1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <map> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "machine-sink" 62 63 static cl::opt<bool> 64 SplitEdges("machine-sink-split", 65 cl::desc("Split critical edges during machine sinking"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<bool> 69 UseBlockFreqInfo("machine-sink-bfi", 70 cl::desc("Use block frequency info to find successors to sink"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 74 "machine-sink-split-probability-threshold", 75 cl::desc( 76 "Percentage threshold for splitting single-instruction critical edge. " 77 "If the branch threshold is higher than this threshold, we allow " 78 "speculative execution of up to 1 instruction to avoid branching to " 79 "splitted critical edge"), 80 cl::init(40), cl::Hidden); 81 82 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 83 "machine-sink-load-instrs-threshold", 84 cl::desc("Do not try to find alias store for a load if there is a in-path " 85 "block whose instruction number is higher than this threshold."), 86 cl::init(2000), cl::Hidden); 87 88 static cl::opt<unsigned> SinkLoadBlocksThreshold( 89 "machine-sink-load-blocks-threshold", 90 cl::desc("Do not try to find alias store for a load if the block number in " 91 "the straight line is higher than this threshold."), 92 cl::init(20), cl::Hidden); 93 94 static cl::opt<bool> 95 SinkInstsIntoLoop("sink-insts-to-avoid-spills", 96 cl::desc("Sink instructions into loops to avoid " 97 "register spills"), 98 cl::init(false), cl::Hidden); 99 100 STATISTIC(NumSunk, "Number of machine instructions sunk"); 101 STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop"); 102 STATISTIC(NumSplit, "Number of critical edges split"); 103 STATISTIC(NumCoalesces, "Number of copies coalesced"); 104 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 105 106 namespace { 107 108 class MachineSinking : public MachineFunctionPass { 109 const TargetInstrInfo *TII; 110 const TargetRegisterInfo *TRI; 111 MachineRegisterInfo *MRI; // Machine register information 112 MachineDominatorTree *DT; // Machine dominator tree 113 MachinePostDominatorTree *PDT; // Machine post dominator tree 114 MachineLoopInfo *LI; 115 MachineBlockFrequencyInfo *MBFI; 116 const MachineBranchProbabilityInfo *MBPI; 117 AliasAnalysis *AA; 118 RegisterClassInfo RegClassInfo; 119 120 // Remember which edges have been considered for breaking. 121 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 122 CEBCandidates; 123 // Remember which edges we are about to split. 124 // This is different from CEBCandidates since those edges 125 // will be split. 126 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 127 128 SparseBitVector<> RegsToClearKillFlags; 129 130 using AllSuccsCache = 131 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 132 133 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 134 /// post-dominated by another DBG_VALUE of the same variable location. 135 /// This is necessary to detect sequences such as: 136 /// %0 = someinst 137 /// DBG_VALUE %0, !123, !DIExpression() 138 /// %1 = anotherinst 139 /// DBG_VALUE %1, !123, !DIExpression() 140 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 141 /// would re-order assignments. 142 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 143 144 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 145 /// debug instructions to sink. 146 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 147 148 /// Record of debug variables that have had their locations set in the 149 /// current block. 150 DenseSet<DebugVariable> SeenDbgVars; 151 152 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 153 HasStoreCache; 154 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 155 std::vector<MachineInstr *>> 156 StoreInstrCache; 157 158 /// Cached BB's register pressure. 159 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 160 161 public: 162 static char ID; // Pass identification 163 164 MachineSinking() : MachineFunctionPass(ID) { 165 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 166 } 167 168 bool runOnMachineFunction(MachineFunction &MF) override; 169 170 void getAnalysisUsage(AnalysisUsage &AU) const override { 171 MachineFunctionPass::getAnalysisUsage(AU); 172 AU.addRequired<AAResultsWrapperPass>(); 173 AU.addRequired<MachineDominatorTree>(); 174 AU.addRequired<MachinePostDominatorTree>(); 175 AU.addRequired<MachineLoopInfo>(); 176 AU.addRequired<MachineBranchProbabilityInfo>(); 177 AU.addPreserved<MachineLoopInfo>(); 178 if (UseBlockFreqInfo) 179 AU.addRequired<MachineBlockFrequencyInfo>(); 180 } 181 182 void releaseMemory() override { 183 CEBCandidates.clear(); 184 } 185 186 private: 187 bool ProcessBlock(MachineBasicBlock &MBB); 188 void ProcessDbgInst(MachineInstr &MI); 189 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 190 MachineBasicBlock *From, 191 MachineBasicBlock *To); 192 193 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 194 MachineInstr &MI); 195 196 /// Postpone the splitting of the given critical 197 /// edge (\p From, \p To). 198 /// 199 /// We do not split the edges on the fly. Indeed, this invalidates 200 /// the dominance information and thus triggers a lot of updates 201 /// of that information underneath. 202 /// Instead, we postpone all the splits after each iteration of 203 /// the main loop. That way, the information is at least valid 204 /// for the lifetime of an iteration. 205 /// 206 /// \return True if the edge is marked as toSplit, false otherwise. 207 /// False can be returned if, for instance, this is not profitable. 208 bool PostponeSplitCriticalEdge(MachineInstr &MI, 209 MachineBasicBlock *From, 210 MachineBasicBlock *To, 211 bool BreakPHIEdge); 212 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 213 AllSuccsCache &AllSuccessors); 214 215 /// If we sink a COPY inst, some debug users of it's destination may no 216 /// longer be dominated by the COPY, and will eventually be dropped. 217 /// This is easily rectified by forwarding the non-dominated debug uses 218 /// to the copy source. 219 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 220 MachineBasicBlock *TargetBlock); 221 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 222 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 223 bool &LocalUse) const; 224 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 225 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 226 227 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 228 SmallVectorImpl<MachineInstr *> &Candidates); 229 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I); 230 231 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 232 MachineBasicBlock *MBB, 233 MachineBasicBlock *SuccToSinkTo, 234 AllSuccsCache &AllSuccessors); 235 236 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 237 MachineBasicBlock *MBB); 238 239 SmallVector<MachineBasicBlock *, 4> & 240 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 241 AllSuccsCache &AllSuccessors) const; 242 243 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 244 }; 245 246 } // end anonymous namespace 247 248 char MachineSinking::ID = 0; 249 250 char &llvm::MachineSinkingID = MachineSinking::ID; 251 252 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 253 "Machine code sinking", false, false) 254 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 255 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 256 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 257 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 258 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 259 "Machine code sinking", false, false) 260 261 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 262 MachineBasicBlock *MBB) { 263 if (!MI.isCopy()) 264 return false; 265 266 Register SrcReg = MI.getOperand(1).getReg(); 267 Register DstReg = MI.getOperand(0).getReg(); 268 if (!Register::isVirtualRegister(SrcReg) || 269 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 270 return false; 271 272 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 273 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 274 if (SRC != DRC) 275 return false; 276 277 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 278 if (DefMI->isCopyLike()) 279 return false; 280 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 281 LLVM_DEBUG(dbgs() << "*** to: " << MI); 282 MRI->replaceRegWith(DstReg, SrcReg); 283 MI.eraseFromParent(); 284 285 // Conservatively, clear any kill flags, since it's possible that they are no 286 // longer correct. 287 MRI->clearKillFlags(SrcReg); 288 289 ++NumCoalesces; 290 return true; 291 } 292 293 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 294 /// occur in blocks dominated by the specified block. If any use is in the 295 /// definition block, then return false since it is never legal to move def 296 /// after uses. 297 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 298 MachineBasicBlock *MBB, 299 MachineBasicBlock *DefMBB, 300 bool &BreakPHIEdge, 301 bool &LocalUse) const { 302 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 303 304 // Ignore debug uses because debug info doesn't affect the code. 305 if (MRI->use_nodbg_empty(Reg)) 306 return true; 307 308 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 309 // into and they are all PHI nodes. In this case, machine-sink must break 310 // the critical edge first. e.g. 311 // 312 // %bb.1: 313 // Predecessors according to CFG: %bb.0 314 // ... 315 // %def = DEC64_32r %x, implicit-def dead %eflags 316 // ... 317 // JE_4 <%bb.37>, implicit %eflags 318 // Successors according to CFG: %bb.37 %bb.2 319 // 320 // %bb.2: 321 // %p = PHI %y, %bb.0, %def, %bb.1 322 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 323 MachineInstr *UseInst = MO.getParent(); 324 unsigned OpNo = UseInst->getOperandNo(&MO); 325 MachineBasicBlock *UseBlock = UseInst->getParent(); 326 return UseBlock == MBB && UseInst->isPHI() && 327 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 328 })) { 329 BreakPHIEdge = true; 330 return true; 331 } 332 333 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 334 // Determine the block of the use. 335 MachineInstr *UseInst = MO.getParent(); 336 unsigned OpNo = &MO - &UseInst->getOperand(0); 337 MachineBasicBlock *UseBlock = UseInst->getParent(); 338 if (UseInst->isPHI()) { 339 // PHI nodes use the operand in the predecessor block, not the block with 340 // the PHI. 341 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 342 } else if (UseBlock == DefMBB) { 343 LocalUse = true; 344 return false; 345 } 346 347 // Check that it dominates. 348 if (!DT->dominates(MBB, UseBlock)) 349 return false; 350 } 351 352 return true; 353 } 354 355 /// Return true if this machine instruction loads from global offset table or 356 /// constant pool. 357 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 358 assert(MI.mayLoad() && "Expected MI that loads!"); 359 360 // If we lost memory operands, conservatively assume that the instruction 361 // reads from everything.. 362 if (MI.memoperands_empty()) 363 return true; 364 365 for (MachineMemOperand *MemOp : MI.memoperands()) 366 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 367 if (PSV->isGOT() || PSV->isConstantPool()) 368 return true; 369 370 return false; 371 } 372 373 void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 374 SmallVectorImpl<MachineInstr *> &Candidates) { 375 for (auto &MI : *BB) { 376 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI); 377 if (!TII->shouldSink(MI)) { 378 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this " 379 "target\n"); 380 continue; 381 } 382 if (!L->isLoopInvariant(MI)) { 383 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n"); 384 continue; 385 } 386 bool DontMoveAcrossStore = true; 387 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 388 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n"); 389 continue; 390 } 391 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 392 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n"); 393 continue; 394 } 395 if (MI.isConvergent()) 396 continue; 397 398 const MachineOperand &MO = MI.getOperand(0); 399 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 400 continue; 401 if (!MRI->hasOneDef(MO.getReg())) 402 continue; 403 404 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n"); 405 Candidates.push_back(&MI); 406 } 407 } 408 409 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 410 if (skipFunction(MF.getFunction())) 411 return false; 412 413 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 414 415 TII = MF.getSubtarget().getInstrInfo(); 416 TRI = MF.getSubtarget().getRegisterInfo(); 417 MRI = &MF.getRegInfo(); 418 DT = &getAnalysis<MachineDominatorTree>(); 419 PDT = &getAnalysis<MachinePostDominatorTree>(); 420 LI = &getAnalysis<MachineLoopInfo>(); 421 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 422 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 423 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 424 RegClassInfo.runOnMachineFunction(MF); 425 426 bool EverMadeChange = false; 427 428 while (true) { 429 bool MadeChange = false; 430 431 // Process all basic blocks. 432 CEBCandidates.clear(); 433 ToSplit.clear(); 434 for (auto &MBB: MF) 435 MadeChange |= ProcessBlock(MBB); 436 437 // If we have anything we marked as toSplit, split it now. 438 for (auto &Pair : ToSplit) { 439 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 440 if (NewSucc != nullptr) { 441 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 442 << printMBBReference(*Pair.first) << " -- " 443 << printMBBReference(*NewSucc) << " -- " 444 << printMBBReference(*Pair.second) << '\n'); 445 if (MBFI) 446 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 447 448 MadeChange = true; 449 ++NumSplit; 450 } else 451 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 452 } 453 // If this iteration over the code changed anything, keep iterating. 454 if (!MadeChange) break; 455 EverMadeChange = true; 456 } 457 458 if (SinkInstsIntoLoop) { 459 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end()); 460 for (auto *L : Loops) { 461 MachineBasicBlock *Preheader = LI->findLoopPreheader(L); 462 if (!Preheader) { 463 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n"); 464 continue; 465 } 466 SmallVector<MachineInstr *, 8> Candidates; 467 FindLoopSinkCandidates(L, Preheader, Candidates); 468 469 // Walk the candidates in reverse order so that we start with the use 470 // of a def-use chain, if there is any. 471 for (auto It = Candidates.rbegin(); It != Candidates.rend(); ++It) { 472 MachineInstr *I = *It; 473 if (!SinkIntoLoop(L, *I)) 474 break; 475 EverMadeChange = true; 476 ++NumLoopSunk; 477 } 478 } 479 } 480 481 HasStoreCache.clear(); 482 StoreInstrCache.clear(); 483 484 // Now clear any kill flags for recorded registers. 485 for (auto I : RegsToClearKillFlags) 486 MRI->clearKillFlags(I); 487 RegsToClearKillFlags.clear(); 488 489 return EverMadeChange; 490 } 491 492 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 493 // Can't sink anything out of a block that has less than two successors. 494 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 495 496 // Don't bother sinking code out of unreachable blocks. In addition to being 497 // unprofitable, it can also lead to infinite looping, because in an 498 // unreachable loop there may be nowhere to stop. 499 if (!DT->isReachableFromEntry(&MBB)) return false; 500 501 bool MadeChange = false; 502 503 // Cache all successors, sorted by frequency info and loop depth. 504 AllSuccsCache AllSuccessors; 505 506 // Walk the basic block bottom-up. Remember if we saw a store. 507 MachineBasicBlock::iterator I = MBB.end(); 508 --I; 509 bool ProcessedBegin, SawStore = false; 510 do { 511 MachineInstr &MI = *I; // The instruction to sink. 512 513 // Predecrement I (if it's not begin) so that it isn't invalidated by 514 // sinking. 515 ProcessedBegin = I == MBB.begin(); 516 if (!ProcessedBegin) 517 --I; 518 519 if (MI.isDebugInstr()) { 520 if (MI.isDebugValue()) 521 ProcessDbgInst(MI); 522 continue; 523 } 524 525 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 526 if (Joined) { 527 MadeChange = true; 528 continue; 529 } 530 531 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 532 ++NumSunk; 533 MadeChange = true; 534 } 535 536 // If we just processed the first instruction in the block, we're done. 537 } while (!ProcessedBegin); 538 539 SeenDbgUsers.clear(); 540 SeenDbgVars.clear(); 541 // recalculate the bb register pressure after sinking one BB. 542 CachedRegisterPressure.clear(); 543 544 return MadeChange; 545 } 546 547 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 548 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 549 // we know what to sink if the vreg def sinks. 550 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 551 552 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 553 MI.getDebugLoc()->getInlinedAt()); 554 bool SeenBefore = SeenDbgVars.contains(Var); 555 556 MachineOperand &MO = MI.getDebugOperand(0); 557 if (MO.isReg() && MO.getReg().isVirtual()) 558 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 559 560 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 561 SeenDbgVars.insert(Var); 562 } 563 564 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 565 MachineBasicBlock *From, 566 MachineBasicBlock *To) { 567 // FIXME: Need much better heuristics. 568 569 // If the pass has already considered breaking this edge (during this pass 570 // through the function), then let's go ahead and break it. This means 571 // sinking multiple "cheap" instructions into the same block. 572 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 573 return true; 574 575 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 576 return true; 577 578 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 579 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 580 return true; 581 582 // MI is cheap, we probably don't want to break the critical edge for it. 583 // However, if this would allow some definitions of its source operands 584 // to be sunk then it's probably worth it. 585 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 586 const MachineOperand &MO = MI.getOperand(i); 587 if (!MO.isReg() || !MO.isUse()) 588 continue; 589 Register Reg = MO.getReg(); 590 if (Reg == 0) 591 continue; 592 593 // We don't move live definitions of physical registers, 594 // so sinking their uses won't enable any opportunities. 595 if (Register::isPhysicalRegister(Reg)) 596 continue; 597 598 // If this instruction is the only user of a virtual register, 599 // check if breaking the edge will enable sinking 600 // both this instruction and the defining instruction. 601 if (MRI->hasOneNonDBGUse(Reg)) { 602 // If the definition resides in same MBB, 603 // claim it's likely we can sink these together. 604 // If definition resides elsewhere, we aren't 605 // blocking it from being sunk so don't break the edge. 606 MachineInstr *DefMI = MRI->getVRegDef(Reg); 607 if (DefMI->getParent() == MI.getParent()) 608 return true; 609 } 610 } 611 612 return false; 613 } 614 615 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 616 MachineBasicBlock *FromBB, 617 MachineBasicBlock *ToBB, 618 bool BreakPHIEdge) { 619 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 620 return false; 621 622 // Avoid breaking back edge. From == To means backedge for single BB loop. 623 if (!SplitEdges || FromBB == ToBB) 624 return false; 625 626 // Check for backedges of more "complex" loops. 627 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 628 LI->isLoopHeader(ToBB)) 629 return false; 630 631 // It's not always legal to break critical edges and sink the computation 632 // to the edge. 633 // 634 // %bb.1: 635 // v1024 636 // Beq %bb.3 637 // <fallthrough> 638 // %bb.2: 639 // ... no uses of v1024 640 // <fallthrough> 641 // %bb.3: 642 // ... 643 // = v1024 644 // 645 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 646 // 647 // %bb.1: 648 // ... 649 // Bne %bb.2 650 // %bb.4: 651 // v1024 = 652 // B %bb.3 653 // %bb.2: 654 // ... no uses of v1024 655 // <fallthrough> 656 // %bb.3: 657 // ... 658 // = v1024 659 // 660 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 661 // flow. We need to ensure the new basic block where the computation is 662 // sunk to dominates all the uses. 663 // It's only legal to break critical edge and sink the computation to the 664 // new block if all the predecessors of "To", except for "From", are 665 // not dominated by "From". Given SSA property, this means these 666 // predecessors are dominated by "To". 667 // 668 // There is no need to do this check if all the uses are PHI nodes. PHI 669 // sources are only defined on the specific predecessor edges. 670 if (!BreakPHIEdge) { 671 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 672 E = ToBB->pred_end(); PI != E; ++PI) { 673 if (*PI == FromBB) 674 continue; 675 if (!DT->dominates(ToBB, *PI)) 676 return false; 677 } 678 } 679 680 ToSplit.insert(std::make_pair(FromBB, ToBB)); 681 682 return true; 683 } 684 685 std::vector<unsigned> & 686 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 687 // Currently to save compiling time, MBB's register pressure will not change 688 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 689 // register pressure is changed after sinking any instructions into it. 690 // FIXME: need a accurate and cheap register pressure estiminate model here. 691 auto RP = CachedRegisterPressure.find(&MBB); 692 if (RP != CachedRegisterPressure.end()) 693 return RP->second; 694 695 RegionPressure Pressure; 696 RegPressureTracker RPTracker(Pressure); 697 698 // Initialize the register pressure tracker. 699 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 700 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 701 702 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 703 MIE = MBB.instr_begin(); 704 MII != MIE; --MII) { 705 MachineInstr &MI = *std::prev(MII); 706 if (MI.isDebugValue() || MI.isDebugLabel()) 707 continue; 708 RegisterOperands RegOpers; 709 RegOpers.collect(MI, *TRI, *MRI, false, false); 710 RPTracker.recedeSkipDebugValues(); 711 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 712 RPTracker.recede(RegOpers); 713 } 714 715 RPTracker.closeRegion(); 716 auto It = CachedRegisterPressure.insert( 717 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 718 return It.first->second; 719 } 720 721 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 722 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 723 MachineBasicBlock *MBB, 724 MachineBasicBlock *SuccToSinkTo, 725 AllSuccsCache &AllSuccessors) { 726 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 727 728 if (MBB == SuccToSinkTo) 729 return false; 730 731 // It is profitable if SuccToSinkTo does not post dominate current block. 732 if (!PDT->dominates(SuccToSinkTo, MBB)) 733 return true; 734 735 // It is profitable to sink an instruction from a deeper loop to a shallower 736 // loop, even if the latter post-dominates the former (PR21115). 737 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 738 return true; 739 740 // Check if only use in post dominated block is PHI instruction. 741 bool NonPHIUse = false; 742 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 743 MachineBasicBlock *UseBlock = UseInst.getParent(); 744 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 745 NonPHIUse = true; 746 } 747 if (!NonPHIUse) 748 return true; 749 750 // If SuccToSinkTo post dominates then also it may be profitable if MI 751 // can further profitably sinked into another block in next round. 752 bool BreakPHIEdge = false; 753 // FIXME - If finding successor is compile time expensive then cache results. 754 if (MachineBasicBlock *MBB2 = 755 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 756 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 757 758 MachineLoop *ML = LI->getLoopFor(MBB); 759 760 // If the instruction is not inside a loop, it is not profitable to sink MI to 761 // a post dominate block SuccToSinkTo. 762 if (!ML) 763 return false; 764 765 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 766 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 767 const int *PS = TRI->getRegClassPressureSets(RC); 768 // Get register pressure for block SuccToSinkTo. 769 std::vector<unsigned> BBRegisterPressure = 770 getBBRegisterPressure(*SuccToSinkTo); 771 for (; *PS != -1; PS++) 772 // check if any register pressure set exceeds limit in block SuccToSinkTo 773 // after sinking. 774 if (Weight + BBRegisterPressure[*PS] >= 775 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 776 return true; 777 return false; 778 }; 779 780 // If this instruction is inside a loop and sinking this instruction can make 781 // more registers live range shorten, it is still prifitable. 782 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 783 const MachineOperand &MO = MI.getOperand(i); 784 // Ignore non-register operands. 785 if (!MO.isReg()) 786 continue; 787 Register Reg = MO.getReg(); 788 if (Reg == 0) 789 continue; 790 791 // Don't handle physical register. 792 if (Register::isPhysicalRegister(Reg)) 793 return false; 794 795 // Users for the defs are all dominated by SuccToSinkTo. 796 if (MO.isDef()) { 797 // This def register's live range is shortened after sinking. 798 bool LocalUse = false; 799 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 800 LocalUse)) 801 return false; 802 } else { 803 MachineInstr *DefMI = MRI->getVRegDef(Reg); 804 // DefMI is defined outside of loop. There should be no live range 805 // impact for this operand. Defination outside of loop means: 806 // 1: defination is outside of loop. 807 // 2: defination is in this loop, but it is a PHI in the loop header. 808 if (LI->getLoopFor(DefMI->getParent()) != ML || 809 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 810 continue; 811 // The DefMI is defined inside the loop. 812 // If sinking this operand makes some register pressure set exceed limit, 813 // it is not profitable. 814 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 815 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 816 return false; 817 } 818 } 819 } 820 821 // If MI is in loop and all its operands are alive across the whole loop or if 822 // no operand sinking make register pressure set exceed limit, it is 823 // profitable to sink MI. 824 return true; 825 } 826 827 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 828 /// computing it if it was not already cached. 829 SmallVector<MachineBasicBlock *, 4> & 830 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 831 AllSuccsCache &AllSuccessors) const { 832 // Do we have the sorted successors in cache ? 833 auto Succs = AllSuccessors.find(MBB); 834 if (Succs != AllSuccessors.end()) 835 return Succs->second; 836 837 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 838 839 // Handle cases where sinking can happen but where the sink point isn't a 840 // successor. For example: 841 // 842 // x = computation 843 // if () {} else {} 844 // use x 845 // 846 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 847 // DomTree children of MBB that have MBB as immediate dominator are added. 848 if (DTChild->getIDom()->getBlock() == MI.getParent() && 849 // Skip MBBs already added to the AllSuccs vector above. 850 !MBB->isSuccessor(DTChild->getBlock())) 851 AllSuccs.push_back(DTChild->getBlock()); 852 } 853 854 // Sort Successors according to their loop depth or block frequency info. 855 llvm::stable_sort( 856 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 857 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 858 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 859 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 860 return HasBlockFreq ? LHSFreq < RHSFreq 861 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 862 }); 863 864 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 865 866 return it.first->second; 867 } 868 869 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 870 MachineBasicBlock * 871 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 872 bool &BreakPHIEdge, 873 AllSuccsCache &AllSuccessors) { 874 assert (MBB && "Invalid MachineBasicBlock!"); 875 876 // Loop over all the operands of the specified instruction. If there is 877 // anything we can't handle, bail out. 878 879 // SuccToSinkTo - This is the successor to sink this instruction to, once we 880 // decide. 881 MachineBasicBlock *SuccToSinkTo = nullptr; 882 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 883 const MachineOperand &MO = MI.getOperand(i); 884 if (!MO.isReg()) continue; // Ignore non-register operands. 885 886 Register Reg = MO.getReg(); 887 if (Reg == 0) continue; 888 889 if (Register::isPhysicalRegister(Reg)) { 890 if (MO.isUse()) { 891 // If the physreg has no defs anywhere, it's just an ambient register 892 // and we can freely move its uses. Alternatively, if it's allocatable, 893 // it could get allocated to something with a def during allocation. 894 if (!MRI->isConstantPhysReg(Reg)) 895 return nullptr; 896 } else if (!MO.isDead()) { 897 // A def that isn't dead. We can't move it. 898 return nullptr; 899 } 900 } else { 901 // Virtual register uses are always safe to sink. 902 if (MO.isUse()) continue; 903 904 // If it's not safe to move defs of the register class, then abort. 905 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 906 return nullptr; 907 908 // Virtual register defs can only be sunk if all their uses are in blocks 909 // dominated by one of the successors. 910 if (SuccToSinkTo) { 911 // If a previous operand picked a block to sink to, then this operand 912 // must be sinkable to the same block. 913 bool LocalUse = false; 914 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 915 BreakPHIEdge, LocalUse)) 916 return nullptr; 917 918 continue; 919 } 920 921 // Otherwise, we should look at all the successors and decide which one 922 // we should sink to. If we have reliable block frequency information 923 // (frequency != 0) available, give successors with smaller frequencies 924 // higher priority, otherwise prioritize smaller loop depths. 925 for (MachineBasicBlock *SuccBlock : 926 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 927 bool LocalUse = false; 928 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 929 BreakPHIEdge, LocalUse)) { 930 SuccToSinkTo = SuccBlock; 931 break; 932 } 933 if (LocalUse) 934 // Def is used locally, it's never safe to move this def. 935 return nullptr; 936 } 937 938 // If we couldn't find a block to sink to, ignore this instruction. 939 if (!SuccToSinkTo) 940 return nullptr; 941 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 942 return nullptr; 943 } 944 } 945 946 // It is not possible to sink an instruction into its own block. This can 947 // happen with loops. 948 if (MBB == SuccToSinkTo) 949 return nullptr; 950 951 // It's not safe to sink instructions to EH landing pad. Control flow into 952 // landing pad is implicitly defined. 953 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 954 return nullptr; 955 956 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 957 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 958 // the source block (which this code does not yet do). So for now, forbid 959 // doing so. 960 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 961 return nullptr; 962 963 return SuccToSinkTo; 964 } 965 966 /// Return true if MI is likely to be usable as a memory operation by the 967 /// implicit null check optimization. 968 /// 969 /// This is a "best effort" heuristic, and should not be relied upon for 970 /// correctness. This returning true does not guarantee that the implicit null 971 /// check optimization is legal over MI, and this returning false does not 972 /// guarantee MI cannot possibly be used to do a null check. 973 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 974 const TargetInstrInfo *TII, 975 const TargetRegisterInfo *TRI) { 976 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 977 978 auto *MBB = MI.getParent(); 979 if (MBB->pred_size() != 1) 980 return false; 981 982 auto *PredMBB = *MBB->pred_begin(); 983 auto *PredBB = PredMBB->getBasicBlock(); 984 985 // Frontends that don't use implicit null checks have no reason to emit 986 // branches with make.implicit metadata, and this function should always 987 // return false for them. 988 if (!PredBB || 989 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 990 return false; 991 992 const MachineOperand *BaseOp; 993 int64_t Offset; 994 bool OffsetIsScalable; 995 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 996 return false; 997 998 if (!BaseOp->isReg()) 999 return false; 1000 1001 if (!(MI.mayLoad() && !MI.isPredicable())) 1002 return false; 1003 1004 MachineBranchPredicate MBP; 1005 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1006 return false; 1007 1008 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1009 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1010 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1011 MBP.LHS.getReg() == BaseOp->getReg(); 1012 } 1013 1014 /// If the sunk instruction is a copy, try to forward the copy instead of 1015 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1016 /// there's any subregister weirdness involved. Returns true if copy 1017 /// propagation occurred. 1018 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 1019 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1020 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1021 1022 // Copy DBG_VALUE operand and set the original to undef. We then check to 1023 // see whether this is something that can be copy-forwarded. If it isn't, 1024 // continue around the loop. 1025 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 1026 1027 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1028 auto CopyOperands = TII.isCopyInstr(SinkInst); 1029 if (!CopyOperands) 1030 return false; 1031 SrcMO = CopyOperands->Source; 1032 DstMO = CopyOperands->Destination; 1033 1034 // Check validity of forwarding this copy. 1035 bool PostRA = MRI.getNumVirtRegs() == 0; 1036 1037 // Trying to forward between physical and virtual registers is too hard. 1038 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 1039 return false; 1040 1041 // Only try virtual register copy-forwarding before regalloc, and physical 1042 // register copy-forwarding after regalloc. 1043 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 1044 if (arePhysRegs != PostRA) 1045 return false; 1046 1047 // Pre-regalloc, only forward if all subregisters agree (or there are no 1048 // subregs at all). More analysis might recover some forwardable copies. 1049 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 1050 DbgMO.getSubReg() != DstMO->getSubReg())) 1051 return false; 1052 1053 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1054 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1055 // matches the copy destination. 1056 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 1057 return false; 1058 1059 DbgMO.setReg(SrcMO->getReg()); 1060 DbgMO.setSubReg(SrcMO->getSubReg()); 1061 return true; 1062 } 1063 1064 /// Sink an instruction and its associated debug instructions. 1065 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1066 MachineBasicBlock::iterator InsertPos, 1067 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 1068 1069 // If we cannot find a location to use (merge with), then we erase the debug 1070 // location to prevent debug-info driven tools from potentially reporting 1071 // wrong location information. 1072 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1073 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1074 InsertPos->getDebugLoc())); 1075 else 1076 MI.setDebugLoc(DebugLoc()); 1077 1078 // Move the instruction. 1079 MachineBasicBlock *ParentBlock = MI.getParent(); 1080 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1081 ++MachineBasicBlock::iterator(MI)); 1082 1083 // Sink a copy of debug users to the insert position. Mark the original 1084 // DBG_VALUE location as 'undef', indicating that any earlier variable 1085 // location should be terminated as we've optimised away the value at this 1086 // point. 1087 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 1088 DBE = DbgValuesToSink.end(); 1089 DBI != DBE; ++DBI) { 1090 MachineInstr *DbgMI = *DBI; 1091 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 1092 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1093 1094 if (!attemptDebugCopyProp(MI, *DbgMI)) 1095 DbgMI->setDebugValueUndef(); 1096 } 1097 } 1098 1099 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1100 /// and To. 1101 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1102 MachineBasicBlock *To, MachineInstr &MI) { 1103 // Make sure From and To are in straight line which means From dominates To 1104 // and To post dominates From. 1105 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1106 return true; 1107 1108 auto BlockPair = std::make_pair(From, To); 1109 1110 // Does these two blocks pair be queried before and have a definite cached 1111 // result? 1112 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1113 return HasStoreCache[BlockPair]; 1114 1115 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1116 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1117 return I->mayAlias(AA, MI, false); 1118 }); 1119 1120 bool SawStore = false; 1121 bool HasAliasedStore = false; 1122 DenseSet<MachineBasicBlock *> HandledBlocks; 1123 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1124 // Go through all reachable blocks from From. 1125 for (MachineBasicBlock *BB : depth_first(From)) { 1126 // We insert the instruction at the start of block To, so no need to worry 1127 // about stores inside To. 1128 // Store in block From should be already considered when just enter function 1129 // SinkInstruction. 1130 if (BB == To || BB == From) 1131 continue; 1132 1133 // We already handle this BB in previous iteration. 1134 if (HandledBlocks.count(BB)) 1135 continue; 1136 1137 HandledBlocks.insert(BB); 1138 // To post dominates BB, it must be a path from block From. 1139 if (PDT->dominates(To, BB)) { 1140 if (!HandledDomBlocks.count(BB)) 1141 HandledDomBlocks.insert(BB); 1142 1143 // If this BB is too big or the block number in straight line between From 1144 // and To is too big, stop searching to save compiling time. 1145 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1146 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1147 for (auto *DomBB : HandledDomBlocks) { 1148 if (DomBB != BB && DT->dominates(DomBB, BB)) 1149 HasStoreCache[std::make_pair(DomBB, To)] = true; 1150 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1151 HasStoreCache[std::make_pair(From, DomBB)] = true; 1152 } 1153 HasStoreCache[BlockPair] = true; 1154 return true; 1155 } 1156 1157 for (MachineInstr &I : *BB) { 1158 // Treat as alias conservatively for a call or an ordered memory 1159 // operation. 1160 if (I.isCall() || I.hasOrderedMemoryRef()) { 1161 for (auto *DomBB : HandledDomBlocks) { 1162 if (DomBB != BB && DT->dominates(DomBB, BB)) 1163 HasStoreCache[std::make_pair(DomBB, To)] = true; 1164 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1165 HasStoreCache[std::make_pair(From, DomBB)] = true; 1166 } 1167 HasStoreCache[BlockPair] = true; 1168 return true; 1169 } 1170 1171 if (I.mayStore()) { 1172 SawStore = true; 1173 // We still have chance to sink MI if all stores between are not 1174 // aliased to MI. 1175 // Cache all store instructions, so that we don't need to go through 1176 // all From reachable blocks for next load instruction. 1177 if (I.mayAlias(AA, MI, false)) 1178 HasAliasedStore = true; 1179 StoreInstrCache[BlockPair].push_back(&I); 1180 } 1181 } 1182 } 1183 } 1184 // If there is no store at all, cache the result. 1185 if (!SawStore) 1186 HasStoreCache[BlockPair] = false; 1187 return HasAliasedStore; 1188 } 1189 1190 /// Sink instructions into loops if profitable. This especially tries to prevent 1191 /// register spills caused by register pressure if there is little to no 1192 /// overhead moving instructions into loops. 1193 bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) { 1194 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I); 1195 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1196 assert(Preheader && "Loop sink needs a preheader block"); 1197 MachineBasicBlock *SinkBlock = nullptr; 1198 bool CanSink = true; 1199 const MachineOperand &MO = I.getOperand(0); 1200 1201 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1202 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI); 1203 if (!L->contains(&MI)) { 1204 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n"); 1205 CanSink = false; 1206 break; 1207 } 1208 1209 // FIXME: Come up with a proper cost model that estimates whether sinking 1210 // the instruction (and thus possibly executing it on every loop 1211 // iteration) is more expensive than a register. 1212 // For now assumes that copies are cheap and thus almost always worth it. 1213 if (!MI.isCopy()) { 1214 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n"); 1215 CanSink = false; 1216 break; 1217 } 1218 if (!SinkBlock) { 1219 SinkBlock = MI.getParent(); 1220 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: " 1221 << printMBBReference(*SinkBlock) << "\n"); 1222 continue; 1223 } 1224 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1225 if (!SinkBlock) { 1226 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n"); 1227 CanSink = false; 1228 break; 1229 } 1230 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " << 1231 printMBBReference(*SinkBlock) << "\n"); 1232 } 1233 1234 if (!CanSink) { 1235 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n"); 1236 return false; 1237 } 1238 if (!SinkBlock) { 1239 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n"); 1240 return false; 1241 } 1242 if (SinkBlock == Preheader) { 1243 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n"); 1244 return false; 1245 } 1246 1247 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n"); 1248 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I); 1249 1250 // The instruction is moved from its basic block, so do not retain the 1251 // debug information. 1252 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1253 I.setDebugLoc(DebugLoc()); 1254 return true; 1255 } 1256 1257 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1258 /// instruction out of its current block into a successor. 1259 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1260 AllSuccsCache &AllSuccessors) { 1261 // Don't sink instructions that the target prefers not to sink. 1262 if (!TII->shouldSink(MI)) 1263 return false; 1264 1265 // Check if it's safe to move the instruction. 1266 if (!MI.isSafeToMove(AA, SawStore)) 1267 return false; 1268 1269 // Convergent operations may not be made control-dependent on additional 1270 // values. 1271 if (MI.isConvergent()) 1272 return false; 1273 1274 // Don't break implicit null checks. This is a performance heuristic, and not 1275 // required for correctness. 1276 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1277 return false; 1278 1279 // FIXME: This should include support for sinking instructions within the 1280 // block they are currently in to shorten the live ranges. We often get 1281 // instructions sunk into the top of a large block, but it would be better to 1282 // also sink them down before their first use in the block. This xform has to 1283 // be careful not to *increase* register pressure though, e.g. sinking 1284 // "x = y + z" down if it kills y and z would increase the live ranges of y 1285 // and z and only shrink the live range of x. 1286 1287 bool BreakPHIEdge = false; 1288 MachineBasicBlock *ParentBlock = MI.getParent(); 1289 MachineBasicBlock *SuccToSinkTo = 1290 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1291 1292 // If there are no outputs, it must have side-effects. 1293 if (!SuccToSinkTo) 1294 return false; 1295 1296 // If the instruction to move defines a dead physical register which is live 1297 // when leaving the basic block, don't move it because it could turn into a 1298 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1299 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1300 const MachineOperand &MO = MI.getOperand(I); 1301 if (!MO.isReg()) continue; 1302 Register Reg = MO.getReg(); 1303 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1304 continue; 1305 if (SuccToSinkTo->isLiveIn(Reg)) 1306 return false; 1307 } 1308 1309 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1310 1311 // If the block has multiple predecessors, this is a critical edge. 1312 // Decide if we can sink along it or need to break the edge. 1313 if (SuccToSinkTo->pred_size() > 1) { 1314 // We cannot sink a load across a critical edge - there may be stores in 1315 // other code paths. 1316 bool TryBreak = false; 1317 bool Store = 1318 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1319 if (!MI.isSafeToMove(AA, Store)) { 1320 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1321 TryBreak = true; 1322 } 1323 1324 // We don't want to sink across a critical edge if we don't dominate the 1325 // successor. We could be introducing calculations to new code paths. 1326 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1327 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1328 TryBreak = true; 1329 } 1330 1331 // Don't sink instructions into a loop. 1332 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1333 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1334 TryBreak = true; 1335 } 1336 1337 // Otherwise we are OK with sinking along a critical edge. 1338 if (!TryBreak) 1339 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1340 else { 1341 // Mark this edge as to be split. 1342 // If the edge can actually be split, the next iteration of the main loop 1343 // will sink MI in the newly created block. 1344 bool Status = 1345 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1346 if (!Status) 1347 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1348 "break critical edge\n"); 1349 // The instruction will not be sunk this time. 1350 return false; 1351 } 1352 } 1353 1354 if (BreakPHIEdge) { 1355 // BreakPHIEdge is true if all the uses are in the successor MBB being 1356 // sunken into and they are all PHI nodes. In this case, machine-sink must 1357 // break the critical edge first. 1358 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1359 SuccToSinkTo, BreakPHIEdge); 1360 if (!Status) 1361 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1362 "break critical edge\n"); 1363 // The instruction will not be sunk this time. 1364 return false; 1365 } 1366 1367 // Determine where to insert into. Skip phi nodes. 1368 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1369 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1370 ++InsertPos; 1371 1372 // Collect debug users of any vreg that this inst defines. 1373 SmallVector<MachineInstr *, 4> DbgUsersToSink; 1374 for (auto &MO : MI.operands()) { 1375 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1376 continue; 1377 if (!SeenDbgUsers.count(MO.getReg())) 1378 continue; 1379 1380 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1381 auto &Users = SeenDbgUsers[MO.getReg()]; 1382 for (auto &User : Users) { 1383 MachineInstr *DbgMI = User.getPointer(); 1384 if (User.getInt()) { 1385 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1386 // it, it can't be recovered. Set it undef. 1387 if (!attemptDebugCopyProp(MI, *DbgMI)) 1388 DbgMI->setDebugValueUndef(); 1389 } else { 1390 DbgUsersToSink.push_back(DbgMI); 1391 } 1392 } 1393 } 1394 1395 // After sinking, some debug users may not be dominated any more. If possible, 1396 // copy-propagate their operands. As it's expensive, don't do this if there's 1397 // no debuginfo in the program. 1398 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1399 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1400 1401 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1402 1403 // Conservatively, clear any kill flags, since it's possible that they are no 1404 // longer correct. 1405 // Note that we have to clear the kill flags for any register this instruction 1406 // uses as we may sink over another instruction which currently kills the 1407 // used registers. 1408 for (MachineOperand &MO : MI.operands()) { 1409 if (MO.isReg() && MO.isUse()) 1410 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1411 } 1412 1413 return true; 1414 } 1415 1416 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1417 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1418 assert(MI.isCopy()); 1419 assert(MI.getOperand(1).isReg()); 1420 1421 // Enumerate all users of vreg operands that are def'd. Skip those that will 1422 // be sunk. For the rest, if they are not dominated by the block we will sink 1423 // MI into, propagate the copy source to them. 1424 SmallVector<MachineInstr *, 4> DbgDefUsers; 1425 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1426 for (auto &MO : MI.operands()) { 1427 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1428 continue; 1429 for (auto &User : MRI.use_instructions(MO.getReg())) { 1430 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1431 continue; 1432 1433 // If is in same block, will either sink or be use-before-def. 1434 if (User.getParent() == MI.getParent()) 1435 continue; 1436 1437 assert(User.getDebugOperand(0).isReg() && 1438 "DBG_VALUE user of vreg, but non reg operand?"); 1439 DbgDefUsers.push_back(&User); 1440 } 1441 } 1442 1443 // Point the users of this copy that are no longer dominated, at the source 1444 // of the copy. 1445 for (auto *User : DbgDefUsers) { 1446 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1447 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1448 } 1449 } 1450 1451 //===----------------------------------------------------------------------===// 1452 // This pass is not intended to be a replacement or a complete alternative 1453 // for the pre-ra machine sink pass. It is only designed to sink COPY 1454 // instructions which should be handled after RA. 1455 // 1456 // This pass sinks COPY instructions into a successor block, if the COPY is not 1457 // used in the current block and the COPY is live-in to a single successor 1458 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1459 // copy on paths where their results aren't needed. This also exposes 1460 // additional opportunites for dead copy elimination and shrink wrapping. 1461 // 1462 // These copies were either not handled by or are inserted after the MachineSink 1463 // pass. As an example of the former case, the MachineSink pass cannot sink 1464 // COPY instructions with allocatable source registers; for AArch64 these type 1465 // of copy instructions are frequently used to move function parameters (PhyReg) 1466 // into virtual registers in the entry block. 1467 // 1468 // For the machine IR below, this pass will sink %w19 in the entry into its 1469 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1470 // %bb.0: 1471 // %wzr = SUBSWri %w1, 1 1472 // %w19 = COPY %w0 1473 // Bcc 11, %bb.2 1474 // %bb.1: 1475 // Live Ins: %w19 1476 // BL @fun 1477 // %w0 = ADDWrr %w0, %w19 1478 // RET %w0 1479 // %bb.2: 1480 // %w0 = COPY %wzr 1481 // RET %w0 1482 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1483 // able to see %bb.0 as a candidate. 1484 //===----------------------------------------------------------------------===// 1485 namespace { 1486 1487 class PostRAMachineSinking : public MachineFunctionPass { 1488 public: 1489 bool runOnMachineFunction(MachineFunction &MF) override; 1490 1491 static char ID; 1492 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1493 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1494 1495 void getAnalysisUsage(AnalysisUsage &AU) const override { 1496 AU.setPreservesCFG(); 1497 MachineFunctionPass::getAnalysisUsage(AU); 1498 } 1499 1500 MachineFunctionProperties getRequiredProperties() const override { 1501 return MachineFunctionProperties().set( 1502 MachineFunctionProperties::Property::NoVRegs); 1503 } 1504 1505 private: 1506 /// Track which register units have been modified and used. 1507 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1508 1509 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1510 /// entry in this map for each unit it touches. 1511 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1512 1513 /// Sink Copy instructions unused in the same block close to their uses in 1514 /// successors. 1515 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1516 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1517 }; 1518 } // namespace 1519 1520 char PostRAMachineSinking::ID = 0; 1521 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1522 1523 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1524 "PostRA Machine Sink", false, false) 1525 1526 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1527 const TargetRegisterInfo *TRI) { 1528 LiveRegUnits LiveInRegUnits(*TRI); 1529 LiveInRegUnits.addLiveIns(MBB); 1530 return !LiveInRegUnits.available(Reg); 1531 } 1532 1533 static MachineBasicBlock * 1534 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1535 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1536 unsigned Reg, const TargetRegisterInfo *TRI) { 1537 // Try to find a single sinkable successor in which Reg is live-in. 1538 MachineBasicBlock *BB = nullptr; 1539 for (auto *SI : SinkableBBs) { 1540 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1541 // If BB is set here, Reg is live-in to at least two sinkable successors, 1542 // so quit. 1543 if (BB) 1544 return nullptr; 1545 BB = SI; 1546 } 1547 } 1548 // Reg is not live-in to any sinkable successors. 1549 if (!BB) 1550 return nullptr; 1551 1552 // Check if any register aliased with Reg is live-in in other successors. 1553 for (auto *SI : CurBB.successors()) { 1554 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1555 return nullptr; 1556 } 1557 return BB; 1558 } 1559 1560 static MachineBasicBlock * 1561 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1562 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1563 ArrayRef<unsigned> DefedRegsInCopy, 1564 const TargetRegisterInfo *TRI) { 1565 MachineBasicBlock *SingleBB = nullptr; 1566 for (auto DefReg : DefedRegsInCopy) { 1567 MachineBasicBlock *BB = 1568 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1569 if (!BB || (SingleBB && SingleBB != BB)) 1570 return nullptr; 1571 SingleBB = BB; 1572 } 1573 return SingleBB; 1574 } 1575 1576 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1577 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1578 LiveRegUnits &UsedRegUnits, 1579 const TargetRegisterInfo *TRI) { 1580 for (auto U : UsedOpsInCopy) { 1581 MachineOperand &MO = MI->getOperand(U); 1582 Register SrcReg = MO.getReg(); 1583 if (!UsedRegUnits.available(SrcReg)) { 1584 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1585 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1586 if (UI.killsRegister(SrcReg, TRI)) { 1587 UI.clearRegisterKills(SrcReg, TRI); 1588 MO.setIsKill(true); 1589 break; 1590 } 1591 } 1592 } 1593 } 1594 } 1595 1596 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1597 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1598 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1599 MachineFunction &MF = *SuccBB->getParent(); 1600 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1601 for (unsigned DefReg : DefedRegsInCopy) 1602 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1603 SuccBB->removeLiveIn(*S); 1604 for (auto U : UsedOpsInCopy) { 1605 Register SrcReg = MI->getOperand(U).getReg(); 1606 LaneBitmask Mask; 1607 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1608 Mask |= (*S).second; 1609 } 1610 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1611 } 1612 SuccBB->sortUniqueLiveIns(); 1613 } 1614 1615 static bool hasRegisterDependency(MachineInstr *MI, 1616 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1617 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1618 LiveRegUnits &ModifiedRegUnits, 1619 LiveRegUnits &UsedRegUnits) { 1620 bool HasRegDependency = false; 1621 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1622 MachineOperand &MO = MI->getOperand(i); 1623 if (!MO.isReg()) 1624 continue; 1625 Register Reg = MO.getReg(); 1626 if (!Reg) 1627 continue; 1628 if (MO.isDef()) { 1629 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1630 HasRegDependency = true; 1631 break; 1632 } 1633 DefedRegsInCopy.push_back(Reg); 1634 1635 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1636 // For example, we can ignore modifications in reg with undef. However, 1637 // it's not perfectly clear if skipping the internal read is safe in all 1638 // other targets. 1639 } else if (MO.isUse()) { 1640 if (!ModifiedRegUnits.available(Reg)) { 1641 HasRegDependency = true; 1642 break; 1643 } 1644 UsedOpsInCopy.push_back(i); 1645 } 1646 } 1647 return HasRegDependency; 1648 } 1649 1650 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1651 const TargetRegisterInfo *TRI) { 1652 SmallSet<MCRegister, 4> RegUnits; 1653 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1654 RegUnits.insert(*RI); 1655 return RegUnits; 1656 } 1657 1658 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1659 MachineFunction &MF, 1660 const TargetRegisterInfo *TRI, 1661 const TargetInstrInfo *TII) { 1662 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1663 // FIXME: For now, we sink only to a successor which has a single predecessor 1664 // so that we can directly sink COPY instructions to the successor without 1665 // adding any new block or branch instruction. 1666 for (MachineBasicBlock *SI : CurBB.successors()) 1667 if (!SI->livein_empty() && SI->pred_size() == 1) 1668 SinkableBBs.insert(SI); 1669 1670 if (SinkableBBs.empty()) 1671 return false; 1672 1673 bool Changed = false; 1674 1675 // Track which registers have been modified and used between the end of the 1676 // block and the current instruction. 1677 ModifiedRegUnits.clear(); 1678 UsedRegUnits.clear(); 1679 SeenDbgInstrs.clear(); 1680 1681 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1682 MachineInstr *MI = &*I; 1683 ++I; 1684 1685 // Track the operand index for use in Copy. 1686 SmallVector<unsigned, 2> UsedOpsInCopy; 1687 // Track the register number defed in Copy. 1688 SmallVector<unsigned, 2> DefedRegsInCopy; 1689 1690 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1691 // for DBG_VALUEs later, record them when they're encountered. 1692 if (MI->isDebugValue()) { 1693 auto &MO = MI->getDebugOperand(0); 1694 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1695 // Bail if we can already tell the sink would be rejected, rather 1696 // than needlessly accumulating lots of DBG_VALUEs. 1697 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1698 ModifiedRegUnits, UsedRegUnits)) 1699 continue; 1700 1701 // Record debug use of each reg unit. 1702 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1703 for (MCRegister Reg : Units) 1704 SeenDbgInstrs[Reg].push_back(MI); 1705 } 1706 continue; 1707 } 1708 1709 if (MI->isDebugInstr()) 1710 continue; 1711 1712 // Do not move any instruction across function call. 1713 if (MI->isCall()) 1714 return false; 1715 1716 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1717 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1718 TRI); 1719 continue; 1720 } 1721 1722 // Don't sink the COPY if it would violate a register dependency. 1723 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1724 ModifiedRegUnits, UsedRegUnits)) { 1725 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1726 TRI); 1727 continue; 1728 } 1729 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1730 "Unexpect SrcReg or DefReg"); 1731 MachineBasicBlock *SuccBB = 1732 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1733 // Don't sink if we cannot find a single sinkable successor in which Reg 1734 // is live-in. 1735 if (!SuccBB) { 1736 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1737 TRI); 1738 continue; 1739 } 1740 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1741 "Unexpected predecessor"); 1742 1743 // Collect DBG_VALUEs that must sink with this copy. We've previously 1744 // recorded which reg units that DBG_VALUEs read, if this instruction 1745 // writes any of those units then the corresponding DBG_VALUEs must sink. 1746 SetVector<MachineInstr *> DbgValsToSinkSet; 1747 for (auto &MO : MI->operands()) { 1748 if (!MO.isReg() || !MO.isDef()) 1749 continue; 1750 1751 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1752 for (MCRegister Reg : Units) 1753 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1754 DbgValsToSinkSet.insert(MI); 1755 } 1756 SmallVector<MachineInstr *, 4> DbgValsToSink(DbgValsToSinkSet.begin(), 1757 DbgValsToSinkSet.end()); 1758 1759 // Clear the kill flag if SrcReg is killed between MI and the end of the 1760 // block. 1761 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1762 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1763 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1764 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1765 1766 Changed = true; 1767 ++NumPostRACopySink; 1768 } 1769 return Changed; 1770 } 1771 1772 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1773 if (skipFunction(MF.getFunction())) 1774 return false; 1775 1776 bool Changed = false; 1777 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1778 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1779 1780 ModifiedRegUnits.init(*TRI); 1781 UsedRegUnits.init(*TRI); 1782 for (auto &BB : MF) 1783 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1784 1785 return Changed; 1786 } 1787