1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/MachineTraceMetrics.h" 11 #include "llvm/ADT/PostOrderIterator.h" 12 #include "llvm/ADT/SparseSet.h" 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 15 #include "llvm/CodeGen/MachineLoopInfo.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/MC/MCSubtargetInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/Format.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "machine-trace-metrics" 29 30 char MachineTraceMetrics::ID = 0; 31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 32 33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 34 "machine-trace-metrics", "Machine Trace Metrics", false, true) 35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 37 INITIALIZE_PASS_END(MachineTraceMetrics, 38 "machine-trace-metrics", "Machine Trace Metrics", false, true) 39 40 MachineTraceMetrics::MachineTraceMetrics() 41 : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr), 42 MRI(nullptr), Loops(nullptr) { 43 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 44 } 45 46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.setPreservesAll(); 48 AU.addRequired<MachineBranchProbabilityInfo>(); 49 AU.addRequired<MachineLoopInfo>(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51 } 52 53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 54 MF = &Func; 55 const TargetSubtargetInfo &ST = MF->getSubtarget(); 56 TII = ST.getInstrInfo(); 57 TRI = ST.getRegisterInfo(); 58 MRI = &MF->getRegInfo(); 59 Loops = &getAnalysis<MachineLoopInfo>(); 60 SchedModel.init(ST.getSchedModel(), &ST, TII); 61 BlockInfo.resize(MF->getNumBlockIDs()); 62 ProcResourceCycles.resize(MF->getNumBlockIDs() * 63 SchedModel.getNumProcResourceKinds()); 64 return false; 65 } 66 67 void MachineTraceMetrics::releaseMemory() { 68 MF = nullptr; 69 BlockInfo.clear(); 70 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 71 delete Ensembles[i]; 72 Ensembles[i] = nullptr; 73 } 74 } 75 76 //===----------------------------------------------------------------------===// 77 // Fixed block information 78 //===----------------------------------------------------------------------===// 79 // 80 // The number of instructions in a basic block and the CPU resources used by 81 // those instructions don't depend on any given trace strategy. 82 83 /// Compute the resource usage in basic block MBB. 84 const MachineTraceMetrics::FixedBlockInfo* 85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 86 assert(MBB && "No basic block"); 87 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 88 if (FBI->hasResources()) 89 return FBI; 90 91 // Compute resource usage in the block. 92 FBI->HasCalls = false; 93 unsigned InstrCount = 0; 94 95 // Add up per-processor resource cycles as well. 96 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 97 SmallVector<unsigned, 32> PRCycles(PRKinds); 98 99 for (const auto &MI : *MBB) { 100 if (MI.isTransient()) 101 continue; 102 ++InstrCount; 103 if (MI.isCall()) 104 FBI->HasCalls = true; 105 106 // Count processor resources used. 107 if (!SchedModel.hasInstrSchedModel()) 108 continue; 109 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 110 if (!SC->isValid()) 111 continue; 112 113 for (TargetSchedModel::ProcResIter 114 PI = SchedModel.getWriteProcResBegin(SC), 115 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 116 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 117 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 118 } 119 } 120 FBI->InstrCount = InstrCount; 121 122 // Scale the resource cycles so they are comparable. 123 unsigned PROffset = MBB->getNumber() * PRKinds; 124 for (unsigned K = 0; K != PRKinds; ++K) 125 ProcResourceCycles[PROffset + K] = 126 PRCycles[K] * SchedModel.getResourceFactor(K); 127 128 return FBI; 129 } 130 131 ArrayRef<unsigned> 132 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 133 assert(BlockInfo[MBBNum].hasResources() && 134 "getResources() must be called before getProcResourceCycles()"); 135 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 136 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 137 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 138 } 139 140 141 //===----------------------------------------------------------------------===// 142 // Ensemble utility functions 143 //===----------------------------------------------------------------------===// 144 145 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 146 : MTM(*ct) { 147 BlockInfo.resize(MTM.BlockInfo.size()); 148 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 149 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 150 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 151 } 152 153 // Virtual destructor serves as an anchor. 154 MachineTraceMetrics::Ensemble::~Ensemble() {} 155 156 const MachineLoop* 157 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 158 return MTM.Loops->getLoopFor(MBB); 159 } 160 161 // Update resource-related information in the TraceBlockInfo for MBB. 162 // Only update resources related to the trace above MBB. 163 void MachineTraceMetrics::Ensemble:: 164 computeDepthResources(const MachineBasicBlock *MBB) { 165 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 166 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 167 unsigned PROffset = MBB->getNumber() * PRKinds; 168 169 // Compute resources from trace above. The top block is simple. 170 if (!TBI->Pred) { 171 TBI->InstrDepth = 0; 172 TBI->Head = MBB->getNumber(); 173 std::fill(ProcResourceDepths.begin() + PROffset, 174 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 175 return; 176 } 177 178 // Compute from the block above. A post-order traversal ensures the 179 // predecessor is always computed first. 180 unsigned PredNum = TBI->Pred->getNumber(); 181 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 182 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 183 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 184 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 185 TBI->Head = PredTBI->Head; 186 187 // Compute per-resource depths. 188 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 189 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 190 for (unsigned K = 0; K != PRKinds; ++K) 191 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 192 } 193 194 // Update resource-related information in the TraceBlockInfo for MBB. 195 // Only update resources related to the trace below MBB. 196 void MachineTraceMetrics::Ensemble:: 197 computeHeightResources(const MachineBasicBlock *MBB) { 198 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 199 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 200 unsigned PROffset = MBB->getNumber() * PRKinds; 201 202 // Compute resources for the current block. 203 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 204 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 205 206 // The trace tail is done. 207 if (!TBI->Succ) { 208 TBI->Tail = MBB->getNumber(); 209 std::copy(PRCycles.begin(), PRCycles.end(), 210 ProcResourceHeights.begin() + PROffset); 211 return; 212 } 213 214 // Compute from the block below. A post-order traversal ensures the 215 // predecessor is always computed first. 216 unsigned SuccNum = TBI->Succ->getNumber(); 217 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 218 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 219 TBI->InstrHeight += SuccTBI->InstrHeight; 220 TBI->Tail = SuccTBI->Tail; 221 222 // Compute per-resource heights. 223 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 224 for (unsigned K = 0; K != PRKinds; ++K) 225 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 226 } 227 228 // Check if depth resources for MBB are valid and return the TBI. 229 // Return NULL if the resources have been invalidated. 230 const MachineTraceMetrics::TraceBlockInfo* 231 MachineTraceMetrics::Ensemble:: 232 getDepthResources(const MachineBasicBlock *MBB) const { 233 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 234 return TBI->hasValidDepth() ? TBI : nullptr; 235 } 236 237 // Check if height resources for MBB are valid and return the TBI. 238 // Return NULL if the resources have been invalidated. 239 const MachineTraceMetrics::TraceBlockInfo* 240 MachineTraceMetrics::Ensemble:: 241 getHeightResources(const MachineBasicBlock *MBB) const { 242 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 243 return TBI->hasValidHeight() ? TBI : nullptr; 244 } 245 246 /// Get an array of processor resource depths for MBB. Indexed by processor 247 /// resource kind, this array contains the scaled processor resources consumed 248 /// by all blocks preceding MBB in its trace. It does not include instructions 249 /// in MBB. 250 /// 251 /// Compare TraceBlockInfo::InstrDepth. 252 ArrayRef<unsigned> 253 MachineTraceMetrics::Ensemble:: 254 getProcResourceDepths(unsigned MBBNum) const { 255 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 256 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 257 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 258 } 259 260 /// Get an array of processor resource heights for MBB. Indexed by processor 261 /// resource kind, this array contains the scaled processor resources consumed 262 /// by this block and all blocks following it in its trace. 263 /// 264 /// Compare TraceBlockInfo::InstrHeight. 265 ArrayRef<unsigned> 266 MachineTraceMetrics::Ensemble:: 267 getProcResourceHeights(unsigned MBBNum) const { 268 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 269 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 270 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 271 } 272 273 //===----------------------------------------------------------------------===// 274 // Trace Selection Strategies 275 //===----------------------------------------------------------------------===// 276 // 277 // A trace selection strategy is implemented as a sub-class of Ensemble. The 278 // trace through a block B is computed by two DFS traversals of the CFG 279 // starting from B. One upwards, and one downwards. During the upwards DFS, 280 // pickTracePred() is called on the post-ordered blocks. During the downwards 281 // DFS, pickTraceSucc() is called in a post-order. 282 // 283 284 // We never allow traces that leave loops, but we do allow traces to enter 285 // nested loops. We also never allow traces to contain back-edges. 286 // 287 // This means that a loop header can never appear above the center block of a 288 // trace, except as the trace head. Below the center block, loop exiting edges 289 // are banned. 290 // 291 // Return true if an edge from the From loop to the To loop is leaving a loop. 292 // Either of To and From can be null. 293 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 294 return From && !From->contains(To); 295 } 296 297 // MinInstrCountEnsemble - Pick the trace that executes the least number of 298 // instructions. 299 namespace { 300 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 301 const char *getName() const override { return "MinInstr"; } 302 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 303 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 304 305 public: 306 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 307 : MachineTraceMetrics::Ensemble(mtm) {} 308 }; 309 } 310 311 // Select the preferred predecessor for MBB. 312 const MachineBasicBlock* 313 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 314 if (MBB->pred_empty()) 315 return nullptr; 316 const MachineLoop *CurLoop = getLoopFor(MBB); 317 // Don't leave loops, and never follow back-edges. 318 if (CurLoop && MBB == CurLoop->getHeader()) 319 return nullptr; 320 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 321 const MachineBasicBlock *Best = nullptr; 322 unsigned BestDepth = 0; 323 for (MachineBasicBlock::const_pred_iterator 324 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 325 const MachineBasicBlock *Pred = *I; 326 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 327 getDepthResources(Pred); 328 // Ignore cycles that aren't natural loops. 329 if (!PredTBI) 330 continue; 331 // Pick the predecessor that would give this block the smallest InstrDepth. 332 unsigned Depth = PredTBI->InstrDepth + CurCount; 333 if (!Best || Depth < BestDepth) 334 Best = Pred, BestDepth = Depth; 335 } 336 return Best; 337 } 338 339 // Select the preferred successor for MBB. 340 const MachineBasicBlock* 341 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 342 if (MBB->pred_empty()) 343 return nullptr; 344 const MachineLoop *CurLoop = getLoopFor(MBB); 345 const MachineBasicBlock *Best = nullptr; 346 unsigned BestHeight = 0; 347 for (MachineBasicBlock::const_succ_iterator 348 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 349 const MachineBasicBlock *Succ = *I; 350 // Don't consider back-edges. 351 if (CurLoop && Succ == CurLoop->getHeader()) 352 continue; 353 // Don't consider successors exiting CurLoop. 354 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 355 continue; 356 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 357 getHeightResources(Succ); 358 // Ignore cycles that aren't natural loops. 359 if (!SuccTBI) 360 continue; 361 // Pick the successor that would give this block the smallest InstrHeight. 362 unsigned Height = SuccTBI->InstrHeight; 363 if (!Best || Height < BestHeight) 364 Best = Succ, BestHeight = Height; 365 } 366 return Best; 367 } 368 369 // Get an Ensemble sub-class for the requested trace strategy. 370 MachineTraceMetrics::Ensemble * 371 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 372 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 373 Ensemble *&E = Ensembles[strategy]; 374 if (E) 375 return E; 376 377 // Allocate new Ensemble on demand. 378 switch (strategy) { 379 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 380 default: llvm_unreachable("Invalid trace strategy enum"); 381 } 382 } 383 384 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 385 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 386 BlockInfo[MBB->getNumber()].invalidate(); 387 for (unsigned i = 0; i != TS_NumStrategies; ++i) 388 if (Ensembles[i]) 389 Ensembles[i]->invalidate(MBB); 390 } 391 392 void MachineTraceMetrics::verifyAnalysis() const { 393 if (!MF) 394 return; 395 #ifndef NDEBUG 396 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 397 for (unsigned i = 0; i != TS_NumStrategies; ++i) 398 if (Ensembles[i]) 399 Ensembles[i]->verify(); 400 #endif 401 } 402 403 //===----------------------------------------------------------------------===// 404 // Trace building 405 //===----------------------------------------------------------------------===// 406 // 407 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 408 // set abstraction that confines the search to the current loop, and doesn't 409 // revisit blocks. 410 411 namespace { 412 struct LoopBounds { 413 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 414 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 415 const MachineLoopInfo *Loops; 416 bool Downward; 417 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 418 const MachineLoopInfo *loops) 419 : Blocks(blocks), Loops(loops), Downward(false) {} 420 }; 421 } 422 423 // Specialize po_iterator_storage in order to prune the post-order traversal so 424 // it is limited to the current loop and doesn't traverse the loop back edges. 425 namespace llvm { 426 template<> 427 class po_iterator_storage<LoopBounds, true> { 428 LoopBounds &LB; 429 public: 430 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 431 void finishPostorder(const MachineBasicBlock*) {} 432 433 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 434 // Skip already visited To blocks. 435 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 436 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 437 return false; 438 // From is null once when To is the trace center block. 439 if (From) { 440 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 441 // Don't follow backedges, don't leave FromLoop when going upwards. 442 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 443 return false; 444 // Don't leave FromLoop. 445 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 446 return false; 447 } 448 } 449 // To is a new block. Mark the block as visited in case the CFG has cycles 450 // that MachineLoopInfo didn't recognize as a natural loop. 451 return LB.Visited.insert(To).second; 452 } 453 }; 454 } 455 456 /// Compute the trace through MBB. 457 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 458 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 459 << MBB->getNumber() << '\n'); 460 // Set up loop bounds for the backwards post-order traversal. 461 LoopBounds Bounds(BlockInfo, MTM.Loops); 462 463 // Run an upwards post-order search for the trace start. 464 Bounds.Downward = false; 465 Bounds.Visited.clear(); 466 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 467 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 468 I != E; ++I) { 469 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 470 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 471 // All the predecessors have been visited, pick the preferred one. 472 TBI.Pred = pickTracePred(*I); 473 DEBUG({ 474 if (TBI.Pred) 475 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 476 else 477 dbgs() << "null\n"; 478 }); 479 // The trace leading to I is now known, compute the depth resources. 480 computeDepthResources(*I); 481 } 482 483 // Run a downwards post-order search for the trace end. 484 Bounds.Downward = true; 485 Bounds.Visited.clear(); 486 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 487 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 488 I != E; ++I) { 489 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 490 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 491 // All the successors have been visited, pick the preferred one. 492 TBI.Succ = pickTraceSucc(*I); 493 DEBUG({ 494 if (TBI.Succ) 495 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 496 else 497 dbgs() << "null\n"; 498 }); 499 // The trace leaving I is now known, compute the height resources. 500 computeHeightResources(*I); 501 } 502 } 503 504 /// Invalidate traces through BadMBB. 505 void 506 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 507 SmallVector<const MachineBasicBlock*, 16> WorkList; 508 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 509 510 // Invalidate height resources of blocks above MBB. 511 if (BadTBI.hasValidHeight()) { 512 BadTBI.invalidateHeight(); 513 WorkList.push_back(BadMBB); 514 do { 515 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 516 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 517 << " height.\n"); 518 // Find any MBB predecessors that have MBB as their preferred successor. 519 // They are the only ones that need to be invalidated. 520 for (MachineBasicBlock::const_pred_iterator 521 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 522 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 523 if (!TBI.hasValidHeight()) 524 continue; 525 if (TBI.Succ == MBB) { 526 TBI.invalidateHeight(); 527 WorkList.push_back(*I); 528 continue; 529 } 530 // Verify that TBI.Succ is actually a *I successor. 531 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 532 } 533 } while (!WorkList.empty()); 534 } 535 536 // Invalidate depth resources of blocks below MBB. 537 if (BadTBI.hasValidDepth()) { 538 BadTBI.invalidateDepth(); 539 WorkList.push_back(BadMBB); 540 do { 541 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 542 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 543 << " depth.\n"); 544 // Find any MBB successors that have MBB as their preferred predecessor. 545 // They are the only ones that need to be invalidated. 546 for (MachineBasicBlock::const_succ_iterator 547 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 548 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 549 if (!TBI.hasValidDepth()) 550 continue; 551 if (TBI.Pred == MBB) { 552 TBI.invalidateDepth(); 553 WorkList.push_back(*I); 554 continue; 555 } 556 // Verify that TBI.Pred is actually a *I predecessor. 557 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 558 } 559 } while (!WorkList.empty()); 560 } 561 562 // Clear any per-instruction data. We only have to do this for BadMBB itself 563 // because the instructions in that block may change. Other blocks may be 564 // invalidated, but their instructions will stay the same, so there is no 565 // need to erase the Cycle entries. They will be overwritten when we 566 // recompute. 567 for (const auto &I : *BadMBB) 568 Cycles.erase(&I); 569 } 570 571 void MachineTraceMetrics::Ensemble::verify() const { 572 #ifndef NDEBUG 573 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 574 "Outdated BlockInfo size"); 575 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 576 const TraceBlockInfo &TBI = BlockInfo[Num]; 577 if (TBI.hasValidDepth() && TBI.Pred) { 578 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 579 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 580 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 581 "Trace is broken, depth should have been invalidated."); 582 const MachineLoop *Loop = getLoopFor(MBB); 583 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 584 } 585 if (TBI.hasValidHeight() && TBI.Succ) { 586 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 587 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 588 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 589 "Trace is broken, height should have been invalidated."); 590 const MachineLoop *Loop = getLoopFor(MBB); 591 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 592 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 593 "Trace contains backedge"); 594 } 595 } 596 #endif 597 } 598 599 //===----------------------------------------------------------------------===// 600 // Data Dependencies 601 //===----------------------------------------------------------------------===// 602 // 603 // Compute the depth and height of each instruction based on data dependencies 604 // and instruction latencies. These cycle numbers assume that the CPU can issue 605 // an infinite number of instructions per cycle as long as their dependencies 606 // are ready. 607 608 // A data dependency is represented as a defining MI and operand numbers on the 609 // defining and using MI. 610 namespace { 611 struct DataDep { 612 const MachineInstr *DefMI; 613 unsigned DefOp; 614 unsigned UseOp; 615 616 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 617 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 618 619 /// Create a DataDep from an SSA form virtual register. 620 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 621 : UseOp(UseOp) { 622 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 623 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 624 assert(!DefI.atEnd() && "Register has no defs"); 625 DefMI = DefI->getParent(); 626 DefOp = DefI.getOperandNo(); 627 assert((++DefI).atEnd() && "Register has multiple defs"); 628 } 629 }; 630 } 631 632 // Get the input data dependencies that must be ready before UseMI can issue. 633 // Return true if UseMI has any physreg operands. 634 static bool getDataDeps(const MachineInstr *UseMI, 635 SmallVectorImpl<DataDep> &Deps, 636 const MachineRegisterInfo *MRI) { 637 bool HasPhysRegs = false; 638 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 639 if (!MO->isReg()) 640 continue; 641 unsigned Reg = MO->getReg(); 642 if (!Reg) 643 continue; 644 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 645 HasPhysRegs = true; 646 continue; 647 } 648 // Collect virtual register reads. 649 if (MO->readsReg()) 650 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 651 } 652 return HasPhysRegs; 653 } 654 655 // Get the input data dependencies of a PHI instruction, using Pred as the 656 // preferred predecessor. 657 // This will add at most one dependency to Deps. 658 static void getPHIDeps(const MachineInstr *UseMI, 659 SmallVectorImpl<DataDep> &Deps, 660 const MachineBasicBlock *Pred, 661 const MachineRegisterInfo *MRI) { 662 // No predecessor at the beginning of a trace. Ignore dependencies. 663 if (!Pred) 664 return; 665 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 666 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 667 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 668 unsigned Reg = UseMI->getOperand(i).getReg(); 669 Deps.push_back(DataDep(MRI, Reg, i)); 670 return; 671 } 672 } 673 } 674 675 // Keep track of physreg data dependencies by recording each live register unit. 676 // Associate each regunit with an instruction operand. Depending on the 677 // direction instructions are scanned, it could be the operand that defined the 678 // regunit, or the highest operand to read the regunit. 679 namespace { 680 struct LiveRegUnit { 681 unsigned RegUnit; 682 unsigned Cycle; 683 const MachineInstr *MI; 684 unsigned Op; 685 686 unsigned getSparseSetIndex() const { return RegUnit; } 687 688 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {} 689 }; 690 } 691 692 // Identify physreg dependencies for UseMI, and update the live regunit 693 // tracking set when scanning instructions downwards. 694 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 695 SmallVectorImpl<DataDep> &Deps, 696 SparseSet<LiveRegUnit> &RegUnits, 697 const TargetRegisterInfo *TRI) { 698 SmallVector<unsigned, 8> Kills; 699 SmallVector<unsigned, 8> LiveDefOps; 700 701 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 702 if (!MO->isReg()) 703 continue; 704 unsigned Reg = MO->getReg(); 705 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 706 continue; 707 // Track live defs and kills for updating RegUnits. 708 if (MO->isDef()) { 709 if (MO->isDead()) 710 Kills.push_back(Reg); 711 else 712 LiveDefOps.push_back(MO.getOperandNo()); 713 } else if (MO->isKill()) 714 Kills.push_back(Reg); 715 // Identify dependencies. 716 if (!MO->readsReg()) 717 continue; 718 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 719 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 720 if (I == RegUnits.end()) 721 continue; 722 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 723 break; 724 } 725 } 726 727 // Update RegUnits to reflect live registers after UseMI. 728 // First kills. 729 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 730 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 731 RegUnits.erase(*Units); 732 733 // Second, live defs. 734 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 735 unsigned DefOp = LiveDefOps[i]; 736 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 737 Units.isValid(); ++Units) { 738 LiveRegUnit &LRU = RegUnits[*Units]; 739 LRU.MI = UseMI; 740 LRU.Op = DefOp; 741 } 742 } 743 } 744 745 /// The length of the critical path through a trace is the maximum of two path 746 /// lengths: 747 /// 748 /// 1. The maximum height+depth over all instructions in the trace center block. 749 /// 750 /// 2. The longest cross-block dependency chain. For small blocks, it is 751 /// possible that the critical path through the trace doesn't include any 752 /// instructions in the block. 753 /// 754 /// This function computes the second number from the live-in list of the 755 /// center block. 756 unsigned MachineTraceMetrics::Ensemble:: 757 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 758 assert(TBI.HasValidInstrDepths && "Missing depth info"); 759 assert(TBI.HasValidInstrHeights && "Missing height info"); 760 unsigned MaxLen = 0; 761 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 762 const LiveInReg &LIR = TBI.LiveIns[i]; 763 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 764 continue; 765 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 766 // Ignore dependencies outside the current trace. 767 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 768 if (!DefTBI.isUsefulDominator(TBI)) 769 continue; 770 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 771 MaxLen = std::max(MaxLen, Len); 772 } 773 return MaxLen; 774 } 775 776 /// Compute instruction depths for all instructions above or in MBB in its 777 /// trace. This assumes that the trace through MBB has already been computed. 778 void MachineTraceMetrics::Ensemble:: 779 computeInstrDepths(const MachineBasicBlock *MBB) { 780 // The top of the trace may already be computed, and HasValidInstrDepths 781 // implies Head->HasValidInstrDepths, so we only need to start from the first 782 // block in the trace that needs to be recomputed. 783 SmallVector<const MachineBasicBlock*, 8> Stack; 784 do { 785 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 786 assert(TBI.hasValidDepth() && "Incomplete trace"); 787 if (TBI.HasValidInstrDepths) 788 break; 789 Stack.push_back(MBB); 790 MBB = TBI.Pred; 791 } while (MBB); 792 793 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 794 // in the trace. We should track any live-out physregs that were defined in 795 // the trace. This is quite rare in SSA form, typically created by CSE 796 // hoisting a compare. 797 SparseSet<LiveRegUnit> RegUnits; 798 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 799 800 // Go through trace blocks in top-down order, stopping after the center block. 801 SmallVector<DataDep, 8> Deps; 802 while (!Stack.empty()) { 803 MBB = Stack.pop_back_val(); 804 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 805 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 806 TBI.HasValidInstrDepths = true; 807 TBI.CriticalPath = 0; 808 809 // Print out resource depths here as well. 810 DEBUG({ 811 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 812 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 813 for (unsigned K = 0; K != PRDepths.size(); ++K) 814 if (PRDepths[K]) { 815 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 816 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 817 << MTM.SchedModel.getProcResource(K)->Name << " (" 818 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 819 } 820 }); 821 822 // Also compute the critical path length through MBB when possible. 823 if (TBI.HasValidInstrHeights) 824 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 825 826 for (const auto &UseMI : *MBB) { 827 // Collect all data dependencies. 828 Deps.clear(); 829 if (UseMI.isPHI()) 830 getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI); 831 else if (getDataDeps(&UseMI, Deps, MTM.MRI)) 832 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 833 834 // Filter and process dependencies, computing the earliest issue cycle. 835 unsigned Cycle = 0; 836 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 837 const DataDep &Dep = Deps[i]; 838 const TraceBlockInfo&DepTBI = 839 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 840 // Ignore dependencies from outside the current trace. 841 if (!DepTBI.isUsefulDominator(TBI)) 842 continue; 843 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 844 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 845 // Add latency if DefMI is a real instruction. Transients get latency 0. 846 if (!Dep.DefMI->isTransient()) 847 DepCycle += MTM.SchedModel 848 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 849 Cycle = std::max(Cycle, DepCycle); 850 } 851 // Remember the instruction depth. 852 InstrCycles &MICycles = Cycles[&UseMI]; 853 MICycles.Depth = Cycle; 854 855 if (!TBI.HasValidInstrHeights) { 856 DEBUG(dbgs() << Cycle << '\t' << UseMI); 857 continue; 858 } 859 // Update critical path length. 860 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 861 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 862 } 863 } 864 } 865 866 // Identify physreg dependencies for MI when scanning instructions upwards. 867 // Return the issue height of MI after considering any live regunits. 868 // Height is the issue height computed from virtual register dependencies alone. 869 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 870 SparseSet<LiveRegUnit> &RegUnits, 871 const TargetSchedModel &SchedModel, 872 const TargetInstrInfo *TII, 873 const TargetRegisterInfo *TRI) { 874 SmallVector<unsigned, 8> ReadOps; 875 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 876 if (!MO->isReg()) 877 continue; 878 unsigned Reg = MO->getReg(); 879 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 880 continue; 881 if (MO->readsReg()) 882 ReadOps.push_back(MO.getOperandNo()); 883 if (!MO->isDef()) 884 continue; 885 // This is a def of Reg. Remove corresponding entries from RegUnits, and 886 // update MI Height to consider the physreg dependencies. 887 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 888 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 889 if (I == RegUnits.end()) 890 continue; 891 unsigned DepHeight = I->Cycle; 892 if (!MI->isTransient()) { 893 // We may not know the UseMI of this dependency, if it came from the 894 // live-in list. SchedModel can handle a NULL UseMI. 895 DepHeight += SchedModel 896 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op); 897 } 898 Height = std::max(Height, DepHeight); 899 // This regunit is dead above MI. 900 RegUnits.erase(I); 901 } 902 } 903 904 // Now we know the height of MI. Update any regunits read. 905 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 906 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 907 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 908 LiveRegUnit &LRU = RegUnits[*Units]; 909 // Set the height to the highest reader of the unit. 910 if (LRU.Cycle <= Height && LRU.MI != MI) { 911 LRU.Cycle = Height; 912 LRU.MI = MI; 913 LRU.Op = ReadOps[i]; 914 } 915 } 916 } 917 918 return Height; 919 } 920 921 922 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 923 924 // Push the height of DefMI upwards if required to match UseMI. 925 // Return true if this is the first time DefMI was seen. 926 static bool pushDepHeight(const DataDep &Dep, 927 const MachineInstr *UseMI, unsigned UseHeight, 928 MIHeightMap &Heights, 929 const TargetSchedModel &SchedModel, 930 const TargetInstrInfo *TII) { 931 // Adjust height by Dep.DefMI latency. 932 if (!Dep.DefMI->isTransient()) 933 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 934 UseMI, Dep.UseOp); 935 936 // Update Heights[DefMI] to be the maximum height seen. 937 MIHeightMap::iterator I; 938 bool New; 939 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 940 if (New) 941 return true; 942 943 // DefMI has been pushed before. Give it the max height. 944 if (I->second < UseHeight) 945 I->second = UseHeight; 946 return false; 947 } 948 949 /// Assuming that the virtual register defined by DefMI:DefOp was used by 950 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 951 /// when reaching the block that contains DefMI. 952 void MachineTraceMetrics::Ensemble:: 953 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 954 ArrayRef<const MachineBasicBlock*> Trace) { 955 assert(!Trace.empty() && "Trace should contain at least one block"); 956 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 957 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 958 const MachineBasicBlock *DefMBB = DefMI->getParent(); 959 960 // Reg is live-in to all blocks in Trace that follow DefMBB. 961 for (unsigned i = Trace.size(); i; --i) { 962 const MachineBasicBlock *MBB = Trace[i-1]; 963 if (MBB == DefMBB) 964 return; 965 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 966 // Just add the register. The height will be updated later. 967 TBI.LiveIns.push_back(Reg); 968 } 969 } 970 971 /// Compute instruction heights in the trace through MBB. This updates MBB and 972 /// the blocks below it in the trace. It is assumed that the trace has already 973 /// been computed. 974 void MachineTraceMetrics::Ensemble:: 975 computeInstrHeights(const MachineBasicBlock *MBB) { 976 // The bottom of the trace may already be computed. 977 // Find the blocks that need updating. 978 SmallVector<const MachineBasicBlock*, 8> Stack; 979 do { 980 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 981 assert(TBI.hasValidHeight() && "Incomplete trace"); 982 if (TBI.HasValidInstrHeights) 983 break; 984 Stack.push_back(MBB); 985 TBI.LiveIns.clear(); 986 MBB = TBI.Succ; 987 } while (MBB); 988 989 // As we move upwards in the trace, keep track of instructions that are 990 // required by deeper trace instructions. Map MI -> height required so far. 991 MIHeightMap Heights; 992 993 // For physregs, the def isn't known when we see the use. 994 // Instead, keep track of the highest use of each regunit. 995 SparseSet<LiveRegUnit> RegUnits; 996 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 997 998 // If the bottom of the trace was already precomputed, initialize heights 999 // from its live-in list. 1000 // MBB is the highest precomputed block in the trace. 1001 if (MBB) { 1002 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1003 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1004 LiveInReg LI = TBI.LiveIns[i]; 1005 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1006 // For virtual registers, the def latency is included. 1007 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1008 if (Height < LI.Height) 1009 Height = LI.Height; 1010 } else { 1011 // For register units, the def latency is not included because we don't 1012 // know the def yet. 1013 RegUnits[LI.Reg].Cycle = LI.Height; 1014 } 1015 } 1016 } 1017 1018 // Go through the trace blocks in bottom-up order. 1019 SmallVector<DataDep, 8> Deps; 1020 for (;!Stack.empty(); Stack.pop_back()) { 1021 MBB = Stack.back(); 1022 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1023 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1024 TBI.HasValidInstrHeights = true; 1025 TBI.CriticalPath = 0; 1026 1027 DEBUG({ 1028 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1029 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1030 for (unsigned K = 0; K != PRHeights.size(); ++K) 1031 if (PRHeights[K]) { 1032 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1033 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1034 << MTM.SchedModel.getProcResource(K)->Name << " (" 1035 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1036 } 1037 }); 1038 1039 // Get dependencies from PHIs in the trace successor. 1040 const MachineBasicBlock *Succ = TBI.Succ; 1041 // If MBB is the last block in the trace, and it has a back-edge to the 1042 // loop header, get loop-carried dependencies from PHIs in the header. For 1043 // that purpose, pretend that all the loop header PHIs have height 0. 1044 if (!Succ) 1045 if (const MachineLoop *Loop = getLoopFor(MBB)) 1046 if (MBB->isSuccessor(Loop->getHeader())) 1047 Succ = Loop->getHeader(); 1048 1049 if (Succ) { 1050 for (const auto &PHI : *Succ) { 1051 if (!PHI.isPHI()) 1052 break; 1053 Deps.clear(); 1054 getPHIDeps(&PHI, Deps, MBB, MTM.MRI); 1055 if (!Deps.empty()) { 1056 // Loop header PHI heights are all 0. 1057 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1058 DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1059 if (pushDepHeight(Deps.front(), &PHI, Height, 1060 Heights, MTM.SchedModel, MTM.TII)) 1061 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1062 } 1063 } 1064 } 1065 1066 // Go through the block backwards. 1067 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1068 BI != BB;) { 1069 const MachineInstr *MI = --BI; 1070 1071 // Find the MI height as determined by virtual register uses in the 1072 // trace below. 1073 unsigned Cycle = 0; 1074 MIHeightMap::iterator HeightI = Heights.find(MI); 1075 if (HeightI != Heights.end()) { 1076 Cycle = HeightI->second; 1077 // We won't be seeing any more MI uses. 1078 Heights.erase(HeightI); 1079 } 1080 1081 // Don't process PHI deps. They depend on the specific predecessor, and 1082 // we'll get them when visiting the predecessor. 1083 Deps.clear(); 1084 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1085 1086 // There may also be regunit dependencies to include in the height. 1087 if (HasPhysRegs) 1088 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 1089 MTM.SchedModel, MTM.TII, MTM.TRI); 1090 1091 // Update the required height of any virtual registers read by MI. 1092 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 1093 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1094 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); 1095 1096 InstrCycles &MICycles = Cycles[MI]; 1097 MICycles.Height = Cycle; 1098 if (!TBI.HasValidInstrDepths) { 1099 DEBUG(dbgs() << Cycle << '\t' << *MI); 1100 continue; 1101 } 1102 // Update critical path length. 1103 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1104 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 1105 } 1106 1107 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1108 // height because the final height isn't known until now. 1109 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1110 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1111 LiveInReg &LIR = TBI.LiveIns[i]; 1112 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1113 LIR.Height = Heights.lookup(DefMI); 1114 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1115 } 1116 1117 // Transfer the live regunits to the live-in list. 1118 for (SparseSet<LiveRegUnit>::const_iterator 1119 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1120 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1121 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1122 << '@' << RI->Cycle); 1123 } 1124 DEBUG(dbgs() << '\n'); 1125 1126 if (!TBI.HasValidInstrDepths) 1127 continue; 1128 // Add live-ins to the critical path length. 1129 TBI.CriticalPath = std::max(TBI.CriticalPath, 1130 computeCrossBlockCriticalPath(TBI)); 1131 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1132 } 1133 } 1134 1135 MachineTraceMetrics::Trace 1136 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1137 // FIXME: Check cache tags, recompute as needed. 1138 computeTrace(MBB); 1139 computeInstrDepths(MBB); 1140 computeInstrHeights(MBB); 1141 return Trace(*this, BlockInfo[MBB->getNumber()]); 1142 } 1143 1144 unsigned 1145 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 1146 assert(MI && "Not an instruction."); 1147 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 1148 "MI must be in the trace center block"); 1149 InstrCycles Cyc = getInstrCycles(MI); 1150 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1151 } 1152 1153 unsigned 1154 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 1155 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1156 SmallVector<DataDep, 1> Deps; 1157 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1158 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1159 DataDep &Dep = Deps.front(); 1160 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 1161 // Add latency if DefMI is a real instruction. Transients get latency 0. 1162 if (!Dep.DefMI->isTransient()) 1163 DepCycle += TE.MTM.SchedModel 1164 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp); 1165 return DepCycle; 1166 } 1167 1168 /// When bottom is set include instructions in current block in estimate. 1169 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1170 // Find the limiting processor resource. 1171 // Numbers have been pre-scaled to be comparable. 1172 unsigned PRMax = 0; 1173 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1174 if (Bottom) { 1175 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1176 for (unsigned K = 0; K != PRDepths.size(); ++K) 1177 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1178 } else { 1179 for (unsigned K = 0; K != PRDepths.size(); ++K) 1180 PRMax = std::max(PRMax, PRDepths[K]); 1181 } 1182 // Convert to cycle count. 1183 PRMax = TE.MTM.getCycles(PRMax); 1184 1185 /// All instructions before current block 1186 unsigned Instrs = TBI.InstrDepth; 1187 // plus instructions in current block 1188 if (Bottom) 1189 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1190 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1191 Instrs /= IW; 1192 // Assume issue width 1 without a schedule model. 1193 return std::max(Instrs, PRMax); 1194 } 1195 1196 unsigned MachineTraceMetrics::Trace::getResourceLength( 1197 ArrayRef<const MachineBasicBlock *> Extrablocks, 1198 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1199 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1200 // Add up resources above and below the center block. 1201 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1202 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1203 unsigned PRMax = 0; 1204 1205 // Capture computing cycles from extra instructions 1206 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1207 unsigned ResourceIdx) 1208 ->unsigned { 1209 unsigned Cycles = 0; 1210 for (unsigned I = 0; I != Instrs.size(); ++I) { 1211 const MCSchedClassDesc *SC = Instrs[I]; 1212 if (!SC->isValid()) 1213 continue; 1214 for (TargetSchedModel::ProcResIter 1215 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1216 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1217 PI != PE; ++PI) { 1218 if (PI->ProcResourceIdx != ResourceIdx) 1219 continue; 1220 Cycles += 1221 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1222 } 1223 } 1224 return Cycles; 1225 }; 1226 1227 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1228 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1229 for (unsigned I = 0; I != Extrablocks.size(); ++I) 1230 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K]; 1231 PRCycles += extraCycles(ExtraInstrs, K); 1232 PRCycles -= extraCycles(RemoveInstrs, K); 1233 PRMax = std::max(PRMax, PRCycles); 1234 } 1235 // Convert to cycle count. 1236 PRMax = TE.MTM.getCycles(PRMax); 1237 1238 // Instrs: #instructions in current trace outside current block. 1239 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1240 // Add instruction count from the extra blocks. 1241 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) 1242 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; 1243 Instrs += ExtraInstrs.size(); 1244 Instrs -= RemoveInstrs.size(); 1245 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1246 Instrs /= IW; 1247 // Assume issue width 1 without a schedule model. 1248 return std::max(Instrs, PRMax); 1249 } 1250 1251 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI, 1252 const MachineInstr *UseMI) const { 1253 if (DefMI->getParent() == UseMI->getParent()) 1254 return true; 1255 1256 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()]; 1257 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()]; 1258 1259 return DepTBI.isUsefulDominator(TBI); 1260 } 1261 1262 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1263 OS << getName() << " ensemble:\n"; 1264 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1265 OS << " BB#" << i << '\t'; 1266 BlockInfo[i].print(OS); 1267 OS << '\n'; 1268 } 1269 } 1270 1271 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1272 if (hasValidDepth()) { 1273 OS << "depth=" << InstrDepth; 1274 if (Pred) 1275 OS << " pred=BB#" << Pred->getNumber(); 1276 else 1277 OS << " pred=null"; 1278 OS << " head=BB#" << Head; 1279 if (HasValidInstrDepths) 1280 OS << " +instrs"; 1281 } else 1282 OS << "depth invalid"; 1283 OS << ", "; 1284 if (hasValidHeight()) { 1285 OS << "height=" << InstrHeight; 1286 if (Succ) 1287 OS << " succ=BB#" << Succ->getNumber(); 1288 else 1289 OS << " succ=null"; 1290 OS << " tail=BB#" << Tail; 1291 if (HasValidInstrHeights) 1292 OS << " +instrs"; 1293 } else 1294 OS << "height invalid"; 1295 if (HasValidInstrDepths && HasValidInstrHeights) 1296 OS << ", crit=" << CriticalPath; 1297 } 1298 1299 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1300 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1301 1302 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1303 << " --> BB#" << TBI.Tail << ':'; 1304 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1305 OS << ' ' << getInstrCount() << " instrs."; 1306 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1307 OS << ' ' << TBI.CriticalPath << " cycles."; 1308 1309 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1310 OS << "\nBB#" << MBBNum; 1311 while (Block->hasValidDepth() && Block->Pred) { 1312 unsigned Num = Block->Pred->getNumber(); 1313 OS << " <- BB#" << Num; 1314 Block = &TE.BlockInfo[Num]; 1315 } 1316 1317 Block = &TBI; 1318 OS << "\n "; 1319 while (Block->hasValidHeight() && Block->Succ) { 1320 unsigned Num = Block->Succ->getNumber(); 1321 OS << " -> BB#" << Num; 1322 Block = &TE.BlockInfo[Num]; 1323 } 1324 OS << '\n'; 1325 } 1326