1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SparseBitVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachinePostDominators.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "machine-sink" 39 40 static cl::opt<bool> 41 SplitEdges("machine-sink-split", 42 cl::desc("Split critical edges during machine sinking"), 43 cl::init(true), cl::Hidden); 44 45 static cl::opt<bool> 46 UseBlockFreqInfo("machine-sink-bfi", 47 cl::desc("Use block frequency info to find successors to sink"), 48 cl::init(true), cl::Hidden); 49 50 51 STATISTIC(NumSunk, "Number of machine instructions sunk"); 52 STATISTIC(NumSplit, "Number of critical edges split"); 53 STATISTIC(NumCoalesces, "Number of copies coalesced"); 54 55 namespace { 56 class MachineSinking : public MachineFunctionPass { 57 const TargetInstrInfo *TII; 58 const TargetRegisterInfo *TRI; 59 MachineRegisterInfo *MRI; // Machine register information 60 MachineDominatorTree *DT; // Machine dominator tree 61 MachinePostDominatorTree *PDT; // Machine post dominator tree 62 MachineLoopInfo *LI; 63 const MachineBlockFrequencyInfo *MBFI; 64 AliasAnalysis *AA; 65 66 // Remember which edges have been considered for breaking. 67 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> 68 CEBCandidates; 69 // Remember which edges we are about to split. 70 // This is different from CEBCandidates since those edges 71 // will be split. 72 SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit; 73 74 SparseBitVector<> RegsToClearKillFlags; 75 76 public: 77 static char ID; // Pass identification 78 MachineSinking() : MachineFunctionPass(ID) { 79 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 80 } 81 82 bool runOnMachineFunction(MachineFunction &MF) override; 83 84 void getAnalysisUsage(AnalysisUsage &AU) const override { 85 AU.setPreservesCFG(); 86 MachineFunctionPass::getAnalysisUsage(AU); 87 AU.addRequired<AliasAnalysis>(); 88 AU.addRequired<MachineDominatorTree>(); 89 AU.addRequired<MachinePostDominatorTree>(); 90 AU.addRequired<MachineLoopInfo>(); 91 AU.addPreserved<MachineDominatorTree>(); 92 AU.addPreserved<MachinePostDominatorTree>(); 93 AU.addPreserved<MachineLoopInfo>(); 94 if (UseBlockFreqInfo) 95 AU.addRequired<MachineBlockFrequencyInfo>(); 96 } 97 98 void releaseMemory() override { 99 CEBCandidates.clear(); 100 } 101 102 private: 103 bool ProcessBlock(MachineBasicBlock &MBB); 104 bool isWorthBreakingCriticalEdge(MachineInstr *MI, 105 MachineBasicBlock *From, 106 MachineBasicBlock *To); 107 /// \brief Postpone the splitting of the given critical 108 /// edge (\p From, \p To). 109 /// 110 /// We do not split the edges on the fly. Indeed, this invalidates 111 /// the dominance information and thus triggers a lot of updates 112 /// of that information underneath. 113 /// Instead, we postpone all the splits after each iteration of 114 /// the main loop. That way, the information is at least valid 115 /// for the lifetime of an iteration. 116 /// 117 /// \return True if the edge is marked as toSplit, false otherwise. 118 /// False can be returned if, for instance, this is not profitable. 119 bool PostponeSplitCriticalEdge(MachineInstr *MI, 120 MachineBasicBlock *From, 121 MachineBasicBlock *To, 122 bool BreakPHIEdge); 123 bool SinkInstruction(MachineInstr *MI, bool &SawStore); 124 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 125 MachineBasicBlock *DefMBB, 126 bool &BreakPHIEdge, bool &LocalUse) const; 127 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB, 128 bool &BreakPHIEdge); 129 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 130 MachineBasicBlock *MBB, 131 MachineBasicBlock *SuccToSinkTo); 132 133 bool PerformTrivialForwardCoalescing(MachineInstr *MI, 134 MachineBasicBlock *MBB); 135 }; 136 } // end anonymous namespace 137 138 char MachineSinking::ID = 0; 139 char &llvm::MachineSinkingID = MachineSinking::ID; 140 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 141 "Machine code sinking", false, false) 142 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 143 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 144 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 145 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 146 "Machine code sinking", false, false) 147 148 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, 149 MachineBasicBlock *MBB) { 150 if (!MI->isCopy()) 151 return false; 152 153 unsigned SrcReg = MI->getOperand(1).getReg(); 154 unsigned DstReg = MI->getOperand(0).getReg(); 155 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 156 !TargetRegisterInfo::isVirtualRegister(DstReg) || 157 !MRI->hasOneNonDBGUse(SrcReg)) 158 return false; 159 160 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 161 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 162 if (SRC != DRC) 163 return false; 164 165 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 166 if (DefMI->isCopyLike()) 167 return false; 168 DEBUG(dbgs() << "Coalescing: " << *DefMI); 169 DEBUG(dbgs() << "*** to: " << *MI); 170 MRI->replaceRegWith(DstReg, SrcReg); 171 MI->eraseFromParent(); 172 173 // Conservatively, clear any kill flags, since it's possible that they are no 174 // longer correct. 175 MRI->clearKillFlags(SrcReg); 176 177 ++NumCoalesces; 178 return true; 179 } 180 181 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 182 /// occur in blocks dominated by the specified block. If any use is in the 183 /// definition block, then return false since it is never legal to move def 184 /// after uses. 185 bool 186 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 187 MachineBasicBlock *MBB, 188 MachineBasicBlock *DefMBB, 189 bool &BreakPHIEdge, 190 bool &LocalUse) const { 191 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 192 "Only makes sense for vregs"); 193 194 // Ignore debug uses because debug info doesn't affect the code. 195 if (MRI->use_nodbg_empty(Reg)) 196 return true; 197 198 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 199 // into and they are all PHI nodes. In this case, machine-sink must break 200 // the critical edge first. e.g. 201 // 202 // BB#1: derived from LLVM BB %bb4.preheader 203 // Predecessors according to CFG: BB#0 204 // ... 205 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 206 // ... 207 // JE_4 <BB#37>, %EFLAGS<imp-use> 208 // Successors according to CFG: BB#37 BB#2 209 // 210 // BB#2: derived from LLVM BB %bb.nph 211 // Predecessors according to CFG: BB#0 BB#1 212 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 213 BreakPHIEdge = true; 214 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 215 MachineInstr *UseInst = MO.getParent(); 216 unsigned OpNo = &MO - &UseInst->getOperand(0); 217 MachineBasicBlock *UseBlock = UseInst->getParent(); 218 if (!(UseBlock == MBB && UseInst->isPHI() && 219 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 220 BreakPHIEdge = false; 221 break; 222 } 223 } 224 if (BreakPHIEdge) 225 return true; 226 227 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 228 // Determine the block of the use. 229 MachineInstr *UseInst = MO.getParent(); 230 unsigned OpNo = &MO - &UseInst->getOperand(0); 231 MachineBasicBlock *UseBlock = UseInst->getParent(); 232 if (UseInst->isPHI()) { 233 // PHI nodes use the operand in the predecessor block, not the block with 234 // the PHI. 235 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 236 } else if (UseBlock == DefMBB) { 237 LocalUse = true; 238 return false; 239 } 240 241 // Check that it dominates. 242 if (!DT->dominates(MBB, UseBlock)) 243 return false; 244 } 245 246 return true; 247 } 248 249 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 250 if (skipOptnoneFunction(*MF.getFunction())) 251 return false; 252 253 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 254 255 TII = MF.getSubtarget().getInstrInfo(); 256 TRI = MF.getSubtarget().getRegisterInfo(); 257 MRI = &MF.getRegInfo(); 258 DT = &getAnalysis<MachineDominatorTree>(); 259 PDT = &getAnalysis<MachinePostDominatorTree>(); 260 LI = &getAnalysis<MachineLoopInfo>(); 261 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 262 AA = &getAnalysis<AliasAnalysis>(); 263 264 bool EverMadeChange = false; 265 266 while (1) { 267 bool MadeChange = false; 268 269 // Process all basic blocks. 270 CEBCandidates.clear(); 271 ToSplit.clear(); 272 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 273 I != E; ++I) 274 MadeChange |= ProcessBlock(*I); 275 276 // If we have anything we marked as toSplit, split it now. 277 for (auto &Pair : ToSplit) { 278 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this); 279 if (NewSucc != nullptr) { 280 DEBUG(dbgs() << " *** Splitting critical edge:" 281 " BB#" << Pair.first->getNumber() 282 << " -- BB#" << NewSucc->getNumber() 283 << " -- BB#" << Pair.second->getNumber() << '\n'); 284 MadeChange = true; 285 ++NumSplit; 286 } else 287 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 288 } 289 // If this iteration over the code changed anything, keep iterating. 290 if (!MadeChange) break; 291 EverMadeChange = true; 292 } 293 294 // Now clear any kill flags for recorded registers. 295 for (auto I : RegsToClearKillFlags) 296 MRI->clearKillFlags(I); 297 RegsToClearKillFlags.clear(); 298 299 return EverMadeChange; 300 } 301 302 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 303 // Can't sink anything out of a block that has less than two successors. 304 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 305 306 // Don't bother sinking code out of unreachable blocks. In addition to being 307 // unprofitable, it can also lead to infinite looping, because in an 308 // unreachable loop there may be nowhere to stop. 309 if (!DT->isReachableFromEntry(&MBB)) return false; 310 311 bool MadeChange = false; 312 313 // Walk the basic block bottom-up. Remember if we saw a store. 314 MachineBasicBlock::iterator I = MBB.end(); 315 --I; 316 bool ProcessedBegin, SawStore = false; 317 do { 318 MachineInstr *MI = I; // The instruction to sink. 319 320 // Predecrement I (if it's not begin) so that it isn't invalidated by 321 // sinking. 322 ProcessedBegin = I == MBB.begin(); 323 if (!ProcessedBegin) 324 --I; 325 326 if (MI->isDebugValue()) 327 continue; 328 329 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 330 if (Joined) { 331 MadeChange = true; 332 continue; 333 } 334 335 if (SinkInstruction(MI, SawStore)) 336 ++NumSunk, MadeChange = true; 337 338 // If we just processed the first instruction in the block, we're done. 339 } while (!ProcessedBegin); 340 341 return MadeChange; 342 } 343 344 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, 345 MachineBasicBlock *From, 346 MachineBasicBlock *To) { 347 // FIXME: Need much better heuristics. 348 349 // If the pass has already considered breaking this edge (during this pass 350 // through the function), then let's go ahead and break it. This means 351 // sinking multiple "cheap" instructions into the same block. 352 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 353 return true; 354 355 if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI)) 356 return true; 357 358 // MI is cheap, we probably don't want to break the critical edge for it. 359 // However, if this would allow some definitions of its source operands 360 // to be sunk then it's probably worth it. 361 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 362 const MachineOperand &MO = MI->getOperand(i); 363 if (!MO.isReg() || !MO.isUse()) 364 continue; 365 unsigned Reg = MO.getReg(); 366 if (Reg == 0) 367 continue; 368 369 // We don't move live definitions of physical registers, 370 // so sinking their uses won't enable any opportunities. 371 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 372 continue; 373 374 // If this instruction is the only user of a virtual register, 375 // check if breaking the edge will enable sinking 376 // both this instruction and the defining instruction. 377 if (MRI->hasOneNonDBGUse(Reg)) { 378 // If the definition resides in same MBB, 379 // claim it's likely we can sink these together. 380 // If definition resides elsewhere, we aren't 381 // blocking it from being sunk so don't break the edge. 382 MachineInstr *DefMI = MRI->getVRegDef(Reg); 383 if (DefMI->getParent() == MI->getParent()) 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI, 392 MachineBasicBlock *FromBB, 393 MachineBasicBlock *ToBB, 394 bool BreakPHIEdge) { 395 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 396 return false; 397 398 // Avoid breaking back edge. From == To means backedge for single BB loop. 399 if (!SplitEdges || FromBB == ToBB) 400 return false; 401 402 // Check for backedges of more "complex" loops. 403 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 404 LI->isLoopHeader(ToBB)) 405 return false; 406 407 // It's not always legal to break critical edges and sink the computation 408 // to the edge. 409 // 410 // BB#1: 411 // v1024 412 // Beq BB#3 413 // <fallthrough> 414 // BB#2: 415 // ... no uses of v1024 416 // <fallthrough> 417 // BB#3: 418 // ... 419 // = v1024 420 // 421 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 422 // 423 // BB#1: 424 // ... 425 // Bne BB#2 426 // BB#4: 427 // v1024 = 428 // B BB#3 429 // BB#2: 430 // ... no uses of v1024 431 // <fallthrough> 432 // BB#3: 433 // ... 434 // = v1024 435 // 436 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 437 // flow. We need to ensure the new basic block where the computation is 438 // sunk to dominates all the uses. 439 // It's only legal to break critical edge and sink the computation to the 440 // new block if all the predecessors of "To", except for "From", are 441 // not dominated by "From". Given SSA property, this means these 442 // predecessors are dominated by "To". 443 // 444 // There is no need to do this check if all the uses are PHI nodes. PHI 445 // sources are only defined on the specific predecessor edges. 446 if (!BreakPHIEdge) { 447 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 448 E = ToBB->pred_end(); PI != E; ++PI) { 449 if (*PI == FromBB) 450 continue; 451 if (!DT->dominates(ToBB, *PI)) 452 return false; 453 } 454 } 455 456 ToSplit.insert(std::make_pair(FromBB, ToBB)); 457 458 return true; 459 } 460 461 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { 462 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); 463 } 464 465 /// collectDebgValues - Scan instructions following MI and collect any 466 /// matching DBG_VALUEs. 467 static void collectDebugValues(MachineInstr *MI, 468 SmallVectorImpl<MachineInstr *> &DbgValues) { 469 DbgValues.clear(); 470 if (!MI->getOperand(0).isReg()) 471 return; 472 473 MachineBasicBlock::iterator DI = MI; ++DI; 474 for (MachineBasicBlock::iterator DE = MI->getParent()->end(); 475 DI != DE; ++DI) { 476 if (!DI->isDebugValue()) 477 return; 478 if (DI->getOperand(0).isReg() && 479 DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) 480 DbgValues.push_back(DI); 481 } 482 } 483 484 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 485 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 486 MachineBasicBlock *MBB, 487 MachineBasicBlock *SuccToSinkTo) { 488 assert (MI && "Invalid MachineInstr!"); 489 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 490 491 if (MBB == SuccToSinkTo) 492 return false; 493 494 // It is profitable if SuccToSinkTo does not post dominate current block. 495 if (!PDT->dominates(SuccToSinkTo, MBB)) 496 return true; 497 498 // It is profitable to sink an instruction from a deeper loop to a shallower 499 // loop, even if the latter post-dominates the former (PR21115). 500 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 501 return true; 502 503 // Check if only use in post dominated block is PHI instruction. 504 bool NonPHIUse = false; 505 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 506 MachineBasicBlock *UseBlock = UseInst.getParent(); 507 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 508 NonPHIUse = true; 509 } 510 if (!NonPHIUse) 511 return true; 512 513 // If SuccToSinkTo post dominates then also it may be profitable if MI 514 // can further profitably sinked into another block in next round. 515 bool BreakPHIEdge = false; 516 // FIXME - If finding successor is compile time expensive then cache results. 517 if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge)) 518 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2); 519 520 // If SuccToSinkTo is final destination and it is a post dominator of current 521 // block then it is not profitable to sink MI into SuccToSinkTo block. 522 return false; 523 } 524 525 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 526 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI, 527 MachineBasicBlock *MBB, 528 bool &BreakPHIEdge) { 529 530 assert (MI && "Invalid MachineInstr!"); 531 assert (MBB && "Invalid MachineBasicBlock!"); 532 533 // Loop over all the operands of the specified instruction. If there is 534 // anything we can't handle, bail out. 535 536 // SuccToSinkTo - This is the successor to sink this instruction to, once we 537 // decide. 538 MachineBasicBlock *SuccToSinkTo = nullptr; 539 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 540 const MachineOperand &MO = MI->getOperand(i); 541 if (!MO.isReg()) continue; // Ignore non-register operands. 542 543 unsigned Reg = MO.getReg(); 544 if (Reg == 0) continue; 545 546 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 547 if (MO.isUse()) { 548 // If the physreg has no defs anywhere, it's just an ambient register 549 // and we can freely move its uses. Alternatively, if it's allocatable, 550 // it could get allocated to something with a def during allocation. 551 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 552 return nullptr; 553 } else if (!MO.isDead()) { 554 // A def that isn't dead. We can't move it. 555 return nullptr; 556 } 557 } else { 558 // Virtual register uses are always safe to sink. 559 if (MO.isUse()) continue; 560 561 // If it's not safe to move defs of the register class, then abort. 562 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 563 return nullptr; 564 565 // Virtual register defs can only be sunk if all their uses are in blocks 566 // dominated by one of the successors. 567 if (SuccToSinkTo) { 568 // If a previous operand picked a block to sink to, then this operand 569 // must be sinkable to the same block. 570 bool LocalUse = false; 571 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 572 BreakPHIEdge, LocalUse)) 573 return nullptr; 574 575 continue; 576 } 577 578 // Otherwise, we should look at all the successors and decide which one 579 // we should sink to. If we have reliable block frequency information 580 // (frequency != 0) available, give successors with smaller frequencies 581 // higher priority, otherwise prioritize smaller loop depths. 582 SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(), 583 MBB->succ_end()); 584 585 // Handle cases where sinking can happen but where the sink point isn't a 586 // successor. For example: 587 // 588 // x = computation 589 // if () {} else {} 590 // use x 591 // 592 const std::vector<MachineDomTreeNode *> &Children = 593 DT->getNode(MBB)->getChildren(); 594 for (const auto &DTChild : Children) 595 // DomTree children of MBB that have MBB as immediate dominator are added. 596 if (DTChild->getIDom()->getBlock() == MI->getParent() && 597 // Skip MBBs already added to the Succs vector above. 598 !MBB->isSuccessor(DTChild->getBlock())) 599 Succs.push_back(DTChild->getBlock()); 600 601 // Sort Successors according to their loop depth or block frequency info. 602 std::stable_sort( 603 Succs.begin(), Succs.end(), 604 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 605 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 606 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 607 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 608 return HasBlockFreq ? LHSFreq < RHSFreq 609 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 610 }); 611 for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(), 612 E = Succs.end(); SI != E; ++SI) { 613 MachineBasicBlock *SuccBlock = *SI; 614 bool LocalUse = false; 615 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 616 BreakPHIEdge, LocalUse)) { 617 SuccToSinkTo = SuccBlock; 618 break; 619 } 620 if (LocalUse) 621 // Def is used locally, it's never safe to move this def. 622 return nullptr; 623 } 624 625 // If we couldn't find a block to sink to, ignore this instruction. 626 if (!SuccToSinkTo) 627 return nullptr; 628 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo)) 629 return nullptr; 630 } 631 } 632 633 // It is not possible to sink an instruction into its own block. This can 634 // happen with loops. 635 if (MBB == SuccToSinkTo) 636 return nullptr; 637 638 // It's not safe to sink instructions to EH landing pad. Control flow into 639 // landing pad is implicitly defined. 640 if (SuccToSinkTo && SuccToSinkTo->isLandingPad()) 641 return nullptr; 642 643 return SuccToSinkTo; 644 } 645 646 /// SinkInstruction - Determine whether it is safe to sink the specified machine 647 /// instruction out of its current block into a successor. 648 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { 649 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to 650 // be close to the source to make it easier to coalesce. 651 if (AvoidsSinking(MI, MRI)) 652 return false; 653 654 // Check if it's safe to move the instruction. 655 if (!MI->isSafeToMove(AA, SawStore)) 656 return false; 657 658 // FIXME: This should include support for sinking instructions within the 659 // block they are currently in to shorten the live ranges. We often get 660 // instructions sunk into the top of a large block, but it would be better to 661 // also sink them down before their first use in the block. This xform has to 662 // be careful not to *increase* register pressure though, e.g. sinking 663 // "x = y + z" down if it kills y and z would increase the live ranges of y 664 // and z and only shrink the live range of x. 665 666 bool BreakPHIEdge = false; 667 MachineBasicBlock *ParentBlock = MI->getParent(); 668 MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, 669 BreakPHIEdge); 670 671 // If there are no outputs, it must have side-effects. 672 if (!SuccToSinkTo) 673 return false; 674 675 676 // If the instruction to move defines a dead physical register which is live 677 // when leaving the basic block, don't move it because it could turn into a 678 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 679 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 680 const MachineOperand &MO = MI->getOperand(I); 681 if (!MO.isReg()) continue; 682 unsigned Reg = MO.getReg(); 683 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 684 if (SuccToSinkTo->isLiveIn(Reg)) 685 return false; 686 } 687 688 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); 689 690 // If the block has multiple predecessors, this is a critical edge. 691 // Decide if we can sink along it or need to break the edge. 692 if (SuccToSinkTo->pred_size() > 1) { 693 // We cannot sink a load across a critical edge - there may be stores in 694 // other code paths. 695 bool TryBreak = false; 696 bool store = true; 697 if (!MI->isSafeToMove(AA, store)) { 698 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 699 TryBreak = true; 700 } 701 702 // We don't want to sink across a critical edge if we don't dominate the 703 // successor. We could be introducing calculations to new code paths. 704 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 705 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 706 TryBreak = true; 707 } 708 709 // Don't sink instructions into a loop. 710 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 711 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 712 TryBreak = true; 713 } 714 715 // Otherwise we are OK with sinking along a critical edge. 716 if (!TryBreak) 717 DEBUG(dbgs() << "Sinking along critical edge.\n"); 718 else { 719 // Mark this edge as to be split. 720 // If the edge can actually be split, the next iteration of the main loop 721 // will sink MI in the newly created block. 722 bool Status = 723 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 724 if (!Status) 725 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 726 "break critical edge\n"); 727 // The instruction will not be sunk this time. 728 return false; 729 } 730 } 731 732 if (BreakPHIEdge) { 733 // BreakPHIEdge is true if all the uses are in the successor MBB being 734 // sunken into and they are all PHI nodes. In this case, machine-sink must 735 // break the critical edge first. 736 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 737 SuccToSinkTo, BreakPHIEdge); 738 if (!Status) 739 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 740 "break critical edge\n"); 741 // The instruction will not be sunk this time. 742 return false; 743 } 744 745 // Determine where to insert into. Skip phi nodes. 746 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 747 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 748 ++InsertPos; 749 750 // collect matching debug values. 751 SmallVector<MachineInstr *, 2> DbgValuesToSink; 752 collectDebugValues(MI, DbgValuesToSink); 753 754 // Move the instruction. 755 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 756 ++MachineBasicBlock::iterator(MI)); 757 758 // Move debug values. 759 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 760 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 761 MachineInstr *DbgMI = *DBI; 762 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 763 ++MachineBasicBlock::iterator(DbgMI)); 764 } 765 766 // Conservatively, clear any kill flags, since it's possible that they are no 767 // longer correct. 768 // Note that we have to clear the kill flags for any register this instruction 769 // uses as we may sink over another instruction which currently kills the 770 // used registers. 771 for (MachineOperand &MO : MI->operands()) { 772 if (MO.isReg() && MO.isUse()) 773 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 774 } 775 776 return true; 777 } 778