MONum); 1143 errs() << "Register class " << TRI->getRegClassName(RC) 1144 << " does not support subreg index " << SubIdx << "\n"; 1145 return; 1146 } 1147 if (RC != SRC) { 1148 report("Invalid register class for subregister index", MO, MONum); 1149 errs() << "Register class " << TRI->getRegClassName(RC) 1150 << " does not fully support subreg index " << SubIdx << "\n"; 1151 return; 1152 } 1153 } 1154 if (const TargetRegisterClass *DRC = 1155 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1156 if (SubIdx) { 1157 const TargetRegisterClass *SuperRC = 1158 TRI->getLargestLegalSuperClass(RC, *MF); 1159 if (!SuperRC) { 1160 report("No largest legal super class exists.", MO, MONum); 1161 return; 1162 } 1163 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1164 if (!DRC) { 1165 report("No matching super-reg register class.", MO, MONum); 1166 return; 1167 } 1168 } 1169 if (!RC->hasSuperClassEq(DRC)) { 1170 report("Illegal virtual register for instruction", MO, MONum); 1171 errs() << "Expected a " << TRI->getRegClassName(DRC) 1172 << " register, but got a " << TRI->getRegClassName(RC) 1173 << " register\n"; 1174 } 1175 } 1176 } 1177 } 1178 break; 1179 } 1180 1181 case MachineOperand::MO_RegisterMask: 1182 regMasks.push_back(MO->getRegMask()); 1183 break; 1184 1185 case MachineOperand::MO_MachineBasicBlock: 1186 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1187 report("PHI operand is not in the CFG", MO, MONum); 1188 break; 1189 1190 case MachineOperand::MO_FrameIndex: 1191 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1192 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1193 int FI = MO->getIndex(); 1194 LiveInterval &LI = LiveStks->getInterval(FI); 1195 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1196 1197 bool stores = MI->mayStore(); 1198 bool loads = MI->mayLoad(); 1199 // For a memory-to-memory move, we need to check if the frame 1200 // index is used for storing or loading, by inspecting the 1201 // memory operands. 1202 if (stores && loads) { 1203 for (auto *MMO : MI->memoperands()) { 1204 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1205 if (PSV == nullptr) continue; 1206 const FixedStackPseudoSourceValue *Value = 1207 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1208 if (Value == nullptr) continue; 1209 if (Value->getFrameIndex() != FI) continue; 1210 1211 if (MMO->isStore()) 1212 loads = false; 1213 else 1214 stores = false; 1215 break; 1216 } 1217 if (loads == stores) 1218 report("Missing fixed stack memoperand.", MI); 1219 } 1220 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1221 report("Instruction loads from dead spill slot", MO, MONum); 1222 errs() << "Live stack: " << LI << '\n'; 1223 } 1224 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1225 report("Instruction stores to dead spill slot", MO, MONum); 1226 errs() << "Live stack: " << LI << '\n'; 1227 } 1228 } 1229 break; 1230 1231 default: 1232 break; 1233 } 1234 } 1235 1236 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1237 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1238 LaneBitmask LaneMask) { 1239 LiveQueryResult LRQ = LR.Query(UseIdx); 1240 // Check if we have a segment at the use, note however that we only need one 1241 // live subregister range, the others may be dead. 1242 if (!LRQ.valueIn() && LaneMask.none()) { 1243 report("No live segment at use", MO, MONum); 1244 report_context_liverange(LR); 1245 report_context_vreg_regunit(VRegOrUnit); 1246 report_context(UseIdx); 1247 } 1248 if (MO->isKill() && !LRQ.isKill()) { 1249 report("Live range continues after kill flag", MO, MONum); 1250 report_context_liverange(LR); 1251 report_context_vreg_regunit(VRegOrUnit); 1252 if (LaneMask.any()) 1253 report_context_lanemask(LaneMask); 1254 report_context(UseIdx); 1255 } 1256 } 1257 1258 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1259 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1260 LaneBitmask LaneMask) { 1261 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1262 assert(VNI && "NULL valno is not allowed"); 1263 if (VNI->def != DefIdx) { 1264 report("Inconsistent valno->def", MO, MONum); 1265 report_context_liverange(LR); 1266 report_context_vreg_regunit(VRegOrUnit); 1267 if (LaneMask.any()) 1268 report_context_lanemask(LaneMask); 1269 report_context(*VNI); 1270 report_context(DefIdx); 1271 } 1272 } else { 1273 report("No live segment at def", MO, MONum); 1274 report_context_liverange(LR); 1275 report_context_vreg_regunit(VRegOrUnit); 1276 if (LaneMask.any()) 1277 report_context_lanemask(LaneMask); 1278 report_context(DefIdx); 1279 } 1280 // Check that, if the dead def flag is present, LiveInts agree. 1281 if (MO->isDead()) { 1282 LiveQueryResult LRQ = LR.Query(DefIdx); 1283 if (!LRQ.isDeadDef()) { 1284 // In case of physregs we can have a non-dead definition on another 1285 // operand. 1286 bool otherDef = false; 1287 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1288 const MachineInstr &MI = *MO->getParent(); 1289 for (const MachineOperand &MO : MI.operands()) { 1290 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1291 continue; 1292 unsigned Reg = MO.getReg(); 1293 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1294 if (*Units == VRegOrUnit) { 1295 otherDef = true; 1296 break; 1297 } 1298 } 1299 } 1300 } 1301 1302 if (!otherDef) { 1303 report("Live range continues after dead def flag", MO, MONum); 1304 report_context_liverange(LR); 1305 report_context_vreg_regunit(VRegOrUnit); 1306 if (LaneMask.any()) 1307 report_context_lanemask(LaneMask); 1308 } 1309 } 1310 } 1311 } 1312 1313 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1314 const MachineInstr *MI = MO->getParent(); 1315 const unsigned Reg = MO->getReg(); 1316 1317 // Both use and def operands can read a register. 1318 if (MO->readsReg()) { 1319 if (MO->isKill()) 1320 addRegWithSubRegs(regsKilled, Reg); 1321 1322 // Check that LiveVars knows this kill. 1323 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1324 MO->isKill()) { 1325 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1326 if (!is_contained(VI.Kills, MI)) 1327 report("Kill missing from LiveVariables", MO, MONum); 1328 } 1329 1330 // Check LiveInts liveness and kill. 1331 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1332 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1333 // Check the cached regunit intervals. 1334 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1335 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1336 if (MRI->isReservedRegUnit(*Units)) 1337 continue; 1338 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1339 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1340 } 1341 } 1342 1343 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1344 if (LiveInts->hasInterval(Reg)) { 1345 // This is a virtual register interval. 1346 const LiveInterval &LI = LiveInts->getInterval(Reg); 1347 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1348 1349 if (LI.hasSubRanges() && !MO->isDef()) { 1350 unsigned SubRegIdx = MO->getSubReg(); 1351 LaneBitmask MOMask = SubRegIdx != 0 1352 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1353 : MRI->getMaxLaneMaskForVReg(Reg); 1354 LaneBitmask LiveInMask; 1355 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1356 if ((MOMask & SR.LaneMask).none()) 1357 continue; 1358 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1359 LiveQueryResult LRQ = SR.Query(UseIdx); 1360 if (LRQ.valueIn()) 1361 LiveInMask |= SR.LaneMask; 1362 } 1363 // At least parts of the register has to be live at the use. 1364 if ((LiveInMask & MOMask).none()) { 1365 report("No live subrange at use", MO, MONum); 1366 report_context(LI); 1367 report_context(UseIdx); 1368 } 1369 } 1370 } else { 1371 report("Virtual register has no live interval", MO, MONum); 1372 } 1373 } 1374 } 1375 1376 // Use of a dead register. 1377 if (!regsLive.count(Reg)) { 1378 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1379 // Reserved registers may be used even when 'dead'. 1380 bool Bad = !isReserved(Reg); 1381 // We are fine if just any subregister has a defined value. 1382 if (Bad) { 1383 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1384 ++SubRegs) { 1385 if (regsLive.count(*SubRegs)) { 1386 Bad = false; 1387 break; 1388 } 1389 } 1390 } 1391 // If there is an additional implicit-use of a super register we stop 1392 // here. By definition we are fine if the super register is not 1393 // (completely) dead, if the complete super register is dead we will 1394 // get a report for its operand. 1395 if (Bad) { 1396 for (const MachineOperand &MOP : MI->uses()) { 1397 if (!MOP.isReg()) 1398 continue; 1399 if (!MOP.isImplicit()) 1400 continue; 1401 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1402 ++SubRegs) { 1403 if (*SubRegs == Reg) { 1404 Bad = false; 1405 break; 1406 } 1407 } 1408 } 1409 } 1410 if (Bad) 1411 report("Using an undefined physical register", MO, MONum); 1412 } else if (MRI->def_empty(Reg)) { 1413 report("Reading virtual register without a def", MO, MONum); 1414 } else { 1415 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1416 // We don't know which virtual registers are live in, so only complain 1417 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1418 // must be live in. PHI instructions are handled separately. 1419 if (MInfo.regsKilled.count(Reg)) 1420 report("Using a killed virtual register", MO, MONum); 1421 else if (!MI->isPHI()) 1422 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1423 } 1424 } 1425 } 1426 1427 if (MO->isDef()) { 1428 // Register defined. 1429 // TODO: verify that earlyclobber ops are not used. 1430 if (MO->isDead()) 1431 addRegWithSubRegs(regsDead, Reg); 1432 else 1433 addRegWithSubRegs(regsDefined, Reg); 1434 1435 // Verify SSA form. 1436 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1437 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1438 report("Multiple virtual register defs in SSA form", MO, MONum); 1439 1440 // Check LiveInts for a live segment, but only for virtual registers. 1441 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1442 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1443 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1444 1445 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1446 if (LiveInts->hasInterval(Reg)) { 1447 const LiveInterval &LI = LiveInts->getInterval(Reg); 1448 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1449 1450 if (LI.hasSubRanges()) { 1451 unsigned SubRegIdx = MO->getSubReg(); 1452 LaneBitmask MOMask = SubRegIdx != 0 1453 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1454 : MRI->getMaxLaneMaskForVReg(Reg); 1455 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1456 if ((SR.LaneMask & MOMask).none()) 1457 continue; 1458 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1459 } 1460 } 1461 } else { 1462 report("Virtual register has no Live interval", MO, MONum); 1463 } 1464 } 1465 } 1466 } 1467 } 1468 1469 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1470 } 1471 1472 // This function gets called after visiting all instructions in a bundle. The 1473 // argument points to the bundle header. 1474 // Normal stand-alone instructions are also considered 'bundles', and this 1475 // function is called for all of them. 1476 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1477 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1478 set_union(MInfo.regsKilled, regsKilled); 1479 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1480 // Kill any masked registers. 1481 while (!regMasks.empty()) { 1482 const uint32_t *Mask = regMasks.pop_back_val(); 1483 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1484 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1485 MachineOperand::clobbersPhysReg(Mask, *I)) 1486 regsDead.push_back(*I); 1487 } 1488 set_subtract(regsLive, regsDead); regsDead.clear(); 1489 set_union(regsLive, regsDefined); regsDefined.clear(); 1490 } 1491 1492 void 1493 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1494 MBBInfoMap[MBB].regsLiveOut = regsLive; 1495 regsLive.clear(); 1496 1497 if (Indexes) { 1498 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1499 if (!(stop > lastIndex)) { 1500 report("Block ends before last instruction index", MBB); 1501 errs() << "Block ends at " << stop 1502 << " last instruction was at " << lastIndex << '\n'; 1503 } 1504 lastIndex = stop; 1505 } 1506 } 1507 1508 // Calculate the largest possible vregsPassed sets. These are the registers that 1509 // can pass through an MBB live, but may not be live every time. It is assumed 1510 // that all vregsPassed sets are empty before the call. 1511 void MachineVerifier::calcRegsPassed() { 1512 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1513 // have any vregsPassed. 1514 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1515 for (const auto &MBB : *MF) { 1516 BBInfo &MInfo = MBBInfoMap[&MBB]; 1517 if (!MInfo.reachable) 1518 continue; 1519 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1520 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1521 BBInfo &SInfo = MBBInfoMap[*SuI]; 1522 if (SInfo.addPassed(MInfo.regsLiveOut)) 1523 todo.insert(*SuI); 1524 } 1525 } 1526 1527 // Iteratively push vregsPassed to successors. This will converge to the same 1528 // final state regardless of DenseSet iteration order. 1529 while (!todo.empty()) { 1530 const MachineBasicBlock *MBB = *todo.begin(); 1531 todo.erase(MBB); 1532 BBInfo &MInfo = MBBInfoMap[MBB]; 1533 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1534 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1535 if (*SuI == MBB) 1536 continue; 1537 BBInfo &SInfo = MBBInfoMap[*SuI]; 1538 if (SInfo.addPassed(MInfo.vregsPassed)) 1539 todo.insert(*SuI); 1540 } 1541 } 1542 } 1543 1544 // Calculate the set of virtual registers that must be passed through each basic 1545 // block in order to satisfy the requirements of successor blocks. This is very 1546 // similar to calcRegsPassed, only backwards. 1547 void MachineVerifier::calcRegsRequired() { 1548 // First push live-in regs to predecessors' vregsRequired. 1549 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1550 for (const auto &MBB : *MF) { 1551 BBInfo &MInfo = MBBInfoMap[&MBB]; 1552 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1553 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1554 BBInfo &PInfo = MBBInfoMap[*PrI]; 1555 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1556 todo.insert(*PrI); 1557 } 1558 } 1559 1560 // Iteratively push vregsRequired to predecessors. This will converge to the 1561 // same final state regardless of DenseSet iteration order. 1562 while (!todo.empty()) { 1563 const MachineBasicBlock *MBB = *todo.begin(); 1564 todo.erase(MBB); 1565 BBInfo &MInfo = MBBInfoMap[MBB]; 1566 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1567 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1568 if (*PrI == MBB) 1569 continue; 1570 BBInfo &SInfo = MBBInfoMap[*PrI]; 1571 if (SInfo.addRequired(MInfo.vregsRequired)) 1572 todo.insert(*PrI); 1573 } 1574 } 1575 } 1576 1577 // Check PHI instructions at the beginning of MBB. It is assumed that 1578 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1579 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1580 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1581 for (const auto &BBI : *MBB) { 1582 if (!BBI.isPHI()) 1583 break; 1584 seen.clear(); 1585 1586 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1587 unsigned Reg = BBI.getOperand(i).getReg(); 1588 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1589 if (!Pre->isSuccessor(MBB)) 1590 continue; 1591 seen.insert(Pre); 1592 BBInfo &PrInfo = MBBInfoMap[Pre]; 1593 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1594 report("PHI operand is not live-out from predecessor", 1595 &BBI.getOperand(i), i); 1596 } 1597 1598 // Did we see all predecessors? 1599 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1600 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1601 if (!seen.count(*PrI)) { 1602 report("Missing PHI operand", &BBI); 1603 errs() << "BB#" << (*PrI)->getNumber() 1604 << " is a predecessor according to the CFG.\n"; 1605 } 1606 } 1607 } 1608 } 1609 1610 void MachineVerifier::visitMachineFunctionAfter() { 1611 calcRegsPassed(); 1612 1613 for (const auto &MBB : *MF) { 1614 BBInfo &MInfo = MBBInfoMap[&MBB]; 1615 1616 // Skip unreachable MBBs. 1617 if (!MInfo.reachable) 1618 continue; 1619 1620 checkPHIOps(&MBB); 1621 } 1622 1623 // Now check liveness info if available 1624 calcRegsRequired(); 1625 1626 // Check for killed virtual registers that should be live out. 1627 for (const auto &MBB : *MF) { 1628 BBInfo &MInfo = MBBInfoMap[&MBB]; 1629 for (RegSet::iterator 1630 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1631 ++I) 1632 if (MInfo.regsKilled.count(*I)) { 1633 report("Virtual register killed in block, but needed live out.", &MBB); 1634 errs() << "Virtual register " << PrintReg(*I) 1635 << " is used after the block.\n"; 1636 } 1637 } 1638 1639 if (!MF->empty()) { 1640 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1641 for (RegSet::iterator 1642 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1643 ++I) { 1644 report("Virtual register defs don't dominate all uses.", MF); 1645 report_context_vreg(*I); 1646 } 1647 } 1648 1649 if (LiveVars) 1650 verifyLiveVariables(); 1651 if (LiveInts) 1652 verifyLiveIntervals(); 1653 } 1654 1655 void MachineVerifier::verifyLiveVariables() { 1656 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1657 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1658 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1659 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1660 for (const auto &MBB : *MF) { 1661 BBInfo &MInfo = MBBInfoMap[&MBB]; 1662 1663 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1664 if (MInfo.vregsRequired.count(Reg)) { 1665 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1666 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1667 errs() << "Virtual register " << PrintReg(Reg) 1668 << " must be live through the block.\n"; 1669 } 1670 } else { 1671 if (VI.AliveBlocks.test(MBB.getNumber())) { 1672 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1673 errs() << "Virtual register " << PrintReg(Reg) 1674 << " is not needed live through the block.\n"; 1675 } 1676 } 1677 } 1678 } 1679 } 1680 1681 void MachineVerifier::verifyLiveIntervals() { 1682 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1683 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1684 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1685 1686 // Spilling and splitting may leave unused registers around. Skip them. 1687 if (MRI->reg_nodbg_empty(Reg)) 1688 continue; 1689 1690 if (!LiveInts->hasInterval(Reg)) { 1691 report("Missing live interval for virtual register", MF); 1692 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1693 continue; 1694 } 1695 1696 const LiveInterval &LI = LiveInts->getInterval(Reg); 1697 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1698 verifyLiveInterval(LI); 1699 } 1700 1701 // Verify all the cached regunit intervals. 1702 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1703 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1704 verifyLiveRange(*LR, i); 1705 } 1706 1707 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1708 const VNInfo *VNI, unsigned Reg, 1709 LaneBitmask LaneMask) { 1710 if (VNI->isUnused()) 1711 return; 1712 1713 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1714 1715 if (!DefVNI) { 1716 report("Value not live at VNInfo def and not marked unused", MF); 1717 report_context(LR, Reg, LaneMask); 1718 report_context(*VNI); 1719 return; 1720 } 1721 1722 if (DefVNI != VNI) { 1723 report("Live segment at def has different VNInfo", MF); 1724 report_context(LR, Reg, LaneMask); 1725 report_context(*VNI); 1726 return; 1727 } 1728 1729 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1730 if (!MBB) { 1731 report("Invalid VNInfo definition index", MF); 1732 report_context(LR, Reg, LaneMask); 1733 report_context(*VNI); 1734 return; 1735 } 1736 1737 if (VNI->isPHIDef()) { 1738 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1739 report("PHIDef VNInfo is not defined at MBB start", MBB); 1740 report_context(LR, Reg, LaneMask); 1741 report_context(*VNI); 1742 } 1743 return; 1744 } 1745 1746 // Non-PHI def. 1747 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1748 if (!MI) { 1749 report("No instruction at VNInfo def index", MBB); 1750 report_context(LR, Reg, LaneMask); 1751 report_context(*VNI); 1752 return; 1753 } 1754 1755 if (Reg != 0) { 1756 bool hasDef = false; 1757 bool isEarlyClobber = false; 1758 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1759 if (!MOI->isReg() || !MOI->isDef()) 1760 continue; 1761 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1762 if (MOI->getReg() != Reg) 1763 continue; 1764 } else { 1765 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1766 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1767 continue; 1768 } 1769 if (LaneMask.any() && 1770 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1771 continue; 1772 hasDef = true; 1773 if (MOI->isEarlyClobber()) 1774 isEarlyClobber = true; 1775 } 1776 1777 if (!hasDef) { 1778 report("Defining instruction does not modify register", MI); 1779 report_context(LR, Reg, LaneMask); 1780 report_context(*VNI); 1781 } 1782 1783 // Early clobber defs begin at USE slots, but other defs must begin at 1784 // DEF slots. 1785 if (isEarlyClobber) { 1786 if (!VNI->def.isEarlyClobber()) { 1787 report("Early clobber def must be at an early-clobber slot", MBB); 1788 report_context(LR, Reg, LaneMask); 1789 report_context(*VNI); 1790 } 1791 } else if (!VNI->def.isRegister()) { 1792 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1793 report_context(LR, Reg, LaneMask); 1794 report_context(*VNI); 1795 } 1796 } 1797 } 1798 1799 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1800 const LiveRange::const_iterator I, 1801 unsigned Reg, LaneBitmask LaneMask) 1802 { 1803 const LiveRange::Segment &S = *I; 1804 const VNInfo *VNI = S.valno; 1805 assert(VNI && "Live segment has no valno"); 1806 1807 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1808 report("Foreign valno in live segment", MF); 1809 report_context(LR, Reg, LaneMask); 1810 report_context(S); 1811 report_context(*VNI); 1812 } 1813 1814 if (VNI->isUnused()) { 1815 report("Live segment valno is marked unused", MF); 1816 report_context(LR, Reg, LaneMask); 1817 report_context(S); 1818 } 1819 1820 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1821 if (!MBB) { 1822 report("Bad start of live segment, no basic block", MF); 1823 report_context(LR, Reg, LaneMask); 1824 report_context(S); 1825 return; 1826 } 1827 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1828 if (S.start != MBBStartIdx && S.start != VNI->def) { 1829 report("Live segment must begin at MBB entry or valno def", MBB); 1830 report_context(LR, Reg, LaneMask); 1831 report_context(S); 1832 } 1833 1834 const MachineBasicBlock *EndMBB = 1835 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1836 if (!EndMBB) { 1837 report("Bad end of live segment, no basic block", MF); 1838 report_context(LR, Reg, LaneMask); 1839 report_context(S); 1840 return; 1841 } 1842 1843 // No more checks for live-out segments. 1844 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1845 return; 1846 1847 // RegUnit intervals are allowed dead phis. 1848 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1849 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1850 return; 1851 1852 // The live segment is ending inside EndMBB 1853 const MachineInstr *MI = 1854 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1855 if (!MI) { 1856 report("Live segment doesn't end at a valid instruction", EndMBB); 1857 report_context(LR, Reg, LaneMask); 1858 report_context(S); 1859 return; 1860 } 1861 1862 // The block slot must refer to a basic block boundary. 1863 if (S.end.isBlock()) { 1864 report("Live segment ends at B slot of an instruction", EndMBB); 1865 report_context(LR, Reg, LaneMask); 1866 report_context(S); 1867 } 1868 1869 if (S.end.isDead()) { 1870 // Segment ends on the dead slot. 1871 // That means there must be a dead def. 1872 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1873 report("Live segment ending at dead slot spans instructions", EndMBB); 1874 report_context(LR, Reg, LaneMask); 1875 report_context(S); 1876 } 1877 } 1878 1879 // A live segment can only end at an early-clobber slot if it is being 1880 // redefined by an early-clobber def. 1881 if (S.end.isEarlyClobber()) { 1882 if (I+1 == LR.end() || (I+1)->start != S.end) { 1883 report("Live segment ending at early clobber slot must be " 1884 "redefined by an EC def in the same instruction", EndMBB); 1885 report_context(LR, Reg, LaneMask); 1886 report_context(S); 1887 } 1888 } 1889 1890 // The following checks only apply to virtual registers. Physreg liveness 1891 // is too weird to check. 1892 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1893 // A live segment can end with either a redefinition, a kill flag on a 1894 // use, or a dead flag on a def. 1895 bool hasRead = false; 1896 bool hasSubRegDef = false; 1897 bool hasDeadDef = false; 1898 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1899 if (!MOI->isReg() || MOI->getReg() != Reg) 1900 continue; 1901 unsigned Sub = MOI->getSubReg(); 1902 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1903 : LaneBitmask::getAll(); 1904 if (MOI->isDef()) { 1905 if (Sub != 0) { 1906 hasSubRegDef = true; 1907 // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane 1908 // mask for subregister defs. Read-undef defs will be handled by 1909 // readsReg below. 1910 SLM = ~SLM; 1911 } 1912 if (MOI->isDead()) 1913 hasDeadDef = true; 1914 } 1915 if (LaneMask.any() && (LaneMask & SLM).none()) 1916 continue; 1917 if (MOI->readsReg()) 1918 hasRead = true; 1919 } 1920 if (S.end.isDead()) { 1921 // Make sure that the corresponding machine operand for a "dead" live 1922 // range has the dead flag. We cannot perform this check for subregister 1923 // liveranges as partially dead values are allowed. 1924 if (LaneMask.none() && !hasDeadDef) { 1925 report("Instruction ending live segment on dead slot has no dead flag", 1926 MI); 1927 report_context(LR, Reg, LaneMask); 1928 report_context(S); 1929 } 1930 } else { 1931 if (!hasRead) { 1932 // When tracking subregister liveness, the main range must start new 1933 // values on partial register writes, even if there is no read. 1934 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 1935 !hasSubRegDef) { 1936 report("Instruction ending live segment doesn't read the register", 1937 MI); 1938 report_context(LR, Reg, LaneMask); 1939 report_context(S); 1940 } 1941 } 1942 } 1943 } 1944 1945 // Now check all the basic blocks in this live segment. 1946 MachineFunction::const_iterator MFI = MBB->getIterator(); 1947 // Is this live segment the beginning of a non-PHIDef VN? 1948 if (S.start == VNI->def && !VNI->isPHIDef()) { 1949 // Not live-in to any blocks. 1950 if (MBB == EndMBB) 1951 return; 1952 // Skip this block. 1953 ++MFI; 1954 } 1955 for (;;) { 1956 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1957 // We don't know how to track physregs into a landing pad. 1958 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1959 MFI->isEHPad()) { 1960 if (&*MFI == EndMBB) 1961 break; 1962 ++MFI; 1963 continue; 1964 } 1965 1966 // Is VNI a PHI-def in the current block? 1967 bool IsPHI = VNI->isPHIDef() && 1968 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1969 1970 // Check that VNI is live-out of all predecessors. 1971 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1972 PE = MFI->pred_end(); PI != PE; ++PI) { 1973 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1974 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1975 1976 // All predecessors must have a live-out value. However for a phi 1977 // instruction with subregister intervals 1978 // only one of the subregisters (not necessarily the current one) needs to 1979 // be defined. 1980 if (!PVNI && (LaneMask.none() || !IsPHI) ) { 1981 report("Register not marked live out of predecessor", *PI); 1982 report_context(LR, Reg, LaneMask); 1983 report_context(*VNI); 1984 errs() << " live into BB#" << MFI->getNumber() 1985 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1986 << PEnd << '\n'; 1987 continue; 1988 } 1989 1990 // Only PHI-defs can take different predecessor values. 1991 if (!IsPHI && PVNI != VNI) { 1992 report("Different value live out of predecessor", *PI); 1993 report_context(LR, Reg, LaneMask); 1994 errs() << "Valno #" << PVNI->id << " live out of BB#" 1995 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1996 << " live into BB#" << MFI->getNumber() << '@' 1997 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1998 } 1999 } 2000 if (&*MFI == EndMBB) 2001 break; 2002 ++MFI; 2003 } 2004 } 2005 2006 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2007 LaneBitmask LaneMask) { 2008 for (const VNInfo *VNI : LR.valnos) 2009 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2010 2011 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2012 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2013 } 2014 2015 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2016 unsigned Reg = LI.reg; 2017 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2018 verifyLiveRange(LI, Reg); 2019 2020 LaneBitmask Mask; 2021 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2022 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2023 if ((Mask & SR.LaneMask).any()) { 2024 report("Lane masks of sub ranges overlap in live interval", MF); 2025 report_context(LI); 2026 } 2027 if ((SR.LaneMask & ~MaxMask).any()) { 2028 report("Subrange lanemask is invalid", MF); 2029 report_context(LI); 2030 } 2031 if (SR.empty()) { 2032 report("Subrange must not be empty", MF); 2033 report_context(SR, LI.reg, SR.LaneMask); 2034 } 2035 Mask |= SR.LaneMask; 2036 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2037 if (!LI.covers(SR)) { 2038 report("A Subrange is not covered by the main range", MF); 2039 report_context(LI); 2040 } 2041 } 2042 2043 // Check the LI only has one connected component. 2044 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2045 unsigned NumComp = ConEQ.Classify(LI); 2046 if (NumComp > 1) { 2047 report("Multiple connected components in live interval", MF); 2048 report_context(LI); 2049 for (unsigned comp = 0; comp != NumComp; ++comp) { 2050 errs() << comp << ": valnos"; 2051 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2052 E = LI.vni_end(); I!=E; ++I) 2053 if (comp == ConEQ.getEqClass(*I)) 2054 errs() << ' ' << (*I)->id; 2055 errs() << '\n'; 2056 } 2057 } 2058 } 2059 2060 namespace { 2061 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2062 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2063 // value is zero. 2064 // We use a bool plus an integer to capture the stack state. 2065 struct StackStateOfBB { 2066 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 2067 ExitIsSetup(false) { } 2068 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2069 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2070 ExitIsSetup(ExitSetup) { } 2071 // Can be negative, which means we are setting up a frame. 2072 int EntryValue; 2073 int ExitValue; 2074 bool EntryIsSetup; 2075 bool ExitIsSetup; 2076 }; 2077 } 2078 2079 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2080 /// by a FrameDestroy <n>, stack adjustments are identical on all 2081 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2082 void MachineVerifier::verifyStackFrame() { 2083 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2084 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2085 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2086 return; 2087 2088 SmallVector<StackStateOfBB, 8> SPState; 2089 SPState.resize(MF->getNumBlockIDs()); 2090 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2091 2092 // Visit the MBBs in DFS order. 2093 for (df_ext_iterator<const MachineFunction*, 2094 df_iterator_default_set<const MachineBasicBlock*> > 2095 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2096 DFI != DFE; ++DFI) { 2097 const MachineBasicBlock *MBB = *DFI; 2098 2099 StackStateOfBB BBState; 2100 // Check the exit state of the DFS stack predecessor. 2101 if (DFI.getPathLength() >= 2) { 2102 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2103 assert(Reachable.count(StackPred) && 2104 "DFS stack predecessor is already visited.\n"); 2105 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2106 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2107 BBState.ExitValue = BBState.EntryValue; 2108 BBState.ExitIsSetup = BBState.EntryIsSetup; 2109 } 2110 2111 // Update stack state by checking contents of MBB. 2112 for (const auto &I : *MBB) { 2113 if (I.getOpcode() == FrameSetupOpcode) { 2114 if (BBState.ExitIsSetup) 2115 report("FrameSetup is after another FrameSetup", &I); 2116 BBState.ExitValue -= TII->getFrameTotalSize(I); 2117 BBState.ExitIsSetup = true; 2118 } 2119 2120 if (I.getOpcode() == FrameDestroyOpcode) { 2121 int Size = TII->getFrameTotalSize(I); 2122 if (!BBState.ExitIsSetup) 2123 report("FrameDestroy is not after a FrameSetup", &I); 2124 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2125 BBState.ExitValue; 2126 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2127 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2128 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2129 << AbsSPAdj << ">.\n"; 2130 } 2131 BBState.ExitValue += Size; 2132 BBState.ExitIsSetup = false; 2133 } 2134 } 2135 SPState[MBB->getNumber()] = BBState; 2136 2137 // Make sure the exit state of any predecessor is consistent with the entry 2138 // state. 2139 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2140 E = MBB->pred_end(); I != E; ++I) { 2141 if (Reachable.count(*I) && 2142 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2143 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2144 report("The exit stack state of a predecessor is inconsistent.", MBB); 2145 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2146 << SPState[(*I)->getNumber()].ExitValue << ", " 2147 << SPState[(*I)->getNumber()].ExitIsSetup 2148 << "), while BB#" << MBB->getNumber() << " has entry state (" 2149 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2150 } 2151 } 2152 2153 // Make sure the entry state of any successor is consistent with the exit 2154 // state. 2155 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2156 E = MBB->succ_end(); I != E; ++I) { 2157 if (Reachable.count(*I) && 2158 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2159 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2160 report("The entry stack state of a successor is inconsistent.", MBB); 2161 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2162 << SPState[(*I)->getNumber()].EntryValue << ", " 2163 << SPState[(*I)->getNumber()].EntryIsSetup 2164 << "), while BB#" << MBB->getNumber() << " has exit state (" 2165 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2166 } 2167 } 2168 2169 // Make sure a basic block with return ends with zero stack adjustment. 2170 if (!MBB->empty() && MBB->back().isReturn()) { 2171 if (BBState.ExitIsSetup) 2172 report("A return block ends with a FrameSetup.", MBB); 2173 if (BBState.ExitValue) 2174 report("A return block ends with a nonzero stack adjustment.", MBB); 2175 } 2176 } 2177 } 2178