1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(const MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<Register, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<Register>; 108 using RegMap = DenseMap<Register, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, Register Reg) { 124 RV.push_back(Reg); 125 if (Reg.isPhysical()) 126 append_range(RV, TRI->subregs(Reg.asMCReg())); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. vregsLiveIn doesn't include regs 135 // that only are used by PHI nodes. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(Register Reg) { 162 if (!Reg.isVirtual()) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 bool Changed = false; 172 for (Register Reg : RS) 173 Changed |= addRequired(Reg); 174 return Changed; 175 } 176 177 // Same for a full map. 178 bool addRequired(const RegMap &RM) { 179 bool Changed = false; 180 for (const auto &I : RM) 181 Changed |= addRequired(I.first); 182 return Changed; 183 } 184 185 // Live-out registers are either in regsLiveOut or vregsPassed. 186 bool isLiveOut(Register Reg) const { 187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 188 } 189 }; 190 191 // Extra register info per MBB. 192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 193 194 bool isReserved(Register Reg) { 195 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 196 } 197 198 bool isAllocatable(Register Reg) const { 199 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 200 !regsReserved.test(Reg.id()); 201 } 202 203 // Analysis information if available 204 LiveVariables *LiveVars; 205 LiveIntervals *LiveInts; 206 LiveStacks *LiveStks; 207 SlotIndexes *Indexes; 208 209 void visitMachineFunctionBefore(); 210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 211 void visitMachineBundleBefore(const MachineInstr *MI); 212 213 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 214 void verifyPreISelGenericInstruction(const MachineInstr *MI); 215 void visitMachineInstrBefore(const MachineInstr *MI); 216 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 217 void visitMachineBundleAfter(const MachineInstr *MI); 218 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 219 void visitMachineFunctionAfter(); 220 221 void report(const char *msg, const MachineFunction *MF); 222 void report(const char *msg, const MachineBasicBlock *MBB); 223 void report(const char *msg, const MachineInstr *MI); 224 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 225 LLT MOVRegType = LLT{}); 226 227 void report_context(const LiveInterval &LI) const; 228 void report_context(const LiveRange &LR, Register VRegUnit, 229 LaneBitmask LaneMask) const; 230 void report_context(const LiveRange::Segment &S) const; 231 void report_context(const VNInfo &VNI) const; 232 void report_context(SlotIndex Pos) const; 233 void report_context(MCPhysReg PhysReg) const; 234 void report_context_liverange(const LiveRange &LR) const; 235 void report_context_lanemask(LaneBitmask LaneMask) const; 236 void report_context_vreg(Register VReg) const; 237 void report_context_vreg_regunit(Register VRegOrUnit) const; 238 239 void verifyInlineAsm(const MachineInstr *MI); 240 241 void checkLiveness(const MachineOperand *MO, unsigned MONum); 242 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 243 SlotIndex UseIdx, const LiveRange &LR, 244 Register VRegOrUnit, 245 LaneBitmask LaneMask = LaneBitmask::getNone()); 246 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 247 SlotIndex DefIdx, const LiveRange &LR, 248 Register VRegOrUnit, bool SubRangeCheck = false, 249 LaneBitmask LaneMask = LaneBitmask::getNone()); 250 251 void markReachable(const MachineBasicBlock *MBB); 252 void calcRegsPassed(); 253 void checkPHIOps(const MachineBasicBlock &MBB); 254 255 void calcRegsRequired(); 256 void verifyLiveVariables(); 257 void verifyLiveIntervals(); 258 void verifyLiveInterval(const LiveInterval&); 259 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 260 LaneBitmask); 261 void verifyLiveRangeSegment(const LiveRange &, 262 const LiveRange::const_iterator I, Register, 263 LaneBitmask); 264 void verifyLiveRange(const LiveRange &, Register, 265 LaneBitmask LaneMask = LaneBitmask::getNone()); 266 267 void verifyStackFrame(); 268 269 void verifySlotIndexes() const; 270 void verifyProperties(const MachineFunction &MF); 271 }; 272 273 struct MachineVerifierPass : public MachineFunctionPass { 274 static char ID; // Pass ID, replacement for typeid 275 276 const std::string Banner; 277 278 MachineVerifierPass(std::string banner = std::string()) 279 : MachineFunctionPass(ID), Banner(std::move(banner)) { 280 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 281 } 282 283 void getAnalysisUsage(AnalysisUsage &AU) const override { 284 AU.setPreservesAll(); 285 MachineFunctionPass::getAnalysisUsage(AU); 286 } 287 288 bool runOnMachineFunction(MachineFunction &MF) override { 289 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 290 if (FoundErrors) 291 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 292 return false; 293 } 294 }; 295 296 } // end anonymous namespace 297 298 char MachineVerifierPass::ID = 0; 299 300 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 301 "Verify generated machine code", false, false) 302 303 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 304 return new MachineVerifierPass(Banner); 305 } 306 307 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 308 const std::string &Banner, 309 const MachineFunction &MF) { 310 // TODO: Use MFAM after porting below analyses. 311 // LiveVariables *LiveVars; 312 // LiveIntervals *LiveInts; 313 // LiveStacks *LiveStks; 314 // SlotIndexes *Indexes; 315 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 316 if (FoundErrors) 317 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 318 } 319 320 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 321 const { 322 MachineFunction &MF = const_cast<MachineFunction&>(*this); 323 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 324 if (AbortOnErrors && FoundErrors) 325 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 326 return FoundErrors == 0; 327 } 328 329 void MachineVerifier::verifySlotIndexes() const { 330 if (Indexes == nullptr) 331 return; 332 333 // Ensure the IdxMBB list is sorted by slot indexes. 334 SlotIndex Last; 335 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 336 E = Indexes->MBBIndexEnd(); I != E; ++I) { 337 assert(!Last.isValid() || I->first > Last); 338 Last = I->first; 339 } 340 } 341 342 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 343 // If a pass has introduced virtual registers without clearing the 344 // NoVRegs property (or set it without allocating the vregs) 345 // then report an error. 346 if (MF.getProperties().hasProperty( 347 MachineFunctionProperties::Property::NoVRegs) && 348 MRI->getNumVirtRegs()) 349 report("Function has NoVRegs property but there are VReg operands", &MF); 350 } 351 352 unsigned MachineVerifier::verify(const MachineFunction &MF) { 353 foundErrors = 0; 354 355 this->MF = &MF; 356 TM = &MF.getTarget(); 357 TII = MF.getSubtarget().getInstrInfo(); 358 TRI = MF.getSubtarget().getRegisterInfo(); 359 MRI = &MF.getRegInfo(); 360 361 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 362 MachineFunctionProperties::Property::FailedISel); 363 364 // If we're mid-GlobalISel and we already triggered the fallback path then 365 // it's expected that the MIR is somewhat broken but that's ok since we'll 366 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 367 if (isFunctionFailedISel) 368 return foundErrors; 369 370 isFunctionRegBankSelected = MF.getProperties().hasProperty( 371 MachineFunctionProperties::Property::RegBankSelected); 372 isFunctionSelected = MF.getProperties().hasProperty( 373 MachineFunctionProperties::Property::Selected); 374 375 LiveVars = nullptr; 376 LiveInts = nullptr; 377 LiveStks = nullptr; 378 Indexes = nullptr; 379 if (PASS) { 380 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 381 // We don't want to verify LiveVariables if LiveIntervals is available. 382 if (!LiveInts) 383 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 384 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 385 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 386 } 387 388 verifySlotIndexes(); 389 390 verifyProperties(MF); 391 392 visitMachineFunctionBefore(); 393 for (const MachineBasicBlock &MBB : MF) { 394 visitMachineBasicBlockBefore(&MBB); 395 // Keep track of the current bundle header. 396 const MachineInstr *CurBundle = nullptr; 397 // Do we expect the next instruction to be part of the same bundle? 398 bool InBundle = false; 399 400 for (const MachineInstr &MI : MBB.instrs()) { 401 if (MI.getParent() != &MBB) { 402 report("Bad instruction parent pointer", &MBB); 403 errs() << "Instruction: " << MI; 404 continue; 405 } 406 407 // Check for consistent bundle flags. 408 if (InBundle && !MI.isBundledWithPred()) 409 report("Missing BundledPred flag, " 410 "BundledSucc was set on predecessor", 411 &MI); 412 if (!InBundle && MI.isBundledWithPred()) 413 report("BundledPred flag is set, " 414 "but BundledSucc not set on predecessor", 415 &MI); 416 417 // Is this a bundle header? 418 if (!MI.isInsideBundle()) { 419 if (CurBundle) 420 visitMachineBundleAfter(CurBundle); 421 CurBundle = &MI; 422 visitMachineBundleBefore(CurBundle); 423 } else if (!CurBundle) 424 report("No bundle header", &MI); 425 visitMachineInstrBefore(&MI); 426 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 427 const MachineOperand &Op = MI.getOperand(I); 428 if (Op.getParent() != &MI) { 429 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 430 // functions when replacing operands of a MachineInstr. 431 report("Instruction has operand with wrong parent set", &MI); 432 } 433 434 visitMachineOperand(&Op, I); 435 } 436 437 // Was this the last bundled instruction? 438 InBundle = MI.isBundledWithSucc(); 439 } 440 if (CurBundle) 441 visitMachineBundleAfter(CurBundle); 442 if (InBundle) 443 report("BundledSucc flag set on last instruction in block", &MBB.back()); 444 visitMachineBasicBlockAfter(&MBB); 445 } 446 visitMachineFunctionAfter(); 447 448 // Clean up. 449 regsLive.clear(); 450 regsDefined.clear(); 451 regsDead.clear(); 452 regsKilled.clear(); 453 regMasks.clear(); 454 MBBInfoMap.clear(); 455 456 return foundErrors; 457 } 458 459 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 460 assert(MF); 461 errs() << '\n'; 462 if (!foundErrors++) { 463 if (Banner) 464 errs() << "# " << Banner << '\n'; 465 if (LiveInts != nullptr) 466 LiveInts->print(errs()); 467 else 468 MF->print(errs(), Indexes); 469 } 470 errs() << "*** Bad machine code: " << msg << " ***\n" 471 << "- function: " << MF->getName() << "\n"; 472 } 473 474 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 475 assert(MBB); 476 report(msg, MBB->getParent()); 477 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 478 << MBB->getName() << " (" << (const void *)MBB << ')'; 479 if (Indexes) 480 errs() << " [" << Indexes->getMBBStartIdx(MBB) 481 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 482 errs() << '\n'; 483 } 484 485 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 486 assert(MI); 487 report(msg, MI->getParent()); 488 errs() << "- instruction: "; 489 if (Indexes && Indexes->hasIndex(*MI)) 490 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 491 MI->print(errs(), /*IsStandalone=*/true); 492 } 493 494 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 495 unsigned MONum, LLT MOVRegType) { 496 assert(MO); 497 report(msg, MO->getParent()); 498 errs() << "- operand " << MONum << ": "; 499 MO->print(errs(), MOVRegType, TRI); 500 errs() << "\n"; 501 } 502 503 void MachineVerifier::report_context(SlotIndex Pos) const { 504 errs() << "- at: " << Pos << '\n'; 505 } 506 507 void MachineVerifier::report_context(const LiveInterval &LI) const { 508 errs() << "- interval: " << LI << '\n'; 509 } 510 511 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 512 LaneBitmask LaneMask) const { 513 report_context_liverange(LR); 514 report_context_vreg_regunit(VRegUnit); 515 if (LaneMask.any()) 516 report_context_lanemask(LaneMask); 517 } 518 519 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 520 errs() << "- segment: " << S << '\n'; 521 } 522 523 void MachineVerifier::report_context(const VNInfo &VNI) const { 524 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 525 } 526 527 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 528 errs() << "- liverange: " << LR << '\n'; 529 } 530 531 void MachineVerifier::report_context(MCPhysReg PReg) const { 532 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 533 } 534 535 void MachineVerifier::report_context_vreg(Register VReg) const { 536 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 537 } 538 539 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 540 if (Register::isVirtualRegister(VRegOrUnit)) { 541 report_context_vreg(VRegOrUnit); 542 } else { 543 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 544 } 545 } 546 547 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 548 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 549 } 550 551 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 552 BBInfo &MInfo = MBBInfoMap[MBB]; 553 if (!MInfo.reachable) { 554 MInfo.reachable = true; 555 for (const MachineBasicBlock *Succ : MBB->successors()) 556 markReachable(Succ); 557 } 558 } 559 560 void MachineVerifier::visitMachineFunctionBefore() { 561 lastIndex = SlotIndex(); 562 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 563 : TRI->getReservedRegs(*MF); 564 565 if (!MF->empty()) 566 markReachable(&MF->front()); 567 568 // Build a set of the basic blocks in the function. 569 FunctionBlocks.clear(); 570 for (const auto &MBB : *MF) { 571 FunctionBlocks.insert(&MBB); 572 BBInfo &MInfo = MBBInfoMap[&MBB]; 573 574 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 575 if (MInfo.Preds.size() != MBB.pred_size()) 576 report("MBB has duplicate entries in its predecessor list.", &MBB); 577 578 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 579 if (MInfo.Succs.size() != MBB.succ_size()) 580 report("MBB has duplicate entries in its successor list.", &MBB); 581 } 582 583 // Check that the register use lists are sane. 584 MRI->verifyUseLists(); 585 586 if (!MF->empty()) 587 verifyStackFrame(); 588 } 589 590 void 591 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 592 FirstTerminator = nullptr; 593 FirstNonPHI = nullptr; 594 595 if (!MF->getProperties().hasProperty( 596 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 597 // If this block has allocatable physical registers live-in, check that 598 // it is an entry block or landing pad. 599 for (const auto &LI : MBB->liveins()) { 600 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 601 MBB->getIterator() != MBB->getParent()->begin()) { 602 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 603 report_context(LI.PhysReg); 604 } 605 } 606 } 607 608 // Count the number of landing pad successors. 609 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 610 for (const auto *succ : MBB->successors()) { 611 if (succ->isEHPad()) 612 LandingPadSuccs.insert(succ); 613 if (!FunctionBlocks.count(succ)) 614 report("MBB has successor that isn't part of the function.", MBB); 615 if (!MBBInfoMap[succ].Preds.count(MBB)) { 616 report("Inconsistent CFG", MBB); 617 errs() << "MBB is not in the predecessor list of the successor " 618 << printMBBReference(*succ) << ".\n"; 619 } 620 } 621 622 // Check the predecessor list. 623 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 624 if (!FunctionBlocks.count(Pred)) 625 report("MBB has predecessor that isn't part of the function.", MBB); 626 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 627 report("Inconsistent CFG", MBB); 628 errs() << "MBB is not in the successor list of the predecessor " 629 << printMBBReference(*Pred) << ".\n"; 630 } 631 } 632 633 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 634 const BasicBlock *BB = MBB->getBasicBlock(); 635 const Function &F = MF->getFunction(); 636 if (LandingPadSuccs.size() > 1 && 637 !(AsmInfo && 638 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 639 BB && isa<SwitchInst>(BB->getTerminator())) && 640 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 641 report("MBB has more than one landing pad successor", MBB); 642 643 // Call analyzeBranch. If it succeeds, there several more conditions to check. 644 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 645 SmallVector<MachineOperand, 4> Cond; 646 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 647 Cond)) { 648 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 649 // check whether its answers match up with reality. 650 if (!TBB && !FBB) { 651 // Block falls through to its successor. 652 if (!MBB->empty() && MBB->back().isBarrier() && 653 !TII->isPredicated(MBB->back())) { 654 report("MBB exits via unconditional fall-through but ends with a " 655 "barrier instruction!", MBB); 656 } 657 if (!Cond.empty()) { 658 report("MBB exits via unconditional fall-through but has a condition!", 659 MBB); 660 } 661 } else if (TBB && !FBB && Cond.empty()) { 662 // Block unconditionally branches somewhere. 663 if (MBB->empty()) { 664 report("MBB exits via unconditional branch but doesn't contain " 665 "any instructions!", MBB); 666 } else if (!MBB->back().isBarrier()) { 667 report("MBB exits via unconditional branch but doesn't end with a " 668 "barrier instruction!", MBB); 669 } else if (!MBB->back().isTerminator()) { 670 report("MBB exits via unconditional branch but the branch isn't a " 671 "terminator instruction!", MBB); 672 } 673 } else if (TBB && !FBB && !Cond.empty()) { 674 // Block conditionally branches somewhere, otherwise falls through. 675 if (MBB->empty()) { 676 report("MBB exits via conditional branch/fall-through but doesn't " 677 "contain any instructions!", MBB); 678 } else if (MBB->back().isBarrier()) { 679 report("MBB exits via conditional branch/fall-through but ends with a " 680 "barrier instruction!", MBB); 681 } else if (!MBB->back().isTerminator()) { 682 report("MBB exits via conditional branch/fall-through but the branch " 683 "isn't a terminator instruction!", MBB); 684 } 685 } else if (TBB && FBB) { 686 // Block conditionally branches somewhere, otherwise branches 687 // somewhere else. 688 if (MBB->empty()) { 689 report("MBB exits via conditional branch/branch but doesn't " 690 "contain any instructions!", MBB); 691 } else if (!MBB->back().isBarrier()) { 692 report("MBB exits via conditional branch/branch but doesn't end with a " 693 "barrier instruction!", MBB); 694 } else if (!MBB->back().isTerminator()) { 695 report("MBB exits via conditional branch/branch but the branch " 696 "isn't a terminator instruction!", MBB); 697 } 698 if (Cond.empty()) { 699 report("MBB exits via conditional branch/branch but there's no " 700 "condition!", MBB); 701 } 702 } else { 703 report("analyzeBranch returned invalid data!", MBB); 704 } 705 706 // Now check that the successors match up with the answers reported by 707 // analyzeBranch. 708 if (TBB && !MBB->isSuccessor(TBB)) 709 report("MBB exits via jump or conditional branch, but its target isn't a " 710 "CFG successor!", 711 MBB); 712 if (FBB && !MBB->isSuccessor(FBB)) 713 report("MBB exits via conditional branch, but its target isn't a CFG " 714 "successor!", 715 MBB); 716 717 // There might be a fallthrough to the next block if there's either no 718 // unconditional true branch, or if there's a condition, and one of the 719 // branches is missing. 720 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 721 722 // A conditional fallthrough must be an actual CFG successor, not 723 // unreachable. (Conversely, an unconditional fallthrough might not really 724 // be a successor, because the block might end in unreachable.) 725 if (!Cond.empty() && !FBB) { 726 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 727 if (MBBI == MF->end()) { 728 report("MBB conditionally falls through out of function!", MBB); 729 } else if (!MBB->isSuccessor(&*MBBI)) 730 report("MBB exits via conditional branch/fall-through but the CFG " 731 "successors don't match the actual successors!", 732 MBB); 733 } 734 735 // Verify that there aren't any extra un-accounted-for successors. 736 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 737 // If this successor is one of the branch targets, it's okay. 738 if (SuccMBB == TBB || SuccMBB == FBB) 739 continue; 740 // If we might have a fallthrough, and the successor is the fallthrough 741 // block, that's also ok. 742 if (Fallthrough && SuccMBB == MBB->getNextNode()) 743 continue; 744 // Also accept successors which are for exception-handling or might be 745 // inlineasm_br targets. 746 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 747 continue; 748 report("MBB has unexpected successors which are not branch targets, " 749 "fallthrough, EHPads, or inlineasm_br targets.", 750 MBB); 751 } 752 } 753 754 regsLive.clear(); 755 if (MRI->tracksLiveness()) { 756 for (const auto &LI : MBB->liveins()) { 757 if (!Register::isPhysicalRegister(LI.PhysReg)) { 758 report("MBB live-in list contains non-physical register", MBB); 759 continue; 760 } 761 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 762 regsLive.insert(SubReg); 763 } 764 } 765 766 const MachineFrameInfo &MFI = MF->getFrameInfo(); 767 BitVector PR = MFI.getPristineRegs(*MF); 768 for (unsigned I : PR.set_bits()) { 769 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 770 regsLive.insert(SubReg); 771 } 772 773 regsKilled.clear(); 774 regsDefined.clear(); 775 776 if (Indexes) 777 lastIndex = Indexes->getMBBStartIdx(MBB); 778 } 779 780 // This function gets called for all bundle headers, including normal 781 // stand-alone unbundled instructions. 782 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 783 if (Indexes && Indexes->hasIndex(*MI)) { 784 SlotIndex idx = Indexes->getInstructionIndex(*MI); 785 if (!(idx > lastIndex)) { 786 report("Instruction index out of order", MI); 787 errs() << "Last instruction was at " << lastIndex << '\n'; 788 } 789 lastIndex = idx; 790 } 791 792 // Ensure non-terminators don't follow terminators. 793 if (MI->isTerminator()) { 794 if (!FirstTerminator) 795 FirstTerminator = MI; 796 } else if (FirstTerminator) { 797 report("Non-terminator instruction after the first terminator", MI); 798 errs() << "First terminator was:\t" << *FirstTerminator; 799 } 800 } 801 802 // The operands on an INLINEASM instruction must follow a template. 803 // Verify that the flag operands make sense. 804 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 805 // The first two operands on INLINEASM are the asm string and global flags. 806 if (MI->getNumOperands() < 2) { 807 report("Too few operands on inline asm", MI); 808 return; 809 } 810 if (!MI->getOperand(0).isSymbol()) 811 report("Asm string must be an external symbol", MI); 812 if (!MI->getOperand(1).isImm()) 813 report("Asm flags must be an immediate", MI); 814 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 815 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 816 // and Extra_IsConvergent = 32. 817 if (!isUInt<6>(MI->getOperand(1).getImm())) 818 report("Unknown asm flags", &MI->getOperand(1), 1); 819 820 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 821 822 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 823 unsigned NumOps; 824 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 825 const MachineOperand &MO = MI->getOperand(OpNo); 826 // There may be implicit ops after the fixed operands. 827 if (!MO.isImm()) 828 break; 829 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 830 } 831 832 if (OpNo > MI->getNumOperands()) 833 report("Missing operands in last group", MI); 834 835 // An optional MDNode follows the groups. 836 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 837 ++OpNo; 838 839 // All trailing operands must be implicit registers. 840 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 841 const MachineOperand &MO = MI->getOperand(OpNo); 842 if (!MO.isReg() || !MO.isImplicit()) 843 report("Expected implicit register after groups", &MO, OpNo); 844 } 845 } 846 847 /// Check that types are consistent when two operands need to have the same 848 /// number of vector elements. 849 /// \return true if the types are valid. 850 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 851 const MachineInstr *MI) { 852 if (Ty0.isVector() != Ty1.isVector()) { 853 report("operand types must be all-vector or all-scalar", MI); 854 // Generally we try to report as many issues as possible at once, but in 855 // this case it's not clear what should we be comparing the size of the 856 // scalar with: the size of the whole vector or its lane. Instead of 857 // making an arbitrary choice and emitting not so helpful message, let's 858 // avoid the extra noise and stop here. 859 return false; 860 } 861 862 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 863 report("operand types must preserve number of vector elements", MI); 864 return false; 865 } 866 867 return true; 868 } 869 870 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 871 if (isFunctionSelected) 872 report("Unexpected generic instruction in a Selected function", MI); 873 874 const MCInstrDesc &MCID = MI->getDesc(); 875 unsigned NumOps = MI->getNumOperands(); 876 877 // Branches must reference a basic block if they are not indirect 878 if (MI->isBranch() && !MI->isIndirectBranch()) { 879 bool HasMBB = false; 880 for (const MachineOperand &Op : MI->operands()) { 881 if (Op.isMBB()) { 882 HasMBB = true; 883 break; 884 } 885 } 886 887 if (!HasMBB) { 888 report("Branch instruction is missing a basic block operand or " 889 "isIndirectBranch property", 890 MI); 891 } 892 } 893 894 // Check types. 895 SmallVector<LLT, 4> Types; 896 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 897 I != E; ++I) { 898 if (!MCID.OpInfo[I].isGenericType()) 899 continue; 900 // Generic instructions specify type equality constraints between some of 901 // their operands. Make sure these are consistent. 902 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 903 Types.resize(std::max(TypeIdx + 1, Types.size())); 904 905 const MachineOperand *MO = &MI->getOperand(I); 906 if (!MO->isReg()) { 907 report("generic instruction must use register operands", MI); 908 continue; 909 } 910 911 LLT OpTy = MRI->getType(MO->getReg()); 912 // Don't report a type mismatch if there is no actual mismatch, only a 913 // type missing, to reduce noise: 914 if (OpTy.isValid()) { 915 // Only the first valid type for a type index will be printed: don't 916 // overwrite it later so it's always clear which type was expected: 917 if (!Types[TypeIdx].isValid()) 918 Types[TypeIdx] = OpTy; 919 else if (Types[TypeIdx] != OpTy) 920 report("Type mismatch in generic instruction", MO, I, OpTy); 921 } else { 922 // Generic instructions must have types attached to their operands. 923 report("Generic instruction is missing a virtual register type", MO, I); 924 } 925 } 926 927 // Generic opcodes must not have physical register operands. 928 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 929 const MachineOperand *MO = &MI->getOperand(I); 930 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 931 report("Generic instruction cannot have physical register", MO, I); 932 } 933 934 // Avoid out of bounds in checks below. This was already reported earlier. 935 if (MI->getNumOperands() < MCID.getNumOperands()) 936 return; 937 938 StringRef ErrorInfo; 939 if (!TII->verifyInstruction(*MI, ErrorInfo)) 940 report(ErrorInfo.data(), MI); 941 942 // Verify properties of various specific instruction types 943 switch (MI->getOpcode()) { 944 case TargetOpcode::G_ASSERT_ZEXT: { 945 if (!MI->getOperand(2).isImm()) { 946 report("G_ASSERT_ZEXT expects an immediate operand #2", MI); 947 break; 948 } 949 950 Register Dst = MI->getOperand(0).getReg(); 951 Register Src = MI->getOperand(1).getReg(); 952 LLT DstTy = MRI->getType(Dst); 953 LLT SrcTy = MRI->getType(Src); 954 verifyVectorElementMatch(DstTy, SrcTy, MI); 955 int64_t Imm = MI->getOperand(2).getImm(); 956 if (Imm <= 0) { 957 report("G_ASSERT_ZEXT size must be >= 1", MI); 958 break; 959 } 960 961 if (Imm >= SrcTy.getScalarSizeInBits()) { 962 report("G_ASSERT_ZEXT size must be less than source bit width", MI); 963 break; 964 } 965 966 if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) { 967 report("G_ASSERT_ZEXT source and destination register banks must match", 968 MI); 969 break; 970 } 971 972 if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst)) 973 report("G_ASSERT_ZEXT source and destination register classes must match", 974 MI); 975 976 break; 977 } 978 979 case TargetOpcode::G_CONSTANT: 980 case TargetOpcode::G_FCONSTANT: { 981 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 982 if (DstTy.isVector()) 983 report("Instruction cannot use a vector result type", MI); 984 985 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 986 if (!MI->getOperand(1).isCImm()) { 987 report("G_CONSTANT operand must be cimm", MI); 988 break; 989 } 990 991 const ConstantInt *CI = MI->getOperand(1).getCImm(); 992 if (CI->getBitWidth() != DstTy.getSizeInBits()) 993 report("inconsistent constant size", MI); 994 } else { 995 if (!MI->getOperand(1).isFPImm()) { 996 report("G_FCONSTANT operand must be fpimm", MI); 997 break; 998 } 999 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1000 1001 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1002 DstTy.getSizeInBits()) { 1003 report("inconsistent constant size", MI); 1004 } 1005 } 1006 1007 break; 1008 } 1009 case TargetOpcode::G_LOAD: 1010 case TargetOpcode::G_STORE: 1011 case TargetOpcode::G_ZEXTLOAD: 1012 case TargetOpcode::G_SEXTLOAD: { 1013 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1014 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1015 if (!PtrTy.isPointer()) 1016 report("Generic memory instruction must access a pointer", MI); 1017 1018 // Generic loads and stores must have a single MachineMemOperand 1019 // describing that access. 1020 if (!MI->hasOneMemOperand()) { 1021 report("Generic instruction accessing memory must have one mem operand", 1022 MI); 1023 } else { 1024 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1025 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1026 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1027 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1028 report("Generic extload must have a narrower memory type", MI); 1029 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1030 if (MMO.getSize() > ValTy.getSizeInBytes()) 1031 report("load memory size cannot exceed result size", MI); 1032 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1033 if (ValTy.getSizeInBytes() < MMO.getSize()) 1034 report("store memory size cannot exceed value size", MI); 1035 } 1036 } 1037 1038 break; 1039 } 1040 case TargetOpcode::G_PHI: { 1041 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1042 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1043 [this, &DstTy](const MachineOperand &MO) { 1044 if (!MO.isReg()) 1045 return true; 1046 LLT Ty = MRI->getType(MO.getReg()); 1047 if (!Ty.isValid() || (Ty != DstTy)) 1048 return false; 1049 return true; 1050 })) 1051 report("Generic Instruction G_PHI has operands with incompatible/missing " 1052 "types", 1053 MI); 1054 break; 1055 } 1056 case TargetOpcode::G_BITCAST: { 1057 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1058 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1059 if (!DstTy.isValid() || !SrcTy.isValid()) 1060 break; 1061 1062 if (SrcTy.isPointer() != DstTy.isPointer()) 1063 report("bitcast cannot convert between pointers and other types", MI); 1064 1065 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1066 report("bitcast sizes must match", MI); 1067 1068 if (SrcTy == DstTy) 1069 report("bitcast must change the type", MI); 1070 1071 break; 1072 } 1073 case TargetOpcode::G_INTTOPTR: 1074 case TargetOpcode::G_PTRTOINT: 1075 case TargetOpcode::G_ADDRSPACE_CAST: { 1076 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1077 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1078 if (!DstTy.isValid() || !SrcTy.isValid()) 1079 break; 1080 1081 verifyVectorElementMatch(DstTy, SrcTy, MI); 1082 1083 DstTy = DstTy.getScalarType(); 1084 SrcTy = SrcTy.getScalarType(); 1085 1086 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1087 if (!DstTy.isPointer()) 1088 report("inttoptr result type must be a pointer", MI); 1089 if (SrcTy.isPointer()) 1090 report("inttoptr source type must not be a pointer", MI); 1091 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1092 if (!SrcTy.isPointer()) 1093 report("ptrtoint source type must be a pointer", MI); 1094 if (DstTy.isPointer()) 1095 report("ptrtoint result type must not be a pointer", MI); 1096 } else { 1097 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1098 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1099 report("addrspacecast types must be pointers", MI); 1100 else { 1101 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1102 report("addrspacecast must convert different address spaces", MI); 1103 } 1104 } 1105 1106 break; 1107 } 1108 case TargetOpcode::G_PTR_ADD: { 1109 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1110 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1111 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1112 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1113 break; 1114 1115 if (!PtrTy.getScalarType().isPointer()) 1116 report("gep first operand must be a pointer", MI); 1117 1118 if (OffsetTy.getScalarType().isPointer()) 1119 report("gep offset operand must not be a pointer", MI); 1120 1121 // TODO: Is the offset allowed to be a scalar with a vector? 1122 break; 1123 } 1124 case TargetOpcode::G_PTRMASK: { 1125 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1126 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1127 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1128 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1129 break; 1130 1131 if (!DstTy.getScalarType().isPointer()) 1132 report("ptrmask result type must be a pointer", MI); 1133 1134 if (!MaskTy.getScalarType().isScalar()) 1135 report("ptrmask mask type must be an integer", MI); 1136 1137 verifyVectorElementMatch(DstTy, MaskTy, MI); 1138 break; 1139 } 1140 case TargetOpcode::G_SEXT: 1141 case TargetOpcode::G_ZEXT: 1142 case TargetOpcode::G_ANYEXT: 1143 case TargetOpcode::G_TRUNC: 1144 case TargetOpcode::G_FPEXT: 1145 case TargetOpcode::G_FPTRUNC: { 1146 // Number of operands and presense of types is already checked (and 1147 // reported in case of any issues), so no need to report them again. As 1148 // we're trying to report as many issues as possible at once, however, the 1149 // instructions aren't guaranteed to have the right number of operands or 1150 // types attached to them at this point 1151 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1152 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1153 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1154 if (!DstTy.isValid() || !SrcTy.isValid()) 1155 break; 1156 1157 LLT DstElTy = DstTy.getScalarType(); 1158 LLT SrcElTy = SrcTy.getScalarType(); 1159 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1160 report("Generic extend/truncate can not operate on pointers", MI); 1161 1162 verifyVectorElementMatch(DstTy, SrcTy, MI); 1163 1164 unsigned DstSize = DstElTy.getSizeInBits(); 1165 unsigned SrcSize = SrcElTy.getSizeInBits(); 1166 switch (MI->getOpcode()) { 1167 default: 1168 if (DstSize <= SrcSize) 1169 report("Generic extend has destination type no larger than source", MI); 1170 break; 1171 case TargetOpcode::G_TRUNC: 1172 case TargetOpcode::G_FPTRUNC: 1173 if (DstSize >= SrcSize) 1174 report("Generic truncate has destination type no smaller than source", 1175 MI); 1176 break; 1177 } 1178 break; 1179 } 1180 case TargetOpcode::G_SELECT: { 1181 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1182 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1183 if (!SelTy.isValid() || !CondTy.isValid()) 1184 break; 1185 1186 // Scalar condition select on a vector is valid. 1187 if (CondTy.isVector()) 1188 verifyVectorElementMatch(SelTy, CondTy, MI); 1189 break; 1190 } 1191 case TargetOpcode::G_MERGE_VALUES: { 1192 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1193 // e.g. s2N = MERGE sN, sN 1194 // Merging multiple scalars into a vector is not allowed, should use 1195 // G_BUILD_VECTOR for that. 1196 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1197 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1198 if (DstTy.isVector() || SrcTy.isVector()) 1199 report("G_MERGE_VALUES cannot operate on vectors", MI); 1200 1201 const unsigned NumOps = MI->getNumOperands(); 1202 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1203 report("G_MERGE_VALUES result size is inconsistent", MI); 1204 1205 for (unsigned I = 2; I != NumOps; ++I) { 1206 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1207 report("G_MERGE_VALUES source types do not match", MI); 1208 } 1209 1210 break; 1211 } 1212 case TargetOpcode::G_UNMERGE_VALUES: { 1213 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1214 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1215 // For now G_UNMERGE can split vectors. 1216 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1217 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1218 report("G_UNMERGE_VALUES destination types do not match", MI); 1219 } 1220 if (SrcTy.getSizeInBits() != 1221 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1222 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1223 MI); 1224 } 1225 break; 1226 } 1227 case TargetOpcode::G_BUILD_VECTOR: { 1228 // Source types must be scalars, dest type a vector. Total size of scalars 1229 // must match the dest vector size. 1230 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1231 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1232 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1233 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1234 break; 1235 } 1236 1237 if (DstTy.getElementType() != SrcEltTy) 1238 report("G_BUILD_VECTOR result element type must match source type", MI); 1239 1240 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1241 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1242 1243 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1244 if (MRI->getType(MI->getOperand(1).getReg()) != 1245 MRI->getType(MI->getOperand(i).getReg())) 1246 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1247 } 1248 1249 break; 1250 } 1251 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1252 // Source types must be scalars, dest type a vector. Scalar types must be 1253 // larger than the dest vector elt type, as this is a truncating operation. 1254 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1255 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1256 if (!DstTy.isVector() || SrcEltTy.isVector()) 1257 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1258 MI); 1259 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1260 if (MRI->getType(MI->getOperand(1).getReg()) != 1261 MRI->getType(MI->getOperand(i).getReg())) 1262 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1263 MI); 1264 } 1265 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1266 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1267 "dest elt type", 1268 MI); 1269 break; 1270 } 1271 case TargetOpcode::G_CONCAT_VECTORS: { 1272 // Source types should be vectors, and total size should match the dest 1273 // vector size. 1274 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1275 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1276 if (!DstTy.isVector() || !SrcTy.isVector()) 1277 report("G_CONCAT_VECTOR requires vector source and destination operands", 1278 MI); 1279 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1280 if (MRI->getType(MI->getOperand(1).getReg()) != 1281 MRI->getType(MI->getOperand(i).getReg())) 1282 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1283 } 1284 if (DstTy.getNumElements() != 1285 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1286 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1287 break; 1288 } 1289 case TargetOpcode::G_ICMP: 1290 case TargetOpcode::G_FCMP: { 1291 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1292 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1293 1294 if ((DstTy.isVector() != SrcTy.isVector()) || 1295 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1296 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1297 1298 break; 1299 } 1300 case TargetOpcode::G_EXTRACT: { 1301 const MachineOperand &SrcOp = MI->getOperand(1); 1302 if (!SrcOp.isReg()) { 1303 report("extract source must be a register", MI); 1304 break; 1305 } 1306 1307 const MachineOperand &OffsetOp = MI->getOperand(2); 1308 if (!OffsetOp.isImm()) { 1309 report("extract offset must be a constant", MI); 1310 break; 1311 } 1312 1313 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1314 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1315 if (SrcSize == DstSize) 1316 report("extract source must be larger than result", MI); 1317 1318 if (DstSize + OffsetOp.getImm() > SrcSize) 1319 report("extract reads past end of register", MI); 1320 break; 1321 } 1322 case TargetOpcode::G_INSERT: { 1323 const MachineOperand &SrcOp = MI->getOperand(2); 1324 if (!SrcOp.isReg()) { 1325 report("insert source must be a register", MI); 1326 break; 1327 } 1328 1329 const MachineOperand &OffsetOp = MI->getOperand(3); 1330 if (!OffsetOp.isImm()) { 1331 report("insert offset must be a constant", MI); 1332 break; 1333 } 1334 1335 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1336 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1337 1338 if (DstSize <= SrcSize) 1339 report("inserted size must be smaller than total register", MI); 1340 1341 if (SrcSize + OffsetOp.getImm() > DstSize) 1342 report("insert writes past end of register", MI); 1343 1344 break; 1345 } 1346 case TargetOpcode::G_JUMP_TABLE: { 1347 if (!MI->getOperand(1).isJTI()) 1348 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1349 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1350 if (!DstTy.isPointer()) 1351 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1352 break; 1353 } 1354 case TargetOpcode::G_BRJT: { 1355 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1356 report("G_BRJT src operand 0 must be a pointer type", MI); 1357 1358 if (!MI->getOperand(1).isJTI()) 1359 report("G_BRJT src operand 1 must be a jump table index", MI); 1360 1361 const auto &IdxOp = MI->getOperand(2); 1362 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1363 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1364 break; 1365 } 1366 case TargetOpcode::G_INTRINSIC: 1367 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1368 // TODO: Should verify number of def and use operands, but the current 1369 // interface requires passing in IR types for mangling. 1370 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1371 if (!IntrIDOp.isIntrinsicID()) { 1372 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1373 break; 1374 } 1375 1376 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1377 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1378 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1379 AttributeList Attrs 1380 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1381 static_cast<Intrinsic::ID>(IntrID)); 1382 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1383 if (NoSideEffects && DeclHasSideEffects) { 1384 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1385 break; 1386 } 1387 if (!NoSideEffects && !DeclHasSideEffects) { 1388 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1389 break; 1390 } 1391 } 1392 1393 break; 1394 } 1395 case TargetOpcode::G_SEXT_INREG: { 1396 if (!MI->getOperand(2).isImm()) { 1397 report("G_SEXT_INREG expects an immediate operand #2", MI); 1398 break; 1399 } 1400 1401 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1402 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1403 verifyVectorElementMatch(DstTy, SrcTy, MI); 1404 1405 int64_t Imm = MI->getOperand(2).getImm(); 1406 if (Imm <= 0) 1407 report("G_SEXT_INREG size must be >= 1", MI); 1408 if (Imm >= SrcTy.getScalarSizeInBits()) 1409 report("G_SEXT_INREG size must be less than source bit width", MI); 1410 break; 1411 } 1412 case TargetOpcode::G_SHUFFLE_VECTOR: { 1413 const MachineOperand &MaskOp = MI->getOperand(3); 1414 if (!MaskOp.isShuffleMask()) { 1415 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1416 break; 1417 } 1418 1419 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1420 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1421 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1422 1423 if (Src0Ty != Src1Ty) 1424 report("Source operands must be the same type", MI); 1425 1426 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1427 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1428 1429 // Don't check that all operands are vector because scalars are used in 1430 // place of 1 element vectors. 1431 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1432 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1433 1434 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1435 1436 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1437 report("Wrong result type for shufflemask", MI); 1438 1439 for (int Idx : MaskIdxes) { 1440 if (Idx < 0) 1441 continue; 1442 1443 if (Idx >= 2 * SrcNumElts) 1444 report("Out of bounds shuffle index", MI); 1445 } 1446 1447 break; 1448 } 1449 case TargetOpcode::G_DYN_STACKALLOC: { 1450 const MachineOperand &DstOp = MI->getOperand(0); 1451 const MachineOperand &AllocOp = MI->getOperand(1); 1452 const MachineOperand &AlignOp = MI->getOperand(2); 1453 1454 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1455 report("dst operand 0 must be a pointer type", MI); 1456 break; 1457 } 1458 1459 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1460 report("src operand 1 must be a scalar reg type", MI); 1461 break; 1462 } 1463 1464 if (!AlignOp.isImm()) { 1465 report("src operand 2 must be an immediate type", MI); 1466 break; 1467 } 1468 break; 1469 } 1470 case TargetOpcode::G_MEMCPY: 1471 case TargetOpcode::G_MEMMOVE: { 1472 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1473 if (MMOs.size() != 2) { 1474 report("memcpy/memmove must have 2 memory operands", MI); 1475 break; 1476 } 1477 1478 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1479 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1480 report("wrong memory operand types", MI); 1481 break; 1482 } 1483 1484 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1485 report("inconsistent memory operand sizes", MI); 1486 1487 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1488 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1489 1490 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1491 report("memory instruction operand must be a pointer", MI); 1492 break; 1493 } 1494 1495 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1496 report("inconsistent store address space", MI); 1497 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1498 report("inconsistent load address space", MI); 1499 1500 break; 1501 } 1502 case TargetOpcode::G_MEMSET: { 1503 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1504 if (MMOs.size() != 1) { 1505 report("memset must have 1 memory operand", MI); 1506 break; 1507 } 1508 1509 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1510 report("memset memory operand must be a store", MI); 1511 break; 1512 } 1513 1514 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1515 if (!DstPtrTy.isPointer()) { 1516 report("memset operand must be a pointer", MI); 1517 break; 1518 } 1519 1520 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1521 report("inconsistent memset address space", MI); 1522 1523 break; 1524 } 1525 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1526 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1527 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1528 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1529 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1530 if (!DstTy.isScalar()) 1531 report("Vector reduction requires a scalar destination type", MI); 1532 if (!Src1Ty.isScalar()) 1533 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1534 if (!Src2Ty.isVector()) 1535 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1536 break; 1537 } 1538 case TargetOpcode::G_VECREDUCE_FADD: 1539 case TargetOpcode::G_VECREDUCE_FMUL: 1540 case TargetOpcode::G_VECREDUCE_FMAX: 1541 case TargetOpcode::G_VECREDUCE_FMIN: 1542 case TargetOpcode::G_VECREDUCE_ADD: 1543 case TargetOpcode::G_VECREDUCE_MUL: 1544 case TargetOpcode::G_VECREDUCE_AND: 1545 case TargetOpcode::G_VECREDUCE_OR: 1546 case TargetOpcode::G_VECREDUCE_XOR: 1547 case TargetOpcode::G_VECREDUCE_SMAX: 1548 case TargetOpcode::G_VECREDUCE_SMIN: 1549 case TargetOpcode::G_VECREDUCE_UMAX: 1550 case TargetOpcode::G_VECREDUCE_UMIN: { 1551 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1552 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1553 if (!DstTy.isScalar()) 1554 report("Vector reduction requires a scalar destination type", MI); 1555 if (!SrcTy.isVector()) 1556 report("Vector reduction requires vector source=", MI); 1557 break; 1558 } 1559 default: 1560 break; 1561 } 1562 } 1563 1564 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1565 const MCInstrDesc &MCID = MI->getDesc(); 1566 if (MI->getNumOperands() < MCID.getNumOperands()) { 1567 report("Too few operands", MI); 1568 errs() << MCID.getNumOperands() << " operands expected, but " 1569 << MI->getNumOperands() << " given.\n"; 1570 } 1571 1572 if (MI->isPHI()) { 1573 if (MF->getProperties().hasProperty( 1574 MachineFunctionProperties::Property::NoPHIs)) 1575 report("Found PHI instruction with NoPHIs property set", MI); 1576 1577 if (FirstNonPHI) 1578 report("Found PHI instruction after non-PHI", MI); 1579 } else if (FirstNonPHI == nullptr) 1580 FirstNonPHI = MI; 1581 1582 // Check the tied operands. 1583 if (MI->isInlineAsm()) 1584 verifyInlineAsm(MI); 1585 1586 // Check that unspillable terminators define a reg and have at most one use. 1587 if (TII->isUnspillableTerminator(MI)) { 1588 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1589 report("Unspillable Terminator does not define a reg", MI); 1590 Register Def = MI->getOperand(0).getReg(); 1591 if (Def.isVirtual() && 1592 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1593 report("Unspillable Terminator expected to have at most one use!", MI); 1594 } 1595 1596 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1597 // DBG_VALUEs: these are convenient to use in tests, but should never get 1598 // generated. 1599 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1600 if (!MI->getDebugLoc()) 1601 report("Missing DebugLoc for debug instruction", MI); 1602 1603 // Meta instructions should never be the subject of debug value tracking, 1604 // they don't create a value in the output program at all. 1605 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1606 report("Metadata instruction should not have a value tracking number", MI); 1607 1608 // Check the MachineMemOperands for basic consistency. 1609 for (MachineMemOperand *Op : MI->memoperands()) { 1610 if (Op->isLoad() && !MI->mayLoad()) 1611 report("Missing mayLoad flag", MI); 1612 if (Op->isStore() && !MI->mayStore()) 1613 report("Missing mayStore flag", MI); 1614 } 1615 1616 // Debug values must not have a slot index. 1617 // Other instructions must have one, unless they are inside a bundle. 1618 if (LiveInts) { 1619 bool mapped = !LiveInts->isNotInMIMap(*MI); 1620 if (MI->isDebugInstr()) { 1621 if (mapped) 1622 report("Debug instruction has a slot index", MI); 1623 } else if (MI->isInsideBundle()) { 1624 if (mapped) 1625 report("Instruction inside bundle has a slot index", MI); 1626 } else { 1627 if (!mapped) 1628 report("Missing slot index", MI); 1629 } 1630 } 1631 1632 unsigned Opc = MCID.getOpcode(); 1633 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1634 verifyPreISelGenericInstruction(MI); 1635 return; 1636 } 1637 1638 StringRef ErrorInfo; 1639 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1640 report(ErrorInfo.data(), MI); 1641 1642 // Verify properties of various specific instruction types 1643 switch (MI->getOpcode()) { 1644 case TargetOpcode::COPY: { 1645 if (foundErrors) 1646 break; 1647 const MachineOperand &DstOp = MI->getOperand(0); 1648 const MachineOperand &SrcOp = MI->getOperand(1); 1649 LLT DstTy = MRI->getType(DstOp.getReg()); 1650 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1651 if (SrcTy.isValid() && DstTy.isValid()) { 1652 // If both types are valid, check that the types are the same. 1653 if (SrcTy != DstTy) { 1654 report("Copy Instruction is illegal with mismatching types", MI); 1655 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1656 } 1657 } 1658 if (SrcTy.isValid() || DstTy.isValid()) { 1659 // If one of them have valid types, let's just check they have the same 1660 // size. 1661 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1662 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1663 assert(SrcSize && "Expecting size here"); 1664 assert(DstSize && "Expecting size here"); 1665 if (SrcSize != DstSize) 1666 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1667 report("Copy Instruction is illegal with mismatching sizes", MI); 1668 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1669 << "\n"; 1670 } 1671 } 1672 break; 1673 } 1674 case TargetOpcode::STATEPOINT: { 1675 StatepointOpers SO(MI); 1676 if (!MI->getOperand(SO.getIDPos()).isImm() || 1677 !MI->getOperand(SO.getNBytesPos()).isImm() || 1678 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1679 report("meta operands to STATEPOINT not constant!", MI); 1680 break; 1681 } 1682 1683 auto VerifyStackMapConstant = [&](unsigned Offset) { 1684 if (Offset >= MI->getNumOperands()) { 1685 report("stack map constant to STATEPOINT is out of range!", MI); 1686 return; 1687 } 1688 if (!MI->getOperand(Offset - 1).isImm() || 1689 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1690 !MI->getOperand(Offset).isImm()) 1691 report("stack map constant to STATEPOINT not well formed!", MI); 1692 }; 1693 VerifyStackMapConstant(SO.getCCIdx()); 1694 VerifyStackMapConstant(SO.getFlagsIdx()); 1695 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1696 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1697 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1698 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1699 1700 // Verify that all explicit statepoint defs are tied to gc operands as 1701 // they are expected to be a relocation of gc operands. 1702 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1703 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1704 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1705 unsigned UseOpIdx; 1706 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1707 report("STATEPOINT defs expected to be tied", MI); 1708 break; 1709 } 1710 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1711 report("STATEPOINT def tied to non-gc operand", MI); 1712 break; 1713 } 1714 } 1715 1716 // TODO: verify we have properly encoded deopt arguments 1717 } break; 1718 } 1719 } 1720 1721 void 1722 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1723 const MachineInstr *MI = MO->getParent(); 1724 const MCInstrDesc &MCID = MI->getDesc(); 1725 unsigned NumDefs = MCID.getNumDefs(); 1726 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1727 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1728 1729 // The first MCID.NumDefs operands must be explicit register defines 1730 if (MONum < NumDefs) { 1731 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1732 if (!MO->isReg()) 1733 report("Explicit definition must be a register", MO, MONum); 1734 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1735 report("Explicit definition marked as use", MO, MONum); 1736 else if (MO->isImplicit()) 1737 report("Explicit definition marked as implicit", MO, MONum); 1738 } else if (MONum < MCID.getNumOperands()) { 1739 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1740 // Don't check if it's the last operand in a variadic instruction. See, 1741 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1742 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1743 if (!IsOptional) { 1744 if (MO->isReg()) { 1745 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1746 report("Explicit operand marked as def", MO, MONum); 1747 if (MO->isImplicit()) 1748 report("Explicit operand marked as implicit", MO, MONum); 1749 } 1750 1751 // Check that an instruction has register operands only as expected. 1752 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1753 !MO->isReg() && !MO->isFI()) 1754 report("Expected a register operand.", MO, MONum); 1755 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1756 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1757 report("Expected a non-register operand.", MO, MONum); 1758 } 1759 1760 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1761 if (TiedTo != -1) { 1762 if (!MO->isReg()) 1763 report("Tied use must be a register", MO, MONum); 1764 else if (!MO->isTied()) 1765 report("Operand should be tied", MO, MONum); 1766 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1767 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1768 else if (Register::isPhysicalRegister(MO->getReg())) { 1769 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1770 if (!MOTied.isReg()) 1771 report("Tied counterpart must be a register", &MOTied, TiedTo); 1772 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1773 MO->getReg() != MOTied.getReg()) 1774 report("Tied physical registers must match.", &MOTied, TiedTo); 1775 } 1776 } else if (MO->isReg() && MO->isTied()) 1777 report("Explicit operand should not be tied", MO, MONum); 1778 } else { 1779 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1780 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1781 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1782 } 1783 1784 switch (MO->getType()) { 1785 case MachineOperand::MO_Register: { 1786 const Register Reg = MO->getReg(); 1787 if (!Reg) 1788 return; 1789 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1790 checkLiveness(MO, MONum); 1791 1792 // Verify the consistency of tied operands. 1793 if (MO->isTied()) { 1794 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1795 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1796 if (!OtherMO.isReg()) 1797 report("Must be tied to a register", MO, MONum); 1798 if (!OtherMO.isTied()) 1799 report("Missing tie flags on tied operand", MO, MONum); 1800 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1801 report("Inconsistent tie links", MO, MONum); 1802 if (MONum < MCID.getNumDefs()) { 1803 if (OtherIdx < MCID.getNumOperands()) { 1804 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1805 report("Explicit def tied to explicit use without tie constraint", 1806 MO, MONum); 1807 } else { 1808 if (!OtherMO.isImplicit()) 1809 report("Explicit def should be tied to implicit use", MO, MONum); 1810 } 1811 } 1812 } 1813 1814 // Verify two-address constraints after the twoaddressinstruction pass. 1815 // Both twoaddressinstruction pass and phi-node-elimination pass call 1816 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1817 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1818 // shouldn't use the NoSSA as the condition, we should based on 1819 // TiedOpsRewritten property to verify two-address constraints, this 1820 // property will be set in twoaddressinstruction pass. 1821 unsigned DefIdx; 1822 if (MF->getProperties().hasProperty( 1823 MachineFunctionProperties::Property::TiedOpsRewritten) && 1824 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1825 Reg != MI->getOperand(DefIdx).getReg()) 1826 report("Two-address instruction operands must be identical", MO, MONum); 1827 1828 // Check register classes. 1829 unsigned SubIdx = MO->getSubReg(); 1830 1831 if (Register::isPhysicalRegister(Reg)) { 1832 if (SubIdx) { 1833 report("Illegal subregister index for physical register", MO, MONum); 1834 return; 1835 } 1836 if (MONum < MCID.getNumOperands()) { 1837 if (const TargetRegisterClass *DRC = 1838 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1839 if (!DRC->contains(Reg)) { 1840 report("Illegal physical register for instruction", MO, MONum); 1841 errs() << printReg(Reg, TRI) << " is not a " 1842 << TRI->getRegClassName(DRC) << " register.\n"; 1843 } 1844 } 1845 } 1846 if (MO->isRenamable()) { 1847 if (MRI->isReserved(Reg)) { 1848 report("isRenamable set on reserved register", MO, MONum); 1849 return; 1850 } 1851 } 1852 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1853 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1854 return; 1855 } 1856 } else { 1857 // Virtual register. 1858 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1859 if (!RC) { 1860 // This is a generic virtual register. 1861 1862 // Do not allow undef uses for generic virtual registers. This ensures 1863 // getVRegDef can never fail and return null on a generic register. 1864 // 1865 // FIXME: This restriction should probably be broadened to all SSA 1866 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 1867 // run on the SSA function just before phi elimination. 1868 if (MO->isUndef()) 1869 report("Generic virtual register use cannot be undef", MO, MONum); 1870 1871 // If we're post-Select, we can't have gvregs anymore. 1872 if (isFunctionSelected) { 1873 report("Generic virtual register invalid in a Selected function", 1874 MO, MONum); 1875 return; 1876 } 1877 1878 // The gvreg must have a type and it must not have a SubIdx. 1879 LLT Ty = MRI->getType(Reg); 1880 if (!Ty.isValid()) { 1881 report("Generic virtual register must have a valid type", MO, 1882 MONum); 1883 return; 1884 } 1885 1886 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1887 1888 // If we're post-RegBankSelect, the gvreg must have a bank. 1889 if (!RegBank && isFunctionRegBankSelected) { 1890 report("Generic virtual register must have a bank in a " 1891 "RegBankSelected function", 1892 MO, MONum); 1893 return; 1894 } 1895 1896 // Make sure the register fits into its register bank if any. 1897 if (RegBank && Ty.isValid() && 1898 RegBank->getSize() < Ty.getSizeInBits()) { 1899 report("Register bank is too small for virtual register", MO, 1900 MONum); 1901 errs() << "Register bank " << RegBank->getName() << " too small(" 1902 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1903 << "-bits\n"; 1904 return; 1905 } 1906 if (SubIdx) { 1907 report("Generic virtual register does not allow subregister index", MO, 1908 MONum); 1909 return; 1910 } 1911 1912 // If this is a target specific instruction and this operand 1913 // has register class constraint, the virtual register must 1914 // comply to it. 1915 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1916 MONum < MCID.getNumOperands() && 1917 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1918 report("Virtual register does not match instruction constraint", MO, 1919 MONum); 1920 errs() << "Expect register class " 1921 << TRI->getRegClassName( 1922 TII->getRegClass(MCID, MONum, TRI, *MF)) 1923 << " but got nothing\n"; 1924 return; 1925 } 1926 1927 break; 1928 } 1929 if (SubIdx) { 1930 const TargetRegisterClass *SRC = 1931 TRI->getSubClassWithSubReg(RC, SubIdx); 1932 if (!SRC) { 1933 report("Invalid subregister index for virtual register", MO, MONum); 1934 errs() << "Register class " << TRI->getRegClassName(RC) 1935 << " does not support subreg index " << SubIdx << "\n"; 1936 return; 1937 } 1938 if (RC != SRC) { 1939 report("Invalid register class for subregister index", MO, MONum); 1940 errs() << "Register class " << TRI->getRegClassName(RC) 1941 << " does not fully support subreg index " << SubIdx << "\n"; 1942 return; 1943 } 1944 } 1945 if (MONum < MCID.getNumOperands()) { 1946 if (const TargetRegisterClass *DRC = 1947 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1948 if (SubIdx) { 1949 const TargetRegisterClass *SuperRC = 1950 TRI->getLargestLegalSuperClass(RC, *MF); 1951 if (!SuperRC) { 1952 report("No largest legal super class exists.", MO, MONum); 1953 return; 1954 } 1955 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1956 if (!DRC) { 1957 report("No matching super-reg register class.", MO, MONum); 1958 return; 1959 } 1960 } 1961 if (!RC->hasSuperClassEq(DRC)) { 1962 report("Illegal virtual register for instruction", MO, MONum); 1963 errs() << "Expected a " << TRI->getRegClassName(DRC) 1964 << " register, but got a " << TRI->getRegClassName(RC) 1965 << " register\n"; 1966 } 1967 } 1968 } 1969 } 1970 break; 1971 } 1972 1973 case MachineOperand::MO_RegisterMask: 1974 regMasks.push_back(MO->getRegMask()); 1975 break; 1976 1977 case MachineOperand::MO_MachineBasicBlock: 1978 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1979 report("PHI operand is not in the CFG", MO, MONum); 1980 break; 1981 1982 case MachineOperand::MO_FrameIndex: 1983 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1984 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1985 int FI = MO->getIndex(); 1986 LiveInterval &LI = LiveStks->getInterval(FI); 1987 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1988 1989 bool stores = MI->mayStore(); 1990 bool loads = MI->mayLoad(); 1991 // For a memory-to-memory move, we need to check if the frame 1992 // index is used for storing or loading, by inspecting the 1993 // memory operands. 1994 if (stores && loads) { 1995 for (auto *MMO : MI->memoperands()) { 1996 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1997 if (PSV == nullptr) continue; 1998 const FixedStackPseudoSourceValue *Value = 1999 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2000 if (Value == nullptr) continue; 2001 if (Value->getFrameIndex() != FI) continue; 2002 2003 if (MMO->isStore()) 2004 loads = false; 2005 else 2006 stores = false; 2007 break; 2008 } 2009 if (loads == stores) 2010 report("Missing fixed stack memoperand.", MI); 2011 } 2012 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2013 report("Instruction loads from dead spill slot", MO, MONum); 2014 errs() << "Live stack: " << LI << '\n'; 2015 } 2016 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2017 report("Instruction stores to dead spill slot", MO, MONum); 2018 errs() << "Live stack: " << LI << '\n'; 2019 } 2020 } 2021 break; 2022 2023 default: 2024 break; 2025 } 2026 } 2027 2028 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2029 unsigned MONum, SlotIndex UseIdx, 2030 const LiveRange &LR, 2031 Register VRegOrUnit, 2032 LaneBitmask LaneMask) { 2033 LiveQueryResult LRQ = LR.Query(UseIdx); 2034 // Check if we have a segment at the use, note however that we only need one 2035 // live subregister range, the others may be dead. 2036 if (!LRQ.valueIn() && LaneMask.none()) { 2037 report("No live segment at use", MO, MONum); 2038 report_context_liverange(LR); 2039 report_context_vreg_regunit(VRegOrUnit); 2040 report_context(UseIdx); 2041 } 2042 if (MO->isKill() && !LRQ.isKill()) { 2043 report("Live range continues after kill flag", MO, MONum); 2044 report_context_liverange(LR); 2045 report_context_vreg_regunit(VRegOrUnit); 2046 if (LaneMask.any()) 2047 report_context_lanemask(LaneMask); 2048 report_context(UseIdx); 2049 } 2050 } 2051 2052 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2053 unsigned MONum, SlotIndex DefIdx, 2054 const LiveRange &LR, 2055 Register VRegOrUnit, 2056 bool SubRangeCheck, 2057 LaneBitmask LaneMask) { 2058 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2059 assert(VNI && "NULL valno is not allowed"); 2060 if (VNI->def != DefIdx) { 2061 report("Inconsistent valno->def", MO, MONum); 2062 report_context_liverange(LR); 2063 report_context_vreg_regunit(VRegOrUnit); 2064 if (LaneMask.any()) 2065 report_context_lanemask(LaneMask); 2066 report_context(*VNI); 2067 report_context(DefIdx); 2068 } 2069 } else { 2070 report("No live segment at def", MO, MONum); 2071 report_context_liverange(LR); 2072 report_context_vreg_regunit(VRegOrUnit); 2073 if (LaneMask.any()) 2074 report_context_lanemask(LaneMask); 2075 report_context(DefIdx); 2076 } 2077 // Check that, if the dead def flag is present, LiveInts agree. 2078 if (MO->isDead()) { 2079 LiveQueryResult LRQ = LR.Query(DefIdx); 2080 if (!LRQ.isDeadDef()) { 2081 assert(Register::isVirtualRegister(VRegOrUnit) && 2082 "Expecting a virtual register."); 2083 // A dead subreg def only tells us that the specific subreg is dead. There 2084 // could be other non-dead defs of other subregs, or we could have other 2085 // parts of the register being live through the instruction. So unless we 2086 // are checking liveness for a subrange it is ok for the live range to 2087 // continue, given that we have a dead def of a subregister. 2088 if (SubRangeCheck || MO->getSubReg() == 0) { 2089 report("Live range continues after dead def flag", MO, MONum); 2090 report_context_liverange(LR); 2091 report_context_vreg_regunit(VRegOrUnit); 2092 if (LaneMask.any()) 2093 report_context_lanemask(LaneMask); 2094 } 2095 } 2096 } 2097 } 2098 2099 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2100 const MachineInstr *MI = MO->getParent(); 2101 const Register Reg = MO->getReg(); 2102 2103 // Both use and def operands can read a register. 2104 if (MO->readsReg()) { 2105 if (MO->isKill()) 2106 addRegWithSubRegs(regsKilled, Reg); 2107 2108 // Check that LiveVars knows this kill. 2109 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 2110 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2111 if (!is_contained(VI.Kills, MI)) 2112 report("Kill missing from LiveVariables", MO, MONum); 2113 } 2114 2115 // Check LiveInts liveness and kill. 2116 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2117 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2118 // Check the cached regunit intervals. 2119 if (Reg.isPhysical() && !isReserved(Reg)) { 2120 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2121 ++Units) { 2122 if (MRI->isReservedRegUnit(*Units)) 2123 continue; 2124 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2125 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2126 } 2127 } 2128 2129 if (Register::isVirtualRegister(Reg)) { 2130 if (LiveInts->hasInterval(Reg)) { 2131 // This is a virtual register interval. 2132 const LiveInterval &LI = LiveInts->getInterval(Reg); 2133 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 2134 2135 if (LI.hasSubRanges() && !MO->isDef()) { 2136 unsigned SubRegIdx = MO->getSubReg(); 2137 LaneBitmask MOMask = SubRegIdx != 0 2138 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2139 : MRI->getMaxLaneMaskForVReg(Reg); 2140 LaneBitmask LiveInMask; 2141 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2142 if ((MOMask & SR.LaneMask).none()) 2143 continue; 2144 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2145 LiveQueryResult LRQ = SR.Query(UseIdx); 2146 if (LRQ.valueIn()) 2147 LiveInMask |= SR.LaneMask; 2148 } 2149 // At least parts of the register has to be live at the use. 2150 if ((LiveInMask & MOMask).none()) { 2151 report("No live subrange at use", MO, MONum); 2152 report_context(LI); 2153 report_context(UseIdx); 2154 } 2155 } 2156 } else { 2157 report("Virtual register has no live interval", MO, MONum); 2158 } 2159 } 2160 } 2161 2162 // Use of a dead register. 2163 if (!regsLive.count(Reg)) { 2164 if (Register::isPhysicalRegister(Reg)) { 2165 // Reserved registers may be used even when 'dead'. 2166 bool Bad = !isReserved(Reg); 2167 // We are fine if just any subregister has a defined value. 2168 if (Bad) { 2169 2170 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2171 if (regsLive.count(SubReg)) { 2172 Bad = false; 2173 break; 2174 } 2175 } 2176 } 2177 // If there is an additional implicit-use of a super register we stop 2178 // here. By definition we are fine if the super register is not 2179 // (completely) dead, if the complete super register is dead we will 2180 // get a report for its operand. 2181 if (Bad) { 2182 for (const MachineOperand &MOP : MI->uses()) { 2183 if (!MOP.isReg() || !MOP.isImplicit()) 2184 continue; 2185 2186 if (!Register::isPhysicalRegister(MOP.getReg())) 2187 continue; 2188 2189 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2190 if (SubReg == Reg) { 2191 Bad = false; 2192 break; 2193 } 2194 } 2195 } 2196 } 2197 if (Bad) 2198 report("Using an undefined physical register", MO, MONum); 2199 } else if (MRI->def_empty(Reg)) { 2200 report("Reading virtual register without a def", MO, MONum); 2201 } else { 2202 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2203 // We don't know which virtual registers are live in, so only complain 2204 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2205 // must be live in. PHI instructions are handled separately. 2206 if (MInfo.regsKilled.count(Reg)) 2207 report("Using a killed virtual register", MO, MONum); 2208 else if (!MI->isPHI()) 2209 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2210 } 2211 } 2212 } 2213 2214 if (MO->isDef()) { 2215 // Register defined. 2216 // TODO: verify that earlyclobber ops are not used. 2217 if (MO->isDead()) 2218 addRegWithSubRegs(regsDead, Reg); 2219 else 2220 addRegWithSubRegs(regsDefined, Reg); 2221 2222 // Verify SSA form. 2223 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2224 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2225 report("Multiple virtual register defs in SSA form", MO, MONum); 2226 2227 // Check LiveInts for a live segment, but only for virtual registers. 2228 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2229 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2230 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2231 2232 if (Register::isVirtualRegister(Reg)) { 2233 if (LiveInts->hasInterval(Reg)) { 2234 const LiveInterval &LI = LiveInts->getInterval(Reg); 2235 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2236 2237 if (LI.hasSubRanges()) { 2238 unsigned SubRegIdx = MO->getSubReg(); 2239 LaneBitmask MOMask = SubRegIdx != 0 2240 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2241 : MRI->getMaxLaneMaskForVReg(Reg); 2242 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2243 if ((SR.LaneMask & MOMask).none()) 2244 continue; 2245 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2246 } 2247 } 2248 } else { 2249 report("Virtual register has no Live interval", MO, MONum); 2250 } 2251 } 2252 } 2253 } 2254 } 2255 2256 // This function gets called after visiting all instructions in a bundle. The 2257 // argument points to the bundle header. 2258 // Normal stand-alone instructions are also considered 'bundles', and this 2259 // function is called for all of them. 2260 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2261 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2262 set_union(MInfo.regsKilled, regsKilled); 2263 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2264 // Kill any masked registers. 2265 while (!regMasks.empty()) { 2266 const uint32_t *Mask = regMasks.pop_back_val(); 2267 for (Register Reg : regsLive) 2268 if (Reg.isPhysical() && 2269 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2270 regsDead.push_back(Reg); 2271 } 2272 set_subtract(regsLive, regsDead); regsDead.clear(); 2273 set_union(regsLive, regsDefined); regsDefined.clear(); 2274 } 2275 2276 void 2277 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2278 MBBInfoMap[MBB].regsLiveOut = regsLive; 2279 regsLive.clear(); 2280 2281 if (Indexes) { 2282 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2283 if (!(stop > lastIndex)) { 2284 report("Block ends before last instruction index", MBB); 2285 errs() << "Block ends at " << stop 2286 << " last instruction was at " << lastIndex << '\n'; 2287 } 2288 lastIndex = stop; 2289 } 2290 } 2291 2292 namespace { 2293 // This implements a set of registers that serves as a filter: can filter other 2294 // sets by passing through elements not in the filter and blocking those that 2295 // are. Any filter implicitly includes the full set of physical registers upon 2296 // creation, thus filtering them all out. The filter itself as a set only grows, 2297 // and needs to be as efficient as possible. 2298 struct VRegFilter { 2299 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2300 // no duplicates. Both virtual and physical registers are fine. 2301 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2302 SmallVector<Register, 0> VRegsBuffer; 2303 filterAndAdd(FromRegSet, VRegsBuffer); 2304 } 2305 // Filter \p FromRegSet through the filter and append passed elements into \p 2306 // ToVRegs. All elements appended are then added to the filter itself. 2307 // \returns true if anything changed. 2308 template <typename RegSetT> 2309 bool filterAndAdd(const RegSetT &FromRegSet, 2310 SmallVectorImpl<Register> &ToVRegs) { 2311 unsigned SparseUniverse = Sparse.size(); 2312 unsigned NewSparseUniverse = SparseUniverse; 2313 unsigned NewDenseSize = Dense.size(); 2314 size_t Begin = ToVRegs.size(); 2315 for (Register Reg : FromRegSet) { 2316 if (!Reg.isVirtual()) 2317 continue; 2318 unsigned Index = Register::virtReg2Index(Reg); 2319 if (Index < SparseUniverseMax) { 2320 if (Index < SparseUniverse && Sparse.test(Index)) 2321 continue; 2322 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2323 } else { 2324 if (Dense.count(Reg)) 2325 continue; 2326 ++NewDenseSize; 2327 } 2328 ToVRegs.push_back(Reg); 2329 } 2330 size_t End = ToVRegs.size(); 2331 if (Begin == End) 2332 return false; 2333 // Reserving space in sets once performs better than doing so continuously 2334 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2335 // tuned all the way down) and double iteration (the second one is over a 2336 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2337 Sparse.resize(NewSparseUniverse); 2338 Dense.reserve(NewDenseSize); 2339 for (unsigned I = Begin; I < End; ++I) { 2340 Register Reg = ToVRegs[I]; 2341 unsigned Index = Register::virtReg2Index(Reg); 2342 if (Index < SparseUniverseMax) 2343 Sparse.set(Index); 2344 else 2345 Dense.insert(Reg); 2346 } 2347 return true; 2348 } 2349 2350 private: 2351 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2352 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2353 // are tracked by Dense. The only purpose of the threashold and the Dense set 2354 // is to have a reasonably growing memory usage in pathological cases (large 2355 // number of very sparse VRegFilter instances live at the same time). In 2356 // practice even in the worst-by-execution time cases having all elements 2357 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2358 // space efficient than if tracked by Dense. The threashold is set to keep the 2359 // worst-case memory usage within 2x of figures determined empirically for 2360 // "all Dense" scenario in such worst-by-execution-time cases. 2361 BitVector Sparse; 2362 DenseSet<unsigned> Dense; 2363 }; 2364 2365 // Implements both a transfer function and a (binary, in-place) join operator 2366 // for a dataflow over register sets with set union join and filtering transfer 2367 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2368 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2369 // time, where n is the size of the set (as opposed to O(U) where U is the 2370 // universe). filter_b implicitly contains all physical registers at all times. 2371 class FilteringVRegSet { 2372 VRegFilter Filter; 2373 SmallVector<Register, 0> VRegs; 2374 2375 public: 2376 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2377 // Both virtual and physical registers are fine. 2378 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2379 Filter.add(RS); 2380 } 2381 // Passes \p RS through the filter_b (transfer function) and adds what's left 2382 // to itself (out_b). 2383 template <typename RegSetT> bool add(const RegSetT &RS) { 2384 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2385 // a set union) just add everything being added here to the Filter as well. 2386 return Filter.filterAndAdd(RS, VRegs); 2387 } 2388 using const_iterator = decltype(VRegs)::const_iterator; 2389 const_iterator begin() const { return VRegs.begin(); } 2390 const_iterator end() const { return VRegs.end(); } 2391 size_t size() const { return VRegs.size(); } 2392 }; 2393 } // namespace 2394 2395 // Calculate the largest possible vregsPassed sets. These are the registers that 2396 // can pass through an MBB live, but may not be live every time. It is assumed 2397 // that all vregsPassed sets are empty before the call. 2398 void MachineVerifier::calcRegsPassed() { 2399 if (MF->empty()) 2400 // ReversePostOrderTraversal doesn't handle empty functions. 2401 return; 2402 2403 for (const MachineBasicBlock *MB : 2404 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2405 FilteringVRegSet VRegs; 2406 BBInfo &Info = MBBInfoMap[MB]; 2407 assert(Info.reachable); 2408 2409 VRegs.addToFilter(Info.regsKilled); 2410 VRegs.addToFilter(Info.regsLiveOut); 2411 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2412 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2413 if (!PredInfo.reachable) 2414 continue; 2415 2416 VRegs.add(PredInfo.regsLiveOut); 2417 VRegs.add(PredInfo.vregsPassed); 2418 } 2419 Info.vregsPassed.reserve(VRegs.size()); 2420 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2421 } 2422 } 2423 2424 // Calculate the set of virtual registers that must be passed through each basic 2425 // block in order to satisfy the requirements of successor blocks. This is very 2426 // similar to calcRegsPassed, only backwards. 2427 void MachineVerifier::calcRegsRequired() { 2428 // First push live-in regs to predecessors' vregsRequired. 2429 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2430 for (const auto &MBB : *MF) { 2431 BBInfo &MInfo = MBBInfoMap[&MBB]; 2432 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2433 BBInfo &PInfo = MBBInfoMap[Pred]; 2434 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2435 todo.insert(Pred); 2436 } 2437 2438 // Handle the PHI node. 2439 for (const MachineInstr &MI : MBB.phis()) { 2440 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2441 // Skip those Operands which are undef regs or not regs. 2442 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2443 continue; 2444 2445 // Get register and predecessor for one PHI edge. 2446 Register Reg = MI.getOperand(i).getReg(); 2447 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2448 2449 BBInfo &PInfo = MBBInfoMap[Pred]; 2450 if (PInfo.addRequired(Reg)) 2451 todo.insert(Pred); 2452 } 2453 } 2454 } 2455 2456 // Iteratively push vregsRequired to predecessors. This will converge to the 2457 // same final state regardless of DenseSet iteration order. 2458 while (!todo.empty()) { 2459 const MachineBasicBlock *MBB = *todo.begin(); 2460 todo.erase(MBB); 2461 BBInfo &MInfo = MBBInfoMap[MBB]; 2462 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2463 if (Pred == MBB) 2464 continue; 2465 BBInfo &SInfo = MBBInfoMap[Pred]; 2466 if (SInfo.addRequired(MInfo.vregsRequired)) 2467 todo.insert(Pred); 2468 } 2469 } 2470 } 2471 2472 // Check PHI instructions at the beginning of MBB. It is assumed that 2473 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2474 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2475 BBInfo &MInfo = MBBInfoMap[&MBB]; 2476 2477 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2478 for (const MachineInstr &Phi : MBB) { 2479 if (!Phi.isPHI()) 2480 break; 2481 seen.clear(); 2482 2483 const MachineOperand &MODef = Phi.getOperand(0); 2484 if (!MODef.isReg() || !MODef.isDef()) { 2485 report("Expected first PHI operand to be a register def", &MODef, 0); 2486 continue; 2487 } 2488 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2489 MODef.isEarlyClobber() || MODef.isDebug()) 2490 report("Unexpected flag on PHI operand", &MODef, 0); 2491 Register DefReg = MODef.getReg(); 2492 if (!Register::isVirtualRegister(DefReg)) 2493 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2494 2495 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2496 const MachineOperand &MO0 = Phi.getOperand(I); 2497 if (!MO0.isReg()) { 2498 report("Expected PHI operand to be a register", &MO0, I); 2499 continue; 2500 } 2501 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2502 MO0.isDebug() || MO0.isTied()) 2503 report("Unexpected flag on PHI operand", &MO0, I); 2504 2505 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2506 if (!MO1.isMBB()) { 2507 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2508 continue; 2509 } 2510 2511 const MachineBasicBlock &Pre = *MO1.getMBB(); 2512 if (!Pre.isSuccessor(&MBB)) { 2513 report("PHI input is not a predecessor block", &MO1, I + 1); 2514 continue; 2515 } 2516 2517 if (MInfo.reachable) { 2518 seen.insert(&Pre); 2519 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2520 if (!MO0.isUndef() && PrInfo.reachable && 2521 !PrInfo.isLiveOut(MO0.getReg())) 2522 report("PHI operand is not live-out from predecessor", &MO0, I); 2523 } 2524 } 2525 2526 // Did we see all predecessors? 2527 if (MInfo.reachable) { 2528 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2529 if (!seen.count(Pred)) { 2530 report("Missing PHI operand", &Phi); 2531 errs() << printMBBReference(*Pred) 2532 << " is a predecessor according to the CFG.\n"; 2533 } 2534 } 2535 } 2536 } 2537 } 2538 2539 void MachineVerifier::visitMachineFunctionAfter() { 2540 calcRegsPassed(); 2541 2542 for (const MachineBasicBlock &MBB : *MF) 2543 checkPHIOps(MBB); 2544 2545 // Now check liveness info if available 2546 calcRegsRequired(); 2547 2548 // Check for killed virtual registers that should be live out. 2549 for (const auto &MBB : *MF) { 2550 BBInfo &MInfo = MBBInfoMap[&MBB]; 2551 for (Register VReg : MInfo.vregsRequired) 2552 if (MInfo.regsKilled.count(VReg)) { 2553 report("Virtual register killed in block, but needed live out.", &MBB); 2554 errs() << "Virtual register " << printReg(VReg) 2555 << " is used after the block.\n"; 2556 } 2557 } 2558 2559 if (!MF->empty()) { 2560 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2561 for (Register VReg : MInfo.vregsRequired) { 2562 report("Virtual register defs don't dominate all uses.", MF); 2563 report_context_vreg(VReg); 2564 } 2565 } 2566 2567 if (LiveVars) 2568 verifyLiveVariables(); 2569 if (LiveInts) 2570 verifyLiveIntervals(); 2571 2572 // Check live-in list of each MBB. If a register is live into MBB, check 2573 // that the register is in regsLiveOut of each predecessor block. Since 2574 // this must come from a definition in the predecesssor or its live-in 2575 // list, this will catch a live-through case where the predecessor does not 2576 // have the register in its live-in list. This currently only checks 2577 // registers that have no aliases, are not allocatable and are not 2578 // reserved, which could mean a condition code register for instance. 2579 if (MRI->tracksLiveness()) 2580 for (const auto &MBB : *MF) 2581 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2582 MCPhysReg LiveInReg = P.PhysReg; 2583 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2584 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2585 continue; 2586 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2587 BBInfo &PInfo = MBBInfoMap[Pred]; 2588 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2589 report("Live in register not found to be live out from predecessor.", 2590 &MBB); 2591 errs() << TRI->getName(LiveInReg) 2592 << " not found to be live out from " 2593 << printMBBReference(*Pred) << "\n"; 2594 } 2595 } 2596 } 2597 2598 for (auto CSInfo : MF->getCallSitesInfo()) 2599 if (!CSInfo.first->isCall()) 2600 report("Call site info referencing instruction that is not call", MF); 2601 2602 // If there's debug-info, check that we don't have any duplicate value 2603 // tracking numbers. 2604 if (MF->getFunction().getSubprogram()) { 2605 DenseSet<unsigned> SeenNumbers; 2606 for (auto &MBB : *MF) { 2607 for (auto &MI : MBB) { 2608 if (auto Num = MI.peekDebugInstrNum()) { 2609 auto Result = SeenNumbers.insert((unsigned)Num); 2610 if (!Result.second) 2611 report("Instruction has a duplicated value tracking number", &MI); 2612 } 2613 } 2614 } 2615 } 2616 } 2617 2618 void MachineVerifier::verifyLiveVariables() { 2619 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2620 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2621 Register Reg = Register::index2VirtReg(I); 2622 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2623 for (const auto &MBB : *MF) { 2624 BBInfo &MInfo = MBBInfoMap[&MBB]; 2625 2626 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2627 if (MInfo.vregsRequired.count(Reg)) { 2628 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2629 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2630 errs() << "Virtual register " << printReg(Reg) 2631 << " must be live through the block.\n"; 2632 } 2633 } else { 2634 if (VI.AliveBlocks.test(MBB.getNumber())) { 2635 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2636 errs() << "Virtual register " << printReg(Reg) 2637 << " is not needed live through the block.\n"; 2638 } 2639 } 2640 } 2641 } 2642 } 2643 2644 void MachineVerifier::verifyLiveIntervals() { 2645 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2646 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2647 Register Reg = Register::index2VirtReg(I); 2648 2649 // Spilling and splitting may leave unused registers around. Skip them. 2650 if (MRI->reg_nodbg_empty(Reg)) 2651 continue; 2652 2653 if (!LiveInts->hasInterval(Reg)) { 2654 report("Missing live interval for virtual register", MF); 2655 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2656 continue; 2657 } 2658 2659 const LiveInterval &LI = LiveInts->getInterval(Reg); 2660 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2661 verifyLiveInterval(LI); 2662 } 2663 2664 // Verify all the cached regunit intervals. 2665 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2666 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2667 verifyLiveRange(*LR, i); 2668 } 2669 2670 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2671 const VNInfo *VNI, Register Reg, 2672 LaneBitmask LaneMask) { 2673 if (VNI->isUnused()) 2674 return; 2675 2676 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2677 2678 if (!DefVNI) { 2679 report("Value not live at VNInfo def and not marked unused", MF); 2680 report_context(LR, Reg, LaneMask); 2681 report_context(*VNI); 2682 return; 2683 } 2684 2685 if (DefVNI != VNI) { 2686 report("Live segment at def has different VNInfo", MF); 2687 report_context(LR, Reg, LaneMask); 2688 report_context(*VNI); 2689 return; 2690 } 2691 2692 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2693 if (!MBB) { 2694 report("Invalid VNInfo definition index", MF); 2695 report_context(LR, Reg, LaneMask); 2696 report_context(*VNI); 2697 return; 2698 } 2699 2700 if (VNI->isPHIDef()) { 2701 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2702 report("PHIDef VNInfo is not defined at MBB start", MBB); 2703 report_context(LR, Reg, LaneMask); 2704 report_context(*VNI); 2705 } 2706 return; 2707 } 2708 2709 // Non-PHI def. 2710 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2711 if (!MI) { 2712 report("No instruction at VNInfo def index", MBB); 2713 report_context(LR, Reg, LaneMask); 2714 report_context(*VNI); 2715 return; 2716 } 2717 2718 if (Reg != 0) { 2719 bool hasDef = false; 2720 bool isEarlyClobber = false; 2721 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2722 if (!MOI->isReg() || !MOI->isDef()) 2723 continue; 2724 if (Register::isVirtualRegister(Reg)) { 2725 if (MOI->getReg() != Reg) 2726 continue; 2727 } else { 2728 if (!Register::isPhysicalRegister(MOI->getReg()) || 2729 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2730 continue; 2731 } 2732 if (LaneMask.any() && 2733 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2734 continue; 2735 hasDef = true; 2736 if (MOI->isEarlyClobber()) 2737 isEarlyClobber = true; 2738 } 2739 2740 if (!hasDef) { 2741 report("Defining instruction does not modify register", MI); 2742 report_context(LR, Reg, LaneMask); 2743 report_context(*VNI); 2744 } 2745 2746 // Early clobber defs begin at USE slots, but other defs must begin at 2747 // DEF slots. 2748 if (isEarlyClobber) { 2749 if (!VNI->def.isEarlyClobber()) { 2750 report("Early clobber def must be at an early-clobber slot", MBB); 2751 report_context(LR, Reg, LaneMask); 2752 report_context(*VNI); 2753 } 2754 } else if (!VNI->def.isRegister()) { 2755 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2756 report_context(LR, Reg, LaneMask); 2757 report_context(*VNI); 2758 } 2759 } 2760 } 2761 2762 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2763 const LiveRange::const_iterator I, 2764 Register Reg, 2765 LaneBitmask LaneMask) { 2766 const LiveRange::Segment &S = *I; 2767 const VNInfo *VNI = S.valno; 2768 assert(VNI && "Live segment has no valno"); 2769 2770 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2771 report("Foreign valno in live segment", MF); 2772 report_context(LR, Reg, LaneMask); 2773 report_context(S); 2774 report_context(*VNI); 2775 } 2776 2777 if (VNI->isUnused()) { 2778 report("Live segment valno is marked unused", MF); 2779 report_context(LR, Reg, LaneMask); 2780 report_context(S); 2781 } 2782 2783 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2784 if (!MBB) { 2785 report("Bad start of live segment, no basic block", MF); 2786 report_context(LR, Reg, LaneMask); 2787 report_context(S); 2788 return; 2789 } 2790 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2791 if (S.start != MBBStartIdx && S.start != VNI->def) { 2792 report("Live segment must begin at MBB entry or valno def", MBB); 2793 report_context(LR, Reg, LaneMask); 2794 report_context(S); 2795 } 2796 2797 const MachineBasicBlock *EndMBB = 2798 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2799 if (!EndMBB) { 2800 report("Bad end of live segment, no basic block", MF); 2801 report_context(LR, Reg, LaneMask); 2802 report_context(S); 2803 return; 2804 } 2805 2806 // No more checks for live-out segments. 2807 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2808 return; 2809 2810 // RegUnit intervals are allowed dead phis. 2811 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2812 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2813 return; 2814 2815 // The live segment is ending inside EndMBB 2816 const MachineInstr *MI = 2817 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2818 if (!MI) { 2819 report("Live segment doesn't end at a valid instruction", EndMBB); 2820 report_context(LR, Reg, LaneMask); 2821 report_context(S); 2822 return; 2823 } 2824 2825 // The block slot must refer to a basic block boundary. 2826 if (S.end.isBlock()) { 2827 report("Live segment ends at B slot of an instruction", EndMBB); 2828 report_context(LR, Reg, LaneMask); 2829 report_context(S); 2830 } 2831 2832 if (S.end.isDead()) { 2833 // Segment ends on the dead slot. 2834 // That means there must be a dead def. 2835 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2836 report("Live segment ending at dead slot spans instructions", EndMBB); 2837 report_context(LR, Reg, LaneMask); 2838 report_context(S); 2839 } 2840 } 2841 2842 // A live segment can only end at an early-clobber slot if it is being 2843 // redefined by an early-clobber def. 2844 if (S.end.isEarlyClobber()) { 2845 if (I+1 == LR.end() || (I+1)->start != S.end) { 2846 report("Live segment ending at early clobber slot must be " 2847 "redefined by an EC def in the same instruction", EndMBB); 2848 report_context(LR, Reg, LaneMask); 2849 report_context(S); 2850 } 2851 } 2852 2853 // The following checks only apply to virtual registers. Physreg liveness 2854 // is too weird to check. 2855 if (Register::isVirtualRegister(Reg)) { 2856 // A live segment can end with either a redefinition, a kill flag on a 2857 // use, or a dead flag on a def. 2858 bool hasRead = false; 2859 bool hasSubRegDef = false; 2860 bool hasDeadDef = false; 2861 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2862 if (!MOI->isReg() || MOI->getReg() != Reg) 2863 continue; 2864 unsigned Sub = MOI->getSubReg(); 2865 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2866 : LaneBitmask::getAll(); 2867 if (MOI->isDef()) { 2868 if (Sub != 0) { 2869 hasSubRegDef = true; 2870 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2871 // mask for subregister defs. Read-undef defs will be handled by 2872 // readsReg below. 2873 SLM = ~SLM; 2874 } 2875 if (MOI->isDead()) 2876 hasDeadDef = true; 2877 } 2878 if (LaneMask.any() && (LaneMask & SLM).none()) 2879 continue; 2880 if (MOI->readsReg()) 2881 hasRead = true; 2882 } 2883 if (S.end.isDead()) { 2884 // Make sure that the corresponding machine operand for a "dead" live 2885 // range has the dead flag. We cannot perform this check for subregister 2886 // liveranges as partially dead values are allowed. 2887 if (LaneMask.none() && !hasDeadDef) { 2888 report("Instruction ending live segment on dead slot has no dead flag", 2889 MI); 2890 report_context(LR, Reg, LaneMask); 2891 report_context(S); 2892 } 2893 } else { 2894 if (!hasRead) { 2895 // When tracking subregister liveness, the main range must start new 2896 // values on partial register writes, even if there is no read. 2897 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2898 !hasSubRegDef) { 2899 report("Instruction ending live segment doesn't read the register", 2900 MI); 2901 report_context(LR, Reg, LaneMask); 2902 report_context(S); 2903 } 2904 } 2905 } 2906 } 2907 2908 // Now check all the basic blocks in this live segment. 2909 MachineFunction::const_iterator MFI = MBB->getIterator(); 2910 // Is this live segment the beginning of a non-PHIDef VN? 2911 if (S.start == VNI->def && !VNI->isPHIDef()) { 2912 // Not live-in to any blocks. 2913 if (MBB == EndMBB) 2914 return; 2915 // Skip this block. 2916 ++MFI; 2917 } 2918 2919 SmallVector<SlotIndex, 4> Undefs; 2920 if (LaneMask.any()) { 2921 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2922 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2923 } 2924 2925 while (true) { 2926 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2927 // We don't know how to track physregs into a landing pad. 2928 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2929 if (&*MFI == EndMBB) 2930 break; 2931 ++MFI; 2932 continue; 2933 } 2934 2935 // Is VNI a PHI-def in the current block? 2936 bool IsPHI = VNI->isPHIDef() && 2937 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2938 2939 // Check that VNI is live-out of all predecessors. 2940 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2941 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2942 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2943 2944 // All predecessors must have a live-out value. However for a phi 2945 // instruction with subregister intervals 2946 // only one of the subregisters (not necessarily the current one) needs to 2947 // be defined. 2948 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2949 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2950 continue; 2951 report("Register not marked live out of predecessor", Pred); 2952 report_context(LR, Reg, LaneMask); 2953 report_context(*VNI); 2954 errs() << " live into " << printMBBReference(*MFI) << '@' 2955 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2956 << PEnd << '\n'; 2957 continue; 2958 } 2959 2960 // Only PHI-defs can take different predecessor values. 2961 if (!IsPHI && PVNI != VNI) { 2962 report("Different value live out of predecessor", Pred); 2963 report_context(LR, Reg, LaneMask); 2964 errs() << "Valno #" << PVNI->id << " live out of " 2965 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2966 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2967 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2968 } 2969 } 2970 if (&*MFI == EndMBB) 2971 break; 2972 ++MFI; 2973 } 2974 } 2975 2976 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 2977 LaneBitmask LaneMask) { 2978 for (const VNInfo *VNI : LR.valnos) 2979 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2980 2981 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2982 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2983 } 2984 2985 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2986 Register Reg = LI.reg(); 2987 assert(Register::isVirtualRegister(Reg)); 2988 verifyLiveRange(LI, Reg); 2989 2990 LaneBitmask Mask; 2991 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2992 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2993 if ((Mask & SR.LaneMask).any()) { 2994 report("Lane masks of sub ranges overlap in live interval", MF); 2995 report_context(LI); 2996 } 2997 if ((SR.LaneMask & ~MaxMask).any()) { 2998 report("Subrange lanemask is invalid", MF); 2999 report_context(LI); 3000 } 3001 if (SR.empty()) { 3002 report("Subrange must not be empty", MF); 3003 report_context(SR, LI.reg(), SR.LaneMask); 3004 } 3005 Mask |= SR.LaneMask; 3006 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3007 if (!LI.covers(SR)) { 3008 report("A Subrange is not covered by the main range", MF); 3009 report_context(LI); 3010 } 3011 } 3012 3013 // Check the LI only has one connected component. 3014 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3015 unsigned NumComp = ConEQ.Classify(LI); 3016 if (NumComp > 1) { 3017 report("Multiple connected components in live interval", MF); 3018 report_context(LI); 3019 for (unsigned comp = 0; comp != NumComp; ++comp) { 3020 errs() << comp << ": valnos"; 3021 for (const VNInfo *I : LI.valnos) 3022 if (comp == ConEQ.getEqClass(I)) 3023 errs() << ' ' << I->id; 3024 errs() << '\n'; 3025 } 3026 } 3027 } 3028 3029 namespace { 3030 3031 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3032 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3033 // value is zero. 3034 // We use a bool plus an integer to capture the stack state. 3035 struct StackStateOfBB { 3036 StackStateOfBB() = default; 3037 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3038 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3039 ExitIsSetup(ExitSetup) {} 3040 3041 // Can be negative, which means we are setting up a frame. 3042 int EntryValue = 0; 3043 int ExitValue = 0; 3044 bool EntryIsSetup = false; 3045 bool ExitIsSetup = false; 3046 }; 3047 3048 } // end anonymous namespace 3049 3050 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3051 /// by a FrameDestroy <n>, stack adjustments are identical on all 3052 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3053 void MachineVerifier::verifyStackFrame() { 3054 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3055 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3056 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3057 return; 3058 3059 SmallVector<StackStateOfBB, 8> SPState; 3060 SPState.resize(MF->getNumBlockIDs()); 3061 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3062 3063 // Visit the MBBs in DFS order. 3064 for (df_ext_iterator<const MachineFunction *, 3065 df_iterator_default_set<const MachineBasicBlock *>> 3066 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3067 DFI != DFE; ++DFI) { 3068 const MachineBasicBlock *MBB = *DFI; 3069 3070 StackStateOfBB BBState; 3071 // Check the exit state of the DFS stack predecessor. 3072 if (DFI.getPathLength() >= 2) { 3073 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3074 assert(Reachable.count(StackPred) && 3075 "DFS stack predecessor is already visited.\n"); 3076 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3077 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3078 BBState.ExitValue = BBState.EntryValue; 3079 BBState.ExitIsSetup = BBState.EntryIsSetup; 3080 } 3081 3082 // Update stack state by checking contents of MBB. 3083 for (const auto &I : *MBB) { 3084 if (I.getOpcode() == FrameSetupOpcode) { 3085 if (BBState.ExitIsSetup) 3086 report("FrameSetup is after another FrameSetup", &I); 3087 BBState.ExitValue -= TII->getFrameTotalSize(I); 3088 BBState.ExitIsSetup = true; 3089 } 3090 3091 if (I.getOpcode() == FrameDestroyOpcode) { 3092 int Size = TII->getFrameTotalSize(I); 3093 if (!BBState.ExitIsSetup) 3094 report("FrameDestroy is not after a FrameSetup", &I); 3095 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3096 BBState.ExitValue; 3097 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3098 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3099 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3100 << AbsSPAdj << ">.\n"; 3101 } 3102 BBState.ExitValue += Size; 3103 BBState.ExitIsSetup = false; 3104 } 3105 } 3106 SPState[MBB->getNumber()] = BBState; 3107 3108 // Make sure the exit state of any predecessor is consistent with the entry 3109 // state. 3110 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3111 if (Reachable.count(Pred) && 3112 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3113 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3114 report("The exit stack state of a predecessor is inconsistent.", MBB); 3115 errs() << "Predecessor " << printMBBReference(*Pred) 3116 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3117 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3118 << printMBBReference(*MBB) << " has entry state (" 3119 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3120 } 3121 } 3122 3123 // Make sure the entry state of any successor is consistent with the exit 3124 // state. 3125 for (const MachineBasicBlock *Succ : MBB->successors()) { 3126 if (Reachable.count(Succ) && 3127 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3128 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3129 report("The entry stack state of a successor is inconsistent.", MBB); 3130 errs() << "Successor " << printMBBReference(*Succ) 3131 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3132 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3133 << printMBBReference(*MBB) << " has exit state (" 3134 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3135 } 3136 } 3137 3138 // Make sure a basic block with return ends with zero stack adjustment. 3139 if (!MBB->empty() && MBB->back().isReturn()) { 3140 if (BBState.ExitIsSetup) 3141 report("A return block ends with a FrameSetup.", MBB); 3142 if (BBState.ExitValue) 3143 report("A return block ends with a nonzero stack adjustment.", MBB); 3144 } 3145 } 3146 } 3147