1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #define DEBUG_TYPE "machine-sink"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
34 
35 static cl::opt<bool>
36 SplitEdges("machine-sink-split",
37            cl::desc("Split critical edges during machine sinking"),
38            cl::init(true), cl::Hidden);
39 
40 STATISTIC(NumSunk,      "Number of machine instructions sunk");
41 STATISTIC(NumSplit,     "Number of critical edges split");
42 STATISTIC(NumCoalesces, "Number of copies coalesced");
43 
44 namespace {
45   class MachineSinking : public MachineFunctionPass {
46     const TargetInstrInfo *TII;
47     const TargetRegisterInfo *TRI;
48     MachineRegisterInfo  *MRI;  // Machine register information
49     MachineDominatorTree *DT;   // Machine dominator tree
50     MachineLoopInfo *LI;
51     AliasAnalysis *AA;
52     BitVector AllocatableSet;   // Which physregs are allocatable?
53 
54     // Remember which edges have been considered for breaking.
55     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
56     CEBCandidates;
57 
58   public:
59     static char ID; // Pass identification
60     MachineSinking() : MachineFunctionPass(ID) {
61       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
62     }
63 
64     virtual bool runOnMachineFunction(MachineFunction &MF);
65 
66     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
67       AU.setPreservesCFG();
68       MachineFunctionPass::getAnalysisUsage(AU);
69       AU.addRequired<AliasAnalysis>();
70       AU.addRequired<MachineDominatorTree>();
71       AU.addRequired<MachineLoopInfo>();
72       AU.addPreserved<MachineDominatorTree>();
73       AU.addPreserved<MachineLoopInfo>();
74     }
75 
76     virtual void releaseMemory() {
77       CEBCandidates.clear();
78     }
79 
80   private:
81     bool ProcessBlock(MachineBasicBlock &MBB);
82     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
83                                      MachineBasicBlock *From,
84                                      MachineBasicBlock *To);
85     MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
86                                          MachineBasicBlock *From,
87                                          MachineBasicBlock *To,
88                                          bool BreakPHIEdge);
89     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
90     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
91                                  MachineBasicBlock *DefMBB,
92                                  bool &BreakPHIEdge, bool &LocalUse) const;
93     MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, bool &BreakPHIEdge);
94 
95     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
96                                          MachineBasicBlock *MBB);
97   };
98 } // end anonymous namespace
99 
100 char MachineSinking::ID = 0;
101 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
102                 "Machine code sinking", false, false)
103 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
104 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
105 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
106 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
107                 "Machine code sinking", false, false)
108 
109 FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
110 
111 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
112                                                      MachineBasicBlock *MBB) {
113   if (!MI->isCopy())
114     return false;
115 
116   unsigned SrcReg = MI->getOperand(1).getReg();
117   unsigned DstReg = MI->getOperand(0).getReg();
118   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
119       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
120       !MRI->hasOneNonDBGUse(SrcReg))
121     return false;
122 
123   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
124   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
125   if (SRC != DRC)
126     return false;
127 
128   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
129   if (DefMI->isCopyLike())
130     return false;
131   DEBUG(dbgs() << "Coalescing: " << *DefMI);
132   DEBUG(dbgs() << "*** to: " << *MI);
133   MRI->replaceRegWith(DstReg, SrcReg);
134   MI->eraseFromParent();
135   ++NumCoalesces;
136   return true;
137 }
138 
139 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
140 /// occur in blocks dominated by the specified block. If any use is in the
141 /// definition block, then return false since it is never legal to move def
142 /// after uses.
143 bool
144 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
145                                         MachineBasicBlock *MBB,
146                                         MachineBasicBlock *DefMBB,
147                                         bool &BreakPHIEdge,
148                                         bool &LocalUse) const {
149   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
150          "Only makes sense for vregs");
151 
152   // Ignore debug uses because debug info doesn't affect the code.
153   if (MRI->use_nodbg_empty(Reg))
154     return true;
155 
156   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
157   // into and they are all PHI nodes. In this case, machine-sink must break
158   // the critical edge first. e.g.
159   //
160   // BB#1: derived from LLVM BB %bb4.preheader
161   //   Predecessors according to CFG: BB#0
162   //     ...
163   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
164   //     ...
165   //     JE_4 <BB#37>, %EFLAGS<imp-use>
166   //   Successors according to CFG: BB#37 BB#2
167   //
168   // BB#2: derived from LLVM BB %bb.nph
169   //   Predecessors according to CFG: BB#0 BB#1
170   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
171   BreakPHIEdge = true;
172   for (MachineRegisterInfo::use_nodbg_iterator
173          I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
174        I != E; ++I) {
175     MachineInstr *UseInst = &*I;
176     MachineBasicBlock *UseBlock = UseInst->getParent();
177     if (!(UseBlock == MBB && UseInst->isPHI() &&
178           UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
179       BreakPHIEdge = false;
180       break;
181     }
182   }
183   if (BreakPHIEdge)
184     return true;
185 
186   for (MachineRegisterInfo::use_nodbg_iterator
187          I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
188        I != E; ++I) {
189     // Determine the block of the use.
190     MachineInstr *UseInst = &*I;
191     MachineBasicBlock *UseBlock = UseInst->getParent();
192     if (UseInst->isPHI()) {
193       // PHI nodes use the operand in the predecessor block, not the block with
194       // the PHI.
195       UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
196     } else if (UseBlock == DefMBB) {
197       LocalUse = true;
198       return false;
199     }
200 
201     // Check that it dominates.
202     if (!DT->dominates(MBB, UseBlock))
203       return false;
204   }
205 
206   return true;
207 }
208 
209 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
210   DEBUG(dbgs() << "******** Machine Sinking ********\n");
211 
212   const TargetMachine &TM = MF.getTarget();
213   TII = TM.getInstrInfo();
214   TRI = TM.getRegisterInfo();
215   MRI = &MF.getRegInfo();
216   DT = &getAnalysis<MachineDominatorTree>();
217   LI = &getAnalysis<MachineLoopInfo>();
218   AA = &getAnalysis<AliasAnalysis>();
219   AllocatableSet = TRI->getAllocatableSet(MF);
220 
221   bool EverMadeChange = false;
222 
223   while (1) {
224     bool MadeChange = false;
225 
226     // Process all basic blocks.
227     CEBCandidates.clear();
228     for (MachineFunction::iterator I = MF.begin(), E = MF.end();
229          I != E; ++I)
230       MadeChange |= ProcessBlock(*I);
231 
232     // If this iteration over the code changed anything, keep iterating.
233     if (!MadeChange) break;
234     EverMadeChange = true;
235   }
236   return EverMadeChange;
237 }
238 
239 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
240   // Can't sink anything out of a block that has less than two successors.
241   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
242 
243   // Don't bother sinking code out of unreachable blocks. In addition to being
244   // unprofitable, it can also lead to infinite looping, because in an
245   // unreachable loop there may be nowhere to stop.
246   if (!DT->isReachableFromEntry(&MBB)) return false;
247 
248   bool MadeChange = false;
249 
250   // Walk the basic block bottom-up.  Remember if we saw a store.
251   MachineBasicBlock::iterator I = MBB.end();
252   --I;
253   bool ProcessedBegin, SawStore = false;
254   do {
255     MachineInstr *MI = I;  // The instruction to sink.
256 
257     // Predecrement I (if it's not begin) so that it isn't invalidated by
258     // sinking.
259     ProcessedBegin = I == MBB.begin();
260     if (!ProcessedBegin)
261       --I;
262 
263     if (MI->isDebugValue())
264       continue;
265 
266     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
267     if (Joined) {
268       MadeChange = true;
269       continue;
270     }
271 
272     if (SinkInstruction(MI, SawStore))
273       ++NumSunk, MadeChange = true;
274 
275     // If we just processed the first instruction in the block, we're done.
276   } while (!ProcessedBegin);
277 
278   return MadeChange;
279 }
280 
281 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
282                                                  MachineBasicBlock *From,
283                                                  MachineBasicBlock *To) {
284   // FIXME: Need much better heuristics.
285 
286   // If the pass has already considered breaking this edge (during this pass
287   // through the function), then let's go ahead and break it. This means
288   // sinking multiple "cheap" instructions into the same block.
289   if (!CEBCandidates.insert(std::make_pair(From, To)))
290     return true;
291 
292   if (!MI->isCopy() && !MI->isAsCheapAsAMove())
293     return true;
294 
295   // MI is cheap, we probably don't want to break the critical edge for it.
296   // However, if this would allow some definitions of its source operands
297   // to be sunk then it's probably worth it.
298   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
299     const MachineOperand &MO = MI->getOperand(i);
300     if (!MO.isReg()) continue;
301     unsigned Reg = MO.getReg();
302     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
303       continue;
304     if (MRI->hasOneNonDBGUse(Reg))
305       return true;
306   }
307 
308   return false;
309 }
310 
311 MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
312                                                      MachineBasicBlock *FromBB,
313                                                      MachineBasicBlock *ToBB,
314                                                      bool BreakPHIEdge) {
315   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
316     return 0;
317 
318   // Avoid breaking back edge. From == To means backedge for single BB loop.
319   if (!SplitEdges || FromBB == ToBB)
320     return 0;
321 
322   // Check for backedges of more "complex" loops.
323   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
324       LI->isLoopHeader(ToBB))
325     return 0;
326 
327   // It's not always legal to break critical edges and sink the computation
328   // to the edge.
329   //
330   // BB#1:
331   // v1024
332   // Beq BB#3
333   // <fallthrough>
334   // BB#2:
335   // ... no uses of v1024
336   // <fallthrough>
337   // BB#3:
338   // ...
339   //       = v1024
340   //
341   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
342   //
343   // BB#1:
344   // ...
345   // Bne BB#2
346   // BB#4:
347   // v1024 =
348   // B BB#3
349   // BB#2:
350   // ... no uses of v1024
351   // <fallthrough>
352   // BB#3:
353   // ...
354   //       = v1024
355   //
356   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
357   // flow. We need to ensure the new basic block where the computation is
358   // sunk to dominates all the uses.
359   // It's only legal to break critical edge and sink the computation to the
360   // new block if all the predecessors of "To", except for "From", are
361   // not dominated by "From". Given SSA property, this means these
362   // predecessors are dominated by "To".
363   //
364   // There is no need to do this check if all the uses are PHI nodes. PHI
365   // sources are only defined on the specific predecessor edges.
366   if (!BreakPHIEdge) {
367     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
368            E = ToBB->pred_end(); PI != E; ++PI) {
369       if (*PI == FromBB)
370         continue;
371       if (!DT->dominates(ToBB, *PI))
372         return 0;
373     }
374   }
375 
376   return FromBB->SplitCriticalEdge(ToBB, this);
377 }
378 
379 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
380   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
381 }
382 
383 /// collectDebgValues - Scan instructions following MI and collect any
384 /// matching DBG_VALUEs.
385 static void collectDebugValues(MachineInstr *MI,
386                                SmallVector<MachineInstr *, 2> & DbgValues) {
387   DbgValues.clear();
388   if (!MI->getOperand(0).isReg())
389     return;
390 
391   MachineBasicBlock::iterator DI = MI; ++DI;
392   for (MachineBasicBlock::iterator DE = MI->getParent()->end();
393        DI != DE; ++DI) {
394     if (!DI->isDebugValue())
395       return;
396     if (DI->getOperand(0).isReg() &&
397         DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
398       DbgValues.push_back(DI);
399   }
400 }
401 
402 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
403 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
404 						    bool &BreakPHIEdge) {
405 
406   // Loop over all the operands of the specified instruction.  If there is
407   // anything we can't handle, bail out.
408   MachineBasicBlock *ParentBlock = MI->getParent();
409 
410   // SuccToSinkTo - This is the successor to sink this instruction to, once we
411   // decide.
412   MachineBasicBlock *SuccToSinkTo = 0;
413 
414   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
415     const MachineOperand &MO = MI->getOperand(i);
416     if (!MO.isReg()) continue;  // Ignore non-register operands.
417 
418     unsigned Reg = MO.getReg();
419     if (Reg == 0) continue;
420 
421     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
422       if (MO.isUse()) {
423         // If the physreg has no defs anywhere, it's just an ambient register
424         // and we can freely move its uses. Alternatively, if it's allocatable,
425         // it could get allocated to something with a def during allocation.
426         if (!MRI->def_empty(Reg))
427           return NULL;
428 
429         if (AllocatableSet.test(Reg))
430           return NULL;
431 
432         // Check for a def among the register's aliases too.
433         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
434           unsigned AliasReg = *Alias;
435           if (!MRI->def_empty(AliasReg))
436             return NULL;
437 
438           if (AllocatableSet.test(AliasReg))
439             return NULL;
440         }
441       } else if (!MO.isDead()) {
442         // A def that isn't dead. We can't move it.
443         return NULL;
444       }
445     } else {
446       // Virtual register uses are always safe to sink.
447       if (MO.isUse()) continue;
448 
449       // If it's not safe to move defs of the register class, then abort.
450       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
451         return NULL;
452 
453       // FIXME: This picks a successor to sink into based on having one
454       // successor that dominates all the uses.  However, there are cases where
455       // sinking can happen but where the sink point isn't a successor.  For
456       // example:
457       //
458       //   x = computation
459       //   if () {} else {}
460       //   use x
461       //
462       // the instruction could be sunk over the whole diamond for the
463       // if/then/else (or loop, etc), allowing it to be sunk into other blocks
464       // after that.
465 
466       // Virtual register defs can only be sunk if all their uses are in blocks
467       // dominated by one of the successors.
468       if (SuccToSinkTo) {
469         // If a previous operand picked a block to sink to, then this operand
470         // must be sinkable to the same block.
471         bool LocalUse = false;
472         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock,
473                                      BreakPHIEdge, LocalUse))
474           return NULL;
475 
476         continue;
477       }
478 
479       // Otherwise, we should look at all the successors and decide which one
480       // we should sink to.
481       for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
482            E = ParentBlock->succ_end(); SI != E; ++SI) {
483 	MachineBasicBlock *SuccBlock = *SI;
484         bool LocalUse = false;
485         if (AllUsesDominatedByBlock(Reg, SuccBlock, ParentBlock,
486                                     BreakPHIEdge, LocalUse)) {
487           SuccToSinkTo = SuccBlock;
488           break;
489         }
490         if (LocalUse)
491           // Def is used locally, it's never safe to move this def.
492           return NULL;
493       }
494 
495       // If we couldn't find a block to sink to, ignore this instruction.
496       if (SuccToSinkTo == 0)
497         return NULL;
498     }
499   }
500 
501   // It is not possible to sink an instruction into its own block.  This can
502   // happen with loops.
503   if (ParentBlock == SuccToSinkTo)
504     return NULL;
505 
506   // It's not safe to sink instructions to EH landing pad. Control flow into
507   // landing pad is implicitly defined.
508   if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
509     return NULL;
510 
511   return SuccToSinkTo;
512 }
513 
514 /// SinkInstruction - Determine whether it is safe to sink the specified machine
515 /// instruction out of its current block into a successor.
516 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
517   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
518   // be close to the source to make it easier to coalesce.
519   if (AvoidsSinking(MI, MRI))
520     return false;
521 
522   // Check if it's safe to move the instruction.
523   if (!MI->isSafeToMove(TII, AA, SawStore))
524     return false;
525 
526   // FIXME: This should include support for sinking instructions within the
527   // block they are currently in to shorten the live ranges.  We often get
528   // instructions sunk into the top of a large block, but it would be better to
529   // also sink them down before their first use in the block.  This xform has to
530   // be careful not to *increase* register pressure though, e.g. sinking
531   // "x = y + z" down if it kills y and z would increase the live ranges of y
532   // and z and only shrink the live range of x.
533 
534   bool BreakPHIEdge = false;
535   MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, BreakPHIEdge);
536 
537   // If there are no outputs, it must have side-effects.
538   if (SuccToSinkTo == 0)
539     return false;
540 
541 
542   // If the instruction to move defines a dead physical register which is live
543   // when leaving the basic block, don't move it because it could turn into a
544   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
545   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
546     const MachineOperand &MO = MI->getOperand(I);
547     if (!MO.isReg()) continue;
548     unsigned Reg = MO.getReg();
549     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
550     if (SuccToSinkTo->isLiveIn(Reg))
551       return false;
552   }
553 
554   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
555 
556   MachineBasicBlock *ParentBlock = MI->getParent();
557 
558   // If the block has multiple predecessors, this would introduce computation on
559   // a path that it doesn't already exist.  We could split the critical edge,
560   // but for now we just punt.
561   if (SuccToSinkTo->pred_size() > 1) {
562     // We cannot sink a load across a critical edge - there may be stores in
563     // other code paths.
564     bool TryBreak = false;
565     bool store = true;
566     if (!MI->isSafeToMove(TII, AA, store)) {
567       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
568       TryBreak = true;
569     }
570 
571     // We don't want to sink across a critical edge if we don't dominate the
572     // successor. We could be introducing calculations to new code paths.
573     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
574       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
575       TryBreak = true;
576     }
577 
578     // Don't sink instructions into a loop.
579     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
580       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
581       TryBreak = true;
582     }
583 
584     // Otherwise we are OK with sinking along a critical edge.
585     if (!TryBreak)
586       DEBUG(dbgs() << "Sinking along critical edge.\n");
587     else {
588       MachineBasicBlock *NewSucc =
589         SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
590       if (!NewSucc) {
591         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
592                         "break critical edge\n");
593         return false;
594       } else {
595         DEBUG(dbgs() << " *** Splitting critical edge:"
596               " BB#" << ParentBlock->getNumber()
597               << " -- BB#" << NewSucc->getNumber()
598               << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
599         SuccToSinkTo = NewSucc;
600         ++NumSplit;
601         BreakPHIEdge = false;
602       }
603     }
604   }
605 
606   if (BreakPHIEdge) {
607     // BreakPHIEdge is true if all the uses are in the successor MBB being
608     // sunken into and they are all PHI nodes. In this case, machine-sink must
609     // break the critical edge first.
610     MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
611                                                    SuccToSinkTo, BreakPHIEdge);
612     if (!NewSucc) {
613       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
614             "break critical edge\n");
615       return false;
616     }
617 
618     DEBUG(dbgs() << " *** Splitting critical edge:"
619           " BB#" << ParentBlock->getNumber()
620           << " -- BB#" << NewSucc->getNumber()
621           << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
622     SuccToSinkTo = NewSucc;
623     ++NumSplit;
624   }
625 
626   // Determine where to insert into. Skip phi nodes.
627   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
628   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
629     ++InsertPos;
630 
631   // collect matching debug values.
632   SmallVector<MachineInstr *, 2> DbgValuesToSink;
633   collectDebugValues(MI, DbgValuesToSink);
634 
635   // Move the instruction.
636   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
637                        ++MachineBasicBlock::iterator(MI));
638 
639   // Move debug values.
640   for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(),
641          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
642     MachineInstr *DbgMI = *DBI;
643     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
644                          ++MachineBasicBlock::iterator(DbgMI));
645   }
646 
647   // Conservatively, clear any kill flags, since it's possible that they are no
648   // longer correct.
649   MI->clearKillInfo();
650 
651   return true;
652 }
653