1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachinePostDominators.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "machine-sink" 38 39 static cl::opt<bool> 40 SplitEdges("machine-sink-split", 41 cl::desc("Split critical edges during machine sinking"), 42 cl::init(true), cl::Hidden); 43 44 STATISTIC(NumSunk, "Number of machine instructions sunk"); 45 STATISTIC(NumSplit, "Number of critical edges split"); 46 STATISTIC(NumCoalesces, "Number of copies coalesced"); 47 48 namespace { 49 class MachineSinking : public MachineFunctionPass { 50 const TargetInstrInfo *TII; 51 const TargetRegisterInfo *TRI; 52 MachineRegisterInfo *MRI; // Machine register information 53 MachineDominatorTree *DT; // Machine dominator tree 54 MachinePostDominatorTree *PDT; // Machine post dominator tree 55 MachineLoopInfo *LI; 56 AliasAnalysis *AA; 57 58 // Remember which edges have been considered for breaking. 59 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> 60 CEBCandidates; 61 // Remember which edges we are about to split. 62 // This is different from CEBCandidates since those edges 63 // will be split. 64 SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit; 65 66 public: 67 static char ID; // Pass identification 68 MachineSinking() : MachineFunctionPass(ID) { 69 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 70 } 71 72 bool runOnMachineFunction(MachineFunction &MF) override; 73 74 void getAnalysisUsage(AnalysisUsage &AU) const override { 75 AU.setPreservesCFG(); 76 MachineFunctionPass::getAnalysisUsage(AU); 77 AU.addRequired<AliasAnalysis>(); 78 AU.addRequired<MachineDominatorTree>(); 79 AU.addRequired<MachinePostDominatorTree>(); 80 AU.addRequired<MachineLoopInfo>(); 81 AU.addPreserved<MachineDominatorTree>(); 82 AU.addPreserved<MachinePostDominatorTree>(); 83 AU.addPreserved<MachineLoopInfo>(); 84 } 85 86 void releaseMemory() override { 87 CEBCandidates.clear(); 88 } 89 90 private: 91 bool ProcessBlock(MachineBasicBlock &MBB); 92 bool isWorthBreakingCriticalEdge(MachineInstr *MI, 93 MachineBasicBlock *From, 94 MachineBasicBlock *To); 95 /// \brief Postpone the splitting of the given critical 96 /// edge (\p From, \p To). 97 /// 98 /// We do not split the edges on the fly. Indeed, this invalidates 99 /// the dominance information and thus triggers a lot of updates 100 /// of that information underneath. 101 /// Instead, we postpone all the splits after each iteration of 102 /// the main loop. That way, the information is at least valid 103 /// for the lifetime of an iteration. 104 /// 105 /// \return True if the edge is marked as toSplit, false otherwise. 106 /// False can be retruned if, for instance, this is not profitable. 107 bool PostponeSplitCriticalEdge(MachineInstr *MI, 108 MachineBasicBlock *From, 109 MachineBasicBlock *To, 110 bool BreakPHIEdge); 111 bool SinkInstruction(MachineInstr *MI, bool &SawStore); 112 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 113 MachineBasicBlock *DefMBB, 114 bool &BreakPHIEdge, bool &LocalUse) const; 115 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB, 116 bool &BreakPHIEdge); 117 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 118 MachineBasicBlock *MBB, 119 MachineBasicBlock *SuccToSinkTo); 120 121 bool PerformTrivialForwardCoalescing(MachineInstr *MI, 122 MachineBasicBlock *MBB); 123 }; 124 } // end anonymous namespace 125 126 char MachineSinking::ID = 0; 127 char &llvm::MachineSinkingID = MachineSinking::ID; 128 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 129 "Machine code sinking", false, false) 130 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 131 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 132 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 133 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 134 "Machine code sinking", false, false) 135 136 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, 137 MachineBasicBlock *MBB) { 138 if (!MI->isCopy()) 139 return false; 140 141 unsigned SrcReg = MI->getOperand(1).getReg(); 142 unsigned DstReg = MI->getOperand(0).getReg(); 143 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 144 !TargetRegisterInfo::isVirtualRegister(DstReg) || 145 !MRI->hasOneNonDBGUse(SrcReg)) 146 return false; 147 148 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 149 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 150 if (SRC != DRC) 151 return false; 152 153 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 154 if (DefMI->isCopyLike()) 155 return false; 156 DEBUG(dbgs() << "Coalescing: " << *DefMI); 157 DEBUG(dbgs() << "*** to: " << *MI); 158 MRI->replaceRegWith(DstReg, SrcReg); 159 MI->eraseFromParent(); 160 ++NumCoalesces; 161 return true; 162 } 163 164 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 165 /// occur in blocks dominated by the specified block. If any use is in the 166 /// definition block, then return false since it is never legal to move def 167 /// after uses. 168 bool 169 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 170 MachineBasicBlock *MBB, 171 MachineBasicBlock *DefMBB, 172 bool &BreakPHIEdge, 173 bool &LocalUse) const { 174 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 175 "Only makes sense for vregs"); 176 177 // Ignore debug uses because debug info doesn't affect the code. 178 if (MRI->use_nodbg_empty(Reg)) 179 return true; 180 181 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 182 // into and they are all PHI nodes. In this case, machine-sink must break 183 // the critical edge first. e.g. 184 // 185 // BB#1: derived from LLVM BB %bb4.preheader 186 // Predecessors according to CFG: BB#0 187 // ... 188 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 189 // ... 190 // JE_4 <BB#37>, %EFLAGS<imp-use> 191 // Successors according to CFG: BB#37 BB#2 192 // 193 // BB#2: derived from LLVM BB %bb.nph 194 // Predecessors according to CFG: BB#0 BB#1 195 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 196 BreakPHIEdge = true; 197 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 198 MachineInstr *UseInst = MO.getParent(); 199 unsigned OpNo = &MO - &UseInst->getOperand(0); 200 MachineBasicBlock *UseBlock = UseInst->getParent(); 201 if (!(UseBlock == MBB && UseInst->isPHI() && 202 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 203 BreakPHIEdge = false; 204 break; 205 } 206 } 207 if (BreakPHIEdge) 208 return true; 209 210 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 211 // Determine the block of the use. 212 MachineInstr *UseInst = MO.getParent(); 213 unsigned OpNo = &MO - &UseInst->getOperand(0); 214 MachineBasicBlock *UseBlock = UseInst->getParent(); 215 if (UseInst->isPHI()) { 216 // PHI nodes use the operand in the predecessor block, not the block with 217 // the PHI. 218 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 219 } else if (UseBlock == DefMBB) { 220 LocalUse = true; 221 return false; 222 } 223 224 // Check that it dominates. 225 if (!DT->dominates(MBB, UseBlock)) 226 return false; 227 } 228 229 return true; 230 } 231 232 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 233 if (skipOptnoneFunction(*MF.getFunction())) 234 return false; 235 236 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 237 238 const TargetMachine &TM = MF.getTarget(); 239 TII = TM.getSubtargetImpl()->getInstrInfo(); 240 TRI = TM.getSubtargetImpl()->getRegisterInfo(); 241 MRI = &MF.getRegInfo(); 242 DT = &getAnalysis<MachineDominatorTree>(); 243 PDT = &getAnalysis<MachinePostDominatorTree>(); 244 LI = &getAnalysis<MachineLoopInfo>(); 245 AA = &getAnalysis<AliasAnalysis>(); 246 247 bool EverMadeChange = false; 248 249 while (1) { 250 bool MadeChange = false; 251 252 // Process all basic blocks. 253 CEBCandidates.clear(); 254 ToSplit.clear(); 255 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 256 I != E; ++I) 257 MadeChange |= ProcessBlock(*I); 258 259 // If we have anything we marked as toSplit, split it now. 260 for (auto &Pair : ToSplit) { 261 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this); 262 if (NewSucc != nullptr) { 263 DEBUG(dbgs() << " *** Splitting critical edge:" 264 " BB#" << Pair.first->getNumber() 265 << " -- BB#" << NewSucc->getNumber() 266 << " -- BB#" << Pair.second->getNumber() << '\n'); 267 MadeChange = true; 268 ++NumSplit; 269 } else 270 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 271 } 272 // If this iteration over the code changed anything, keep iterating. 273 if (!MadeChange) break; 274 EverMadeChange = true; 275 } 276 return EverMadeChange; 277 } 278 279 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 280 // Can't sink anything out of a block that has less than two successors. 281 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 282 283 // Don't bother sinking code out of unreachable blocks. In addition to being 284 // unprofitable, it can also lead to infinite looping, because in an 285 // unreachable loop there may be nowhere to stop. 286 if (!DT->isReachableFromEntry(&MBB)) return false; 287 288 bool MadeChange = false; 289 290 // Walk the basic block bottom-up. Remember if we saw a store. 291 MachineBasicBlock::iterator I = MBB.end(); 292 --I; 293 bool ProcessedBegin, SawStore = false; 294 do { 295 MachineInstr *MI = I; // The instruction to sink. 296 297 // Predecrement I (if it's not begin) so that it isn't invalidated by 298 // sinking. 299 ProcessedBegin = I == MBB.begin(); 300 if (!ProcessedBegin) 301 --I; 302 303 if (MI->isDebugValue()) 304 continue; 305 306 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 307 if (Joined) { 308 MadeChange = true; 309 continue; 310 } 311 312 if (SinkInstruction(MI, SawStore)) 313 ++NumSunk, MadeChange = true; 314 315 // If we just processed the first instruction in the block, we're done. 316 } while (!ProcessedBegin); 317 318 return MadeChange; 319 } 320 321 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, 322 MachineBasicBlock *From, 323 MachineBasicBlock *To) { 324 // FIXME: Need much better heuristics. 325 326 // If the pass has already considered breaking this edge (during this pass 327 // through the function), then let's go ahead and break it. This means 328 // sinking multiple "cheap" instructions into the same block. 329 if (!CEBCandidates.insert(std::make_pair(From, To))) 330 return true; 331 332 if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI)) 333 return true; 334 335 // MI is cheap, we probably don't want to break the critical edge for it. 336 // However, if this would allow some definitions of its source operands 337 // to be sunk then it's probably worth it. 338 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 339 const MachineOperand &MO = MI->getOperand(i); 340 if (!MO.isReg() || !MO.isUse()) 341 continue; 342 unsigned Reg = MO.getReg(); 343 if (Reg == 0) 344 continue; 345 346 // We don't move live definitions of physical registers, 347 // so sinking their uses won't enable any opportunities. 348 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 349 continue; 350 351 // If this instruction is the only user of a virtual register, 352 // check if breaking the edge will enable sinking 353 // both this instruction and the defining instruction. 354 if (MRI->hasOneNonDBGUse(Reg)) { 355 // If the definition resides in same MBB, 356 // claim it's likely we can sink these together. 357 // If definition resides elsewhere, we aren't 358 // blocking it from being sunk so don't break the edge. 359 MachineInstr *DefMI = MRI->getVRegDef(Reg); 360 if (DefMI->getParent() == MI->getParent()) 361 return true; 362 } 363 } 364 365 return false; 366 } 367 368 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI, 369 MachineBasicBlock *FromBB, 370 MachineBasicBlock *ToBB, 371 bool BreakPHIEdge) { 372 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 373 return false; 374 375 // Avoid breaking back edge. From == To means backedge for single BB loop. 376 if (!SplitEdges || FromBB == ToBB) 377 return false; 378 379 // Check for backedges of more "complex" loops. 380 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 381 LI->isLoopHeader(ToBB)) 382 return false; 383 384 // It's not always legal to break critical edges and sink the computation 385 // to the edge. 386 // 387 // BB#1: 388 // v1024 389 // Beq BB#3 390 // <fallthrough> 391 // BB#2: 392 // ... no uses of v1024 393 // <fallthrough> 394 // BB#3: 395 // ... 396 // = v1024 397 // 398 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 399 // 400 // BB#1: 401 // ... 402 // Bne BB#2 403 // BB#4: 404 // v1024 = 405 // B BB#3 406 // BB#2: 407 // ... no uses of v1024 408 // <fallthrough> 409 // BB#3: 410 // ... 411 // = v1024 412 // 413 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 414 // flow. We need to ensure the new basic block where the computation is 415 // sunk to dominates all the uses. 416 // It's only legal to break critical edge and sink the computation to the 417 // new block if all the predecessors of "To", except for "From", are 418 // not dominated by "From". Given SSA property, this means these 419 // predecessors are dominated by "To". 420 // 421 // There is no need to do this check if all the uses are PHI nodes. PHI 422 // sources are only defined on the specific predecessor edges. 423 if (!BreakPHIEdge) { 424 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 425 E = ToBB->pred_end(); PI != E; ++PI) { 426 if (*PI == FromBB) 427 continue; 428 if (!DT->dominates(ToBB, *PI)) 429 return false; 430 } 431 } 432 433 ToSplit.insert(std::make_pair(FromBB, ToBB)); 434 435 return true; 436 } 437 438 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { 439 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); 440 } 441 442 /// collectDebgValues - Scan instructions following MI and collect any 443 /// matching DBG_VALUEs. 444 static void collectDebugValues(MachineInstr *MI, 445 SmallVectorImpl<MachineInstr *> &DbgValues) { 446 DbgValues.clear(); 447 if (!MI->getOperand(0).isReg()) 448 return; 449 450 MachineBasicBlock::iterator DI = MI; ++DI; 451 for (MachineBasicBlock::iterator DE = MI->getParent()->end(); 452 DI != DE; ++DI) { 453 if (!DI->isDebugValue()) 454 return; 455 if (DI->getOperand(0).isReg() && 456 DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) 457 DbgValues.push_back(DI); 458 } 459 } 460 461 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 462 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 463 MachineBasicBlock *MBB, 464 MachineBasicBlock *SuccToSinkTo) { 465 assert (MI && "Invalid MachineInstr!"); 466 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 467 468 if (MBB == SuccToSinkTo) 469 return false; 470 471 // It is profitable if SuccToSinkTo does not post dominate current block. 472 if (!PDT->dominates(SuccToSinkTo, MBB)) 473 return true; 474 475 // Check if only use in post dominated block is PHI instruction. 476 bool NonPHIUse = false; 477 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 478 MachineBasicBlock *UseBlock = UseInst.getParent(); 479 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 480 NonPHIUse = true; 481 } 482 if (!NonPHIUse) 483 return true; 484 485 // If SuccToSinkTo post dominates then also it may be profitable if MI 486 // can further profitably sinked into another block in next round. 487 bool BreakPHIEdge = false; 488 // FIXME - If finding successor is compile time expensive then catch results. 489 if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge)) 490 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2); 491 492 // If SuccToSinkTo is final destination and it is a post dominator of current 493 // block then it is not profitable to sink MI into SuccToSinkTo block. 494 return false; 495 } 496 497 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 498 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI, 499 MachineBasicBlock *MBB, 500 bool &BreakPHIEdge) { 501 502 assert (MI && "Invalid MachineInstr!"); 503 assert (MBB && "Invalid MachineBasicBlock!"); 504 505 // Loop over all the operands of the specified instruction. If there is 506 // anything we can't handle, bail out. 507 508 // SuccToSinkTo - This is the successor to sink this instruction to, once we 509 // decide. 510 MachineBasicBlock *SuccToSinkTo = nullptr; 511 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 512 const MachineOperand &MO = MI->getOperand(i); 513 if (!MO.isReg()) continue; // Ignore non-register operands. 514 515 unsigned Reg = MO.getReg(); 516 if (Reg == 0) continue; 517 518 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 519 if (MO.isUse()) { 520 // If the physreg has no defs anywhere, it's just an ambient register 521 // and we can freely move its uses. Alternatively, if it's allocatable, 522 // it could get allocated to something with a def during allocation. 523 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 524 return nullptr; 525 } else if (!MO.isDead()) { 526 // A def that isn't dead. We can't move it. 527 return nullptr; 528 } 529 } else { 530 // Virtual register uses are always safe to sink. 531 if (MO.isUse()) continue; 532 533 // If it's not safe to move defs of the register class, then abort. 534 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 535 return nullptr; 536 537 // FIXME: This picks a successor to sink into based on having one 538 // successor that dominates all the uses. However, there are cases where 539 // sinking can happen but where the sink point isn't a successor. For 540 // example: 541 // 542 // x = computation 543 // if () {} else {} 544 // use x 545 // 546 // the instruction could be sunk over the whole diamond for the 547 // if/then/else (or loop, etc), allowing it to be sunk into other blocks 548 // after that. 549 550 // Virtual register defs can only be sunk if all their uses are in blocks 551 // dominated by one of the successors. 552 if (SuccToSinkTo) { 553 // If a previous operand picked a block to sink to, then this operand 554 // must be sinkable to the same block. 555 bool LocalUse = false; 556 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 557 BreakPHIEdge, LocalUse)) 558 return nullptr; 559 560 continue; 561 } 562 563 // Otherwise, we should look at all the successors and decide which one 564 // we should sink to. 565 // We give successors with smaller loop depth higher priority. 566 SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(), MBB->succ_end()); 567 // Sort Successors according to their loop depth. 568 std::stable_sort( 569 Succs.begin(), Succs.end(), 570 [this](const MachineBasicBlock *LHS, const MachineBasicBlock *RHS) { 571 return LI->getLoopDepth(LHS) < LI->getLoopDepth(RHS); 572 }); 573 for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(), 574 E = Succs.end(); SI != E; ++SI) { 575 MachineBasicBlock *SuccBlock = *SI; 576 bool LocalUse = false; 577 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 578 BreakPHIEdge, LocalUse)) { 579 SuccToSinkTo = SuccBlock; 580 break; 581 } 582 if (LocalUse) 583 // Def is used locally, it's never safe to move this def. 584 return nullptr; 585 } 586 587 // If we couldn't find a block to sink to, ignore this instruction. 588 if (!SuccToSinkTo) 589 return nullptr; 590 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo)) 591 return nullptr; 592 } 593 } 594 595 // It is not possible to sink an instruction into its own block. This can 596 // happen with loops. 597 if (MBB == SuccToSinkTo) 598 return nullptr; 599 600 // It's not safe to sink instructions to EH landing pad. Control flow into 601 // landing pad is implicitly defined. 602 if (SuccToSinkTo && SuccToSinkTo->isLandingPad()) 603 return nullptr; 604 605 return SuccToSinkTo; 606 } 607 608 /// SinkInstruction - Determine whether it is safe to sink the specified machine 609 /// instruction out of its current block into a successor. 610 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { 611 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to 612 // be close to the source to make it easier to coalesce. 613 if (AvoidsSinking(MI, MRI)) 614 return false; 615 616 // Check if it's safe to move the instruction. 617 if (!MI->isSafeToMove(TII, AA, SawStore)) 618 return false; 619 620 // FIXME: This should include support for sinking instructions within the 621 // block they are currently in to shorten the live ranges. We often get 622 // instructions sunk into the top of a large block, but it would be better to 623 // also sink them down before their first use in the block. This xform has to 624 // be careful not to *increase* register pressure though, e.g. sinking 625 // "x = y + z" down if it kills y and z would increase the live ranges of y 626 // and z and only shrink the live range of x. 627 628 bool BreakPHIEdge = false; 629 MachineBasicBlock *ParentBlock = MI->getParent(); 630 MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge); 631 632 // If there are no outputs, it must have side-effects. 633 if (!SuccToSinkTo) 634 return false; 635 636 637 // If the instruction to move defines a dead physical register which is live 638 // when leaving the basic block, don't move it because it could turn into a 639 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 640 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 641 const MachineOperand &MO = MI->getOperand(I); 642 if (!MO.isReg()) continue; 643 unsigned Reg = MO.getReg(); 644 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 645 if (SuccToSinkTo->isLiveIn(Reg)) 646 return false; 647 } 648 649 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); 650 651 // If the block has multiple predecessors, this is a critical edge. 652 // Decide if we can sink along it or need to break the edge. 653 if (SuccToSinkTo->pred_size() > 1) { 654 // We cannot sink a load across a critical edge - there may be stores in 655 // other code paths. 656 bool TryBreak = false; 657 bool store = true; 658 if (!MI->isSafeToMove(TII, AA, store)) { 659 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 660 TryBreak = true; 661 } 662 663 // We don't want to sink across a critical edge if we don't dominate the 664 // successor. We could be introducing calculations to new code paths. 665 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 666 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 667 TryBreak = true; 668 } 669 670 // Don't sink instructions into a loop. 671 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 672 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 673 TryBreak = true; 674 } 675 676 // Otherwise we are OK with sinking along a critical edge. 677 if (!TryBreak) 678 DEBUG(dbgs() << "Sinking along critical edge.\n"); 679 else { 680 // Mark this edge as to be split. 681 // If the edge can actually be split, the next iteration of the main loop 682 // will sink MI in the newly created block. 683 bool Status = 684 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 685 if (!Status) 686 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 687 "break critical edge\n"); 688 // The instruction will not be sunk this time. 689 return false; 690 } 691 } 692 693 if (BreakPHIEdge) { 694 // BreakPHIEdge is true if all the uses are in the successor MBB being 695 // sunken into and they are all PHI nodes. In this case, machine-sink must 696 // break the critical edge first. 697 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 698 SuccToSinkTo, BreakPHIEdge); 699 if (!Status) 700 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 701 "break critical edge\n"); 702 // The instruction will not be sunk this time. 703 return false; 704 } 705 706 // Determine where to insert into. Skip phi nodes. 707 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 708 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 709 ++InsertPos; 710 711 // collect matching debug values. 712 SmallVector<MachineInstr *, 2> DbgValuesToSink; 713 collectDebugValues(MI, DbgValuesToSink); 714 715 // Move the instruction. 716 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 717 ++MachineBasicBlock::iterator(MI)); 718 719 // Move debug values. 720 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 721 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 722 MachineInstr *DbgMI = *DBI; 723 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 724 ++MachineBasicBlock::iterator(DbgMI)); 725 } 726 727 // When sinking the instruction the live time of its operands can be extended 728 // bejond their original last use (marked with a kill flag). Conservatively 729 // clear the kill flag in all instructions that use the same operand 730 // registers. 731 for (auto &MO : MI->uses()) 732 if (MO.isReg() && MO.isUse()) { 733 // Preserve the kill flag for this instruction. 734 bool IsKill = MO.isKill(); 735 // Clear the kill flag in all instruction that use this operand. 736 MRI->clearKillFlags(MO.getReg()); 737 // Restore the kill flag for only this instruction. 738 MO.setIsKill(IsKill); 739 } 740 741 return true; 742 } 743