1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226     void report(const Twine &Msg, const MachineInstr *MI);
227 
228     void report_context(const LiveInterval &LI) const;
229     void report_context(const LiveRange &LR, Register VRegUnit,
230                         LaneBitmask LaneMask) const;
231     void report_context(const LiveRange::Segment &S) const;
232     void report_context(const VNInfo &VNI) const;
233     void report_context(SlotIndex Pos) const;
234     void report_context(MCPhysReg PhysReg) const;
235     void report_context_liverange(const LiveRange &LR) const;
236     void report_context_lanemask(LaneBitmask LaneMask) const;
237     void report_context_vreg(Register VReg) const;
238     void report_context_vreg_regunit(Register VRegOrUnit) const;
239 
240     void verifyInlineAsm(const MachineInstr *MI);
241 
242     void checkLiveness(const MachineOperand *MO, unsigned MONum);
243     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                             SlotIndex UseIdx, const LiveRange &LR,
245                             Register VRegOrUnit,
246                             LaneBitmask LaneMask = LaneBitmask::getNone());
247     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248                             SlotIndex DefIdx, const LiveRange &LR,
249                             Register VRegOrUnit, bool SubRangeCheck = false,
250                             LaneBitmask LaneMask = LaneBitmask::getNone());
251 
252     void markReachable(const MachineBasicBlock *MBB);
253     void calcRegsPassed();
254     void checkPHIOps(const MachineBasicBlock &MBB);
255 
256     void calcRegsRequired();
257     void verifyLiveVariables();
258     void verifyLiveIntervals();
259     void verifyLiveInterval(const LiveInterval&);
260     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261                               LaneBitmask);
262     void verifyLiveRangeSegment(const LiveRange &,
263                                 const LiveRange::const_iterator I, Register,
264                                 LaneBitmask);
265     void verifyLiveRange(const LiveRange &, Register,
266                          LaneBitmask LaneMask = LaneBitmask::getNone());
267 
268     void verifyStackFrame();
269 
270     void verifySlotIndexes() const;
271     void verifyProperties(const MachineFunction &MF);
272   };
273 
274   struct MachineVerifierPass : public MachineFunctionPass {
275     static char ID; // Pass ID, replacement for typeid
276 
277     const std::string Banner;
278 
279     MachineVerifierPass(std::string banner = std::string())
280       : MachineFunctionPass(ID), Banner(std::move(banner)) {
281         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282       }
283 
284     void getAnalysisUsage(AnalysisUsage &AU) const override {
285       AU.setPreservesAll();
286       MachineFunctionPass::getAnalysisUsage(AU);
287     }
288 
289     bool runOnMachineFunction(MachineFunction &MF) override {
290       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291       if (FoundErrors)
292         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293       return false;
294     }
295   };
296 
297 } // end anonymous namespace
298 
299 char MachineVerifierPass::ID = 0;
300 
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302                 "Verify generated machine code", false, false)
303 
304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305   return new MachineVerifierPass(Banner);
306 }
307 
308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309                                  const std::string &Banner,
310                                  const MachineFunction &MF) {
311   // TODO: Use MFAM after porting below analyses.
312   // LiveVariables *LiveVars;
313   // LiveIntervals *LiveInts;
314   // LiveStacks *LiveStks;
315   // SlotIndexes *Indexes;
316   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317   if (FoundErrors)
318     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::FailedISel);
364 
365   // If we're mid-GlobalISel and we already triggered the fallback path then
366   // it's expected that the MIR is somewhat broken but that's ok since we'll
367   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368   if (isFunctionFailedISel)
369     return foundErrors;
370 
371   isFunctionRegBankSelected = MF.getProperties().hasProperty(
372       MachineFunctionProperties::Property::RegBankSelected);
373   isFunctionSelected = MF.getProperties().hasProperty(
374       MachineFunctionProperties::Property::Selected);
375 
376   LiveVars = nullptr;
377   LiveInts = nullptr;
378   LiveStks = nullptr;
379   Indexes = nullptr;
380   if (PASS) {
381     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382     // We don't want to verify LiveVariables if LiveIntervals is available.
383     if (!LiveInts)
384       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387   }
388 
389   verifySlotIndexes();
390 
391   verifyProperties(MF);
392 
393   visitMachineFunctionBefore();
394   for (const MachineBasicBlock &MBB : MF) {
395     visitMachineBasicBlockBefore(&MBB);
396     // Keep track of the current bundle header.
397     const MachineInstr *CurBundle = nullptr;
398     // Do we expect the next instruction to be part of the same bundle?
399     bool InBundle = false;
400 
401     for (const MachineInstr &MI : MBB.instrs()) {
402       if (MI.getParent() != &MBB) {
403         report("Bad instruction parent pointer", &MBB);
404         errs() << "Instruction: " << MI;
405         continue;
406       }
407 
408       // Check for consistent bundle flags.
409       if (InBundle && !MI.isBundledWithPred())
410         report("Missing BundledPred flag, "
411                "BundledSucc was set on predecessor",
412                &MI);
413       if (!InBundle && MI.isBundledWithPred())
414         report("BundledPred flag is set, "
415                "but BundledSucc not set on predecessor",
416                &MI);
417 
418       // Is this a bundle header?
419       if (!MI.isInsideBundle()) {
420         if (CurBundle)
421           visitMachineBundleAfter(CurBundle);
422         CurBundle = &MI;
423         visitMachineBundleBefore(CurBundle);
424       } else if (!CurBundle)
425         report("No bundle header", &MI);
426       visitMachineInstrBefore(&MI);
427       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428         const MachineOperand &Op = MI.getOperand(I);
429         if (Op.getParent() != &MI) {
430           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431           // functions when replacing operands of a MachineInstr.
432           report("Instruction has operand with wrong parent set", &MI);
433         }
434 
435         visitMachineOperand(&Op, I);
436       }
437 
438       // Was this the last bundled instruction?
439       InBundle = MI.isBundledWithSucc();
440     }
441     if (CurBundle)
442       visitMachineBundleAfter(CurBundle);
443     if (InBundle)
444       report("BundledSucc flag set on last instruction in block", &MBB.back());
445     visitMachineBasicBlockAfter(&MBB);
446   }
447   visitMachineFunctionAfter();
448 
449   // Clean up.
450   regsLive.clear();
451   regsDefined.clear();
452   regsDead.clear();
453   regsKilled.clear();
454   regMasks.clear();
455   MBBInfoMap.clear();
456 
457   return foundErrors;
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461   assert(MF);
462   errs() << '\n';
463   if (!foundErrors++) {
464     if (Banner)
465       errs() << "# " << Banner << '\n';
466     if (LiveInts != nullptr)
467       LiveInts->print(errs());
468     else
469       MF->print(errs(), Indexes);
470   }
471   errs() << "*** Bad machine code: " << msg << " ***\n"
472       << "- function:    " << MF->getName() << "\n";
473 }
474 
475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476   assert(MBB);
477   report(msg, MBB->getParent());
478   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479          << MBB->getName() << " (" << (const void *)MBB << ')';
480   if (Indexes)
481     errs() << " [" << Indexes->getMBBStartIdx(MBB)
482         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
483   errs() << '\n';
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487   assert(MI);
488   report(msg, MI->getParent());
489   errs() << "- instruction: ";
490   if (Indexes && Indexes->hasIndex(*MI))
491     errs() << Indexes->getInstructionIndex(*MI) << '\t';
492   MI->print(errs(), /*IsStandalone=*/true);
493 }
494 
495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496                              unsigned MONum, LLT MOVRegType) {
497   assert(MO);
498   report(msg, MO->getParent());
499   errs() << "- operand " << MONum << ":   ";
500   MO->print(errs(), MOVRegType, TRI);
501   errs() << "\n";
502 }
503 
504 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
505   report(Msg.str().c_str(), MI);
506 }
507 
508 void MachineVerifier::report_context(SlotIndex Pos) const {
509   errs() << "- at:          " << Pos << '\n';
510 }
511 
512 void MachineVerifier::report_context(const LiveInterval &LI) const {
513   errs() << "- interval:    " << LI << '\n';
514 }
515 
516 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
517                                      LaneBitmask LaneMask) const {
518   report_context_liverange(LR);
519   report_context_vreg_regunit(VRegUnit);
520   if (LaneMask.any())
521     report_context_lanemask(LaneMask);
522 }
523 
524 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
525   errs() << "- segment:     " << S << '\n';
526 }
527 
528 void MachineVerifier::report_context(const VNInfo &VNI) const {
529   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
530 }
531 
532 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
533   errs() << "- liverange:   " << LR << '\n';
534 }
535 
536 void MachineVerifier::report_context(MCPhysReg PReg) const {
537   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
538 }
539 
540 void MachineVerifier::report_context_vreg(Register VReg) const {
541   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
542 }
543 
544 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
545   if (Register::isVirtualRegister(VRegOrUnit)) {
546     report_context_vreg(VRegOrUnit);
547   } else {
548     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
549   }
550 }
551 
552 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
553   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
554 }
555 
556 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
557   BBInfo &MInfo = MBBInfoMap[MBB];
558   if (!MInfo.reachable) {
559     MInfo.reachable = true;
560     for (const MachineBasicBlock *Succ : MBB->successors())
561       markReachable(Succ);
562   }
563 }
564 
565 void MachineVerifier::visitMachineFunctionBefore() {
566   lastIndex = SlotIndex();
567   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
568                                            : TRI->getReservedRegs(*MF);
569 
570   if (!MF->empty())
571     markReachable(&MF->front());
572 
573   // Build a set of the basic blocks in the function.
574   FunctionBlocks.clear();
575   for (const auto &MBB : *MF) {
576     FunctionBlocks.insert(&MBB);
577     BBInfo &MInfo = MBBInfoMap[&MBB];
578 
579     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
580     if (MInfo.Preds.size() != MBB.pred_size())
581       report("MBB has duplicate entries in its predecessor list.", &MBB);
582 
583     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
584     if (MInfo.Succs.size() != MBB.succ_size())
585       report("MBB has duplicate entries in its successor list.", &MBB);
586   }
587 
588   // Check that the register use lists are sane.
589   MRI->verifyUseLists();
590 
591   if (!MF->empty())
592     verifyStackFrame();
593 }
594 
595 void
596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597   FirstTerminator = nullptr;
598   FirstNonPHI = nullptr;
599 
600   if (!MF->getProperties().hasProperty(
601       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602     // If this block has allocatable physical registers live-in, check that
603     // it is an entry block or landing pad.
604     for (const auto &LI : MBB->liveins()) {
605       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606           MBB->getIterator() != MBB->getParent()->begin()) {
607         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608         report_context(LI.PhysReg);
609       }
610     }
611   }
612 
613   // Count the number of landing pad successors.
614   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
615   for (const auto *succ : MBB->successors()) {
616     if (succ->isEHPad())
617       LandingPadSuccs.insert(succ);
618     if (!FunctionBlocks.count(succ))
619       report("MBB has successor that isn't part of the function.", MBB);
620     if (!MBBInfoMap[succ].Preds.count(MBB)) {
621       report("Inconsistent CFG", MBB);
622       errs() << "MBB is not in the predecessor list of the successor "
623              << printMBBReference(*succ) << ".\n";
624     }
625   }
626 
627   // Check the predecessor list.
628   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
629     if (!FunctionBlocks.count(Pred))
630       report("MBB has predecessor that isn't part of the function.", MBB);
631     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
632       report("Inconsistent CFG", MBB);
633       errs() << "MBB is not in the successor list of the predecessor "
634              << printMBBReference(*Pred) << ".\n";
635     }
636   }
637 
638   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639   const BasicBlock *BB = MBB->getBasicBlock();
640   const Function &F = MF->getFunction();
641   if (LandingPadSuccs.size() > 1 &&
642       !(AsmInfo &&
643         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644         BB && isa<SwitchInst>(BB->getTerminator())) &&
645       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646     report("MBB has more than one landing pad successor", MBB);
647 
648   // Call analyzeBranch. If it succeeds, there several more conditions to check.
649   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650   SmallVector<MachineOperand, 4> Cond;
651   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                           Cond)) {
653     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
654     // check whether its answers match up with reality.
655     if (!TBB && !FBB) {
656       // Block falls through to its successor.
657       if (!MBB->empty() && MBB->back().isBarrier() &&
658           !TII->isPredicated(MBB->back())) {
659         report("MBB exits via unconditional fall-through but ends with a "
660                "barrier instruction!", MBB);
661       }
662       if (!Cond.empty()) {
663         report("MBB exits via unconditional fall-through but has a condition!",
664                MBB);
665       }
666     } else if (TBB && !FBB && Cond.empty()) {
667       // Block unconditionally branches somewhere.
668       if (MBB->empty()) {
669         report("MBB exits via unconditional branch but doesn't contain "
670                "any instructions!", MBB);
671       } else if (!MBB->back().isBarrier()) {
672         report("MBB exits via unconditional branch but doesn't end with a "
673                "barrier instruction!", MBB);
674       } else if (!MBB->back().isTerminator()) {
675         report("MBB exits via unconditional branch but the branch isn't a "
676                "terminator instruction!", MBB);
677       }
678     } else if (TBB && !FBB && !Cond.empty()) {
679       // Block conditionally branches somewhere, otherwise falls through.
680       if (MBB->empty()) {
681         report("MBB exits via conditional branch/fall-through but doesn't "
682                "contain any instructions!", MBB);
683       } else if (MBB->back().isBarrier()) {
684         report("MBB exits via conditional branch/fall-through but ends with a "
685                "barrier instruction!", MBB);
686       } else if (!MBB->back().isTerminator()) {
687         report("MBB exits via conditional branch/fall-through but the branch "
688                "isn't a terminator instruction!", MBB);
689       }
690     } else if (TBB && FBB) {
691       // Block conditionally branches somewhere, otherwise branches
692       // somewhere else.
693       if (MBB->empty()) {
694         report("MBB exits via conditional branch/branch but doesn't "
695                "contain any instructions!", MBB);
696       } else if (!MBB->back().isBarrier()) {
697         report("MBB exits via conditional branch/branch but doesn't end with a "
698                "barrier instruction!", MBB);
699       } else if (!MBB->back().isTerminator()) {
700         report("MBB exits via conditional branch/branch but the branch "
701                "isn't a terminator instruction!", MBB);
702       }
703       if (Cond.empty()) {
704         report("MBB exits via conditional branch/branch but there's no "
705                "condition!", MBB);
706       }
707     } else {
708       report("analyzeBranch returned invalid data!", MBB);
709     }
710 
711     // Now check that the successors match up with the answers reported by
712     // analyzeBranch.
713     if (TBB && !MBB->isSuccessor(TBB))
714       report("MBB exits via jump or conditional branch, but its target isn't a "
715              "CFG successor!",
716              MBB);
717     if (FBB && !MBB->isSuccessor(FBB))
718       report("MBB exits via conditional branch, but its target isn't a CFG "
719              "successor!",
720              MBB);
721 
722     // There might be a fallthrough to the next block if there's either no
723     // unconditional true branch, or if there's a condition, and one of the
724     // branches is missing.
725     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
726 
727     // A conditional fallthrough must be an actual CFG successor, not
728     // unreachable. (Conversely, an unconditional fallthrough might not really
729     // be a successor, because the block might end in unreachable.)
730     if (!Cond.empty() && !FBB) {
731       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
732       if (MBBI == MF->end()) {
733         report("MBB conditionally falls through out of function!", MBB);
734       } else if (!MBB->isSuccessor(&*MBBI))
735         report("MBB exits via conditional branch/fall-through but the CFG "
736                "successors don't match the actual successors!",
737                MBB);
738     }
739 
740     // Verify that there aren't any extra un-accounted-for successors.
741     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
742       // If this successor is one of the branch targets, it's okay.
743       if (SuccMBB == TBB || SuccMBB == FBB)
744         continue;
745       // If we might have a fallthrough, and the successor is the fallthrough
746       // block, that's also ok.
747       if (Fallthrough && SuccMBB == MBB->getNextNode())
748         continue;
749       // Also accept successors which are for exception-handling or might be
750       // inlineasm_br targets.
751       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
752         continue;
753       report("MBB has unexpected successors which are not branch targets, "
754              "fallthrough, EHPads, or inlineasm_br targets.",
755              MBB);
756     }
757   }
758 
759   regsLive.clear();
760   if (MRI->tracksLiveness()) {
761     for (const auto &LI : MBB->liveins()) {
762       if (!Register::isPhysicalRegister(LI.PhysReg)) {
763         report("MBB live-in list contains non-physical register", MBB);
764         continue;
765       }
766       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
767         regsLive.insert(SubReg);
768     }
769   }
770 
771   const MachineFrameInfo &MFI = MF->getFrameInfo();
772   BitVector PR = MFI.getPristineRegs(*MF);
773   for (unsigned I : PR.set_bits()) {
774     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
775       regsLive.insert(SubReg);
776   }
777 
778   regsKilled.clear();
779   regsDefined.clear();
780 
781   if (Indexes)
782     lastIndex = Indexes->getMBBStartIdx(MBB);
783 }
784 
785 // This function gets called for all bundle headers, including normal
786 // stand-alone unbundled instructions.
787 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
788   if (Indexes && Indexes->hasIndex(*MI)) {
789     SlotIndex idx = Indexes->getInstructionIndex(*MI);
790     if (!(idx > lastIndex)) {
791       report("Instruction index out of order", MI);
792       errs() << "Last instruction was at " << lastIndex << '\n';
793     }
794     lastIndex = idx;
795   }
796 
797   // Ensure non-terminators don't follow terminators.
798   if (MI->isTerminator()) {
799     if (!FirstTerminator)
800       FirstTerminator = MI;
801   } else if (FirstTerminator) {
802     report("Non-terminator instruction after the first terminator", MI);
803     errs() << "First terminator was:\t" << *FirstTerminator;
804   }
805 }
806 
807 // The operands on an INLINEASM instruction must follow a template.
808 // Verify that the flag operands make sense.
809 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
810   // The first two operands on INLINEASM are the asm string and global flags.
811   if (MI->getNumOperands() < 2) {
812     report("Too few operands on inline asm", MI);
813     return;
814   }
815   if (!MI->getOperand(0).isSymbol())
816     report("Asm string must be an external symbol", MI);
817   if (!MI->getOperand(1).isImm())
818     report("Asm flags must be an immediate", MI);
819   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
820   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
821   // and Extra_IsConvergent = 32.
822   if (!isUInt<6>(MI->getOperand(1).getImm()))
823     report("Unknown asm flags", &MI->getOperand(1), 1);
824 
825   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
826 
827   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
828   unsigned NumOps;
829   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
830     const MachineOperand &MO = MI->getOperand(OpNo);
831     // There may be implicit ops after the fixed operands.
832     if (!MO.isImm())
833       break;
834     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
835   }
836 
837   if (OpNo > MI->getNumOperands())
838     report("Missing operands in last group", MI);
839 
840   // An optional MDNode follows the groups.
841   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
842     ++OpNo;
843 
844   // All trailing operands must be implicit registers.
845   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
846     const MachineOperand &MO = MI->getOperand(OpNo);
847     if (!MO.isReg() || !MO.isImplicit())
848       report("Expected implicit register after groups", &MO, OpNo);
849   }
850 }
851 
852 /// Check that types are consistent when two operands need to have the same
853 /// number of vector elements.
854 /// \return true if the types are valid.
855 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
856                                                const MachineInstr *MI) {
857   if (Ty0.isVector() != Ty1.isVector()) {
858     report("operand types must be all-vector or all-scalar", MI);
859     // Generally we try to report as many issues as possible at once, but in
860     // this case it's not clear what should we be comparing the size of the
861     // scalar with: the size of the whole vector or its lane. Instead of
862     // making an arbitrary choice and emitting not so helpful message, let's
863     // avoid the extra noise and stop here.
864     return false;
865   }
866 
867   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
868     report("operand types must preserve number of vector elements", MI);
869     return false;
870   }
871 
872   return true;
873 }
874 
875 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
876   if (isFunctionSelected)
877     report("Unexpected generic instruction in a Selected function", MI);
878 
879   const MCInstrDesc &MCID = MI->getDesc();
880   unsigned NumOps = MI->getNumOperands();
881 
882   // Branches must reference a basic block if they are not indirect
883   if (MI->isBranch() && !MI->isIndirectBranch()) {
884     bool HasMBB = false;
885     for (const MachineOperand &Op : MI->operands()) {
886       if (Op.isMBB()) {
887         HasMBB = true;
888         break;
889       }
890     }
891 
892     if (!HasMBB) {
893       report("Branch instruction is missing a basic block operand or "
894              "isIndirectBranch property",
895              MI);
896     }
897   }
898 
899   // Check types.
900   SmallVector<LLT, 4> Types;
901   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
902        I != E; ++I) {
903     if (!MCID.OpInfo[I].isGenericType())
904       continue;
905     // Generic instructions specify type equality constraints between some of
906     // their operands. Make sure these are consistent.
907     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
908     Types.resize(std::max(TypeIdx + 1, Types.size()));
909 
910     const MachineOperand *MO = &MI->getOperand(I);
911     if (!MO->isReg()) {
912       report("generic instruction must use register operands", MI);
913       continue;
914     }
915 
916     LLT OpTy = MRI->getType(MO->getReg());
917     // Don't report a type mismatch if there is no actual mismatch, only a
918     // type missing, to reduce noise:
919     if (OpTy.isValid()) {
920       // Only the first valid type for a type index will be printed: don't
921       // overwrite it later so it's always clear which type was expected:
922       if (!Types[TypeIdx].isValid())
923         Types[TypeIdx] = OpTy;
924       else if (Types[TypeIdx] != OpTy)
925         report("Type mismatch in generic instruction", MO, I, OpTy);
926     } else {
927       // Generic instructions must have types attached to their operands.
928       report("Generic instruction is missing a virtual register type", MO, I);
929     }
930   }
931 
932   // Generic opcodes must not have physical register operands.
933   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
934     const MachineOperand *MO = &MI->getOperand(I);
935     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
936       report("Generic instruction cannot have physical register", MO, I);
937   }
938 
939   // Avoid out of bounds in checks below. This was already reported earlier.
940   if (MI->getNumOperands() < MCID.getNumOperands())
941     return;
942 
943   StringRef ErrorInfo;
944   if (!TII->verifyInstruction(*MI, ErrorInfo))
945     report(ErrorInfo.data(), MI);
946 
947   // Verify properties of various specific instruction types
948   unsigned Opc = MI->getOpcode();
949   switch (Opc) {
950   case TargetOpcode::G_ASSERT_SEXT:
951   case TargetOpcode::G_ASSERT_ZEXT: {
952     std::string OpcName =
953         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
954     if (!MI->getOperand(2).isImm()) {
955       report(Twine(OpcName, " expects an immediate operand #2"), MI);
956       break;
957     }
958 
959     Register Dst = MI->getOperand(0).getReg();
960     Register Src = MI->getOperand(1).getReg();
961     LLT SrcTy = MRI->getType(Src);
962     int64_t Imm = MI->getOperand(2).getImm();
963     if (Imm <= 0) {
964       report(Twine(OpcName, " size must be >= 1"), MI);
965       break;
966     }
967 
968     if (Imm >= SrcTy.getScalarSizeInBits()) {
969       report(Twine(OpcName, " size must be less than source bit width"), MI);
970       break;
971     }
972 
973     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
974       report(
975           Twine(OpcName, " source and destination register banks must match"),
976           MI);
977       break;
978     }
979 
980     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
981       report(
982           Twine(OpcName, " source and destination register classes must match"),
983           MI);
984 
985     break;
986   }
987 
988   case TargetOpcode::G_CONSTANT:
989   case TargetOpcode::G_FCONSTANT: {
990     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991     if (DstTy.isVector())
992       report("Instruction cannot use a vector result type", MI);
993 
994     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
995       if (!MI->getOperand(1).isCImm()) {
996         report("G_CONSTANT operand must be cimm", MI);
997         break;
998       }
999 
1000       const ConstantInt *CI = MI->getOperand(1).getCImm();
1001       if (CI->getBitWidth() != DstTy.getSizeInBits())
1002         report("inconsistent constant size", MI);
1003     } else {
1004       if (!MI->getOperand(1).isFPImm()) {
1005         report("G_FCONSTANT operand must be fpimm", MI);
1006         break;
1007       }
1008       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1009 
1010       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1011           DstTy.getSizeInBits()) {
1012         report("inconsistent constant size", MI);
1013       }
1014     }
1015 
1016     break;
1017   }
1018   case TargetOpcode::G_LOAD:
1019   case TargetOpcode::G_STORE:
1020   case TargetOpcode::G_ZEXTLOAD:
1021   case TargetOpcode::G_SEXTLOAD: {
1022     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1023     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1024     if (!PtrTy.isPointer())
1025       report("Generic memory instruction must access a pointer", MI);
1026 
1027     // Generic loads and stores must have a single MachineMemOperand
1028     // describing that access.
1029     if (!MI->hasOneMemOperand()) {
1030       report("Generic instruction accessing memory must have one mem operand",
1031              MI);
1032     } else {
1033       const MachineMemOperand &MMO = **MI->memoperands_begin();
1034       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1035           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1036         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1037           report("Generic extload must have a narrower memory type", MI);
1038       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1039         if (MMO.getSize() > ValTy.getSizeInBytes())
1040           report("load memory size cannot exceed result size", MI);
1041       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1042         if (ValTy.getSizeInBytes() < MMO.getSize())
1043           report("store memory size cannot exceed value size", MI);
1044       }
1045     }
1046 
1047     break;
1048   }
1049   case TargetOpcode::G_PHI: {
1050     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1051     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1052                                     [this, &DstTy](const MachineOperand &MO) {
1053                                       if (!MO.isReg())
1054                                         return true;
1055                                       LLT Ty = MRI->getType(MO.getReg());
1056                                       if (!Ty.isValid() || (Ty != DstTy))
1057                                         return false;
1058                                       return true;
1059                                     }))
1060       report("Generic Instruction G_PHI has operands with incompatible/missing "
1061              "types",
1062              MI);
1063     break;
1064   }
1065   case TargetOpcode::G_BITCAST: {
1066     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1067     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1068     if (!DstTy.isValid() || !SrcTy.isValid())
1069       break;
1070 
1071     if (SrcTy.isPointer() != DstTy.isPointer())
1072       report("bitcast cannot convert between pointers and other types", MI);
1073 
1074     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1075       report("bitcast sizes must match", MI);
1076 
1077     if (SrcTy == DstTy)
1078       report("bitcast must change the type", MI);
1079 
1080     break;
1081   }
1082   case TargetOpcode::G_INTTOPTR:
1083   case TargetOpcode::G_PTRTOINT:
1084   case TargetOpcode::G_ADDRSPACE_CAST: {
1085     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1086     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1087     if (!DstTy.isValid() || !SrcTy.isValid())
1088       break;
1089 
1090     verifyVectorElementMatch(DstTy, SrcTy, MI);
1091 
1092     DstTy = DstTy.getScalarType();
1093     SrcTy = SrcTy.getScalarType();
1094 
1095     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1096       if (!DstTy.isPointer())
1097         report("inttoptr result type must be a pointer", MI);
1098       if (SrcTy.isPointer())
1099         report("inttoptr source type must not be a pointer", MI);
1100     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1101       if (!SrcTy.isPointer())
1102         report("ptrtoint source type must be a pointer", MI);
1103       if (DstTy.isPointer())
1104         report("ptrtoint result type must not be a pointer", MI);
1105     } else {
1106       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1107       if (!SrcTy.isPointer() || !DstTy.isPointer())
1108         report("addrspacecast types must be pointers", MI);
1109       else {
1110         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1111           report("addrspacecast must convert different address spaces", MI);
1112       }
1113     }
1114 
1115     break;
1116   }
1117   case TargetOpcode::G_PTR_ADD: {
1118     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1119     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1120     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1121     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1122       break;
1123 
1124     if (!PtrTy.getScalarType().isPointer())
1125       report("gep first operand must be a pointer", MI);
1126 
1127     if (OffsetTy.getScalarType().isPointer())
1128       report("gep offset operand must not be a pointer", MI);
1129 
1130     // TODO: Is the offset allowed to be a scalar with a vector?
1131     break;
1132   }
1133   case TargetOpcode::G_PTRMASK: {
1134     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1135     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1136     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1137     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1138       break;
1139 
1140     if (!DstTy.getScalarType().isPointer())
1141       report("ptrmask result type must be a pointer", MI);
1142 
1143     if (!MaskTy.getScalarType().isScalar())
1144       report("ptrmask mask type must be an integer", MI);
1145 
1146     verifyVectorElementMatch(DstTy, MaskTy, MI);
1147     break;
1148   }
1149   case TargetOpcode::G_SEXT:
1150   case TargetOpcode::G_ZEXT:
1151   case TargetOpcode::G_ANYEXT:
1152   case TargetOpcode::G_TRUNC:
1153   case TargetOpcode::G_FPEXT:
1154   case TargetOpcode::G_FPTRUNC: {
1155     // Number of operands and presense of types is already checked (and
1156     // reported in case of any issues), so no need to report them again. As
1157     // we're trying to report as many issues as possible at once, however, the
1158     // instructions aren't guaranteed to have the right number of operands or
1159     // types attached to them at this point
1160     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1161     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163     if (!DstTy.isValid() || !SrcTy.isValid())
1164       break;
1165 
1166     LLT DstElTy = DstTy.getScalarType();
1167     LLT SrcElTy = SrcTy.getScalarType();
1168     if (DstElTy.isPointer() || SrcElTy.isPointer())
1169       report("Generic extend/truncate can not operate on pointers", MI);
1170 
1171     verifyVectorElementMatch(DstTy, SrcTy, MI);
1172 
1173     unsigned DstSize = DstElTy.getSizeInBits();
1174     unsigned SrcSize = SrcElTy.getSizeInBits();
1175     switch (MI->getOpcode()) {
1176     default:
1177       if (DstSize <= SrcSize)
1178         report("Generic extend has destination type no larger than source", MI);
1179       break;
1180     case TargetOpcode::G_TRUNC:
1181     case TargetOpcode::G_FPTRUNC:
1182       if (DstSize >= SrcSize)
1183         report("Generic truncate has destination type no smaller than source",
1184                MI);
1185       break;
1186     }
1187     break;
1188   }
1189   case TargetOpcode::G_SELECT: {
1190     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1191     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1192     if (!SelTy.isValid() || !CondTy.isValid())
1193       break;
1194 
1195     // Scalar condition select on a vector is valid.
1196     if (CondTy.isVector())
1197       verifyVectorElementMatch(SelTy, CondTy, MI);
1198     break;
1199   }
1200   case TargetOpcode::G_MERGE_VALUES: {
1201     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1202     // e.g. s2N = MERGE sN, sN
1203     // Merging multiple scalars into a vector is not allowed, should use
1204     // G_BUILD_VECTOR for that.
1205     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1207     if (DstTy.isVector() || SrcTy.isVector())
1208       report("G_MERGE_VALUES cannot operate on vectors", MI);
1209 
1210     const unsigned NumOps = MI->getNumOperands();
1211     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1212       report("G_MERGE_VALUES result size is inconsistent", MI);
1213 
1214     for (unsigned I = 2; I != NumOps; ++I) {
1215       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1216         report("G_MERGE_VALUES source types do not match", MI);
1217     }
1218 
1219     break;
1220   }
1221   case TargetOpcode::G_UNMERGE_VALUES: {
1222     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1223     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1224     // For now G_UNMERGE can split vectors.
1225     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1226       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1227         report("G_UNMERGE_VALUES destination types do not match", MI);
1228     }
1229     if (SrcTy.getSizeInBits() !=
1230         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1231       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1232              MI);
1233     }
1234     break;
1235   }
1236   case TargetOpcode::G_BUILD_VECTOR: {
1237     // Source types must be scalars, dest type a vector. Total size of scalars
1238     // must match the dest vector size.
1239     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1241     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1242       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1243       break;
1244     }
1245 
1246     if (DstTy.getElementType() != SrcEltTy)
1247       report("G_BUILD_VECTOR result element type must match source type", MI);
1248 
1249     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1250       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1251 
1252     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1253       if (MRI->getType(MI->getOperand(1).getReg()) !=
1254           MRI->getType(MI->getOperand(i).getReg()))
1255         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1256     }
1257 
1258     break;
1259   }
1260   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1261     // Source types must be scalars, dest type a vector. Scalar types must be
1262     // larger than the dest vector elt type, as this is a truncating operation.
1263     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1264     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1265     if (!DstTy.isVector() || SrcEltTy.isVector())
1266       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1267              MI);
1268     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1269       if (MRI->getType(MI->getOperand(1).getReg()) !=
1270           MRI->getType(MI->getOperand(i).getReg()))
1271         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1272                MI);
1273     }
1274     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1275       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1276              "dest elt type",
1277              MI);
1278     break;
1279   }
1280   case TargetOpcode::G_CONCAT_VECTORS: {
1281     // Source types should be vectors, and total size should match the dest
1282     // vector size.
1283     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1284     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1285     if (!DstTy.isVector() || !SrcTy.isVector())
1286       report("G_CONCAT_VECTOR requires vector source and destination operands",
1287              MI);
1288     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1289       if (MRI->getType(MI->getOperand(1).getReg()) !=
1290           MRI->getType(MI->getOperand(i).getReg()))
1291         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1292     }
1293     if (DstTy.getNumElements() !=
1294         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1295       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1296     break;
1297   }
1298   case TargetOpcode::G_ICMP:
1299   case TargetOpcode::G_FCMP: {
1300     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1301     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1302 
1303     if ((DstTy.isVector() != SrcTy.isVector()) ||
1304         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1305       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1306 
1307     break;
1308   }
1309   case TargetOpcode::G_EXTRACT: {
1310     const MachineOperand &SrcOp = MI->getOperand(1);
1311     if (!SrcOp.isReg()) {
1312       report("extract source must be a register", MI);
1313       break;
1314     }
1315 
1316     const MachineOperand &OffsetOp = MI->getOperand(2);
1317     if (!OffsetOp.isImm()) {
1318       report("extract offset must be a constant", MI);
1319       break;
1320     }
1321 
1322     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1323     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1324     if (SrcSize == DstSize)
1325       report("extract source must be larger than result", MI);
1326 
1327     if (DstSize + OffsetOp.getImm() > SrcSize)
1328       report("extract reads past end of register", MI);
1329     break;
1330   }
1331   case TargetOpcode::G_INSERT: {
1332     const MachineOperand &SrcOp = MI->getOperand(2);
1333     if (!SrcOp.isReg()) {
1334       report("insert source must be a register", MI);
1335       break;
1336     }
1337 
1338     const MachineOperand &OffsetOp = MI->getOperand(3);
1339     if (!OffsetOp.isImm()) {
1340       report("insert offset must be a constant", MI);
1341       break;
1342     }
1343 
1344     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1345     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1346 
1347     if (DstSize <= SrcSize)
1348       report("inserted size must be smaller than total register", MI);
1349 
1350     if (SrcSize + OffsetOp.getImm() > DstSize)
1351       report("insert writes past end of register", MI);
1352 
1353     break;
1354   }
1355   case TargetOpcode::G_JUMP_TABLE: {
1356     if (!MI->getOperand(1).isJTI())
1357       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1358     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1359     if (!DstTy.isPointer())
1360       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1361     break;
1362   }
1363   case TargetOpcode::G_BRJT: {
1364     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1365       report("G_BRJT src operand 0 must be a pointer type", MI);
1366 
1367     if (!MI->getOperand(1).isJTI())
1368       report("G_BRJT src operand 1 must be a jump table index", MI);
1369 
1370     const auto &IdxOp = MI->getOperand(2);
1371     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1372       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1373     break;
1374   }
1375   case TargetOpcode::G_INTRINSIC:
1376   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1377     // TODO: Should verify number of def and use operands, but the current
1378     // interface requires passing in IR types for mangling.
1379     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1380     if (!IntrIDOp.isIntrinsicID()) {
1381       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1382       break;
1383     }
1384 
1385     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1386     unsigned IntrID = IntrIDOp.getIntrinsicID();
1387     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1388       AttributeList Attrs
1389         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1390                                    static_cast<Intrinsic::ID>(IntrID));
1391       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1392       if (NoSideEffects && DeclHasSideEffects) {
1393         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1394         break;
1395       }
1396       if (!NoSideEffects && !DeclHasSideEffects) {
1397         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1398         break;
1399       }
1400     }
1401 
1402     break;
1403   }
1404   case TargetOpcode::G_SEXT_INREG: {
1405     if (!MI->getOperand(2).isImm()) {
1406       report("G_SEXT_INREG expects an immediate operand #2", MI);
1407       break;
1408     }
1409 
1410     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1411     int64_t Imm = MI->getOperand(2).getImm();
1412     if (Imm <= 0)
1413       report("G_SEXT_INREG size must be >= 1", MI);
1414     if (Imm >= SrcTy.getScalarSizeInBits())
1415       report("G_SEXT_INREG size must be less than source bit width", MI);
1416     break;
1417   }
1418   case TargetOpcode::G_SHUFFLE_VECTOR: {
1419     const MachineOperand &MaskOp = MI->getOperand(3);
1420     if (!MaskOp.isShuffleMask()) {
1421       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1422       break;
1423     }
1424 
1425     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1426     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1427     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1428 
1429     if (Src0Ty != Src1Ty)
1430       report("Source operands must be the same type", MI);
1431 
1432     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1433       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1434 
1435     // Don't check that all operands are vector because scalars are used in
1436     // place of 1 element vectors.
1437     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1438     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1439 
1440     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1441 
1442     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1443       report("Wrong result type for shufflemask", MI);
1444 
1445     for (int Idx : MaskIdxes) {
1446       if (Idx < 0)
1447         continue;
1448 
1449       if (Idx >= 2 * SrcNumElts)
1450         report("Out of bounds shuffle index", MI);
1451     }
1452 
1453     break;
1454   }
1455   case TargetOpcode::G_DYN_STACKALLOC: {
1456     const MachineOperand &DstOp = MI->getOperand(0);
1457     const MachineOperand &AllocOp = MI->getOperand(1);
1458     const MachineOperand &AlignOp = MI->getOperand(2);
1459 
1460     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1461       report("dst operand 0 must be a pointer type", MI);
1462       break;
1463     }
1464 
1465     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1466       report("src operand 1 must be a scalar reg type", MI);
1467       break;
1468     }
1469 
1470     if (!AlignOp.isImm()) {
1471       report("src operand 2 must be an immediate type", MI);
1472       break;
1473     }
1474     break;
1475   }
1476   case TargetOpcode::G_MEMCPY:
1477   case TargetOpcode::G_MEMMOVE: {
1478     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1479     if (MMOs.size() != 2) {
1480       report("memcpy/memmove must have 2 memory operands", MI);
1481       break;
1482     }
1483 
1484     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1485         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1486       report("wrong memory operand types", MI);
1487       break;
1488     }
1489 
1490     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1491       report("inconsistent memory operand sizes", MI);
1492 
1493     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1494     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1495 
1496     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1497       report("memory instruction operand must be a pointer", MI);
1498       break;
1499     }
1500 
1501     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1502       report("inconsistent store address space", MI);
1503     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1504       report("inconsistent load address space", MI);
1505 
1506     break;
1507   }
1508   case TargetOpcode::G_MEMSET: {
1509     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1510     if (MMOs.size() != 1) {
1511       report("memset must have 1 memory operand", MI);
1512       break;
1513     }
1514 
1515     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1516       report("memset memory operand must be a store", MI);
1517       break;
1518     }
1519 
1520     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1521     if (!DstPtrTy.isPointer()) {
1522       report("memset operand must be a pointer", MI);
1523       break;
1524     }
1525 
1526     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1527       report("inconsistent memset address space", MI);
1528 
1529     break;
1530   }
1531   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1532   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1533     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1534     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1535     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1536     if (!DstTy.isScalar())
1537       report("Vector reduction requires a scalar destination type", MI);
1538     if (!Src1Ty.isScalar())
1539       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1540     if (!Src2Ty.isVector())
1541       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1542     break;
1543   }
1544   case TargetOpcode::G_VECREDUCE_FADD:
1545   case TargetOpcode::G_VECREDUCE_FMUL:
1546   case TargetOpcode::G_VECREDUCE_FMAX:
1547   case TargetOpcode::G_VECREDUCE_FMIN:
1548   case TargetOpcode::G_VECREDUCE_ADD:
1549   case TargetOpcode::G_VECREDUCE_MUL:
1550   case TargetOpcode::G_VECREDUCE_AND:
1551   case TargetOpcode::G_VECREDUCE_OR:
1552   case TargetOpcode::G_VECREDUCE_XOR:
1553   case TargetOpcode::G_VECREDUCE_SMAX:
1554   case TargetOpcode::G_VECREDUCE_SMIN:
1555   case TargetOpcode::G_VECREDUCE_UMAX:
1556   case TargetOpcode::G_VECREDUCE_UMIN: {
1557     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1558     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1559     if (!DstTy.isScalar())
1560       report("Vector reduction requires a scalar destination type", MI);
1561     if (!SrcTy.isVector())
1562       report("Vector reduction requires vector source=", MI);
1563     break;
1564   }
1565   default:
1566     break;
1567   }
1568 }
1569 
1570 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1571   const MCInstrDesc &MCID = MI->getDesc();
1572   if (MI->getNumOperands() < MCID.getNumOperands()) {
1573     report("Too few operands", MI);
1574     errs() << MCID.getNumOperands() << " operands expected, but "
1575            << MI->getNumOperands() << " given.\n";
1576   }
1577 
1578   if (MI->isPHI()) {
1579     if (MF->getProperties().hasProperty(
1580             MachineFunctionProperties::Property::NoPHIs))
1581       report("Found PHI instruction with NoPHIs property set", MI);
1582 
1583     if (FirstNonPHI)
1584       report("Found PHI instruction after non-PHI", MI);
1585   } else if (FirstNonPHI == nullptr)
1586     FirstNonPHI = MI;
1587 
1588   // Check the tied operands.
1589   if (MI->isInlineAsm())
1590     verifyInlineAsm(MI);
1591 
1592   // Check that unspillable terminators define a reg and have at most one use.
1593   if (TII->isUnspillableTerminator(MI)) {
1594     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1595       report("Unspillable Terminator does not define a reg", MI);
1596     Register Def = MI->getOperand(0).getReg();
1597     if (Def.isVirtual() &&
1598         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1599       report("Unspillable Terminator expected to have at most one use!", MI);
1600   }
1601 
1602   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1603   // DBG_VALUEs: these are convenient to use in tests, but should never get
1604   // generated.
1605   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1606     if (!MI->getDebugLoc())
1607       report("Missing DebugLoc for debug instruction", MI);
1608 
1609   // Meta instructions should never be the subject of debug value tracking,
1610   // they don't create a value in the output program at all.
1611   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1612     report("Metadata instruction should not have a value tracking number", MI);
1613 
1614   // Check the MachineMemOperands for basic consistency.
1615   for (MachineMemOperand *Op : MI->memoperands()) {
1616     if (Op->isLoad() && !MI->mayLoad())
1617       report("Missing mayLoad flag", MI);
1618     if (Op->isStore() && !MI->mayStore())
1619       report("Missing mayStore flag", MI);
1620   }
1621 
1622   // Debug values must not have a slot index.
1623   // Other instructions must have one, unless they are inside a bundle.
1624   if (LiveInts) {
1625     bool mapped = !LiveInts->isNotInMIMap(*MI);
1626     if (MI->isDebugInstr()) {
1627       if (mapped)
1628         report("Debug instruction has a slot index", MI);
1629     } else if (MI->isInsideBundle()) {
1630       if (mapped)
1631         report("Instruction inside bundle has a slot index", MI);
1632     } else {
1633       if (!mapped)
1634         report("Missing slot index", MI);
1635     }
1636   }
1637 
1638   unsigned Opc = MCID.getOpcode();
1639   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1640     verifyPreISelGenericInstruction(MI);
1641     return;
1642   }
1643 
1644   StringRef ErrorInfo;
1645   if (!TII->verifyInstruction(*MI, ErrorInfo))
1646     report(ErrorInfo.data(), MI);
1647 
1648   // Verify properties of various specific instruction types
1649   switch (MI->getOpcode()) {
1650   case TargetOpcode::COPY: {
1651     if (foundErrors)
1652       break;
1653     const MachineOperand &DstOp = MI->getOperand(0);
1654     const MachineOperand &SrcOp = MI->getOperand(1);
1655     LLT DstTy = MRI->getType(DstOp.getReg());
1656     LLT SrcTy = MRI->getType(SrcOp.getReg());
1657     if (SrcTy.isValid() && DstTy.isValid()) {
1658       // If both types are valid, check that the types are the same.
1659       if (SrcTy != DstTy) {
1660         report("Copy Instruction is illegal with mismatching types", MI);
1661         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1662       }
1663     }
1664     if (SrcTy.isValid() || DstTy.isValid()) {
1665       // If one of them have valid types, let's just check they have the same
1666       // size.
1667       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1668       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1669       assert(SrcSize && "Expecting size here");
1670       assert(DstSize && "Expecting size here");
1671       if (SrcSize != DstSize)
1672         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1673           report("Copy Instruction is illegal with mismatching sizes", MI);
1674           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1675                  << "\n";
1676         }
1677     }
1678     break;
1679   }
1680   case TargetOpcode::STATEPOINT: {
1681     StatepointOpers SO(MI);
1682     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1683         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1684         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1685       report("meta operands to STATEPOINT not constant!", MI);
1686       break;
1687     }
1688 
1689     auto VerifyStackMapConstant = [&](unsigned Offset) {
1690       if (Offset >= MI->getNumOperands()) {
1691         report("stack map constant to STATEPOINT is out of range!", MI);
1692         return;
1693       }
1694       if (!MI->getOperand(Offset - 1).isImm() ||
1695           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1696           !MI->getOperand(Offset).isImm())
1697         report("stack map constant to STATEPOINT not well formed!", MI);
1698     };
1699     VerifyStackMapConstant(SO.getCCIdx());
1700     VerifyStackMapConstant(SO.getFlagsIdx());
1701     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1702     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1703     VerifyStackMapConstant(SO.getNumAllocaIdx());
1704     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1705 
1706     // Verify that all explicit statepoint defs are tied to gc operands as
1707     // they are expected to be a relocation of gc operands.
1708     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1709     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1710     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1711       unsigned UseOpIdx;
1712       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1713         report("STATEPOINT defs expected to be tied", MI);
1714         break;
1715       }
1716       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1717         report("STATEPOINT def tied to non-gc operand", MI);
1718         break;
1719       }
1720     }
1721 
1722     // TODO: verify we have properly encoded deopt arguments
1723   } break;
1724   }
1725 }
1726 
1727 void
1728 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1729   const MachineInstr *MI = MO->getParent();
1730   const MCInstrDesc &MCID = MI->getDesc();
1731   unsigned NumDefs = MCID.getNumDefs();
1732   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1733     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1734 
1735   // The first MCID.NumDefs operands must be explicit register defines
1736   if (MONum < NumDefs) {
1737     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1738     if (!MO->isReg())
1739       report("Explicit definition must be a register", MO, MONum);
1740     else if (!MO->isDef() && !MCOI.isOptionalDef())
1741       report("Explicit definition marked as use", MO, MONum);
1742     else if (MO->isImplicit())
1743       report("Explicit definition marked as implicit", MO, MONum);
1744   } else if (MONum < MCID.getNumOperands()) {
1745     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1746     // Don't check if it's the last operand in a variadic instruction. See,
1747     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1748     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1749     if (!IsOptional) {
1750       if (MO->isReg()) {
1751         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1752           report("Explicit operand marked as def", MO, MONum);
1753         if (MO->isImplicit())
1754           report("Explicit operand marked as implicit", MO, MONum);
1755       }
1756 
1757       // Check that an instruction has register operands only as expected.
1758       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1759           !MO->isReg() && !MO->isFI())
1760         report("Expected a register operand.", MO, MONum);
1761       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1762            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1763         report("Expected a non-register operand.", MO, MONum);
1764     }
1765 
1766     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1767     if (TiedTo != -1) {
1768       if (!MO->isReg())
1769         report("Tied use must be a register", MO, MONum);
1770       else if (!MO->isTied())
1771         report("Operand should be tied", MO, MONum);
1772       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1773         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1774       else if (Register::isPhysicalRegister(MO->getReg())) {
1775         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1776         if (!MOTied.isReg())
1777           report("Tied counterpart must be a register", &MOTied, TiedTo);
1778         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1779                  MO->getReg() != MOTied.getReg())
1780           report("Tied physical registers must match.", &MOTied, TiedTo);
1781       }
1782     } else if (MO->isReg() && MO->isTied())
1783       report("Explicit operand should not be tied", MO, MONum);
1784   } else {
1785     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1786     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1787       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1788   }
1789 
1790   switch (MO->getType()) {
1791   case MachineOperand::MO_Register: {
1792     const Register Reg = MO->getReg();
1793     if (!Reg)
1794       return;
1795     if (MRI->tracksLiveness() && !MI->isDebugValue())
1796       checkLiveness(MO, MONum);
1797 
1798     // Verify the consistency of tied operands.
1799     if (MO->isTied()) {
1800       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1801       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1802       if (!OtherMO.isReg())
1803         report("Must be tied to a register", MO, MONum);
1804       if (!OtherMO.isTied())
1805         report("Missing tie flags on tied operand", MO, MONum);
1806       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1807         report("Inconsistent tie links", MO, MONum);
1808       if (MONum < MCID.getNumDefs()) {
1809         if (OtherIdx < MCID.getNumOperands()) {
1810           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1811             report("Explicit def tied to explicit use without tie constraint",
1812                    MO, MONum);
1813         } else {
1814           if (!OtherMO.isImplicit())
1815             report("Explicit def should be tied to implicit use", MO, MONum);
1816         }
1817       }
1818     }
1819 
1820     // Verify two-address constraints after the twoaddressinstruction pass.
1821     // Both twoaddressinstruction pass and phi-node-elimination pass call
1822     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1823     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1824     // shouldn't use the NoSSA as the condition, we should based on
1825     // TiedOpsRewritten property to verify two-address constraints, this
1826     // property will be set in twoaddressinstruction pass.
1827     unsigned DefIdx;
1828     if (MF->getProperties().hasProperty(
1829             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1830         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1831         Reg != MI->getOperand(DefIdx).getReg())
1832       report("Two-address instruction operands must be identical", MO, MONum);
1833 
1834     // Check register classes.
1835     unsigned SubIdx = MO->getSubReg();
1836 
1837     if (Register::isPhysicalRegister(Reg)) {
1838       if (SubIdx) {
1839         report("Illegal subregister index for physical register", MO, MONum);
1840         return;
1841       }
1842       if (MONum < MCID.getNumOperands()) {
1843         if (const TargetRegisterClass *DRC =
1844               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1845           if (!DRC->contains(Reg)) {
1846             report("Illegal physical register for instruction", MO, MONum);
1847             errs() << printReg(Reg, TRI) << " is not a "
1848                    << TRI->getRegClassName(DRC) << " register.\n";
1849           }
1850         }
1851       }
1852       if (MO->isRenamable()) {
1853         if (MRI->isReserved(Reg)) {
1854           report("isRenamable set on reserved register", MO, MONum);
1855           return;
1856         }
1857       }
1858       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1859         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1860         return;
1861       }
1862     } else {
1863       // Virtual register.
1864       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1865       if (!RC) {
1866         // This is a generic virtual register.
1867 
1868         // Do not allow undef uses for generic virtual registers. This ensures
1869         // getVRegDef can never fail and return null on a generic register.
1870         //
1871         // FIXME: This restriction should probably be broadened to all SSA
1872         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1873         // run on the SSA function just before phi elimination.
1874         if (MO->isUndef())
1875           report("Generic virtual register use cannot be undef", MO, MONum);
1876 
1877         // If we're post-Select, we can't have gvregs anymore.
1878         if (isFunctionSelected) {
1879           report("Generic virtual register invalid in a Selected function",
1880                  MO, MONum);
1881           return;
1882         }
1883 
1884         // The gvreg must have a type and it must not have a SubIdx.
1885         LLT Ty = MRI->getType(Reg);
1886         if (!Ty.isValid()) {
1887           report("Generic virtual register must have a valid type", MO,
1888                  MONum);
1889           return;
1890         }
1891 
1892         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1893 
1894         // If we're post-RegBankSelect, the gvreg must have a bank.
1895         if (!RegBank && isFunctionRegBankSelected) {
1896           report("Generic virtual register must have a bank in a "
1897                  "RegBankSelected function",
1898                  MO, MONum);
1899           return;
1900         }
1901 
1902         // Make sure the register fits into its register bank if any.
1903         if (RegBank && Ty.isValid() &&
1904             RegBank->getSize() < Ty.getSizeInBits()) {
1905           report("Register bank is too small for virtual register", MO,
1906                  MONum);
1907           errs() << "Register bank " << RegBank->getName() << " too small("
1908                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1909                  << "-bits\n";
1910           return;
1911         }
1912         if (SubIdx)  {
1913           report("Generic virtual register does not allow subregister index", MO,
1914                  MONum);
1915           return;
1916         }
1917 
1918         // If this is a target specific instruction and this operand
1919         // has register class constraint, the virtual register must
1920         // comply to it.
1921         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1922             MONum < MCID.getNumOperands() &&
1923             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1924           report("Virtual register does not match instruction constraint", MO,
1925                  MONum);
1926           errs() << "Expect register class "
1927                  << TRI->getRegClassName(
1928                         TII->getRegClass(MCID, MONum, TRI, *MF))
1929                  << " but got nothing\n";
1930           return;
1931         }
1932 
1933         break;
1934       }
1935       if (SubIdx) {
1936         const TargetRegisterClass *SRC =
1937           TRI->getSubClassWithSubReg(RC, SubIdx);
1938         if (!SRC) {
1939           report("Invalid subregister index for virtual register", MO, MONum);
1940           errs() << "Register class " << TRI->getRegClassName(RC)
1941               << " does not support subreg index " << SubIdx << "\n";
1942           return;
1943         }
1944         if (RC != SRC) {
1945           report("Invalid register class for subregister index", MO, MONum);
1946           errs() << "Register class " << TRI->getRegClassName(RC)
1947               << " does not fully support subreg index " << SubIdx << "\n";
1948           return;
1949         }
1950       }
1951       if (MONum < MCID.getNumOperands()) {
1952         if (const TargetRegisterClass *DRC =
1953               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1954           if (SubIdx) {
1955             const TargetRegisterClass *SuperRC =
1956                 TRI->getLargestLegalSuperClass(RC, *MF);
1957             if (!SuperRC) {
1958               report("No largest legal super class exists.", MO, MONum);
1959               return;
1960             }
1961             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1962             if (!DRC) {
1963               report("No matching super-reg register class.", MO, MONum);
1964               return;
1965             }
1966           }
1967           if (!RC->hasSuperClassEq(DRC)) {
1968             report("Illegal virtual register for instruction", MO, MONum);
1969             errs() << "Expected a " << TRI->getRegClassName(DRC)
1970                 << " register, but got a " << TRI->getRegClassName(RC)
1971                 << " register\n";
1972           }
1973         }
1974       }
1975     }
1976     break;
1977   }
1978 
1979   case MachineOperand::MO_RegisterMask:
1980     regMasks.push_back(MO->getRegMask());
1981     break;
1982 
1983   case MachineOperand::MO_MachineBasicBlock:
1984     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1985       report("PHI operand is not in the CFG", MO, MONum);
1986     break;
1987 
1988   case MachineOperand::MO_FrameIndex:
1989     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1990         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1991       int FI = MO->getIndex();
1992       LiveInterval &LI = LiveStks->getInterval(FI);
1993       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1994 
1995       bool stores = MI->mayStore();
1996       bool loads = MI->mayLoad();
1997       // For a memory-to-memory move, we need to check if the frame
1998       // index is used for storing or loading, by inspecting the
1999       // memory operands.
2000       if (stores && loads) {
2001         for (auto *MMO : MI->memoperands()) {
2002           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2003           if (PSV == nullptr) continue;
2004           const FixedStackPseudoSourceValue *Value =
2005             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2006           if (Value == nullptr) continue;
2007           if (Value->getFrameIndex() != FI) continue;
2008 
2009           if (MMO->isStore())
2010             loads = false;
2011           else
2012             stores = false;
2013           break;
2014         }
2015         if (loads == stores)
2016           report("Missing fixed stack memoperand.", MI);
2017       }
2018       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2019         report("Instruction loads from dead spill slot", MO, MONum);
2020         errs() << "Live stack: " << LI << '\n';
2021       }
2022       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2023         report("Instruction stores to dead spill slot", MO, MONum);
2024         errs() << "Live stack: " << LI << '\n';
2025       }
2026     }
2027     break;
2028 
2029   default:
2030     break;
2031   }
2032 }
2033 
2034 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2035                                          unsigned MONum, SlotIndex UseIdx,
2036                                          const LiveRange &LR,
2037                                          Register VRegOrUnit,
2038                                          LaneBitmask LaneMask) {
2039   LiveQueryResult LRQ = LR.Query(UseIdx);
2040   // Check if we have a segment at the use, note however that we only need one
2041   // live subregister range, the others may be dead.
2042   if (!LRQ.valueIn() && LaneMask.none()) {
2043     report("No live segment at use", MO, MONum);
2044     report_context_liverange(LR);
2045     report_context_vreg_regunit(VRegOrUnit);
2046     report_context(UseIdx);
2047   }
2048   if (MO->isKill() && !LRQ.isKill()) {
2049     report("Live range continues after kill flag", MO, MONum);
2050     report_context_liverange(LR);
2051     report_context_vreg_regunit(VRegOrUnit);
2052     if (LaneMask.any())
2053       report_context_lanemask(LaneMask);
2054     report_context(UseIdx);
2055   }
2056 }
2057 
2058 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2059                                          unsigned MONum, SlotIndex DefIdx,
2060                                          const LiveRange &LR,
2061                                          Register VRegOrUnit,
2062                                          bool SubRangeCheck,
2063                                          LaneBitmask LaneMask) {
2064   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2065     assert(VNI && "NULL valno is not allowed");
2066     if (VNI->def != DefIdx) {
2067       report("Inconsistent valno->def", MO, MONum);
2068       report_context_liverange(LR);
2069       report_context_vreg_regunit(VRegOrUnit);
2070       if (LaneMask.any())
2071         report_context_lanemask(LaneMask);
2072       report_context(*VNI);
2073       report_context(DefIdx);
2074     }
2075   } else {
2076     report("No live segment at def", MO, MONum);
2077     report_context_liverange(LR);
2078     report_context_vreg_regunit(VRegOrUnit);
2079     if (LaneMask.any())
2080       report_context_lanemask(LaneMask);
2081     report_context(DefIdx);
2082   }
2083   // Check that, if the dead def flag is present, LiveInts agree.
2084   if (MO->isDead()) {
2085     LiveQueryResult LRQ = LR.Query(DefIdx);
2086     if (!LRQ.isDeadDef()) {
2087       assert(Register::isVirtualRegister(VRegOrUnit) &&
2088              "Expecting a virtual register.");
2089       // A dead subreg def only tells us that the specific subreg is dead. There
2090       // could be other non-dead defs of other subregs, or we could have other
2091       // parts of the register being live through the instruction. So unless we
2092       // are checking liveness for a subrange it is ok for the live range to
2093       // continue, given that we have a dead def of a subregister.
2094       if (SubRangeCheck || MO->getSubReg() == 0) {
2095         report("Live range continues after dead def flag", MO, MONum);
2096         report_context_liverange(LR);
2097         report_context_vreg_regunit(VRegOrUnit);
2098         if (LaneMask.any())
2099           report_context_lanemask(LaneMask);
2100       }
2101     }
2102   }
2103 }
2104 
2105 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2106   const MachineInstr *MI = MO->getParent();
2107   const Register Reg = MO->getReg();
2108 
2109   // Both use and def operands can read a register.
2110   if (MO->readsReg()) {
2111     if (MO->isKill())
2112       addRegWithSubRegs(regsKilled, Reg);
2113 
2114     // Check that LiveVars knows this kill.
2115     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2116       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2117       if (!is_contained(VI.Kills, MI))
2118         report("Kill missing from LiveVariables", MO, MONum);
2119     }
2120 
2121     // Check LiveInts liveness and kill.
2122     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2123       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2124       // Check the cached regunit intervals.
2125       if (Reg.isPhysical() && !isReserved(Reg)) {
2126         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2127              ++Units) {
2128           if (MRI->isReservedRegUnit(*Units))
2129             continue;
2130           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2131             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2132         }
2133       }
2134 
2135       if (Register::isVirtualRegister(Reg)) {
2136         if (LiveInts->hasInterval(Reg)) {
2137           // This is a virtual register interval.
2138           const LiveInterval &LI = LiveInts->getInterval(Reg);
2139           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2140 
2141           if (LI.hasSubRanges() && !MO->isDef()) {
2142             unsigned SubRegIdx = MO->getSubReg();
2143             LaneBitmask MOMask = SubRegIdx != 0
2144                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2145                                : MRI->getMaxLaneMaskForVReg(Reg);
2146             LaneBitmask LiveInMask;
2147             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2148               if ((MOMask & SR.LaneMask).none())
2149                 continue;
2150               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2151               LiveQueryResult LRQ = SR.Query(UseIdx);
2152               if (LRQ.valueIn())
2153                 LiveInMask |= SR.LaneMask;
2154             }
2155             // At least parts of the register has to be live at the use.
2156             if ((LiveInMask & MOMask).none()) {
2157               report("No live subrange at use", MO, MONum);
2158               report_context(LI);
2159               report_context(UseIdx);
2160             }
2161           }
2162         } else {
2163           report("Virtual register has no live interval", MO, MONum);
2164         }
2165       }
2166     }
2167 
2168     // Use of a dead register.
2169     if (!regsLive.count(Reg)) {
2170       if (Register::isPhysicalRegister(Reg)) {
2171         // Reserved registers may be used even when 'dead'.
2172         bool Bad = !isReserved(Reg);
2173         // We are fine if just any subregister has a defined value.
2174         if (Bad) {
2175 
2176           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2177             if (regsLive.count(SubReg)) {
2178               Bad = false;
2179               break;
2180             }
2181           }
2182         }
2183         // If there is an additional implicit-use of a super register we stop
2184         // here. By definition we are fine if the super register is not
2185         // (completely) dead, if the complete super register is dead we will
2186         // get a report for its operand.
2187         if (Bad) {
2188           for (const MachineOperand &MOP : MI->uses()) {
2189             if (!MOP.isReg() || !MOP.isImplicit())
2190               continue;
2191 
2192             if (!Register::isPhysicalRegister(MOP.getReg()))
2193               continue;
2194 
2195             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2196               Bad = false;
2197           }
2198         }
2199         if (Bad)
2200           report("Using an undefined physical register", MO, MONum);
2201       } else if (MRI->def_empty(Reg)) {
2202         report("Reading virtual register without a def", MO, MONum);
2203       } else {
2204         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2205         // We don't know which virtual registers are live in, so only complain
2206         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2207         // must be live in. PHI instructions are handled separately.
2208         if (MInfo.regsKilled.count(Reg))
2209           report("Using a killed virtual register", MO, MONum);
2210         else if (!MI->isPHI())
2211           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2212       }
2213     }
2214   }
2215 
2216   if (MO->isDef()) {
2217     // Register defined.
2218     // TODO: verify that earlyclobber ops are not used.
2219     if (MO->isDead())
2220       addRegWithSubRegs(regsDead, Reg);
2221     else
2222       addRegWithSubRegs(regsDefined, Reg);
2223 
2224     // Verify SSA form.
2225     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2226         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2227       report("Multiple virtual register defs in SSA form", MO, MONum);
2228 
2229     // Check LiveInts for a live segment, but only for virtual registers.
2230     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2231       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2232       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2233 
2234       if (Register::isVirtualRegister(Reg)) {
2235         if (LiveInts->hasInterval(Reg)) {
2236           const LiveInterval &LI = LiveInts->getInterval(Reg);
2237           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2238 
2239           if (LI.hasSubRanges()) {
2240             unsigned SubRegIdx = MO->getSubReg();
2241             LaneBitmask MOMask = SubRegIdx != 0
2242               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2243               : MRI->getMaxLaneMaskForVReg(Reg);
2244             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2245               if ((SR.LaneMask & MOMask).none())
2246                 continue;
2247               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2248             }
2249           }
2250         } else {
2251           report("Virtual register has no Live interval", MO, MONum);
2252         }
2253       }
2254     }
2255   }
2256 }
2257 
2258 // This function gets called after visiting all instructions in a bundle. The
2259 // argument points to the bundle header.
2260 // Normal stand-alone instructions are also considered 'bundles', and this
2261 // function is called for all of them.
2262 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2263   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2264   set_union(MInfo.regsKilled, regsKilled);
2265   set_subtract(regsLive, regsKilled); regsKilled.clear();
2266   // Kill any masked registers.
2267   while (!regMasks.empty()) {
2268     const uint32_t *Mask = regMasks.pop_back_val();
2269     for (Register Reg : regsLive)
2270       if (Reg.isPhysical() &&
2271           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2272         regsDead.push_back(Reg);
2273   }
2274   set_subtract(regsLive, regsDead);   regsDead.clear();
2275   set_union(regsLive, regsDefined);   regsDefined.clear();
2276 }
2277 
2278 void
2279 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2280   MBBInfoMap[MBB].regsLiveOut = regsLive;
2281   regsLive.clear();
2282 
2283   if (Indexes) {
2284     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2285     if (!(stop > lastIndex)) {
2286       report("Block ends before last instruction index", MBB);
2287       errs() << "Block ends at " << stop
2288           << " last instruction was at " << lastIndex << '\n';
2289     }
2290     lastIndex = stop;
2291   }
2292 }
2293 
2294 namespace {
2295 // This implements a set of registers that serves as a filter: can filter other
2296 // sets by passing through elements not in the filter and blocking those that
2297 // are. Any filter implicitly includes the full set of physical registers upon
2298 // creation, thus filtering them all out. The filter itself as a set only grows,
2299 // and needs to be as efficient as possible.
2300 struct VRegFilter {
2301   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2302   // no duplicates. Both virtual and physical registers are fine.
2303   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2304     SmallVector<Register, 0> VRegsBuffer;
2305     filterAndAdd(FromRegSet, VRegsBuffer);
2306   }
2307   // Filter \p FromRegSet through the filter and append passed elements into \p
2308   // ToVRegs. All elements appended are then added to the filter itself.
2309   // \returns true if anything changed.
2310   template <typename RegSetT>
2311   bool filterAndAdd(const RegSetT &FromRegSet,
2312                     SmallVectorImpl<Register> &ToVRegs) {
2313     unsigned SparseUniverse = Sparse.size();
2314     unsigned NewSparseUniverse = SparseUniverse;
2315     unsigned NewDenseSize = Dense.size();
2316     size_t Begin = ToVRegs.size();
2317     for (Register Reg : FromRegSet) {
2318       if (!Reg.isVirtual())
2319         continue;
2320       unsigned Index = Register::virtReg2Index(Reg);
2321       if (Index < SparseUniverseMax) {
2322         if (Index < SparseUniverse && Sparse.test(Index))
2323           continue;
2324         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2325       } else {
2326         if (Dense.count(Reg))
2327           continue;
2328         ++NewDenseSize;
2329       }
2330       ToVRegs.push_back(Reg);
2331     }
2332     size_t End = ToVRegs.size();
2333     if (Begin == End)
2334       return false;
2335     // Reserving space in sets once performs better than doing so continuously
2336     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2337     // tuned all the way down) and double iteration (the second one is over a
2338     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2339     Sparse.resize(NewSparseUniverse);
2340     Dense.reserve(NewDenseSize);
2341     for (unsigned I = Begin; I < End; ++I) {
2342       Register Reg = ToVRegs[I];
2343       unsigned Index = Register::virtReg2Index(Reg);
2344       if (Index < SparseUniverseMax)
2345         Sparse.set(Index);
2346       else
2347         Dense.insert(Reg);
2348     }
2349     return true;
2350   }
2351 
2352 private:
2353   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2354   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2355   // are tracked by Dense. The only purpose of the threashold and the Dense set
2356   // is to have a reasonably growing memory usage in pathological cases (large
2357   // number of very sparse VRegFilter instances live at the same time). In
2358   // practice even in the worst-by-execution time cases having all elements
2359   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2360   // space efficient than if tracked by Dense. The threashold is set to keep the
2361   // worst-case memory usage within 2x of figures determined empirically for
2362   // "all Dense" scenario in such worst-by-execution-time cases.
2363   BitVector Sparse;
2364   DenseSet<unsigned> Dense;
2365 };
2366 
2367 // Implements both a transfer function and a (binary, in-place) join operator
2368 // for a dataflow over register sets with set union join and filtering transfer
2369 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2370 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2371 // time, where n is the size of the set (as opposed to O(U) where U is the
2372 // universe). filter_b implicitly contains all physical registers at all times.
2373 class FilteringVRegSet {
2374   VRegFilter Filter;
2375   SmallVector<Register, 0> VRegs;
2376 
2377 public:
2378   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2379   // Both virtual and physical registers are fine.
2380   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2381     Filter.add(RS);
2382   }
2383   // Passes \p RS through the filter_b (transfer function) and adds what's left
2384   // to itself (out_b).
2385   template <typename RegSetT> bool add(const RegSetT &RS) {
2386     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2387     // a set union) just add everything being added here to the Filter as well.
2388     return Filter.filterAndAdd(RS, VRegs);
2389   }
2390   using const_iterator = decltype(VRegs)::const_iterator;
2391   const_iterator begin() const { return VRegs.begin(); }
2392   const_iterator end() const { return VRegs.end(); }
2393   size_t size() const { return VRegs.size(); }
2394 };
2395 } // namespace
2396 
2397 // Calculate the largest possible vregsPassed sets. These are the registers that
2398 // can pass through an MBB live, but may not be live every time. It is assumed
2399 // that all vregsPassed sets are empty before the call.
2400 void MachineVerifier::calcRegsPassed() {
2401   if (MF->empty())
2402     // ReversePostOrderTraversal doesn't handle empty functions.
2403     return;
2404 
2405   for (const MachineBasicBlock *MB :
2406        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2407     FilteringVRegSet VRegs;
2408     BBInfo &Info = MBBInfoMap[MB];
2409     assert(Info.reachable);
2410 
2411     VRegs.addToFilter(Info.regsKilled);
2412     VRegs.addToFilter(Info.regsLiveOut);
2413     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2414       const BBInfo &PredInfo = MBBInfoMap[Pred];
2415       if (!PredInfo.reachable)
2416         continue;
2417 
2418       VRegs.add(PredInfo.regsLiveOut);
2419       VRegs.add(PredInfo.vregsPassed);
2420     }
2421     Info.vregsPassed.reserve(VRegs.size());
2422     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2423   }
2424 }
2425 
2426 // Calculate the set of virtual registers that must be passed through each basic
2427 // block in order to satisfy the requirements of successor blocks. This is very
2428 // similar to calcRegsPassed, only backwards.
2429 void MachineVerifier::calcRegsRequired() {
2430   // First push live-in regs to predecessors' vregsRequired.
2431   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2432   for (const auto &MBB : *MF) {
2433     BBInfo &MInfo = MBBInfoMap[&MBB];
2434     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2435       BBInfo &PInfo = MBBInfoMap[Pred];
2436       if (PInfo.addRequired(MInfo.vregsLiveIn))
2437         todo.insert(Pred);
2438     }
2439 
2440     // Handle the PHI node.
2441     for (const MachineInstr &MI : MBB.phis()) {
2442       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2443         // Skip those Operands which are undef regs or not regs.
2444         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2445           continue;
2446 
2447         // Get register and predecessor for one PHI edge.
2448         Register Reg = MI.getOperand(i).getReg();
2449         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2450 
2451         BBInfo &PInfo = MBBInfoMap[Pred];
2452         if (PInfo.addRequired(Reg))
2453           todo.insert(Pred);
2454       }
2455     }
2456   }
2457 
2458   // Iteratively push vregsRequired to predecessors. This will converge to the
2459   // same final state regardless of DenseSet iteration order.
2460   while (!todo.empty()) {
2461     const MachineBasicBlock *MBB = *todo.begin();
2462     todo.erase(MBB);
2463     BBInfo &MInfo = MBBInfoMap[MBB];
2464     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2465       if (Pred == MBB)
2466         continue;
2467       BBInfo &SInfo = MBBInfoMap[Pred];
2468       if (SInfo.addRequired(MInfo.vregsRequired))
2469         todo.insert(Pred);
2470     }
2471   }
2472 }
2473 
2474 // Check PHI instructions at the beginning of MBB. It is assumed that
2475 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2476 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2477   BBInfo &MInfo = MBBInfoMap[&MBB];
2478 
2479   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2480   for (const MachineInstr &Phi : MBB) {
2481     if (!Phi.isPHI())
2482       break;
2483     seen.clear();
2484 
2485     const MachineOperand &MODef = Phi.getOperand(0);
2486     if (!MODef.isReg() || !MODef.isDef()) {
2487       report("Expected first PHI operand to be a register def", &MODef, 0);
2488       continue;
2489     }
2490     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2491         MODef.isEarlyClobber() || MODef.isDebug())
2492       report("Unexpected flag on PHI operand", &MODef, 0);
2493     Register DefReg = MODef.getReg();
2494     if (!Register::isVirtualRegister(DefReg))
2495       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2496 
2497     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2498       const MachineOperand &MO0 = Phi.getOperand(I);
2499       if (!MO0.isReg()) {
2500         report("Expected PHI operand to be a register", &MO0, I);
2501         continue;
2502       }
2503       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2504           MO0.isDebug() || MO0.isTied())
2505         report("Unexpected flag on PHI operand", &MO0, I);
2506 
2507       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2508       if (!MO1.isMBB()) {
2509         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2510         continue;
2511       }
2512 
2513       const MachineBasicBlock &Pre = *MO1.getMBB();
2514       if (!Pre.isSuccessor(&MBB)) {
2515         report("PHI input is not a predecessor block", &MO1, I + 1);
2516         continue;
2517       }
2518 
2519       if (MInfo.reachable) {
2520         seen.insert(&Pre);
2521         BBInfo &PrInfo = MBBInfoMap[&Pre];
2522         if (!MO0.isUndef() && PrInfo.reachable &&
2523             !PrInfo.isLiveOut(MO0.getReg()))
2524           report("PHI operand is not live-out from predecessor", &MO0, I);
2525       }
2526     }
2527 
2528     // Did we see all predecessors?
2529     if (MInfo.reachable) {
2530       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2531         if (!seen.count(Pred)) {
2532           report("Missing PHI operand", &Phi);
2533           errs() << printMBBReference(*Pred)
2534                  << " is a predecessor according to the CFG.\n";
2535         }
2536       }
2537     }
2538   }
2539 }
2540 
2541 void MachineVerifier::visitMachineFunctionAfter() {
2542   calcRegsPassed();
2543 
2544   for (const MachineBasicBlock &MBB : *MF)
2545     checkPHIOps(MBB);
2546 
2547   // Now check liveness info if available
2548   calcRegsRequired();
2549 
2550   // Check for killed virtual registers that should be live out.
2551   for (const auto &MBB : *MF) {
2552     BBInfo &MInfo = MBBInfoMap[&MBB];
2553     for (Register VReg : MInfo.vregsRequired)
2554       if (MInfo.regsKilled.count(VReg)) {
2555         report("Virtual register killed in block, but needed live out.", &MBB);
2556         errs() << "Virtual register " << printReg(VReg)
2557                << " is used after the block.\n";
2558       }
2559   }
2560 
2561   if (!MF->empty()) {
2562     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2563     for (Register VReg : MInfo.vregsRequired) {
2564       report("Virtual register defs don't dominate all uses.", MF);
2565       report_context_vreg(VReg);
2566     }
2567   }
2568 
2569   if (LiveVars)
2570     verifyLiveVariables();
2571   if (LiveInts)
2572     verifyLiveIntervals();
2573 
2574   // Check live-in list of each MBB. If a register is live into MBB, check
2575   // that the register is in regsLiveOut of each predecessor block. Since
2576   // this must come from a definition in the predecesssor or its live-in
2577   // list, this will catch a live-through case where the predecessor does not
2578   // have the register in its live-in list.  This currently only checks
2579   // registers that have no aliases, are not allocatable and are not
2580   // reserved, which could mean a condition code register for instance.
2581   if (MRI->tracksLiveness())
2582     for (const auto &MBB : *MF)
2583       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2584         MCPhysReg LiveInReg = P.PhysReg;
2585         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2586         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2587           continue;
2588         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2589           BBInfo &PInfo = MBBInfoMap[Pred];
2590           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2591             report("Live in register not found to be live out from predecessor.",
2592                    &MBB);
2593             errs() << TRI->getName(LiveInReg)
2594                    << " not found to be live out from "
2595                    << printMBBReference(*Pred) << "\n";
2596           }
2597         }
2598       }
2599 
2600   for (auto CSInfo : MF->getCallSitesInfo())
2601     if (!CSInfo.first->isCall())
2602       report("Call site info referencing instruction that is not call", MF);
2603 
2604   // If there's debug-info, check that we don't have any duplicate value
2605   // tracking numbers.
2606   if (MF->getFunction().getSubprogram()) {
2607     DenseSet<unsigned> SeenNumbers;
2608     for (auto &MBB : *MF) {
2609       for (auto &MI : MBB) {
2610         if (auto Num = MI.peekDebugInstrNum()) {
2611           auto Result = SeenNumbers.insert((unsigned)Num);
2612           if (!Result.second)
2613             report("Instruction has a duplicated value tracking number", &MI);
2614         }
2615       }
2616     }
2617   }
2618 }
2619 
2620 void MachineVerifier::verifyLiveVariables() {
2621   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2622   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2623     Register Reg = Register::index2VirtReg(I);
2624     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2625     for (const auto &MBB : *MF) {
2626       BBInfo &MInfo = MBBInfoMap[&MBB];
2627 
2628       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2629       if (MInfo.vregsRequired.count(Reg)) {
2630         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2631           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2632           errs() << "Virtual register " << printReg(Reg)
2633                  << " must be live through the block.\n";
2634         }
2635       } else {
2636         if (VI.AliveBlocks.test(MBB.getNumber())) {
2637           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2638           errs() << "Virtual register " << printReg(Reg)
2639                  << " is not needed live through the block.\n";
2640         }
2641       }
2642     }
2643   }
2644 }
2645 
2646 void MachineVerifier::verifyLiveIntervals() {
2647   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2648   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2649     Register Reg = Register::index2VirtReg(I);
2650 
2651     // Spilling and splitting may leave unused registers around. Skip them.
2652     if (MRI->reg_nodbg_empty(Reg))
2653       continue;
2654 
2655     if (!LiveInts->hasInterval(Reg)) {
2656       report("Missing live interval for virtual register", MF);
2657       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2658       continue;
2659     }
2660 
2661     const LiveInterval &LI = LiveInts->getInterval(Reg);
2662     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2663     verifyLiveInterval(LI);
2664   }
2665 
2666   // Verify all the cached regunit intervals.
2667   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2668     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2669       verifyLiveRange(*LR, i);
2670 }
2671 
2672 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2673                                            const VNInfo *VNI, Register Reg,
2674                                            LaneBitmask LaneMask) {
2675   if (VNI->isUnused())
2676     return;
2677 
2678   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2679 
2680   if (!DefVNI) {
2681     report("Value not live at VNInfo def and not marked unused", MF);
2682     report_context(LR, Reg, LaneMask);
2683     report_context(*VNI);
2684     return;
2685   }
2686 
2687   if (DefVNI != VNI) {
2688     report("Live segment at def has different VNInfo", MF);
2689     report_context(LR, Reg, LaneMask);
2690     report_context(*VNI);
2691     return;
2692   }
2693 
2694   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2695   if (!MBB) {
2696     report("Invalid VNInfo definition index", MF);
2697     report_context(LR, Reg, LaneMask);
2698     report_context(*VNI);
2699     return;
2700   }
2701 
2702   if (VNI->isPHIDef()) {
2703     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2704       report("PHIDef VNInfo is not defined at MBB start", MBB);
2705       report_context(LR, Reg, LaneMask);
2706       report_context(*VNI);
2707     }
2708     return;
2709   }
2710 
2711   // Non-PHI def.
2712   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2713   if (!MI) {
2714     report("No instruction at VNInfo def index", MBB);
2715     report_context(LR, Reg, LaneMask);
2716     report_context(*VNI);
2717     return;
2718   }
2719 
2720   if (Reg != 0) {
2721     bool hasDef = false;
2722     bool isEarlyClobber = false;
2723     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2724       if (!MOI->isReg() || !MOI->isDef())
2725         continue;
2726       if (Register::isVirtualRegister(Reg)) {
2727         if (MOI->getReg() != Reg)
2728           continue;
2729       } else {
2730         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2731             !TRI->hasRegUnit(MOI->getReg(), Reg))
2732           continue;
2733       }
2734       if (LaneMask.any() &&
2735           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2736         continue;
2737       hasDef = true;
2738       if (MOI->isEarlyClobber())
2739         isEarlyClobber = true;
2740     }
2741 
2742     if (!hasDef) {
2743       report("Defining instruction does not modify register", MI);
2744       report_context(LR, Reg, LaneMask);
2745       report_context(*VNI);
2746     }
2747 
2748     // Early clobber defs begin at USE slots, but other defs must begin at
2749     // DEF slots.
2750     if (isEarlyClobber) {
2751       if (!VNI->def.isEarlyClobber()) {
2752         report("Early clobber def must be at an early-clobber slot", MBB);
2753         report_context(LR, Reg, LaneMask);
2754         report_context(*VNI);
2755       }
2756     } else if (!VNI->def.isRegister()) {
2757       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2758       report_context(LR, Reg, LaneMask);
2759       report_context(*VNI);
2760     }
2761   }
2762 }
2763 
2764 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2765                                              const LiveRange::const_iterator I,
2766                                              Register Reg,
2767                                              LaneBitmask LaneMask) {
2768   const LiveRange::Segment &S = *I;
2769   const VNInfo *VNI = S.valno;
2770   assert(VNI && "Live segment has no valno");
2771 
2772   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2773     report("Foreign valno in live segment", MF);
2774     report_context(LR, Reg, LaneMask);
2775     report_context(S);
2776     report_context(*VNI);
2777   }
2778 
2779   if (VNI->isUnused()) {
2780     report("Live segment valno is marked unused", MF);
2781     report_context(LR, Reg, LaneMask);
2782     report_context(S);
2783   }
2784 
2785   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2786   if (!MBB) {
2787     report("Bad start of live segment, no basic block", MF);
2788     report_context(LR, Reg, LaneMask);
2789     report_context(S);
2790     return;
2791   }
2792   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2793   if (S.start != MBBStartIdx && S.start != VNI->def) {
2794     report("Live segment must begin at MBB entry or valno def", MBB);
2795     report_context(LR, Reg, LaneMask);
2796     report_context(S);
2797   }
2798 
2799   const MachineBasicBlock *EndMBB =
2800     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2801   if (!EndMBB) {
2802     report("Bad end of live segment, no basic block", MF);
2803     report_context(LR, Reg, LaneMask);
2804     report_context(S);
2805     return;
2806   }
2807 
2808   // No more checks for live-out segments.
2809   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2810     return;
2811 
2812   // RegUnit intervals are allowed dead phis.
2813   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2814       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2815     return;
2816 
2817   // The live segment is ending inside EndMBB
2818   const MachineInstr *MI =
2819     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2820   if (!MI) {
2821     report("Live segment doesn't end at a valid instruction", EndMBB);
2822     report_context(LR, Reg, LaneMask);
2823     report_context(S);
2824     return;
2825   }
2826 
2827   // The block slot must refer to a basic block boundary.
2828   if (S.end.isBlock()) {
2829     report("Live segment ends at B slot of an instruction", EndMBB);
2830     report_context(LR, Reg, LaneMask);
2831     report_context(S);
2832   }
2833 
2834   if (S.end.isDead()) {
2835     // Segment ends on the dead slot.
2836     // That means there must be a dead def.
2837     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2838       report("Live segment ending at dead slot spans instructions", EndMBB);
2839       report_context(LR, Reg, LaneMask);
2840       report_context(S);
2841     }
2842   }
2843 
2844   // A live segment can only end at an early-clobber slot if it is being
2845   // redefined by an early-clobber def.
2846   if (S.end.isEarlyClobber()) {
2847     if (I+1 == LR.end() || (I+1)->start != S.end) {
2848       report("Live segment ending at early clobber slot must be "
2849              "redefined by an EC def in the same instruction", EndMBB);
2850       report_context(LR, Reg, LaneMask);
2851       report_context(S);
2852     }
2853   }
2854 
2855   // The following checks only apply to virtual registers. Physreg liveness
2856   // is too weird to check.
2857   if (Register::isVirtualRegister(Reg)) {
2858     // A live segment can end with either a redefinition, a kill flag on a
2859     // use, or a dead flag on a def.
2860     bool hasRead = false;
2861     bool hasSubRegDef = false;
2862     bool hasDeadDef = false;
2863     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2864       if (!MOI->isReg() || MOI->getReg() != Reg)
2865         continue;
2866       unsigned Sub = MOI->getSubReg();
2867       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2868                                  : LaneBitmask::getAll();
2869       if (MOI->isDef()) {
2870         if (Sub != 0) {
2871           hasSubRegDef = true;
2872           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2873           // mask for subregister defs. Read-undef defs will be handled by
2874           // readsReg below.
2875           SLM = ~SLM;
2876         }
2877         if (MOI->isDead())
2878           hasDeadDef = true;
2879       }
2880       if (LaneMask.any() && (LaneMask & SLM).none())
2881         continue;
2882       if (MOI->readsReg())
2883         hasRead = true;
2884     }
2885     if (S.end.isDead()) {
2886       // Make sure that the corresponding machine operand for a "dead" live
2887       // range has the dead flag. We cannot perform this check for subregister
2888       // liveranges as partially dead values are allowed.
2889       if (LaneMask.none() && !hasDeadDef) {
2890         report("Instruction ending live segment on dead slot has no dead flag",
2891                MI);
2892         report_context(LR, Reg, LaneMask);
2893         report_context(S);
2894       }
2895     } else {
2896       if (!hasRead) {
2897         // When tracking subregister liveness, the main range must start new
2898         // values on partial register writes, even if there is no read.
2899         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2900             !hasSubRegDef) {
2901           report("Instruction ending live segment doesn't read the register",
2902                  MI);
2903           report_context(LR, Reg, LaneMask);
2904           report_context(S);
2905         }
2906       }
2907     }
2908   }
2909 
2910   // Now check all the basic blocks in this live segment.
2911   MachineFunction::const_iterator MFI = MBB->getIterator();
2912   // Is this live segment the beginning of a non-PHIDef VN?
2913   if (S.start == VNI->def && !VNI->isPHIDef()) {
2914     // Not live-in to any blocks.
2915     if (MBB == EndMBB)
2916       return;
2917     // Skip this block.
2918     ++MFI;
2919   }
2920 
2921   SmallVector<SlotIndex, 4> Undefs;
2922   if (LaneMask.any()) {
2923     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2924     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2925   }
2926 
2927   while (true) {
2928     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2929     // We don't know how to track physregs into a landing pad.
2930     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2931       if (&*MFI == EndMBB)
2932         break;
2933       ++MFI;
2934       continue;
2935     }
2936 
2937     // Is VNI a PHI-def in the current block?
2938     bool IsPHI = VNI->isPHIDef() &&
2939       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2940 
2941     // Check that VNI is live-out of all predecessors.
2942     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2943       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2944       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2945 
2946       // All predecessors must have a live-out value. However for a phi
2947       // instruction with subregister intervals
2948       // only one of the subregisters (not necessarily the current one) needs to
2949       // be defined.
2950       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2951         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2952           continue;
2953         report("Register not marked live out of predecessor", Pred);
2954         report_context(LR, Reg, LaneMask);
2955         report_context(*VNI);
2956         errs() << " live into " << printMBBReference(*MFI) << '@'
2957                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2958                << PEnd << '\n';
2959         continue;
2960       }
2961 
2962       // Only PHI-defs can take different predecessor values.
2963       if (!IsPHI && PVNI != VNI) {
2964         report("Different value live out of predecessor", Pred);
2965         report_context(LR, Reg, LaneMask);
2966         errs() << "Valno #" << PVNI->id << " live out of "
2967                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2968                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2969                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2970       }
2971     }
2972     if (&*MFI == EndMBB)
2973       break;
2974     ++MFI;
2975   }
2976 }
2977 
2978 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
2979                                       LaneBitmask LaneMask) {
2980   for (const VNInfo *VNI : LR.valnos)
2981     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2982 
2983   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2984     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2985 }
2986 
2987 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2988   Register Reg = LI.reg();
2989   assert(Register::isVirtualRegister(Reg));
2990   verifyLiveRange(LI, Reg);
2991 
2992   LaneBitmask Mask;
2993   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2994   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2995     if ((Mask & SR.LaneMask).any()) {
2996       report("Lane masks of sub ranges overlap in live interval", MF);
2997       report_context(LI);
2998     }
2999     if ((SR.LaneMask & ~MaxMask).any()) {
3000       report("Subrange lanemask is invalid", MF);
3001       report_context(LI);
3002     }
3003     if (SR.empty()) {
3004       report("Subrange must not be empty", MF);
3005       report_context(SR, LI.reg(), SR.LaneMask);
3006     }
3007     Mask |= SR.LaneMask;
3008     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3009     if (!LI.covers(SR)) {
3010       report("A Subrange is not covered by the main range", MF);
3011       report_context(LI);
3012     }
3013   }
3014 
3015   // Check the LI only has one connected component.
3016   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3017   unsigned NumComp = ConEQ.Classify(LI);
3018   if (NumComp > 1) {
3019     report("Multiple connected components in live interval", MF);
3020     report_context(LI);
3021     for (unsigned comp = 0; comp != NumComp; ++comp) {
3022       errs() << comp << ": valnos";
3023       for (const VNInfo *I : LI.valnos)
3024         if (comp == ConEQ.getEqClass(I))
3025           errs() << ' ' << I->id;
3026       errs() << '\n';
3027     }
3028   }
3029 }
3030 
3031 namespace {
3032 
3033   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3034   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3035   // value is zero.
3036   // We use a bool plus an integer to capture the stack state.
3037   struct StackStateOfBB {
3038     StackStateOfBB() = default;
3039     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3040       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3041       ExitIsSetup(ExitSetup) {}
3042 
3043     // Can be negative, which means we are setting up a frame.
3044     int EntryValue = 0;
3045     int ExitValue = 0;
3046     bool EntryIsSetup = false;
3047     bool ExitIsSetup = false;
3048   };
3049 
3050 } // end anonymous namespace
3051 
3052 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3053 /// by a FrameDestroy <n>, stack adjustments are identical on all
3054 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3055 void MachineVerifier::verifyStackFrame() {
3056   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3057   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3058   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3059     return;
3060 
3061   SmallVector<StackStateOfBB, 8> SPState;
3062   SPState.resize(MF->getNumBlockIDs());
3063   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3064 
3065   // Visit the MBBs in DFS order.
3066   for (df_ext_iterator<const MachineFunction *,
3067                        df_iterator_default_set<const MachineBasicBlock *>>
3068        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3069        DFI != DFE; ++DFI) {
3070     const MachineBasicBlock *MBB = *DFI;
3071 
3072     StackStateOfBB BBState;
3073     // Check the exit state of the DFS stack predecessor.
3074     if (DFI.getPathLength() >= 2) {
3075       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3076       assert(Reachable.count(StackPred) &&
3077              "DFS stack predecessor is already visited.\n");
3078       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3079       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3080       BBState.ExitValue = BBState.EntryValue;
3081       BBState.ExitIsSetup = BBState.EntryIsSetup;
3082     }
3083 
3084     // Update stack state by checking contents of MBB.
3085     for (const auto &I : *MBB) {
3086       if (I.getOpcode() == FrameSetupOpcode) {
3087         if (BBState.ExitIsSetup)
3088           report("FrameSetup is after another FrameSetup", &I);
3089         BBState.ExitValue -= TII->getFrameTotalSize(I);
3090         BBState.ExitIsSetup = true;
3091       }
3092 
3093       if (I.getOpcode() == FrameDestroyOpcode) {
3094         int Size = TII->getFrameTotalSize(I);
3095         if (!BBState.ExitIsSetup)
3096           report("FrameDestroy is not after a FrameSetup", &I);
3097         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3098                                                BBState.ExitValue;
3099         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3100           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3101           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3102               << AbsSPAdj << ">.\n";
3103         }
3104         BBState.ExitValue += Size;
3105         BBState.ExitIsSetup = false;
3106       }
3107     }
3108     SPState[MBB->getNumber()] = BBState;
3109 
3110     // Make sure the exit state of any predecessor is consistent with the entry
3111     // state.
3112     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3113       if (Reachable.count(Pred) &&
3114           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3115            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3116         report("The exit stack state of a predecessor is inconsistent.", MBB);
3117         errs() << "Predecessor " << printMBBReference(*Pred)
3118                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3119                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3120                << printMBBReference(*MBB) << " has entry state ("
3121                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3122       }
3123     }
3124 
3125     // Make sure the entry state of any successor is consistent with the exit
3126     // state.
3127     for (const MachineBasicBlock *Succ : MBB->successors()) {
3128       if (Reachable.count(Succ) &&
3129           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3130            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3131         report("The entry stack state of a successor is inconsistent.", MBB);
3132         errs() << "Successor " << printMBBReference(*Succ)
3133                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3134                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3135                << printMBBReference(*MBB) << " has exit state ("
3136                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3137       }
3138     }
3139 
3140     // Make sure a basic block with return ends with zero stack adjustment.
3141     if (!MBB->empty() && MBB->back().isReturn()) {
3142       if (BBState.ExitIsSetup)
3143         report("A return block ends with a FrameSetup.", MBB);
3144       if (BBState.ExitValue)
3145         report("A return block ends with a nonzero stack adjustment.", MBB);
3146     }
3147   }
3148 }
3149