1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <map> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machine-sink" 60 61 static cl::opt<bool> 62 SplitEdges("machine-sink-split", 63 cl::desc("Split critical edges during machine sinking"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 UseBlockFreqInfo("machine-sink-bfi", 68 cl::desc("Use block frequency info to find successors to sink"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 72 "machine-sink-split-probability-threshold", 73 cl::desc( 74 "Percentage threshold for splitting single-instruction critical edge. " 75 "If the branch threshold is higher than this threshold, we allow " 76 "speculative execution of up to 1 instruction to avoid branching to " 77 "splitted critical edge"), 78 cl::init(40), cl::Hidden); 79 80 STATISTIC(NumSunk, "Number of machine instructions sunk"); 81 STATISTIC(NumSplit, "Number of critical edges split"); 82 STATISTIC(NumCoalesces, "Number of copies coalesced"); 83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 84 85 namespace { 86 87 class MachineSinking : public MachineFunctionPass { 88 const TargetInstrInfo *TII; 89 const TargetRegisterInfo *TRI; 90 MachineRegisterInfo *MRI; // Machine register information 91 MachineDominatorTree *DT; // Machine dominator tree 92 MachinePostDominatorTree *PDT; // Machine post dominator tree 93 MachineLoopInfo *LI; 94 MachineBlockFrequencyInfo *MBFI; 95 const MachineBranchProbabilityInfo *MBPI; 96 AliasAnalysis *AA; 97 98 // Remember which edges have been considered for breaking. 99 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 100 CEBCandidates; 101 // Remember which edges we are about to split. 102 // This is different from CEBCandidates since those edges 103 // will be split. 104 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 105 106 SparseBitVector<> RegsToClearKillFlags; 107 108 using AllSuccsCache = 109 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 110 111 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 112 /// post-dominated by another DBG_VALUE of the same variable location. 113 /// This is necessary to detect sequences such as: 114 /// %0 = someinst 115 /// DBG_VALUE %0, !123, !DIExpression() 116 /// %1 = anotherinst 117 /// DBG_VALUE %1, !123, !DIExpression() 118 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 119 /// would re-order assignments. 120 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 121 122 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 123 /// debug instructions to sink. 124 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 125 126 /// Record of debug variables that have had their locations set in the 127 /// current block. 128 DenseSet<DebugVariable> SeenDbgVars; 129 130 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 131 HasStoreCache; 132 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 133 std::vector<MachineInstr *>> 134 StoreInstrCache; 135 136 public: 137 static char ID; // Pass identification 138 139 MachineSinking() : MachineFunctionPass(ID) { 140 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 141 } 142 143 bool runOnMachineFunction(MachineFunction &MF) override; 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 MachineFunctionPass::getAnalysisUsage(AU); 147 AU.addRequired<AAResultsWrapperPass>(); 148 AU.addRequired<MachineDominatorTree>(); 149 AU.addRequired<MachinePostDominatorTree>(); 150 AU.addRequired<MachineLoopInfo>(); 151 AU.addRequired<MachineBranchProbabilityInfo>(); 152 AU.addPreserved<MachineLoopInfo>(); 153 if (UseBlockFreqInfo) 154 AU.addRequired<MachineBlockFrequencyInfo>(); 155 } 156 157 void releaseMemory() override { 158 CEBCandidates.clear(); 159 } 160 161 private: 162 bool ProcessBlock(MachineBasicBlock &MBB); 163 void ProcessDbgInst(MachineInstr &MI); 164 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 165 MachineBasicBlock *From, 166 MachineBasicBlock *To); 167 168 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 169 MachineInstr &MI); 170 171 /// Postpone the splitting of the given critical 172 /// edge (\p From, \p To). 173 /// 174 /// We do not split the edges on the fly. Indeed, this invalidates 175 /// the dominance information and thus triggers a lot of updates 176 /// of that information underneath. 177 /// Instead, we postpone all the splits after each iteration of 178 /// the main loop. That way, the information is at least valid 179 /// for the lifetime of an iteration. 180 /// 181 /// \return True if the edge is marked as toSplit, false otherwise. 182 /// False can be returned if, for instance, this is not profitable. 183 bool PostponeSplitCriticalEdge(MachineInstr &MI, 184 MachineBasicBlock *From, 185 MachineBasicBlock *To, 186 bool BreakPHIEdge); 187 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 188 AllSuccsCache &AllSuccessors); 189 190 /// If we sink a COPY inst, some debug users of it's destination may no 191 /// longer be dominated by the COPY, and will eventually be dropped. 192 /// This is easily rectified by forwarding the non-dominated debug uses 193 /// to the copy source. 194 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 195 MachineBasicBlock *TargetBlock); 196 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 197 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 198 bool &LocalUse) const; 199 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 200 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 201 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 202 MachineBasicBlock *MBB, 203 MachineBasicBlock *SuccToSinkTo, 204 AllSuccsCache &AllSuccessors); 205 206 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 207 MachineBasicBlock *MBB); 208 209 SmallVector<MachineBasicBlock *, 4> & 210 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 211 AllSuccsCache &AllSuccessors) const; 212 }; 213 214 } // end anonymous namespace 215 216 char MachineSinking::ID = 0; 217 218 char &llvm::MachineSinkingID = MachineSinking::ID; 219 220 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 221 "Machine code sinking", false, false) 222 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 223 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 224 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 225 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 226 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 227 "Machine code sinking", false, false) 228 229 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 230 MachineBasicBlock *MBB) { 231 if (!MI.isCopy()) 232 return false; 233 234 Register SrcReg = MI.getOperand(1).getReg(); 235 Register DstReg = MI.getOperand(0).getReg(); 236 if (!Register::isVirtualRegister(SrcReg) || 237 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 238 return false; 239 240 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 241 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 242 if (SRC != DRC) 243 return false; 244 245 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 246 if (DefMI->isCopyLike()) 247 return false; 248 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 249 LLVM_DEBUG(dbgs() << "*** to: " << MI); 250 MRI->replaceRegWith(DstReg, SrcReg); 251 MI.eraseFromParent(); 252 253 // Conservatively, clear any kill flags, since it's possible that they are no 254 // longer correct. 255 MRI->clearKillFlags(SrcReg); 256 257 ++NumCoalesces; 258 return true; 259 } 260 261 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 262 /// occur in blocks dominated by the specified block. If any use is in the 263 /// definition block, then return false since it is never legal to move def 264 /// after uses. 265 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 266 MachineBasicBlock *MBB, 267 MachineBasicBlock *DefMBB, 268 bool &BreakPHIEdge, 269 bool &LocalUse) const { 270 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 271 272 // Ignore debug uses because debug info doesn't affect the code. 273 if (MRI->use_nodbg_empty(Reg)) 274 return true; 275 276 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 277 // into and they are all PHI nodes. In this case, machine-sink must break 278 // the critical edge first. e.g. 279 // 280 // %bb.1: 281 // Predecessors according to CFG: %bb.0 282 // ... 283 // %def = DEC64_32r %x, implicit-def dead %eflags 284 // ... 285 // JE_4 <%bb.37>, implicit %eflags 286 // Successors according to CFG: %bb.37 %bb.2 287 // 288 // %bb.2: 289 // %p = PHI %y, %bb.0, %def, %bb.1 290 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 291 MachineInstr *UseInst = MO.getParent(); 292 unsigned OpNo = UseInst->getOperandNo(&MO); 293 MachineBasicBlock *UseBlock = UseInst->getParent(); 294 return UseBlock == MBB && UseInst->isPHI() && 295 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 296 })) { 297 BreakPHIEdge = true; 298 return true; 299 } 300 301 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 302 // Determine the block of the use. 303 MachineInstr *UseInst = MO.getParent(); 304 unsigned OpNo = &MO - &UseInst->getOperand(0); 305 MachineBasicBlock *UseBlock = UseInst->getParent(); 306 if (UseInst->isPHI()) { 307 // PHI nodes use the operand in the predecessor block, not the block with 308 // the PHI. 309 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 310 } else if (UseBlock == DefMBB) { 311 LocalUse = true; 312 return false; 313 } 314 315 // Check that it dominates. 316 if (!DT->dominates(MBB, UseBlock)) 317 return false; 318 } 319 320 return true; 321 } 322 323 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 324 if (skipFunction(MF.getFunction())) 325 return false; 326 327 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 328 329 TII = MF.getSubtarget().getInstrInfo(); 330 TRI = MF.getSubtarget().getRegisterInfo(); 331 MRI = &MF.getRegInfo(); 332 DT = &getAnalysis<MachineDominatorTree>(); 333 PDT = &getAnalysis<MachinePostDominatorTree>(); 334 LI = &getAnalysis<MachineLoopInfo>(); 335 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 336 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 337 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 338 339 bool EverMadeChange = false; 340 341 while (true) { 342 bool MadeChange = false; 343 344 // Process all basic blocks. 345 CEBCandidates.clear(); 346 ToSplit.clear(); 347 for (auto &MBB: MF) 348 MadeChange |= ProcessBlock(MBB); 349 350 // If we have anything we marked as toSplit, split it now. 351 for (auto &Pair : ToSplit) { 352 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 353 if (NewSucc != nullptr) { 354 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 355 << printMBBReference(*Pair.first) << " -- " 356 << printMBBReference(*NewSucc) << " -- " 357 << printMBBReference(*Pair.second) << '\n'); 358 if (MBFI) 359 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 360 361 MadeChange = true; 362 ++NumSplit; 363 } else 364 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 365 } 366 // If this iteration over the code changed anything, keep iterating. 367 if (!MadeChange) break; 368 EverMadeChange = true; 369 } 370 371 HasStoreCache.clear(); 372 StoreInstrCache.clear(); 373 374 // Now clear any kill flags for recorded registers. 375 for (auto I : RegsToClearKillFlags) 376 MRI->clearKillFlags(I); 377 RegsToClearKillFlags.clear(); 378 379 return EverMadeChange; 380 } 381 382 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 383 // Can't sink anything out of a block that has less than two successors. 384 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 385 386 // Don't bother sinking code out of unreachable blocks. In addition to being 387 // unprofitable, it can also lead to infinite looping, because in an 388 // unreachable loop there may be nowhere to stop. 389 if (!DT->isReachableFromEntry(&MBB)) return false; 390 391 bool MadeChange = false; 392 393 // Cache all successors, sorted by frequency info and loop depth. 394 AllSuccsCache AllSuccessors; 395 396 // Walk the basic block bottom-up. Remember if we saw a store. 397 MachineBasicBlock::iterator I = MBB.end(); 398 --I; 399 bool ProcessedBegin, SawStore = false; 400 do { 401 MachineInstr &MI = *I; // The instruction to sink. 402 403 // Predecrement I (if it's not begin) so that it isn't invalidated by 404 // sinking. 405 ProcessedBegin = I == MBB.begin(); 406 if (!ProcessedBegin) 407 --I; 408 409 if (MI.isDebugInstr()) { 410 if (MI.isDebugValue()) 411 ProcessDbgInst(MI); 412 continue; 413 } 414 415 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 416 if (Joined) { 417 MadeChange = true; 418 continue; 419 } 420 421 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 422 ++NumSunk; 423 MadeChange = true; 424 } 425 426 // If we just processed the first instruction in the block, we're done. 427 } while (!ProcessedBegin); 428 429 SeenDbgUsers.clear(); 430 SeenDbgVars.clear(); 431 432 return MadeChange; 433 } 434 435 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 436 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 437 // we know what to sink if the vreg def sinks. 438 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 439 440 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 441 MI.getDebugLoc()->getInlinedAt()); 442 bool SeenBefore = SeenDbgVars.count(Var) != 0; 443 444 MachineOperand &MO = MI.getDebugOperand(0); 445 if (MO.isReg() && MO.getReg().isVirtual()) 446 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 447 448 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 449 SeenDbgVars.insert(Var); 450 } 451 452 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 453 MachineBasicBlock *From, 454 MachineBasicBlock *To) { 455 // FIXME: Need much better heuristics. 456 457 // If the pass has already considered breaking this edge (during this pass 458 // through the function), then let's go ahead and break it. This means 459 // sinking multiple "cheap" instructions into the same block. 460 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 461 return true; 462 463 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 464 return true; 465 466 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 467 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 468 return true; 469 470 // MI is cheap, we probably don't want to break the critical edge for it. 471 // However, if this would allow some definitions of its source operands 472 // to be sunk then it's probably worth it. 473 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 474 const MachineOperand &MO = MI.getOperand(i); 475 if (!MO.isReg() || !MO.isUse()) 476 continue; 477 Register Reg = MO.getReg(); 478 if (Reg == 0) 479 continue; 480 481 // We don't move live definitions of physical registers, 482 // so sinking their uses won't enable any opportunities. 483 if (Register::isPhysicalRegister(Reg)) 484 continue; 485 486 // If this instruction is the only user of a virtual register, 487 // check if breaking the edge will enable sinking 488 // both this instruction and the defining instruction. 489 if (MRI->hasOneNonDBGUse(Reg)) { 490 // If the definition resides in same MBB, 491 // claim it's likely we can sink these together. 492 // If definition resides elsewhere, we aren't 493 // blocking it from being sunk so don't break the edge. 494 MachineInstr *DefMI = MRI->getVRegDef(Reg); 495 if (DefMI->getParent() == MI.getParent()) 496 return true; 497 } 498 } 499 500 return false; 501 } 502 503 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 504 MachineBasicBlock *FromBB, 505 MachineBasicBlock *ToBB, 506 bool BreakPHIEdge) { 507 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 508 return false; 509 510 // Avoid breaking back edge. From == To means backedge for single BB loop. 511 if (!SplitEdges || FromBB == ToBB) 512 return false; 513 514 // Check for backedges of more "complex" loops. 515 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 516 LI->isLoopHeader(ToBB)) 517 return false; 518 519 // It's not always legal to break critical edges and sink the computation 520 // to the edge. 521 // 522 // %bb.1: 523 // v1024 524 // Beq %bb.3 525 // <fallthrough> 526 // %bb.2: 527 // ... no uses of v1024 528 // <fallthrough> 529 // %bb.3: 530 // ... 531 // = v1024 532 // 533 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 534 // 535 // %bb.1: 536 // ... 537 // Bne %bb.2 538 // %bb.4: 539 // v1024 = 540 // B %bb.3 541 // %bb.2: 542 // ... no uses of v1024 543 // <fallthrough> 544 // %bb.3: 545 // ... 546 // = v1024 547 // 548 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 549 // flow. We need to ensure the new basic block where the computation is 550 // sunk to dominates all the uses. 551 // It's only legal to break critical edge and sink the computation to the 552 // new block if all the predecessors of "To", except for "From", are 553 // not dominated by "From". Given SSA property, this means these 554 // predecessors are dominated by "To". 555 // 556 // There is no need to do this check if all the uses are PHI nodes. PHI 557 // sources are only defined on the specific predecessor edges. 558 if (!BreakPHIEdge) { 559 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 560 E = ToBB->pred_end(); PI != E; ++PI) { 561 if (*PI == FromBB) 562 continue; 563 if (!DT->dominates(ToBB, *PI)) 564 return false; 565 } 566 } 567 568 ToSplit.insert(std::make_pair(FromBB, ToBB)); 569 570 return true; 571 } 572 573 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 574 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 575 MachineBasicBlock *MBB, 576 MachineBasicBlock *SuccToSinkTo, 577 AllSuccsCache &AllSuccessors) { 578 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 579 580 if (MBB == SuccToSinkTo) 581 return false; 582 583 // It is profitable if SuccToSinkTo does not post dominate current block. 584 if (!PDT->dominates(SuccToSinkTo, MBB)) 585 return true; 586 587 // It is profitable to sink an instruction from a deeper loop to a shallower 588 // loop, even if the latter post-dominates the former (PR21115). 589 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 590 return true; 591 592 // Check if only use in post dominated block is PHI instruction. 593 bool NonPHIUse = false; 594 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 595 MachineBasicBlock *UseBlock = UseInst.getParent(); 596 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 597 NonPHIUse = true; 598 } 599 if (!NonPHIUse) 600 return true; 601 602 // If SuccToSinkTo post dominates then also it may be profitable if MI 603 // can further profitably sinked into another block in next round. 604 bool BreakPHIEdge = false; 605 // FIXME - If finding successor is compile time expensive then cache results. 606 if (MachineBasicBlock *MBB2 = 607 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 608 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 609 610 MachineLoop *ML = LI->getLoopFor(MBB); 611 612 // If the instruction is not inside a loop, it is not profitable to sink MI to 613 // a post dominate block SuccToSinkTo. 614 if (!ML) 615 return false; 616 617 // If this instruction is inside a loop and sinking this instruction can make 618 // more registers live range shorten, it is still prifitable. 619 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 620 const MachineOperand &MO = MI.getOperand(i); 621 // Ignore non-register operands. 622 if (!MO.isReg()) 623 continue; 624 Register Reg = MO.getReg(); 625 if (Reg == 0) 626 continue; 627 628 // Don't handle physical register. 629 if (Register::isPhysicalRegister(Reg)) 630 return false; 631 632 // Users for the defs are all dominated by SuccToSinkTo. 633 if (MO.isDef()) { 634 // This def register's live range is shortened after sinking. 635 bool LocalUse = false; 636 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 637 LocalUse)) 638 return false; 639 } else { 640 MachineInstr *DefMI = MRI->getVRegDef(Reg); 641 // DefMI is defined outside of loop. There should be no live range 642 // impact for this operand. Defination outside of loop means: 643 // 1: defination is outside of loop. 644 // 2: defination is in this loop, but it is a PHI in the loop header. 645 if (LI->getLoopFor(DefMI->getParent()) != ML || 646 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 647 continue; 648 // DefMI is inside the loop. Mark it as not profitable as sinking MI will 649 // enlarge DefMI live range. 650 // FIXME: check the register pressure in block SuccToSinkTo, if it is 651 // smaller than the limit after sinking, it is still profitable to sink. 652 return false; 653 } 654 } 655 656 // If MI is in loop and all its operands are alive across the whole loop, it 657 // is profitable to sink MI. 658 return true; 659 } 660 661 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 662 /// computing it if it was not already cached. 663 SmallVector<MachineBasicBlock *, 4> & 664 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 665 AllSuccsCache &AllSuccessors) const { 666 // Do we have the sorted successors in cache ? 667 auto Succs = AllSuccessors.find(MBB); 668 if (Succs != AllSuccessors.end()) 669 return Succs->second; 670 671 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 672 MBB->succ_end()); 673 674 // Handle cases where sinking can happen but where the sink point isn't a 675 // successor. For example: 676 // 677 // x = computation 678 // if () {} else {} 679 // use x 680 // 681 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 682 // DomTree children of MBB that have MBB as immediate dominator are added. 683 if (DTChild->getIDom()->getBlock() == MI.getParent() && 684 // Skip MBBs already added to the AllSuccs vector above. 685 !MBB->isSuccessor(DTChild->getBlock())) 686 AllSuccs.push_back(DTChild->getBlock()); 687 } 688 689 // Sort Successors according to their loop depth or block frequency info. 690 llvm::stable_sort( 691 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 692 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 693 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 694 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 695 return HasBlockFreq ? LHSFreq < RHSFreq 696 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 697 }); 698 699 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 700 701 return it.first->second; 702 } 703 704 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 705 MachineBasicBlock * 706 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 707 bool &BreakPHIEdge, 708 AllSuccsCache &AllSuccessors) { 709 assert (MBB && "Invalid MachineBasicBlock!"); 710 711 // Loop over all the operands of the specified instruction. If there is 712 // anything we can't handle, bail out. 713 714 // SuccToSinkTo - This is the successor to sink this instruction to, once we 715 // decide. 716 MachineBasicBlock *SuccToSinkTo = nullptr; 717 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 718 const MachineOperand &MO = MI.getOperand(i); 719 if (!MO.isReg()) continue; // Ignore non-register operands. 720 721 Register Reg = MO.getReg(); 722 if (Reg == 0) continue; 723 724 if (Register::isPhysicalRegister(Reg)) { 725 if (MO.isUse()) { 726 // If the physreg has no defs anywhere, it's just an ambient register 727 // and we can freely move its uses. Alternatively, if it's allocatable, 728 // it could get allocated to something with a def during allocation. 729 if (!MRI->isConstantPhysReg(Reg)) 730 return nullptr; 731 } else if (!MO.isDead()) { 732 // A def that isn't dead. We can't move it. 733 return nullptr; 734 } 735 } else { 736 // Virtual register uses are always safe to sink. 737 if (MO.isUse()) continue; 738 739 // If it's not safe to move defs of the register class, then abort. 740 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 741 return nullptr; 742 743 // Virtual register defs can only be sunk if all their uses are in blocks 744 // dominated by one of the successors. 745 if (SuccToSinkTo) { 746 // If a previous operand picked a block to sink to, then this operand 747 // must be sinkable to the same block. 748 bool LocalUse = false; 749 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 750 BreakPHIEdge, LocalUse)) 751 return nullptr; 752 753 continue; 754 } 755 756 // Otherwise, we should look at all the successors and decide which one 757 // we should sink to. If we have reliable block frequency information 758 // (frequency != 0) available, give successors with smaller frequencies 759 // higher priority, otherwise prioritize smaller loop depths. 760 for (MachineBasicBlock *SuccBlock : 761 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 762 bool LocalUse = false; 763 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 764 BreakPHIEdge, LocalUse)) { 765 SuccToSinkTo = SuccBlock; 766 break; 767 } 768 if (LocalUse) 769 // Def is used locally, it's never safe to move this def. 770 return nullptr; 771 } 772 773 // If we couldn't find a block to sink to, ignore this instruction. 774 if (!SuccToSinkTo) 775 return nullptr; 776 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 777 return nullptr; 778 } 779 } 780 781 // It is not possible to sink an instruction into its own block. This can 782 // happen with loops. 783 if (MBB == SuccToSinkTo) 784 return nullptr; 785 786 // It's not safe to sink instructions to EH landing pad. Control flow into 787 // landing pad is implicitly defined. 788 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 789 return nullptr; 790 791 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 792 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 793 // the source block (which this code does not yet do). So for now, forbid 794 // doing so. 795 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 796 return nullptr; 797 798 return SuccToSinkTo; 799 } 800 801 /// Return true if MI is likely to be usable as a memory operation by the 802 /// implicit null check optimization. 803 /// 804 /// This is a "best effort" heuristic, and should not be relied upon for 805 /// correctness. This returning true does not guarantee that the implicit null 806 /// check optimization is legal over MI, and this returning false does not 807 /// guarantee MI cannot possibly be used to do a null check. 808 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 809 const TargetInstrInfo *TII, 810 const TargetRegisterInfo *TRI) { 811 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 812 813 auto *MBB = MI.getParent(); 814 if (MBB->pred_size() != 1) 815 return false; 816 817 auto *PredMBB = *MBB->pred_begin(); 818 auto *PredBB = PredMBB->getBasicBlock(); 819 820 // Frontends that don't use implicit null checks have no reason to emit 821 // branches with make.implicit metadata, and this function should always 822 // return false for them. 823 if (!PredBB || 824 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 825 return false; 826 827 const MachineOperand *BaseOp; 828 int64_t Offset; 829 bool OffsetIsScalable; 830 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 831 return false; 832 833 if (!BaseOp->isReg()) 834 return false; 835 836 if (!(MI.mayLoad() && !MI.isPredicable())) 837 return false; 838 839 MachineBranchPredicate MBP; 840 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 841 return false; 842 843 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 844 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 845 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 846 MBP.LHS.getReg() == BaseOp->getReg(); 847 } 848 849 /// If the sunk instruction is a copy, try to forward the copy instead of 850 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 851 /// there's any subregister weirdness involved. Returns true if copy 852 /// propagation occurred. 853 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 854 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 855 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 856 857 // Copy DBG_VALUE operand and set the original to undef. We then check to 858 // see whether this is something that can be copy-forwarded. If it isn't, 859 // continue around the loop. 860 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 861 862 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 863 auto CopyOperands = TII.isCopyInstr(SinkInst); 864 if (!CopyOperands) 865 return false; 866 SrcMO = CopyOperands->Source; 867 DstMO = CopyOperands->Destination; 868 869 // Check validity of forwarding this copy. 870 bool PostRA = MRI.getNumVirtRegs() == 0; 871 872 // Trying to forward between physical and virtual registers is too hard. 873 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 874 return false; 875 876 // Only try virtual register copy-forwarding before regalloc, and physical 877 // register copy-forwarding after regalloc. 878 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 879 if (arePhysRegs != PostRA) 880 return false; 881 882 // Pre-regalloc, only forward if all subregisters agree (or there are no 883 // subregs at all). More analysis might recover some forwardable copies. 884 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 885 DbgMO.getSubReg() != DstMO->getSubReg())) 886 return false; 887 888 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 889 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 890 // matches the copy destination. 891 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 892 return false; 893 894 DbgMO.setReg(SrcMO->getReg()); 895 DbgMO.setSubReg(SrcMO->getSubReg()); 896 return true; 897 } 898 899 /// Sink an instruction and its associated debug instructions. 900 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 901 MachineBasicBlock::iterator InsertPos, 902 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 903 904 // If we cannot find a location to use (merge with), then we erase the debug 905 // location to prevent debug-info driven tools from potentially reporting 906 // wrong location information. 907 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 908 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 909 InsertPos->getDebugLoc())); 910 else 911 MI.setDebugLoc(DebugLoc()); 912 913 // Move the instruction. 914 MachineBasicBlock *ParentBlock = MI.getParent(); 915 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 916 ++MachineBasicBlock::iterator(MI)); 917 918 // Sink a copy of debug users to the insert position. Mark the original 919 // DBG_VALUE location as 'undef', indicating that any earlier variable 920 // location should be terminated as we've optimised away the value at this 921 // point. 922 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 923 DBE = DbgValuesToSink.end(); 924 DBI != DBE; ++DBI) { 925 MachineInstr *DbgMI = *DBI; 926 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 927 SuccToSinkTo.insert(InsertPos, NewDbgMI); 928 929 if (!attemptDebugCopyProp(MI, *DbgMI)) 930 DbgMI->setDebugValueUndef(); 931 } 932 } 933 934 /// hasStoreBetween - check if there is store betweeen straight line blocks From 935 /// and To. 936 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 937 MachineBasicBlock *To, MachineInstr &MI) { 938 // Make sure From and To are in straight line which means From dominates To 939 // and To post dominates From. 940 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 941 return true; 942 943 auto BlockPair = std::make_pair(From, To); 944 945 // Does these two blocks pair be queried before and have a definite cached 946 // result? 947 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 948 return HasStoreCache[BlockPair]; 949 950 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 951 return std::any_of( 952 StoreInstrCache[BlockPair].begin(), StoreInstrCache[BlockPair].end(), 953 [&](MachineInstr *I) { return I->mayAlias(AA, MI, false); }); 954 955 bool SawStore = false; 956 bool HasAliasedStore = false; 957 DenseSet<MachineBasicBlock *> HandledBlocks; 958 // Go through all reachable blocks from From. 959 for (MachineBasicBlock *BB : depth_first(From)) { 960 // We insert the instruction at the start of block To, so no need to worry 961 // about stores inside To. 962 // Store in block From should be already considered when just enter function 963 // SinkInstruction. 964 if (BB == To || BB == From) 965 continue; 966 967 // We already handle this BB in previous iteration. 968 if (HandledBlocks.count(BB)) 969 continue; 970 971 HandledBlocks.insert(BB); 972 // To post dominates BB, it must be a path from block From. 973 if (PDT->dominates(To, BB)) { 974 for (MachineInstr &I : *BB) { 975 // Treat as alias conservatively for a call or an ordered memory 976 // operation. 977 if (I.isCall() || I.hasOrderedMemoryRef()) { 978 HasStoreCache[BlockPair] = true; 979 return true; 980 } 981 982 if (I.mayStore()) { 983 SawStore = true; 984 // We still have chance to sink MI if all stores between are not 985 // aliased to MI. 986 // Cache all store instructions, so that we don't need to go through 987 // all From reachable blocks for next load instruction. 988 if (I.mayAlias(AA, MI, false)) 989 HasAliasedStore = true; 990 StoreInstrCache[BlockPair].push_back(&I); 991 } 992 } 993 } 994 } 995 // If there is no store at all, cache the result. 996 if (!SawStore) 997 HasStoreCache[BlockPair] = false; 998 return HasAliasedStore; 999 } 1000 1001 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1002 /// instruction out of its current block into a successor. 1003 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1004 AllSuccsCache &AllSuccessors) { 1005 // Don't sink instructions that the target prefers not to sink. 1006 if (!TII->shouldSink(MI)) 1007 return false; 1008 1009 // Check if it's safe to move the instruction. 1010 if (!MI.isSafeToMove(AA, SawStore)) 1011 return false; 1012 1013 // Convergent operations may not be made control-dependent on additional 1014 // values. 1015 if (MI.isConvergent()) 1016 return false; 1017 1018 // Don't break implicit null checks. This is a performance heuristic, and not 1019 // required for correctness. 1020 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1021 return false; 1022 1023 // FIXME: This should include support for sinking instructions within the 1024 // block they are currently in to shorten the live ranges. We often get 1025 // instructions sunk into the top of a large block, but it would be better to 1026 // also sink them down before their first use in the block. This xform has to 1027 // be careful not to *increase* register pressure though, e.g. sinking 1028 // "x = y + z" down if it kills y and z would increase the live ranges of y 1029 // and z and only shrink the live range of x. 1030 1031 bool BreakPHIEdge = false; 1032 MachineBasicBlock *ParentBlock = MI.getParent(); 1033 MachineBasicBlock *SuccToSinkTo = 1034 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1035 1036 // If there are no outputs, it must have side-effects. 1037 if (!SuccToSinkTo) 1038 return false; 1039 1040 // If the instruction to move defines a dead physical register which is live 1041 // when leaving the basic block, don't move it because it could turn into a 1042 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1043 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1044 const MachineOperand &MO = MI.getOperand(I); 1045 if (!MO.isReg()) continue; 1046 Register Reg = MO.getReg(); 1047 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1048 continue; 1049 if (SuccToSinkTo->isLiveIn(Reg)) 1050 return false; 1051 } 1052 1053 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1054 1055 // If the block has multiple predecessors, this is a critical edge. 1056 // Decide if we can sink along it or need to break the edge. 1057 if (SuccToSinkTo->pred_size() > 1) { 1058 // We cannot sink a load across a critical edge - there may be stores in 1059 // other code paths. 1060 bool TryBreak = false; 1061 bool Store = 1062 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1063 if (!MI.isSafeToMove(AA, Store)) { 1064 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1065 TryBreak = true; 1066 } 1067 1068 // We don't want to sink across a critical edge if we don't dominate the 1069 // successor. We could be introducing calculations to new code paths. 1070 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1071 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1072 TryBreak = true; 1073 } 1074 1075 // Don't sink instructions into a loop. 1076 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1077 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1078 TryBreak = true; 1079 } 1080 1081 // Otherwise we are OK with sinking along a critical edge. 1082 if (!TryBreak) 1083 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1084 else { 1085 // Mark this edge as to be split. 1086 // If the edge can actually be split, the next iteration of the main loop 1087 // will sink MI in the newly created block. 1088 bool Status = 1089 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1090 if (!Status) 1091 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1092 "break critical edge\n"); 1093 // The instruction will not be sunk this time. 1094 return false; 1095 } 1096 } 1097 1098 if (BreakPHIEdge) { 1099 // BreakPHIEdge is true if all the uses are in the successor MBB being 1100 // sunken into and they are all PHI nodes. In this case, machine-sink must 1101 // break the critical edge first. 1102 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1103 SuccToSinkTo, BreakPHIEdge); 1104 if (!Status) 1105 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1106 "break critical edge\n"); 1107 // The instruction will not be sunk this time. 1108 return false; 1109 } 1110 1111 // Determine where to insert into. Skip phi nodes. 1112 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1113 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1114 ++InsertPos; 1115 1116 // Collect debug users of any vreg that this inst defines. 1117 SmallVector<MachineInstr *, 4> DbgUsersToSink; 1118 for (auto &MO : MI.operands()) { 1119 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1120 continue; 1121 if (!SeenDbgUsers.count(MO.getReg())) 1122 continue; 1123 1124 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1125 auto &Users = SeenDbgUsers[MO.getReg()]; 1126 for (auto &User : Users) { 1127 MachineInstr *DbgMI = User.getPointer(); 1128 if (User.getInt()) { 1129 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1130 // it, it can't be recovered. Set it undef. 1131 if (!attemptDebugCopyProp(MI, *DbgMI)) 1132 DbgMI->setDebugValueUndef(); 1133 } else { 1134 DbgUsersToSink.push_back(DbgMI); 1135 } 1136 } 1137 } 1138 1139 // After sinking, some debug users may not be dominated any more. If possible, 1140 // copy-propagate their operands. As it's expensive, don't do this if there's 1141 // no debuginfo in the program. 1142 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1143 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1144 1145 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1146 1147 // Conservatively, clear any kill flags, since it's possible that they are no 1148 // longer correct. 1149 // Note that we have to clear the kill flags for any register this instruction 1150 // uses as we may sink over another instruction which currently kills the 1151 // used registers. 1152 for (MachineOperand &MO : MI.operands()) { 1153 if (MO.isReg() && MO.isUse()) 1154 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1155 } 1156 1157 return true; 1158 } 1159 1160 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1161 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1162 assert(MI.isCopy()); 1163 assert(MI.getOperand(1).isReg()); 1164 1165 // Enumerate all users of vreg operands that are def'd. Skip those that will 1166 // be sunk. For the rest, if they are not dominated by the block we will sink 1167 // MI into, propagate the copy source to them. 1168 SmallVector<MachineInstr *, 4> DbgDefUsers; 1169 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1170 for (auto &MO : MI.operands()) { 1171 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1172 continue; 1173 for (auto &User : MRI.use_instructions(MO.getReg())) { 1174 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1175 continue; 1176 1177 // If is in same block, will either sink or be use-before-def. 1178 if (User.getParent() == MI.getParent()) 1179 continue; 1180 1181 assert(User.getDebugOperand(0).isReg() && 1182 "DBG_VALUE user of vreg, but non reg operand?"); 1183 DbgDefUsers.push_back(&User); 1184 } 1185 } 1186 1187 // Point the users of this copy that are no longer dominated, at the source 1188 // of the copy. 1189 for (auto *User : DbgDefUsers) { 1190 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1191 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1192 } 1193 } 1194 1195 //===----------------------------------------------------------------------===// 1196 // This pass is not intended to be a replacement or a complete alternative 1197 // for the pre-ra machine sink pass. It is only designed to sink COPY 1198 // instructions which should be handled after RA. 1199 // 1200 // This pass sinks COPY instructions into a successor block, if the COPY is not 1201 // used in the current block and the COPY is live-in to a single successor 1202 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1203 // copy on paths where their results aren't needed. This also exposes 1204 // additional opportunites for dead copy elimination and shrink wrapping. 1205 // 1206 // These copies were either not handled by or are inserted after the MachineSink 1207 // pass. As an example of the former case, the MachineSink pass cannot sink 1208 // COPY instructions with allocatable source registers; for AArch64 these type 1209 // of copy instructions are frequently used to move function parameters (PhyReg) 1210 // into virtual registers in the entry block. 1211 // 1212 // For the machine IR below, this pass will sink %w19 in the entry into its 1213 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1214 // %bb.0: 1215 // %wzr = SUBSWri %w1, 1 1216 // %w19 = COPY %w0 1217 // Bcc 11, %bb.2 1218 // %bb.1: 1219 // Live Ins: %w19 1220 // BL @fun 1221 // %w0 = ADDWrr %w0, %w19 1222 // RET %w0 1223 // %bb.2: 1224 // %w0 = COPY %wzr 1225 // RET %w0 1226 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1227 // able to see %bb.0 as a candidate. 1228 //===----------------------------------------------------------------------===// 1229 namespace { 1230 1231 class PostRAMachineSinking : public MachineFunctionPass { 1232 public: 1233 bool runOnMachineFunction(MachineFunction &MF) override; 1234 1235 static char ID; 1236 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1237 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1238 1239 void getAnalysisUsage(AnalysisUsage &AU) const override { 1240 AU.setPreservesCFG(); 1241 MachineFunctionPass::getAnalysisUsage(AU); 1242 } 1243 1244 MachineFunctionProperties getRequiredProperties() const override { 1245 return MachineFunctionProperties().set( 1246 MachineFunctionProperties::Property::NoVRegs); 1247 } 1248 1249 private: 1250 /// Track which register units have been modified and used. 1251 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1252 1253 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1254 /// entry in this map for each unit it touches. 1255 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1256 1257 /// Sink Copy instructions unused in the same block close to their uses in 1258 /// successors. 1259 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1260 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1261 }; 1262 } // namespace 1263 1264 char PostRAMachineSinking::ID = 0; 1265 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1266 1267 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1268 "PostRA Machine Sink", false, false) 1269 1270 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1271 const TargetRegisterInfo *TRI) { 1272 LiveRegUnits LiveInRegUnits(*TRI); 1273 LiveInRegUnits.addLiveIns(MBB); 1274 return !LiveInRegUnits.available(Reg); 1275 } 1276 1277 static MachineBasicBlock * 1278 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1279 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1280 unsigned Reg, const TargetRegisterInfo *TRI) { 1281 // Try to find a single sinkable successor in which Reg is live-in. 1282 MachineBasicBlock *BB = nullptr; 1283 for (auto *SI : SinkableBBs) { 1284 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1285 // If BB is set here, Reg is live-in to at least two sinkable successors, 1286 // so quit. 1287 if (BB) 1288 return nullptr; 1289 BB = SI; 1290 } 1291 } 1292 // Reg is not live-in to any sinkable successors. 1293 if (!BB) 1294 return nullptr; 1295 1296 // Check if any register aliased with Reg is live-in in other successors. 1297 for (auto *SI : CurBB.successors()) { 1298 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1299 return nullptr; 1300 } 1301 return BB; 1302 } 1303 1304 static MachineBasicBlock * 1305 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1306 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1307 ArrayRef<unsigned> DefedRegsInCopy, 1308 const TargetRegisterInfo *TRI) { 1309 MachineBasicBlock *SingleBB = nullptr; 1310 for (auto DefReg : DefedRegsInCopy) { 1311 MachineBasicBlock *BB = 1312 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1313 if (!BB || (SingleBB && SingleBB != BB)) 1314 return nullptr; 1315 SingleBB = BB; 1316 } 1317 return SingleBB; 1318 } 1319 1320 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1321 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1322 LiveRegUnits &UsedRegUnits, 1323 const TargetRegisterInfo *TRI) { 1324 for (auto U : UsedOpsInCopy) { 1325 MachineOperand &MO = MI->getOperand(U); 1326 Register SrcReg = MO.getReg(); 1327 if (!UsedRegUnits.available(SrcReg)) { 1328 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1329 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1330 if (UI.killsRegister(SrcReg, TRI)) { 1331 UI.clearRegisterKills(SrcReg, TRI); 1332 MO.setIsKill(true); 1333 break; 1334 } 1335 } 1336 } 1337 } 1338 } 1339 1340 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1341 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1342 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1343 MachineFunction &MF = *SuccBB->getParent(); 1344 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1345 for (unsigned DefReg : DefedRegsInCopy) 1346 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1347 SuccBB->removeLiveIn(*S); 1348 for (auto U : UsedOpsInCopy) { 1349 Register SrcReg = MI->getOperand(U).getReg(); 1350 LaneBitmask Mask; 1351 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1352 Mask |= (*S).second; 1353 } 1354 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1355 } 1356 SuccBB->sortUniqueLiveIns(); 1357 } 1358 1359 static bool hasRegisterDependency(MachineInstr *MI, 1360 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1361 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1362 LiveRegUnits &ModifiedRegUnits, 1363 LiveRegUnits &UsedRegUnits) { 1364 bool HasRegDependency = false; 1365 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1366 MachineOperand &MO = MI->getOperand(i); 1367 if (!MO.isReg()) 1368 continue; 1369 Register Reg = MO.getReg(); 1370 if (!Reg) 1371 continue; 1372 if (MO.isDef()) { 1373 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1374 HasRegDependency = true; 1375 break; 1376 } 1377 DefedRegsInCopy.push_back(Reg); 1378 1379 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1380 // For example, we can ignore modifications in reg with undef. However, 1381 // it's not perfectly clear if skipping the internal read is safe in all 1382 // other targets. 1383 } else if (MO.isUse()) { 1384 if (!ModifiedRegUnits.available(Reg)) { 1385 HasRegDependency = true; 1386 break; 1387 } 1388 UsedOpsInCopy.push_back(i); 1389 } 1390 } 1391 return HasRegDependency; 1392 } 1393 1394 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1395 const TargetRegisterInfo *TRI) { 1396 SmallSet<MCRegister, 4> RegUnits; 1397 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1398 RegUnits.insert(*RI); 1399 return RegUnits; 1400 } 1401 1402 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1403 MachineFunction &MF, 1404 const TargetRegisterInfo *TRI, 1405 const TargetInstrInfo *TII) { 1406 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1407 // FIXME: For now, we sink only to a successor which has a single predecessor 1408 // so that we can directly sink COPY instructions to the successor without 1409 // adding any new block or branch instruction. 1410 for (MachineBasicBlock *SI : CurBB.successors()) 1411 if (!SI->livein_empty() && SI->pred_size() == 1) 1412 SinkableBBs.insert(SI); 1413 1414 if (SinkableBBs.empty()) 1415 return false; 1416 1417 bool Changed = false; 1418 1419 // Track which registers have been modified and used between the end of the 1420 // block and the current instruction. 1421 ModifiedRegUnits.clear(); 1422 UsedRegUnits.clear(); 1423 SeenDbgInstrs.clear(); 1424 1425 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1426 MachineInstr *MI = &*I; 1427 ++I; 1428 1429 // Track the operand index for use in Copy. 1430 SmallVector<unsigned, 2> UsedOpsInCopy; 1431 // Track the register number defed in Copy. 1432 SmallVector<unsigned, 2> DefedRegsInCopy; 1433 1434 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1435 // for DBG_VALUEs later, record them when they're encountered. 1436 if (MI->isDebugValue()) { 1437 auto &MO = MI->getDebugOperand(0); 1438 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1439 // Bail if we can already tell the sink would be rejected, rather 1440 // than needlessly accumulating lots of DBG_VALUEs. 1441 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1442 ModifiedRegUnits, UsedRegUnits)) 1443 continue; 1444 1445 // Record debug use of each reg unit. 1446 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1447 for (MCRegister Reg : Units) 1448 SeenDbgInstrs[Reg].push_back(MI); 1449 } 1450 continue; 1451 } 1452 1453 if (MI->isDebugInstr()) 1454 continue; 1455 1456 // Do not move any instruction across function call. 1457 if (MI->isCall()) 1458 return false; 1459 1460 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1461 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1462 TRI); 1463 continue; 1464 } 1465 1466 // Don't sink the COPY if it would violate a register dependency. 1467 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1468 ModifiedRegUnits, UsedRegUnits)) { 1469 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1470 TRI); 1471 continue; 1472 } 1473 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1474 "Unexpect SrcReg or DefReg"); 1475 MachineBasicBlock *SuccBB = 1476 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1477 // Don't sink if we cannot find a single sinkable successor in which Reg 1478 // is live-in. 1479 if (!SuccBB) { 1480 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1481 TRI); 1482 continue; 1483 } 1484 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1485 "Unexpected predecessor"); 1486 1487 // Collect DBG_VALUEs that must sink with this copy. We've previously 1488 // recorded which reg units that DBG_VALUEs read, if this instruction 1489 // writes any of those units then the corresponding DBG_VALUEs must sink. 1490 SetVector<MachineInstr *> DbgValsToSinkSet; 1491 SmallVector<MachineInstr *, 4> DbgValsToSink; 1492 for (auto &MO : MI->operands()) { 1493 if (!MO.isReg() || !MO.isDef()) 1494 continue; 1495 1496 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1497 for (MCRegister Reg : Units) 1498 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1499 DbgValsToSinkSet.insert(MI); 1500 } 1501 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1502 DbgValsToSinkSet.end()); 1503 1504 // Clear the kill flag if SrcReg is killed between MI and the end of the 1505 // block. 1506 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1507 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1508 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1509 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1510 1511 Changed = true; 1512 ++NumPostRACopySink; 1513 } 1514 return Changed; 1515 } 1516 1517 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1518 if (skipFunction(MF.getFunction())) 1519 return false; 1520 1521 bool Changed = false; 1522 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1523 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1524 1525 ModifiedRegUnits.init(*TRI); 1526 UsedRegUnits.init(*TRI); 1527 for (auto &BB : MF) 1528 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1529 1530 return Changed; 1531 } 1532