1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BranchProbability.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <map> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetInstrInfo *TII; 119 const TargetRegisterInfo *TRI; 120 MachineRegisterInfo *MRI; // Machine register information 121 MachineDominatorTree *DT; // Machine dominator tree 122 MachinePostDominatorTree *PDT; // Machine post dominator tree 123 MachineCycleInfo *CI; 124 MachineBlockFrequencyInfo *MBFI; 125 const MachineBranchProbabilityInfo *MBPI; 126 AliasAnalysis *AA; 127 RegisterClassInfo RegClassInfo; 128 129 // Remember which edges have been considered for breaking. 130 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 131 CEBCandidates; 132 // Remember which edges we are about to split. 133 // This is different from CEBCandidates since those edges 134 // will be split. 135 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 136 137 DenseSet<Register> RegsToClearKillFlags; 138 139 using AllSuccsCache = 140 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 141 142 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 143 /// post-dominated by another DBG_VALUE of the same variable location. 144 /// This is necessary to detect sequences such as: 145 /// %0 = someinst 146 /// DBG_VALUE %0, !123, !DIExpression() 147 /// %1 = anotherinst 148 /// DBG_VALUE %1, !123, !DIExpression() 149 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 150 /// would re-order assignments. 151 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 152 153 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 154 /// debug instructions to sink. 155 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 156 157 /// Record of debug variables that have had their locations set in the 158 /// current block. 159 DenseSet<DebugVariable> SeenDbgVars; 160 161 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 162 HasStoreCache; 163 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 164 std::vector<MachineInstr *>> 165 StoreInstrCache; 166 167 /// Cached BB's register pressure. 168 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 169 170 public: 171 static char ID; // Pass identification 172 173 MachineSinking() : MachineFunctionPass(ID) { 174 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 175 } 176 177 bool runOnMachineFunction(MachineFunction &MF) override; 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override { 180 MachineFunctionPass::getAnalysisUsage(AU); 181 AU.addRequired<AAResultsWrapperPass>(); 182 AU.addRequired<MachineDominatorTree>(); 183 AU.addRequired<MachinePostDominatorTree>(); 184 AU.addRequired<MachineCycleInfoWrapperPass>(); 185 AU.addRequired<MachineBranchProbabilityInfo>(); 186 AU.addPreserved<MachineCycleInfoWrapperPass>(); 187 AU.addPreserved<MachineLoopInfo>(); 188 if (UseBlockFreqInfo) 189 AU.addRequired<MachineBlockFrequencyInfo>(); 190 } 191 192 void releaseMemory() override { 193 CEBCandidates.clear(); 194 } 195 196 private: 197 bool ProcessBlock(MachineBasicBlock &MBB); 198 void ProcessDbgInst(MachineInstr &MI); 199 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 200 MachineBasicBlock *From, 201 MachineBasicBlock *To); 202 203 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 204 MachineInstr &MI); 205 206 /// Postpone the splitting of the given critical 207 /// edge (\p From, \p To). 208 /// 209 /// We do not split the edges on the fly. Indeed, this invalidates 210 /// the dominance information and thus triggers a lot of updates 211 /// of that information underneath. 212 /// Instead, we postpone all the splits after each iteration of 213 /// the main loop. That way, the information is at least valid 214 /// for the lifetime of an iteration. 215 /// 216 /// \return True if the edge is marked as toSplit, false otherwise. 217 /// False can be returned if, for instance, this is not profitable. 218 bool PostponeSplitCriticalEdge(MachineInstr &MI, 219 MachineBasicBlock *From, 220 MachineBasicBlock *To, 221 bool BreakPHIEdge); 222 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 223 AllSuccsCache &AllSuccessors); 224 225 /// If we sink a COPY inst, some debug users of it's destination may no 226 /// longer be dominated by the COPY, and will eventually be dropped. 227 /// This is easily rectified by forwarding the non-dominated debug uses 228 /// to the copy source. 229 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 230 MachineBasicBlock *TargetBlock); 231 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 232 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 233 bool &LocalUse) const; 234 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 235 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 236 237 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 238 SmallVectorImpl<MachineInstr *> &Candidates); 239 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 240 241 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 242 MachineBasicBlock *MBB, 243 MachineBasicBlock *SuccToSinkTo, 244 AllSuccsCache &AllSuccessors); 245 246 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 247 MachineBasicBlock *MBB); 248 249 SmallVector<MachineBasicBlock *, 4> & 250 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 251 AllSuccsCache &AllSuccessors) const; 252 253 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 254 }; 255 256 } // end anonymous namespace 257 258 char MachineSinking::ID = 0; 259 260 char &llvm::MachineSinkingID = MachineSinking::ID; 261 262 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 263 "Machine code sinking", false, false) 264 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 265 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 266 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 267 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 268 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 269 "Machine code sinking", false, false) 270 271 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 272 MachineBasicBlock *MBB) { 273 if (!MI.isCopy()) 274 return false; 275 276 Register SrcReg = MI.getOperand(1).getReg(); 277 Register DstReg = MI.getOperand(0).getReg(); 278 if (!Register::isVirtualRegister(SrcReg) || 279 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 280 return false; 281 282 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 283 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 284 if (SRC != DRC) 285 return false; 286 287 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 288 if (DefMI->isCopyLike()) 289 return false; 290 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 291 LLVM_DEBUG(dbgs() << "*** to: " << MI); 292 MRI->replaceRegWith(DstReg, SrcReg); 293 MI.eraseFromParent(); 294 295 // Conservatively, clear any kill flags, since it's possible that they are no 296 // longer correct. 297 MRI->clearKillFlags(SrcReg); 298 299 ++NumCoalesces; 300 return true; 301 } 302 303 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 304 /// occur in blocks dominated by the specified block. If any use is in the 305 /// definition block, then return false since it is never legal to move def 306 /// after uses. 307 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 308 MachineBasicBlock *MBB, 309 MachineBasicBlock *DefMBB, 310 bool &BreakPHIEdge, 311 bool &LocalUse) const { 312 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 313 314 // Ignore debug uses because debug info doesn't affect the code. 315 if (MRI->use_nodbg_empty(Reg)) 316 return true; 317 318 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 319 // into and they are all PHI nodes. In this case, machine-sink must break 320 // the critical edge first. e.g. 321 // 322 // %bb.1: 323 // Predecessors according to CFG: %bb.0 324 // ... 325 // %def = DEC64_32r %x, implicit-def dead %eflags 326 // ... 327 // JE_4 <%bb.37>, implicit %eflags 328 // Successors according to CFG: %bb.37 %bb.2 329 // 330 // %bb.2: 331 // %p = PHI %y, %bb.0, %def, %bb.1 332 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 333 MachineInstr *UseInst = MO.getParent(); 334 unsigned OpNo = UseInst->getOperandNo(&MO); 335 MachineBasicBlock *UseBlock = UseInst->getParent(); 336 return UseBlock == MBB && UseInst->isPHI() && 337 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 338 })) { 339 BreakPHIEdge = true; 340 return true; 341 } 342 343 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 344 // Determine the block of the use. 345 MachineInstr *UseInst = MO.getParent(); 346 unsigned OpNo = &MO - &UseInst->getOperand(0); 347 MachineBasicBlock *UseBlock = UseInst->getParent(); 348 if (UseInst->isPHI()) { 349 // PHI nodes use the operand in the predecessor block, not the block with 350 // the PHI. 351 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 352 } else if (UseBlock == DefMBB) { 353 LocalUse = true; 354 return false; 355 } 356 357 // Check that it dominates. 358 if (!DT->dominates(MBB, UseBlock)) 359 return false; 360 } 361 362 return true; 363 } 364 365 /// Return true if this machine instruction loads from global offset table or 366 /// constant pool. 367 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 368 assert(MI.mayLoad() && "Expected MI that loads!"); 369 370 // If we lost memory operands, conservatively assume that the instruction 371 // reads from everything.. 372 if (MI.memoperands_empty()) 373 return true; 374 375 for (MachineMemOperand *MemOp : MI.memoperands()) 376 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 377 if (PSV->isGOT() || PSV->isConstantPool()) 378 return true; 379 380 return false; 381 } 382 383 void MachineSinking::FindCycleSinkCandidates( 384 MachineCycle *Cycle, MachineBasicBlock *BB, 385 SmallVectorImpl<MachineInstr *> &Candidates) { 386 for (auto &MI : *BB) { 387 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 388 if (!TII->shouldSink(MI)) { 389 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 390 "target\n"); 391 continue; 392 } 393 if (!isCycleInvariant(Cycle, MI)) { 394 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 395 continue; 396 } 397 bool DontMoveAcrossStore = true; 398 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 399 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 400 continue; 401 } 402 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 403 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 404 continue; 405 } 406 if (MI.isConvergent()) 407 continue; 408 409 const MachineOperand &MO = MI.getOperand(0); 410 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 411 continue; 412 if (!MRI->hasOneDef(MO.getReg())) 413 continue; 414 415 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 416 Candidates.push_back(&MI); 417 } 418 } 419 420 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 421 if (skipFunction(MF.getFunction())) 422 return false; 423 424 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 425 426 TII = MF.getSubtarget().getInstrInfo(); 427 TRI = MF.getSubtarget().getRegisterInfo(); 428 MRI = &MF.getRegInfo(); 429 DT = &getAnalysis<MachineDominatorTree>(); 430 PDT = &getAnalysis<MachinePostDominatorTree>(); 431 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 432 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 433 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 434 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 435 RegClassInfo.runOnMachineFunction(MF); 436 437 bool EverMadeChange = false; 438 439 while (true) { 440 bool MadeChange = false; 441 442 // Process all basic blocks. 443 CEBCandidates.clear(); 444 ToSplit.clear(); 445 for (auto &MBB: MF) 446 MadeChange |= ProcessBlock(MBB); 447 448 // If we have anything we marked as toSplit, split it now. 449 for (auto &Pair : ToSplit) { 450 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 451 if (NewSucc != nullptr) { 452 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 453 << printMBBReference(*Pair.first) << " -- " 454 << printMBBReference(*NewSucc) << " -- " 455 << printMBBReference(*Pair.second) << '\n'); 456 if (MBFI) 457 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 458 459 MadeChange = true; 460 ++NumSplit; 461 } else 462 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 463 } 464 // If this iteration over the code changed anything, keep iterating. 465 if (!MadeChange) break; 466 EverMadeChange = true; 467 } 468 469 if (SinkInstsIntoCycle) { 470 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 471 CI->toplevel_end()); 472 for (auto *Cycle : Cycles) { 473 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 474 if (!Preheader) { 475 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 476 continue; 477 } 478 SmallVector<MachineInstr *, 8> Candidates; 479 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 480 481 // Walk the candidates in reverse order so that we start with the use 482 // of a def-use chain, if there is any. 483 // TODO: Sort the candidates using a cost-model. 484 unsigned i = 0; 485 for (MachineInstr *I : llvm::reverse(Candidates)) { 486 if (i++ == SinkIntoCycleLimit) { 487 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 488 "be analysed."); 489 break; 490 } 491 492 if (!SinkIntoCycle(Cycle, *I)) 493 break; 494 EverMadeChange = true; 495 ++NumCycleSunk; 496 } 497 } 498 } 499 500 HasStoreCache.clear(); 501 StoreInstrCache.clear(); 502 503 // Now clear any kill flags for recorded registers. 504 for (auto I : RegsToClearKillFlags) 505 MRI->clearKillFlags(I); 506 RegsToClearKillFlags.clear(); 507 508 return EverMadeChange; 509 } 510 511 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 512 // Can't sink anything out of a block that has less than two successors. 513 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 514 515 // Don't bother sinking code out of unreachable blocks. In addition to being 516 // unprofitable, it can also lead to infinite looping, because in an 517 // unreachable cycle there may be nowhere to stop. 518 if (!DT->isReachableFromEntry(&MBB)) return false; 519 520 bool MadeChange = false; 521 522 // Cache all successors, sorted by frequency info and cycle depth. 523 AllSuccsCache AllSuccessors; 524 525 // Walk the basic block bottom-up. Remember if we saw a store. 526 MachineBasicBlock::iterator I = MBB.end(); 527 --I; 528 bool ProcessedBegin, SawStore = false; 529 do { 530 MachineInstr &MI = *I; // The instruction to sink. 531 532 // Predecrement I (if it's not begin) so that it isn't invalidated by 533 // sinking. 534 ProcessedBegin = I == MBB.begin(); 535 if (!ProcessedBegin) 536 --I; 537 538 if (MI.isDebugOrPseudoInstr()) { 539 if (MI.isDebugValue()) 540 ProcessDbgInst(MI); 541 continue; 542 } 543 544 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 545 if (Joined) { 546 MadeChange = true; 547 continue; 548 } 549 550 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 551 ++NumSunk; 552 MadeChange = true; 553 } 554 555 // If we just processed the first instruction in the block, we're done. 556 } while (!ProcessedBegin); 557 558 SeenDbgUsers.clear(); 559 SeenDbgVars.clear(); 560 // recalculate the bb register pressure after sinking one BB. 561 CachedRegisterPressure.clear(); 562 563 return MadeChange; 564 } 565 566 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 567 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 568 // we know what to sink if the vreg def sinks. 569 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 570 571 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 572 MI.getDebugLoc()->getInlinedAt()); 573 bool SeenBefore = SeenDbgVars.contains(Var); 574 575 for (MachineOperand &MO : MI.debug_operands()) { 576 if (MO.isReg() && MO.getReg().isVirtual()) 577 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 578 } 579 580 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 581 SeenDbgVars.insert(Var); 582 } 583 584 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 585 MachineBasicBlock *From, 586 MachineBasicBlock *To) { 587 // FIXME: Need much better heuristics. 588 589 // If the pass has already considered breaking this edge (during this pass 590 // through the function), then let's go ahead and break it. This means 591 // sinking multiple "cheap" instructions into the same block. 592 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 593 return true; 594 595 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 596 return true; 597 598 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 599 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 600 return true; 601 602 // MI is cheap, we probably don't want to break the critical edge for it. 603 // However, if this would allow some definitions of its source operands 604 // to be sunk then it's probably worth it. 605 for (const MachineOperand &MO : MI.operands()) { 606 if (!MO.isReg() || !MO.isUse()) 607 continue; 608 Register Reg = MO.getReg(); 609 if (Reg == 0) 610 continue; 611 612 // We don't move live definitions of physical registers, 613 // so sinking their uses won't enable any opportunities. 614 if (Register::isPhysicalRegister(Reg)) 615 continue; 616 617 // If this instruction is the only user of a virtual register, 618 // check if breaking the edge will enable sinking 619 // both this instruction and the defining instruction. 620 if (MRI->hasOneNonDBGUse(Reg)) { 621 // If the definition resides in same MBB, 622 // claim it's likely we can sink these together. 623 // If definition resides elsewhere, we aren't 624 // blocking it from being sunk so don't break the edge. 625 MachineInstr *DefMI = MRI->getVRegDef(Reg); 626 if (DefMI->getParent() == MI.getParent()) 627 return true; 628 } 629 } 630 631 return false; 632 } 633 634 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 635 MachineBasicBlock *FromBB, 636 MachineBasicBlock *ToBB, 637 bool BreakPHIEdge) { 638 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 639 return false; 640 641 // Avoid breaking back edge. From == To means backedge for single BB cycle. 642 if (!SplitEdges || FromBB == ToBB) 643 return false; 644 645 MachineCycle *FromCycle = CI->getCycle(FromBB); 646 MachineCycle *ToCycle = CI->getCycle(ToBB); 647 648 // Check for backedges of more "complex" cycles. 649 if (FromCycle == ToCycle && FromCycle && 650 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 651 return false; 652 653 // It's not always legal to break critical edges and sink the computation 654 // to the edge. 655 // 656 // %bb.1: 657 // v1024 658 // Beq %bb.3 659 // <fallthrough> 660 // %bb.2: 661 // ... no uses of v1024 662 // <fallthrough> 663 // %bb.3: 664 // ... 665 // = v1024 666 // 667 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 668 // 669 // %bb.1: 670 // ... 671 // Bne %bb.2 672 // %bb.4: 673 // v1024 = 674 // B %bb.3 675 // %bb.2: 676 // ... no uses of v1024 677 // <fallthrough> 678 // %bb.3: 679 // ... 680 // = v1024 681 // 682 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 683 // flow. We need to ensure the new basic block where the computation is 684 // sunk to dominates all the uses. 685 // It's only legal to break critical edge and sink the computation to the 686 // new block if all the predecessors of "To", except for "From", are 687 // not dominated by "From". Given SSA property, this means these 688 // predecessors are dominated by "To". 689 // 690 // There is no need to do this check if all the uses are PHI nodes. PHI 691 // sources are only defined on the specific predecessor edges. 692 if (!BreakPHIEdge) { 693 for (MachineBasicBlock *Pred : ToBB->predecessors()) 694 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 695 return false; 696 } 697 698 ToSplit.insert(std::make_pair(FromBB, ToBB)); 699 700 return true; 701 } 702 703 std::vector<unsigned> & 704 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 705 // Currently to save compiling time, MBB's register pressure will not change 706 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 707 // register pressure is changed after sinking any instructions into it. 708 // FIXME: need a accurate and cheap register pressure estiminate model here. 709 auto RP = CachedRegisterPressure.find(&MBB); 710 if (RP != CachedRegisterPressure.end()) 711 return RP->second; 712 713 RegionPressure Pressure; 714 RegPressureTracker RPTracker(Pressure); 715 716 // Initialize the register pressure tracker. 717 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 718 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 719 720 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 721 MIE = MBB.instr_begin(); 722 MII != MIE; --MII) { 723 MachineInstr &MI = *std::prev(MII); 724 if (MI.isDebugInstr() || MI.isPseudoProbe()) 725 continue; 726 RegisterOperands RegOpers; 727 RegOpers.collect(MI, *TRI, *MRI, false, false); 728 RPTracker.recedeSkipDebugValues(); 729 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 730 RPTracker.recede(RegOpers); 731 } 732 733 RPTracker.closeRegion(); 734 auto It = CachedRegisterPressure.insert( 735 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 736 return It.first->second; 737 } 738 739 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 740 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 741 MachineBasicBlock *MBB, 742 MachineBasicBlock *SuccToSinkTo, 743 AllSuccsCache &AllSuccessors) { 744 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 745 746 if (MBB == SuccToSinkTo) 747 return false; 748 749 // It is profitable if SuccToSinkTo does not post dominate current block. 750 if (!PDT->dominates(SuccToSinkTo, MBB)) 751 return true; 752 753 // It is profitable to sink an instruction from a deeper cycle to a shallower 754 // cycle, even if the latter post-dominates the former (PR21115). 755 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 756 return true; 757 758 // Check if only use in post dominated block is PHI instruction. 759 bool NonPHIUse = false; 760 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 761 MachineBasicBlock *UseBlock = UseInst.getParent(); 762 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 763 NonPHIUse = true; 764 } 765 if (!NonPHIUse) 766 return true; 767 768 // If SuccToSinkTo post dominates then also it may be profitable if MI 769 // can further profitably sinked into another block in next round. 770 bool BreakPHIEdge = false; 771 // FIXME - If finding successor is compile time expensive then cache results. 772 if (MachineBasicBlock *MBB2 = 773 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 774 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 775 776 MachineCycle *MCycle = CI->getCycle(MBB); 777 778 // If the instruction is not inside a cycle, it is not profitable to sink MI to 779 // a post dominate block SuccToSinkTo. 780 if (!MCycle) 781 return false; 782 783 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 784 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 785 const int *PS = TRI->getRegClassPressureSets(RC); 786 // Get register pressure for block SuccToSinkTo. 787 std::vector<unsigned> BBRegisterPressure = 788 getBBRegisterPressure(*SuccToSinkTo); 789 for (; *PS != -1; PS++) 790 // check if any register pressure set exceeds limit in block SuccToSinkTo 791 // after sinking. 792 if (Weight + BBRegisterPressure[*PS] >= 793 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 794 return true; 795 return false; 796 }; 797 798 // If this instruction is inside a Cycle and sinking this instruction can make 799 // more registers live range shorten, it is still prifitable. 800 for (const MachineOperand &MO : MI.operands()) { 801 // Ignore non-register operands. 802 if (!MO.isReg()) 803 continue; 804 Register Reg = MO.getReg(); 805 if (Reg == 0) 806 continue; 807 808 if (Register::isPhysicalRegister(Reg)) { 809 if (MO.isUse() && 810 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 811 continue; 812 813 // Don't handle non-constant and non-ignorable physical register. 814 return false; 815 } 816 817 // Users for the defs are all dominated by SuccToSinkTo. 818 if (MO.isDef()) { 819 // This def register's live range is shortened after sinking. 820 bool LocalUse = false; 821 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 822 LocalUse)) 823 return false; 824 } else { 825 MachineInstr *DefMI = MRI->getVRegDef(Reg); 826 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 827 // DefMI is defined outside of cycle. There should be no live range 828 // impact for this operand. Defination outside of cycle means: 829 // 1: defination is outside of cycle. 830 // 2: defination is in this cycle, but it is a PHI in the cycle header. 831 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 832 Cycle->getHeader() == DefMI->getParent())) 833 continue; 834 // The DefMI is defined inside the cycle. 835 // If sinking this operand makes some register pressure set exceed limit, 836 // it is not profitable. 837 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 838 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 839 return false; 840 } 841 } 842 } 843 844 // If MI is in cycle and all its operands are alive across the whole cycle or 845 // if no operand sinking make register pressure set exceed limit, it is 846 // profitable to sink MI. 847 return true; 848 } 849 850 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 851 /// computing it if it was not already cached. 852 SmallVector<MachineBasicBlock *, 4> & 853 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 854 AllSuccsCache &AllSuccessors) const { 855 // Do we have the sorted successors in cache ? 856 auto Succs = AllSuccessors.find(MBB); 857 if (Succs != AllSuccessors.end()) 858 return Succs->second; 859 860 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 861 862 // Handle cases where sinking can happen but where the sink point isn't a 863 // successor. For example: 864 // 865 // x = computation 866 // if () {} else {} 867 // use x 868 // 869 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 870 // DomTree children of MBB that have MBB as immediate dominator are added. 871 if (DTChild->getIDom()->getBlock() == MI.getParent() && 872 // Skip MBBs already added to the AllSuccs vector above. 873 !MBB->isSuccessor(DTChild->getBlock())) 874 AllSuccs.push_back(DTChild->getBlock()); 875 } 876 877 // Sort Successors according to their cycle depth or block frequency info. 878 llvm::stable_sort( 879 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 880 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 881 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 882 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 883 return HasBlockFreq ? LHSFreq < RHSFreq 884 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 885 }); 886 887 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 888 889 return it.first->second; 890 } 891 892 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 893 MachineBasicBlock * 894 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 895 bool &BreakPHIEdge, 896 AllSuccsCache &AllSuccessors) { 897 assert (MBB && "Invalid MachineBasicBlock!"); 898 899 // loop over all the operands of the specified instruction. If there is 900 // anything we can't handle, bail out. 901 902 // SuccToSinkTo - This is the successor to sink this instruction to, once we 903 // decide. 904 MachineBasicBlock *SuccToSinkTo = nullptr; 905 for (const MachineOperand &MO : MI.operands()) { 906 if (!MO.isReg()) continue; // Ignore non-register operands. 907 908 Register Reg = MO.getReg(); 909 if (Reg == 0) continue; 910 911 if (Register::isPhysicalRegister(Reg)) { 912 if (MO.isUse()) { 913 // If the physreg has no defs anywhere, it's just an ambient register 914 // and we can freely move its uses. Alternatively, if it's allocatable, 915 // it could get allocated to something with a def during allocation. 916 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 917 return nullptr; 918 } else if (!MO.isDead()) { 919 // A def that isn't dead. We can't move it. 920 return nullptr; 921 } 922 } else { 923 // Virtual register uses are always safe to sink. 924 if (MO.isUse()) continue; 925 926 // If it's not safe to move defs of the register class, then abort. 927 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 928 return nullptr; 929 930 // Virtual register defs can only be sunk if all their uses are in blocks 931 // dominated by one of the successors. 932 if (SuccToSinkTo) { 933 // If a previous operand picked a block to sink to, then this operand 934 // must be sinkable to the same block. 935 bool LocalUse = false; 936 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 937 BreakPHIEdge, LocalUse)) 938 return nullptr; 939 940 continue; 941 } 942 943 // Otherwise, we should look at all the successors and decide which one 944 // we should sink to. If we have reliable block frequency information 945 // (frequency != 0) available, give successors with smaller frequencies 946 // higher priority, otherwise prioritize smaller cycle depths. 947 for (MachineBasicBlock *SuccBlock : 948 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 949 bool LocalUse = false; 950 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 951 BreakPHIEdge, LocalUse)) { 952 SuccToSinkTo = SuccBlock; 953 break; 954 } 955 if (LocalUse) 956 // Def is used locally, it's never safe to move this def. 957 return nullptr; 958 } 959 960 // If we couldn't find a block to sink to, ignore this instruction. 961 if (!SuccToSinkTo) 962 return nullptr; 963 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 964 return nullptr; 965 } 966 } 967 968 // It is not possible to sink an instruction into its own block. This can 969 // happen with cycles. 970 if (MBB == SuccToSinkTo) 971 return nullptr; 972 973 // It's not safe to sink instructions to EH landing pad. Control flow into 974 // landing pad is implicitly defined. 975 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 976 return nullptr; 977 978 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 979 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 980 // the source block (which this code does not yet do). So for now, forbid 981 // doing so. 982 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 983 return nullptr; 984 985 return SuccToSinkTo; 986 } 987 988 /// Return true if MI is likely to be usable as a memory operation by the 989 /// implicit null check optimization. 990 /// 991 /// This is a "best effort" heuristic, and should not be relied upon for 992 /// correctness. This returning true does not guarantee that the implicit null 993 /// check optimization is legal over MI, and this returning false does not 994 /// guarantee MI cannot possibly be used to do a null check. 995 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 996 const TargetInstrInfo *TII, 997 const TargetRegisterInfo *TRI) { 998 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 999 1000 auto *MBB = MI.getParent(); 1001 if (MBB->pred_size() != 1) 1002 return false; 1003 1004 auto *PredMBB = *MBB->pred_begin(); 1005 auto *PredBB = PredMBB->getBasicBlock(); 1006 1007 // Frontends that don't use implicit null checks have no reason to emit 1008 // branches with make.implicit metadata, and this function should always 1009 // return false for them. 1010 if (!PredBB || 1011 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1012 return false; 1013 1014 const MachineOperand *BaseOp; 1015 int64_t Offset; 1016 bool OffsetIsScalable; 1017 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1018 return false; 1019 1020 if (!BaseOp->isReg()) 1021 return false; 1022 1023 if (!(MI.mayLoad() && !MI.isPredicable())) 1024 return false; 1025 1026 MachineBranchPredicate MBP; 1027 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1028 return false; 1029 1030 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1031 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1032 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1033 MBP.LHS.getReg() == BaseOp->getReg(); 1034 } 1035 1036 /// If the sunk instruction is a copy, try to forward the copy instead of 1037 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1038 /// there's any subregister weirdness involved. Returns true if copy 1039 /// propagation occurred. 1040 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1041 Register Reg) { 1042 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1043 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1044 1045 // Copy DBG_VALUE operand and set the original to undef. We then check to 1046 // see whether this is something that can be copy-forwarded. If it isn't, 1047 // continue around the loop. 1048 1049 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1050 auto CopyOperands = TII.isCopyInstr(SinkInst); 1051 if (!CopyOperands) 1052 return false; 1053 SrcMO = CopyOperands->Source; 1054 DstMO = CopyOperands->Destination; 1055 1056 // Check validity of forwarding this copy. 1057 bool PostRA = MRI.getNumVirtRegs() == 0; 1058 1059 // Trying to forward between physical and virtual registers is too hard. 1060 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1061 return false; 1062 1063 // Only try virtual register copy-forwarding before regalloc, and physical 1064 // register copy-forwarding after regalloc. 1065 bool arePhysRegs = !Reg.isVirtual(); 1066 if (arePhysRegs != PostRA) 1067 return false; 1068 1069 // Pre-regalloc, only forward if all subregisters agree (or there are no 1070 // subregs at all). More analysis might recover some forwardable copies. 1071 if (!PostRA) 1072 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1073 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1074 DbgMO.getSubReg() != DstMO->getSubReg()) 1075 return false; 1076 1077 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1078 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1079 // matches the copy destination. 1080 if (PostRA && Reg != DstMO->getReg()) 1081 return false; 1082 1083 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1084 DbgMO.setReg(SrcMO->getReg()); 1085 DbgMO.setSubReg(SrcMO->getSubReg()); 1086 } 1087 return true; 1088 } 1089 1090 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1091 /// Sink an instruction and its associated debug instructions. 1092 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1093 MachineBasicBlock::iterator InsertPos, 1094 ArrayRef<MIRegs> DbgValuesToSink) { 1095 // If we cannot find a location to use (merge with), then we erase the debug 1096 // location to prevent debug-info driven tools from potentially reporting 1097 // wrong location information. 1098 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1099 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1100 InsertPos->getDebugLoc())); 1101 else 1102 MI.setDebugLoc(DebugLoc()); 1103 1104 // Move the instruction. 1105 MachineBasicBlock *ParentBlock = MI.getParent(); 1106 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1107 ++MachineBasicBlock::iterator(MI)); 1108 1109 // Sink a copy of debug users to the insert position. Mark the original 1110 // DBG_VALUE location as 'undef', indicating that any earlier variable 1111 // location should be terminated as we've optimised away the value at this 1112 // point. 1113 for (const auto &DbgValueToSink : DbgValuesToSink) { 1114 MachineInstr *DbgMI = DbgValueToSink.first; 1115 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1116 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1117 1118 bool PropagatedAllSunkOps = true; 1119 for (unsigned Reg : DbgValueToSink.second) { 1120 if (DbgMI->hasDebugOperandForReg(Reg)) { 1121 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1122 PropagatedAllSunkOps = false; 1123 break; 1124 } 1125 } 1126 } 1127 if (!PropagatedAllSunkOps) 1128 DbgMI->setDebugValueUndef(); 1129 } 1130 } 1131 1132 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1133 /// and To. 1134 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1135 MachineBasicBlock *To, MachineInstr &MI) { 1136 // Make sure From and To are in straight line which means From dominates To 1137 // and To post dominates From. 1138 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1139 return true; 1140 1141 auto BlockPair = std::make_pair(From, To); 1142 1143 // Does these two blocks pair be queried before and have a definite cached 1144 // result? 1145 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1146 return HasStoreCache[BlockPair]; 1147 1148 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1149 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1150 return I->mayAlias(AA, MI, false); 1151 }); 1152 1153 bool SawStore = false; 1154 bool HasAliasedStore = false; 1155 DenseSet<MachineBasicBlock *> HandledBlocks; 1156 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1157 // Go through all reachable blocks from From. 1158 for (MachineBasicBlock *BB : depth_first(From)) { 1159 // We insert the instruction at the start of block To, so no need to worry 1160 // about stores inside To. 1161 // Store in block From should be already considered when just enter function 1162 // SinkInstruction. 1163 if (BB == To || BB == From) 1164 continue; 1165 1166 // We already handle this BB in previous iteration. 1167 if (HandledBlocks.count(BB)) 1168 continue; 1169 1170 HandledBlocks.insert(BB); 1171 // To post dominates BB, it must be a path from block From. 1172 if (PDT->dominates(To, BB)) { 1173 if (!HandledDomBlocks.count(BB)) 1174 HandledDomBlocks.insert(BB); 1175 1176 // If this BB is too big or the block number in straight line between From 1177 // and To is too big, stop searching to save compiling time. 1178 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1179 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1180 for (auto *DomBB : HandledDomBlocks) { 1181 if (DomBB != BB && DT->dominates(DomBB, BB)) 1182 HasStoreCache[std::make_pair(DomBB, To)] = true; 1183 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1184 HasStoreCache[std::make_pair(From, DomBB)] = true; 1185 } 1186 HasStoreCache[BlockPair] = true; 1187 return true; 1188 } 1189 1190 for (MachineInstr &I : *BB) { 1191 // Treat as alias conservatively for a call or an ordered memory 1192 // operation. 1193 if (I.isCall() || I.hasOrderedMemoryRef()) { 1194 for (auto *DomBB : HandledDomBlocks) { 1195 if (DomBB != BB && DT->dominates(DomBB, BB)) 1196 HasStoreCache[std::make_pair(DomBB, To)] = true; 1197 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1198 HasStoreCache[std::make_pair(From, DomBB)] = true; 1199 } 1200 HasStoreCache[BlockPair] = true; 1201 return true; 1202 } 1203 1204 if (I.mayStore()) { 1205 SawStore = true; 1206 // We still have chance to sink MI if all stores between are not 1207 // aliased to MI. 1208 // Cache all store instructions, so that we don't need to go through 1209 // all From reachable blocks for next load instruction. 1210 if (I.mayAlias(AA, MI, false)) 1211 HasAliasedStore = true; 1212 StoreInstrCache[BlockPair].push_back(&I); 1213 } 1214 } 1215 } 1216 } 1217 // If there is no store at all, cache the result. 1218 if (!SawStore) 1219 HasStoreCache[BlockPair] = false; 1220 return HasAliasedStore; 1221 } 1222 1223 /// Sink instructions into cycles if profitable. This especially tries to 1224 /// prevent register spills caused by register pressure if there is little to no 1225 /// overhead moving instructions into cycles. 1226 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1227 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1228 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1229 assert(Preheader && "Cycle sink needs a preheader block"); 1230 MachineBasicBlock *SinkBlock = nullptr; 1231 bool CanSink = true; 1232 const MachineOperand &MO = I.getOperand(0); 1233 1234 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1235 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1236 if (!Cycle->contains(MI.getParent())) { 1237 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1238 CanSink = false; 1239 break; 1240 } 1241 1242 // FIXME: Come up with a proper cost model that estimates whether sinking 1243 // the instruction (and thus possibly executing it on every cycle 1244 // iteration) is more expensive than a register. 1245 // For now assumes that copies are cheap and thus almost always worth it. 1246 if (!MI.isCopy()) { 1247 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1248 CanSink = false; 1249 break; 1250 } 1251 if (!SinkBlock) { 1252 SinkBlock = MI.getParent(); 1253 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1254 << printMBBReference(*SinkBlock) << "\n"); 1255 continue; 1256 } 1257 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1258 if (!SinkBlock) { 1259 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1260 CanSink = false; 1261 break; 1262 } 1263 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1264 printMBBReference(*SinkBlock) << "\n"); 1265 } 1266 1267 if (!CanSink) { 1268 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1269 return false; 1270 } 1271 if (!SinkBlock) { 1272 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1273 return false; 1274 } 1275 if (SinkBlock == Preheader) { 1276 LLVM_DEBUG( 1277 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1278 return false; 1279 } 1280 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) { 1281 LLVM_DEBUG( 1282 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1283 return false; 1284 } 1285 1286 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1287 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1288 I); 1289 1290 // The instruction is moved from its basic block, so do not retain the 1291 // debug information. 1292 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1293 I.setDebugLoc(DebugLoc()); 1294 return true; 1295 } 1296 1297 /// Return true if a target defined block prologue instruction interferes 1298 /// with a sink candidate. 1299 static bool blockPrologueInterferes(MachineBasicBlock *BB, 1300 MachineBasicBlock::iterator End, 1301 MachineInstr &MI, 1302 const TargetRegisterInfo *TRI, 1303 const TargetInstrInfo *TII, 1304 const MachineRegisterInfo *MRI) { 1305 if (BB->begin() == End) 1306 return false; // no prologue 1307 for (MachineBasicBlock::iterator PI = BB->getFirstNonPHI(); PI != End; ++PI) { 1308 // Only check target defined prologue instructions 1309 if (!TII->isBasicBlockPrologue(*PI)) 1310 continue; 1311 for (auto &MO : MI.operands()) { 1312 if (!MO.isReg()) 1313 continue; 1314 Register Reg = MO.getReg(); 1315 if (!Reg) 1316 continue; 1317 if (MO.isUse()) { 1318 if (Register::isPhysicalRegister(Reg) && 1319 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 1320 continue; 1321 if (PI->modifiesRegister(Reg, TRI)) 1322 return true; 1323 } else { 1324 if (PI->readsRegister(Reg, TRI)) 1325 return true; 1326 // Check for interference with non-dead defs 1327 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 1328 if (DefOp && !DefOp->isDead()) 1329 return true; 1330 } 1331 } 1332 } 1333 return false; 1334 } 1335 1336 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1337 /// instruction out of its current block into a successor. 1338 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1339 AllSuccsCache &AllSuccessors) { 1340 // Don't sink instructions that the target prefers not to sink. 1341 if (!TII->shouldSink(MI)) 1342 return false; 1343 1344 // Check if it's safe to move the instruction. 1345 if (!MI.isSafeToMove(AA, SawStore)) 1346 return false; 1347 1348 // Convergent operations may not be made control-dependent on additional 1349 // values. 1350 if (MI.isConvergent()) 1351 return false; 1352 1353 // Don't break implicit null checks. This is a performance heuristic, and not 1354 // required for correctness. 1355 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1356 return false; 1357 1358 // FIXME: This should include support for sinking instructions within the 1359 // block they are currently in to shorten the live ranges. We often get 1360 // instructions sunk into the top of a large block, but it would be better to 1361 // also sink them down before their first use in the block. This xform has to 1362 // be careful not to *increase* register pressure though, e.g. sinking 1363 // "x = y + z" down if it kills y and z would increase the live ranges of y 1364 // and z and only shrink the live range of x. 1365 1366 bool BreakPHIEdge = false; 1367 MachineBasicBlock *ParentBlock = MI.getParent(); 1368 MachineBasicBlock *SuccToSinkTo = 1369 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1370 1371 // If there are no outputs, it must have side-effects. 1372 if (!SuccToSinkTo) 1373 return false; 1374 1375 // If the instruction to move defines a dead physical register which is live 1376 // when leaving the basic block, don't move it because it could turn into a 1377 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1378 for (const MachineOperand &MO : MI.operands()) { 1379 if (!MO.isReg() || MO.isUse()) 1380 continue; 1381 Register Reg = MO.getReg(); 1382 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1383 continue; 1384 if (SuccToSinkTo->isLiveIn(Reg)) 1385 return false; 1386 } 1387 1388 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1389 1390 // If the block has multiple predecessors, this is a critical edge. 1391 // Decide if we can sink along it or need to break the edge. 1392 if (SuccToSinkTo->pred_size() > 1) { 1393 // We cannot sink a load across a critical edge - there may be stores in 1394 // other code paths. 1395 bool TryBreak = false; 1396 bool Store = 1397 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1398 if (!MI.isSafeToMove(AA, Store)) { 1399 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1400 TryBreak = true; 1401 } 1402 1403 // We don't want to sink across a critical edge if we don't dominate the 1404 // successor. We could be introducing calculations to new code paths. 1405 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1406 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1407 TryBreak = true; 1408 } 1409 1410 // Don't sink instructions into a cycle. 1411 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1412 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1413 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1414 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1415 TryBreak = true; 1416 } 1417 1418 // Otherwise we are OK with sinking along a critical edge. 1419 if (!TryBreak) 1420 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1421 else { 1422 // Mark this edge as to be split. 1423 // If the edge can actually be split, the next iteration of the main loop 1424 // will sink MI in the newly created block. 1425 bool Status = 1426 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1427 if (!Status) 1428 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1429 "break critical edge\n"); 1430 // The instruction will not be sunk this time. 1431 return false; 1432 } 1433 } 1434 1435 if (BreakPHIEdge) { 1436 // BreakPHIEdge is true if all the uses are in the successor MBB being 1437 // sunken into and they are all PHI nodes. In this case, machine-sink must 1438 // break the critical edge first. 1439 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1440 SuccToSinkTo, BreakPHIEdge); 1441 if (!Status) 1442 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1443 "break critical edge\n"); 1444 // The instruction will not be sunk this time. 1445 return false; 1446 } 1447 1448 // Determine where to insert into. Skip phi nodes. 1449 MachineBasicBlock::iterator InsertPos = 1450 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1451 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1452 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1453 return false; 1454 } 1455 1456 // Collect debug users of any vreg that this inst defines. 1457 SmallVector<MIRegs, 4> DbgUsersToSink; 1458 for (auto &MO : MI.operands()) { 1459 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1460 continue; 1461 if (!SeenDbgUsers.count(MO.getReg())) 1462 continue; 1463 1464 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1465 auto &Users = SeenDbgUsers[MO.getReg()]; 1466 for (auto &User : Users) { 1467 MachineInstr *DbgMI = User.getPointer(); 1468 if (User.getInt()) { 1469 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1470 // it, it can't be recovered. Set it undef. 1471 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1472 DbgMI->setDebugValueUndef(); 1473 } else { 1474 DbgUsersToSink.push_back( 1475 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1476 } 1477 } 1478 } 1479 1480 // After sinking, some debug users may not be dominated any more. If possible, 1481 // copy-propagate their operands. As it's expensive, don't do this if there's 1482 // no debuginfo in the program. 1483 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1484 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1485 1486 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1487 1488 // Conservatively, clear any kill flags, since it's possible that they are no 1489 // longer correct. 1490 // Note that we have to clear the kill flags for any register this instruction 1491 // uses as we may sink over another instruction which currently kills the 1492 // used registers. 1493 for (MachineOperand &MO : MI.operands()) { 1494 if (MO.isReg() && MO.isUse()) 1495 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1496 } 1497 1498 return true; 1499 } 1500 1501 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1502 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1503 assert(MI.isCopy()); 1504 assert(MI.getOperand(1).isReg()); 1505 1506 // Enumerate all users of vreg operands that are def'd. Skip those that will 1507 // be sunk. For the rest, if they are not dominated by the block we will sink 1508 // MI into, propagate the copy source to them. 1509 SmallVector<MachineInstr *, 4> DbgDefUsers; 1510 SmallVector<Register, 4> DbgUseRegs; 1511 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1512 for (auto &MO : MI.operands()) { 1513 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1514 continue; 1515 DbgUseRegs.push_back(MO.getReg()); 1516 for (auto &User : MRI.use_instructions(MO.getReg())) { 1517 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1518 continue; 1519 1520 // If is in same block, will either sink or be use-before-def. 1521 if (User.getParent() == MI.getParent()) 1522 continue; 1523 1524 assert(User.hasDebugOperandForReg(MO.getReg()) && 1525 "DBG_VALUE user of vreg, but has no operand for it?"); 1526 DbgDefUsers.push_back(&User); 1527 } 1528 } 1529 1530 // Point the users of this copy that are no longer dominated, at the source 1531 // of the copy. 1532 for (auto *User : DbgDefUsers) { 1533 for (auto &Reg : DbgUseRegs) { 1534 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1535 DbgOp.setReg(MI.getOperand(1).getReg()); 1536 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1537 } 1538 } 1539 } 1540 } 1541 1542 //===----------------------------------------------------------------------===// 1543 // This pass is not intended to be a replacement or a complete alternative 1544 // for the pre-ra machine sink pass. It is only designed to sink COPY 1545 // instructions which should be handled after RA. 1546 // 1547 // This pass sinks COPY instructions into a successor block, if the COPY is not 1548 // used in the current block and the COPY is live-in to a single successor 1549 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1550 // copy on paths where their results aren't needed. This also exposes 1551 // additional opportunites for dead copy elimination and shrink wrapping. 1552 // 1553 // These copies were either not handled by or are inserted after the MachineSink 1554 // pass. As an example of the former case, the MachineSink pass cannot sink 1555 // COPY instructions with allocatable source registers; for AArch64 these type 1556 // of copy instructions are frequently used to move function parameters (PhyReg) 1557 // into virtual registers in the entry block. 1558 // 1559 // For the machine IR below, this pass will sink %w19 in the entry into its 1560 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1561 // %bb.0: 1562 // %wzr = SUBSWri %w1, 1 1563 // %w19 = COPY %w0 1564 // Bcc 11, %bb.2 1565 // %bb.1: 1566 // Live Ins: %w19 1567 // BL @fun 1568 // %w0 = ADDWrr %w0, %w19 1569 // RET %w0 1570 // %bb.2: 1571 // %w0 = COPY %wzr 1572 // RET %w0 1573 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1574 // able to see %bb.0 as a candidate. 1575 //===----------------------------------------------------------------------===// 1576 namespace { 1577 1578 class PostRAMachineSinking : public MachineFunctionPass { 1579 public: 1580 bool runOnMachineFunction(MachineFunction &MF) override; 1581 1582 static char ID; 1583 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1584 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1585 1586 void getAnalysisUsage(AnalysisUsage &AU) const override { 1587 AU.setPreservesCFG(); 1588 MachineFunctionPass::getAnalysisUsage(AU); 1589 } 1590 1591 MachineFunctionProperties getRequiredProperties() const override { 1592 return MachineFunctionProperties().set( 1593 MachineFunctionProperties::Property::NoVRegs); 1594 } 1595 1596 private: 1597 /// Track which register units have been modified and used. 1598 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1599 1600 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1601 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1602 /// consists of a pointer to the instruction itself, and a vector of registers 1603 /// referred to by the instruction that overlap the key register unit. 1604 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1605 1606 /// Sink Copy instructions unused in the same block close to their uses in 1607 /// successors. 1608 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1609 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1610 }; 1611 } // namespace 1612 1613 char PostRAMachineSinking::ID = 0; 1614 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1615 1616 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1617 "PostRA Machine Sink", false, false) 1618 1619 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1620 const TargetRegisterInfo *TRI) { 1621 LiveRegUnits LiveInRegUnits(*TRI); 1622 LiveInRegUnits.addLiveIns(MBB); 1623 return !LiveInRegUnits.available(Reg); 1624 } 1625 1626 static MachineBasicBlock * 1627 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1628 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1629 unsigned Reg, const TargetRegisterInfo *TRI) { 1630 // Try to find a single sinkable successor in which Reg is live-in. 1631 MachineBasicBlock *BB = nullptr; 1632 for (auto *SI : SinkableBBs) { 1633 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1634 // If BB is set here, Reg is live-in to at least two sinkable successors, 1635 // so quit. 1636 if (BB) 1637 return nullptr; 1638 BB = SI; 1639 } 1640 } 1641 // Reg is not live-in to any sinkable successors. 1642 if (!BB) 1643 return nullptr; 1644 1645 // Check if any register aliased with Reg is live-in in other successors. 1646 for (auto *SI : CurBB.successors()) { 1647 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1648 return nullptr; 1649 } 1650 return BB; 1651 } 1652 1653 static MachineBasicBlock * 1654 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1655 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1656 ArrayRef<unsigned> DefedRegsInCopy, 1657 const TargetRegisterInfo *TRI) { 1658 MachineBasicBlock *SingleBB = nullptr; 1659 for (auto DefReg : DefedRegsInCopy) { 1660 MachineBasicBlock *BB = 1661 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1662 if (!BB || (SingleBB && SingleBB != BB)) 1663 return nullptr; 1664 SingleBB = BB; 1665 } 1666 return SingleBB; 1667 } 1668 1669 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1670 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1671 LiveRegUnits &UsedRegUnits, 1672 const TargetRegisterInfo *TRI) { 1673 for (auto U : UsedOpsInCopy) { 1674 MachineOperand &MO = MI->getOperand(U); 1675 Register SrcReg = MO.getReg(); 1676 if (!UsedRegUnits.available(SrcReg)) { 1677 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1678 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1679 if (UI.killsRegister(SrcReg, TRI)) { 1680 UI.clearRegisterKills(SrcReg, TRI); 1681 MO.setIsKill(true); 1682 break; 1683 } 1684 } 1685 } 1686 } 1687 } 1688 1689 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1690 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1691 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1692 MachineFunction &MF = *SuccBB->getParent(); 1693 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1694 for (unsigned DefReg : DefedRegsInCopy) 1695 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1696 SuccBB->removeLiveIn(*S); 1697 for (auto U : UsedOpsInCopy) { 1698 Register SrcReg = MI->getOperand(U).getReg(); 1699 LaneBitmask Mask; 1700 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1701 Mask |= (*S).second; 1702 } 1703 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1704 } 1705 SuccBB->sortUniqueLiveIns(); 1706 } 1707 1708 static bool hasRegisterDependency(MachineInstr *MI, 1709 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1710 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1711 LiveRegUnits &ModifiedRegUnits, 1712 LiveRegUnits &UsedRegUnits) { 1713 bool HasRegDependency = false; 1714 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1715 MachineOperand &MO = MI->getOperand(i); 1716 if (!MO.isReg()) 1717 continue; 1718 Register Reg = MO.getReg(); 1719 if (!Reg) 1720 continue; 1721 if (MO.isDef()) { 1722 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1723 HasRegDependency = true; 1724 break; 1725 } 1726 DefedRegsInCopy.push_back(Reg); 1727 1728 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1729 // For example, we can ignore modifications in reg with undef. However, 1730 // it's not perfectly clear if skipping the internal read is safe in all 1731 // other targets. 1732 } else if (MO.isUse()) { 1733 if (!ModifiedRegUnits.available(Reg)) { 1734 HasRegDependency = true; 1735 break; 1736 } 1737 UsedOpsInCopy.push_back(i); 1738 } 1739 } 1740 return HasRegDependency; 1741 } 1742 1743 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1744 MachineFunction &MF, 1745 const TargetRegisterInfo *TRI, 1746 const TargetInstrInfo *TII) { 1747 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1748 // FIXME: For now, we sink only to a successor which has a single predecessor 1749 // so that we can directly sink COPY instructions to the successor without 1750 // adding any new block or branch instruction. 1751 for (MachineBasicBlock *SI : CurBB.successors()) 1752 if (!SI->livein_empty() && SI->pred_size() == 1) 1753 SinkableBBs.insert(SI); 1754 1755 if (SinkableBBs.empty()) 1756 return false; 1757 1758 bool Changed = false; 1759 1760 // Track which registers have been modified and used between the end of the 1761 // block and the current instruction. 1762 ModifiedRegUnits.clear(); 1763 UsedRegUnits.clear(); 1764 SeenDbgInstrs.clear(); 1765 1766 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 1767 // Track the operand index for use in Copy. 1768 SmallVector<unsigned, 2> UsedOpsInCopy; 1769 // Track the register number defed in Copy. 1770 SmallVector<unsigned, 2> DefedRegsInCopy; 1771 1772 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1773 // for DBG_VALUEs later, record them when they're encountered. 1774 if (MI.isDebugValue()) { 1775 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 1776 bool IsValid = true; 1777 for (MachineOperand &MO : MI.debug_operands()) { 1778 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1779 // Bail if we can already tell the sink would be rejected, rather 1780 // than needlessly accumulating lots of DBG_VALUEs. 1781 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1782 ModifiedRegUnits, UsedRegUnits)) { 1783 IsValid = false; 1784 break; 1785 } 1786 1787 // Record debug use of each reg unit. 1788 for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); 1789 ++RI) 1790 MIUnits[*RI].push_back(MO.getReg()); 1791 } 1792 } 1793 if (IsValid) { 1794 for (auto &RegOps : MIUnits) 1795 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 1796 std::move(RegOps.second)); 1797 } 1798 continue; 1799 } 1800 1801 if (MI.isDebugOrPseudoInstr()) 1802 continue; 1803 1804 // Do not move any instruction across function call. 1805 if (MI.isCall()) 1806 return false; 1807 1808 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 1809 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1810 TRI); 1811 continue; 1812 } 1813 1814 // Don't sink the COPY if it would violate a register dependency. 1815 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1816 ModifiedRegUnits, UsedRegUnits)) { 1817 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1818 TRI); 1819 continue; 1820 } 1821 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1822 "Unexpect SrcReg or DefReg"); 1823 MachineBasicBlock *SuccBB = 1824 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1825 // Don't sink if we cannot find a single sinkable successor in which Reg 1826 // is live-in. 1827 if (!SuccBB) { 1828 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1829 TRI); 1830 continue; 1831 } 1832 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1833 "Unexpected predecessor"); 1834 1835 // Collect DBG_VALUEs that must sink with this copy. We've previously 1836 // recorded which reg units that DBG_VALUEs read, if this instruction 1837 // writes any of those units then the corresponding DBG_VALUEs must sink. 1838 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 1839 for (auto &MO : MI.operands()) { 1840 if (!MO.isReg() || !MO.isDef()) 1841 continue; 1842 1843 for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); ++RI) { 1844 for (const auto &MIRegs : SeenDbgInstrs.lookup(*RI)) { 1845 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 1846 for (unsigned Reg : MIRegs.second) 1847 Regs.push_back(Reg); 1848 } 1849 } 1850 } 1851 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 1852 1853 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 1854 1855 MachineBasicBlock::iterator InsertPos = 1856 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 1857 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 1858 LLVM_DEBUG( 1859 dbgs() << " *** Not sinking: prologue interference\n"); 1860 continue; 1861 } 1862 1863 // Clear the kill flag if SrcReg is killed between MI and the end of the 1864 // block. 1865 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1866 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 1867 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1868 1869 Changed = true; 1870 ++NumPostRACopySink; 1871 } 1872 return Changed; 1873 } 1874 1875 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1876 if (skipFunction(MF.getFunction())) 1877 return false; 1878 1879 bool Changed = false; 1880 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1881 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1882 1883 ModifiedRegUnits.init(*TRI); 1884 UsedRegUnits.init(*TRI); 1885 for (auto &BB : MF) 1886 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1887 1888 return Changed; 1889 } 1890