1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachinePostDominators.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <map> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "machine-sink" 61 62 static cl::opt<bool> 63 SplitEdges("machine-sink-split", 64 cl::desc("Split critical edges during machine sinking"), 65 cl::init(true), cl::Hidden); 66 67 static cl::opt<bool> 68 UseBlockFreqInfo("machine-sink-bfi", 69 cl::desc("Use block frequency info to find successors to sink"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 73 "machine-sink-split-probability-threshold", 74 cl::desc( 75 "Percentage threshold for splitting single-instruction critical edge. " 76 "If the branch threshold is higher than this threshold, we allow " 77 "speculative execution of up to 1 instruction to avoid branching to " 78 "splitted critical edge"), 79 cl::init(40), cl::Hidden); 80 81 STATISTIC(NumSunk, "Number of machine instructions sunk"); 82 STATISTIC(NumSplit, "Number of critical edges split"); 83 STATISTIC(NumCoalesces, "Number of copies coalesced"); 84 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 85 86 namespace { 87 88 class MachineSinking : public MachineFunctionPass { 89 const TargetInstrInfo *TII; 90 const TargetRegisterInfo *TRI; 91 MachineRegisterInfo *MRI; // Machine register information 92 MachineDominatorTree *DT; // Machine dominator tree 93 MachinePostDominatorTree *PDT; // Machine post dominator tree 94 MachineLoopInfo *LI; 95 const MachineBlockFrequencyInfo *MBFI; 96 const MachineBranchProbabilityInfo *MBPI; 97 AliasAnalysis *AA; 98 99 // Remember which edges have been considered for breaking. 100 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 101 CEBCandidates; 102 // Remember which edges we are about to split. 103 // This is different from CEBCandidates since those edges 104 // will be split. 105 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 106 107 SparseBitVector<> RegsToClearKillFlags; 108 109 using AllSuccsCache = 110 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 111 112 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 113 /// post-dominated by another DBG_VALUE of the same variable location. 114 /// This is necessary to detect sequences such as: 115 /// %0 = someinst 116 /// DBG_VALUE %0, !123, !DIExpression() 117 /// %1 = anotherinst 118 /// DBG_VALUE %1, !123, !DIExpression() 119 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 120 /// would re-order assignments. 121 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 122 123 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 124 /// debug instructions to sink. 125 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 126 127 /// Record of debug variables that have had their locations set in the 128 /// current block. 129 DenseSet<DebugVariable> SeenDbgVars; 130 131 /// A set of DBG_VALUEs, indexed by their DebugVariable. Refers to the 132 /// original / non-sunk DBG_VALUE, which should be cloned to the final 133 /// sunk location. 134 using SinkingVarSet = DenseMap<DebugVariable, MachineInstr *>; 135 136 /// Record of variable locations to re-create after the sinking of a 137 /// vreg definition completes. 138 struct SunkDebugDef { 139 SinkingVarSet InstsToSink; /// Set of DBG_VALUEs to recreate. 140 MachineInstr *MI; /// Location to place DBG_VALUEs. 141 }; 142 143 /// Map sunk vreg to the final destination of the vreg def, and the 144 /// DBG_VALUEs that were attached to it. We need only create one new 145 /// DBG_VALUE even if the defining instruction sinks through multiple 146 /// blocks. 147 DenseMap<unsigned, SunkDebugDef> SunkDebugDefs; 148 149 public: 150 static char ID; // Pass identification 151 152 MachineSinking() : MachineFunctionPass(ID) { 153 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 154 } 155 156 bool runOnMachineFunction(MachineFunction &MF) override; 157 158 void getAnalysisUsage(AnalysisUsage &AU) const override { 159 MachineFunctionPass::getAnalysisUsage(AU); 160 AU.addRequired<AAResultsWrapperPass>(); 161 AU.addRequired<MachineDominatorTree>(); 162 AU.addRequired<MachinePostDominatorTree>(); 163 AU.addRequired<MachineLoopInfo>(); 164 AU.addRequired<MachineBranchProbabilityInfo>(); 165 AU.addPreserved<MachineLoopInfo>(); 166 if (UseBlockFreqInfo) 167 AU.addRequired<MachineBlockFrequencyInfo>(); 168 } 169 170 void releaseMemory() override { 171 CEBCandidates.clear(); 172 } 173 174 private: 175 bool ProcessBlock(MachineBasicBlock &MBB); 176 void ProcessDbgInst(MachineInstr &MI); 177 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 178 MachineBasicBlock *From, 179 MachineBasicBlock *To); 180 181 /// Postpone the splitting of the given critical 182 /// edge (\p From, \p To). 183 /// 184 /// We do not split the edges on the fly. Indeed, this invalidates 185 /// the dominance information and thus triggers a lot of updates 186 /// of that information underneath. 187 /// Instead, we postpone all the splits after each iteration of 188 /// the main loop. That way, the information is at least valid 189 /// for the lifetime of an iteration. 190 /// 191 /// \return True if the edge is marked as toSplit, false otherwise. 192 /// False can be returned if, for instance, this is not profitable. 193 bool PostponeSplitCriticalEdge(MachineInstr &MI, 194 MachineBasicBlock *From, 195 MachineBasicBlock *To, 196 bool BreakPHIEdge); 197 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 198 AllSuccsCache &AllSuccessors); 199 200 /// If we sink a COPY inst, some debug users of it's destination may no 201 /// longer be dominated by the COPY, and will eventually be dropped. 202 /// This is easily rectified by forwarding the non-dominated debug uses 203 /// to the copy source. 204 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 205 MachineBasicBlock *TargetBlock); 206 207 /// Re-insert any DBG_VALUE instructions that had their operands sunk 208 /// in this function. 209 void reinsertSunkDebugDefs(MachineFunction &MF); 210 211 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 212 MachineBasicBlock *DefMBB, 213 bool &BreakPHIEdge, bool &LocalUse) const; 214 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 215 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 216 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 217 MachineBasicBlock *MBB, 218 MachineBasicBlock *SuccToSinkTo, 219 AllSuccsCache &AllSuccessors); 220 221 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 222 MachineBasicBlock *MBB); 223 224 SmallVector<MachineBasicBlock *, 4> & 225 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 226 AllSuccsCache &AllSuccessors) const; 227 }; 228 229 } // end anonymous namespace 230 231 char MachineSinking::ID = 0; 232 233 char &llvm::MachineSinkingID = MachineSinking::ID; 234 235 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 236 "Machine code sinking", false, false) 237 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 238 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 239 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 240 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 241 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 242 "Machine code sinking", false, false) 243 244 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 245 MachineBasicBlock *MBB) { 246 if (!MI.isCopy()) 247 return false; 248 249 Register SrcReg = MI.getOperand(1).getReg(); 250 Register DstReg = MI.getOperand(0).getReg(); 251 if (!Register::isVirtualRegister(SrcReg) || 252 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 253 return false; 254 255 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 256 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 257 if (SRC != DRC) 258 return false; 259 260 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 261 if (DefMI->isCopyLike()) 262 return false; 263 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 264 LLVM_DEBUG(dbgs() << "*** to: " << MI); 265 MRI->replaceRegWith(DstReg, SrcReg); 266 MI.eraseFromParent(); 267 268 // Conservatively, clear any kill flags, since it's possible that they are no 269 // longer correct. 270 MRI->clearKillFlags(SrcReg); 271 272 ++NumCoalesces; 273 return true; 274 } 275 276 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 277 /// occur in blocks dominated by the specified block. If any use is in the 278 /// definition block, then return false since it is never legal to move def 279 /// after uses. 280 bool 281 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 282 MachineBasicBlock *MBB, 283 MachineBasicBlock *DefMBB, 284 bool &BreakPHIEdge, 285 bool &LocalUse) const { 286 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 287 288 // Ignore debug uses because debug info doesn't affect the code. 289 if (MRI->use_nodbg_empty(Reg)) 290 return true; 291 292 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 293 // into and they are all PHI nodes. In this case, machine-sink must break 294 // the critical edge first. e.g. 295 // 296 // %bb.1: derived from LLVM BB %bb4.preheader 297 // Predecessors according to CFG: %bb.0 298 // ... 299 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags 300 // ... 301 // JE_4 <%bb.37>, implicit %eflags 302 // Successors according to CFG: %bb.37 %bb.2 303 // 304 // %bb.2: derived from LLVM BB %bb.nph 305 // Predecessors according to CFG: %bb.0 %bb.1 306 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1 307 BreakPHIEdge = true; 308 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 309 MachineInstr *UseInst = MO.getParent(); 310 unsigned OpNo = &MO - &UseInst->getOperand(0); 311 MachineBasicBlock *UseBlock = UseInst->getParent(); 312 if (!(UseBlock == MBB && UseInst->isPHI() && 313 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 314 BreakPHIEdge = false; 315 break; 316 } 317 } 318 if (BreakPHIEdge) 319 return true; 320 321 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 322 // Determine the block of the use. 323 MachineInstr *UseInst = MO.getParent(); 324 unsigned OpNo = &MO - &UseInst->getOperand(0); 325 MachineBasicBlock *UseBlock = UseInst->getParent(); 326 if (UseInst->isPHI()) { 327 // PHI nodes use the operand in the predecessor block, not the block with 328 // the PHI. 329 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 330 } else if (UseBlock == DefMBB) { 331 LocalUse = true; 332 return false; 333 } 334 335 // Check that it dominates. 336 if (!DT->dominates(MBB, UseBlock)) 337 return false; 338 } 339 340 return true; 341 } 342 343 void MachineSinking::reinsertSunkDebugDefs(MachineFunction &MF) { 344 // Re-insert any DBG_VALUEs sunk. 345 for (auto &Iterator : SunkDebugDefs) { 346 SunkDebugDef Def = Iterator.second; 347 unsigned VReg = Iterator.first; 348 349 MachineBasicBlock::iterator DestLoc = Def.MI->getIterator(); 350 MachineBasicBlock *MBB = Def.MI->getParent(); 351 352 // Place DBG_VALUEs immediately after the sunk instruction. 353 ++DestLoc; 354 355 // Collect the DBG_VALUEs being sunk and put them in a deterministic order. 356 using VarInstPair = std::pair<DebugVariable, MachineInstr *>; 357 SmallVector<VarInstPair, 16> InstsToSink; 358 for (auto &SunkLoc : Def.InstsToSink) 359 InstsToSink.push_back(SunkLoc); 360 llvm::sort(InstsToSink); 361 362 for (auto &SunkLoc : InstsToSink) { 363 MachineInstr *NewDbgMI = MF.CloneMachineInstr(SunkLoc.second); 364 NewDbgMI->getOperand(0).setReg(VReg); 365 MBB->insert(DestLoc, NewDbgMI); 366 } 367 } 368 } 369 370 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 371 if (skipFunction(MF.getFunction())) 372 return false; 373 374 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 375 376 TII = MF.getSubtarget().getInstrInfo(); 377 TRI = MF.getSubtarget().getRegisterInfo(); 378 MRI = &MF.getRegInfo(); 379 DT = &getAnalysis<MachineDominatorTree>(); 380 PDT = &getAnalysis<MachinePostDominatorTree>(); 381 LI = &getAnalysis<MachineLoopInfo>(); 382 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 383 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 384 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 385 386 bool EverMadeChange = false; 387 388 while (true) { 389 bool MadeChange = false; 390 391 // Process all basic blocks. 392 CEBCandidates.clear(); 393 ToSplit.clear(); 394 for (auto &MBB: MF) 395 MadeChange |= ProcessBlock(MBB); 396 397 // If we have anything we marked as toSplit, split it now. 398 for (auto &Pair : ToSplit) { 399 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 400 if (NewSucc != nullptr) { 401 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 402 << printMBBReference(*Pair.first) << " -- " 403 << printMBBReference(*NewSucc) << " -- " 404 << printMBBReference(*Pair.second) << '\n'); 405 MadeChange = true; 406 ++NumSplit; 407 } else 408 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 409 } 410 // If this iteration over the code changed anything, keep iterating. 411 if (!MadeChange) break; 412 EverMadeChange = true; 413 } 414 415 // Now clear any kill flags for recorded registers. 416 for (auto I : RegsToClearKillFlags) 417 MRI->clearKillFlags(I); 418 RegsToClearKillFlags.clear(); 419 420 reinsertSunkDebugDefs(MF); 421 SunkDebugDefs.clear(); 422 423 return EverMadeChange; 424 } 425 426 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 427 // Can't sink anything out of a block that has less than two successors. 428 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 429 430 // Don't bother sinking code out of unreachable blocks. In addition to being 431 // unprofitable, it can also lead to infinite looping, because in an 432 // unreachable loop there may be nowhere to stop. 433 if (!DT->isReachableFromEntry(&MBB)) return false; 434 435 bool MadeChange = false; 436 437 // Cache all successors, sorted by frequency info and loop depth. 438 AllSuccsCache AllSuccessors; 439 440 // Walk the basic block bottom-up. Remember if we saw a store. 441 MachineBasicBlock::iterator I = MBB.end(); 442 --I; 443 bool ProcessedBegin, SawStore = false; 444 do { 445 MachineInstr &MI = *I; // The instruction to sink. 446 447 // Predecrement I (if it's not begin) so that it isn't invalidated by 448 // sinking. 449 ProcessedBegin = I == MBB.begin(); 450 if (!ProcessedBegin) 451 --I; 452 453 if (MI.isDebugInstr()) { 454 if (MI.isDebugValue()) 455 ProcessDbgInst(MI); 456 continue; 457 } 458 459 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 460 if (Joined) { 461 MadeChange = true; 462 continue; 463 } 464 465 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 466 ++NumSunk; 467 MadeChange = true; 468 } 469 470 // If we just processed the first instruction in the block, we're done. 471 } while (!ProcessedBegin); 472 473 SeenDbgUsers.clear(); 474 SeenDbgVars.clear(); 475 476 return MadeChange; 477 } 478 479 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 480 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 481 // we know what to sink if the vreg def sinks. 482 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 483 484 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 485 MI.getDebugLoc()->getInlinedAt()); 486 bool SeenBefore = SeenDbgVars.count(Var) != 0; 487 488 MachineOperand &MO = MI.getOperand(0); 489 if (MO.isReg() && MO.getReg().isVirtual()) 490 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 491 492 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 493 SeenDbgVars.insert(Var); 494 } 495 496 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 497 MachineBasicBlock *From, 498 MachineBasicBlock *To) { 499 // FIXME: Need much better heuristics. 500 501 // If the pass has already considered breaking this edge (during this pass 502 // through the function), then let's go ahead and break it. This means 503 // sinking multiple "cheap" instructions into the same block. 504 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 505 return true; 506 507 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 508 return true; 509 510 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 511 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 512 return true; 513 514 // MI is cheap, we probably don't want to break the critical edge for it. 515 // However, if this would allow some definitions of its source operands 516 // to be sunk then it's probably worth it. 517 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 518 const MachineOperand &MO = MI.getOperand(i); 519 if (!MO.isReg() || !MO.isUse()) 520 continue; 521 Register Reg = MO.getReg(); 522 if (Reg == 0) 523 continue; 524 525 // We don't move live definitions of physical registers, 526 // so sinking their uses won't enable any opportunities. 527 if (Register::isPhysicalRegister(Reg)) 528 continue; 529 530 // If this instruction is the only user of a virtual register, 531 // check if breaking the edge will enable sinking 532 // both this instruction and the defining instruction. 533 if (MRI->hasOneNonDBGUse(Reg)) { 534 // If the definition resides in same MBB, 535 // claim it's likely we can sink these together. 536 // If definition resides elsewhere, we aren't 537 // blocking it from being sunk so don't break the edge. 538 MachineInstr *DefMI = MRI->getVRegDef(Reg); 539 if (DefMI->getParent() == MI.getParent()) 540 return true; 541 } 542 } 543 544 return false; 545 } 546 547 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 548 MachineBasicBlock *FromBB, 549 MachineBasicBlock *ToBB, 550 bool BreakPHIEdge) { 551 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 552 return false; 553 554 // Avoid breaking back edge. From == To means backedge for single BB loop. 555 if (!SplitEdges || FromBB == ToBB) 556 return false; 557 558 // Check for backedges of more "complex" loops. 559 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 560 LI->isLoopHeader(ToBB)) 561 return false; 562 563 // It's not always legal to break critical edges and sink the computation 564 // to the edge. 565 // 566 // %bb.1: 567 // v1024 568 // Beq %bb.3 569 // <fallthrough> 570 // %bb.2: 571 // ... no uses of v1024 572 // <fallthrough> 573 // %bb.3: 574 // ... 575 // = v1024 576 // 577 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 578 // 579 // %bb.1: 580 // ... 581 // Bne %bb.2 582 // %bb.4: 583 // v1024 = 584 // B %bb.3 585 // %bb.2: 586 // ... no uses of v1024 587 // <fallthrough> 588 // %bb.3: 589 // ... 590 // = v1024 591 // 592 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 593 // flow. We need to ensure the new basic block where the computation is 594 // sunk to dominates all the uses. 595 // It's only legal to break critical edge and sink the computation to the 596 // new block if all the predecessors of "To", except for "From", are 597 // not dominated by "From". Given SSA property, this means these 598 // predecessors are dominated by "To". 599 // 600 // There is no need to do this check if all the uses are PHI nodes. PHI 601 // sources are only defined on the specific predecessor edges. 602 if (!BreakPHIEdge) { 603 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 604 E = ToBB->pred_end(); PI != E; ++PI) { 605 if (*PI == FromBB) 606 continue; 607 if (!DT->dominates(ToBB, *PI)) 608 return false; 609 } 610 } 611 612 ToSplit.insert(std::make_pair(FromBB, ToBB)); 613 614 return true; 615 } 616 617 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 618 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 619 MachineBasicBlock *MBB, 620 MachineBasicBlock *SuccToSinkTo, 621 AllSuccsCache &AllSuccessors) { 622 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 623 624 if (MBB == SuccToSinkTo) 625 return false; 626 627 // It is profitable if SuccToSinkTo does not post dominate current block. 628 if (!PDT->dominates(SuccToSinkTo, MBB)) 629 return true; 630 631 // It is profitable to sink an instruction from a deeper loop to a shallower 632 // loop, even if the latter post-dominates the former (PR21115). 633 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 634 return true; 635 636 // Check if only use in post dominated block is PHI instruction. 637 bool NonPHIUse = false; 638 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 639 MachineBasicBlock *UseBlock = UseInst.getParent(); 640 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 641 NonPHIUse = true; 642 } 643 if (!NonPHIUse) 644 return true; 645 646 // If SuccToSinkTo post dominates then also it may be profitable if MI 647 // can further profitably sinked into another block in next round. 648 bool BreakPHIEdge = false; 649 // FIXME - If finding successor is compile time expensive then cache results. 650 if (MachineBasicBlock *MBB2 = 651 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 652 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 653 654 // If SuccToSinkTo is final destination and it is a post dominator of current 655 // block then it is not profitable to sink MI into SuccToSinkTo block. 656 return false; 657 } 658 659 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 660 /// computing it if it was not already cached. 661 SmallVector<MachineBasicBlock *, 4> & 662 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 663 AllSuccsCache &AllSuccessors) const { 664 // Do we have the sorted successors in cache ? 665 auto Succs = AllSuccessors.find(MBB); 666 if (Succs != AllSuccessors.end()) 667 return Succs->second; 668 669 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 670 MBB->succ_end()); 671 672 // Handle cases where sinking can happen but where the sink point isn't a 673 // successor. For example: 674 // 675 // x = computation 676 // if () {} else {} 677 // use x 678 // 679 const std::vector<MachineDomTreeNode *> &Children = 680 DT->getNode(MBB)->getChildren(); 681 for (const auto &DTChild : Children) 682 // DomTree children of MBB that have MBB as immediate dominator are added. 683 if (DTChild->getIDom()->getBlock() == MI.getParent() && 684 // Skip MBBs already added to the AllSuccs vector above. 685 !MBB->isSuccessor(DTChild->getBlock())) 686 AllSuccs.push_back(DTChild->getBlock()); 687 688 // Sort Successors according to their loop depth or block frequency info. 689 llvm::stable_sort( 690 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 691 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 692 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 693 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 694 return HasBlockFreq ? LHSFreq < RHSFreq 695 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 696 }); 697 698 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 699 700 return it.first->second; 701 } 702 703 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 704 MachineBasicBlock * 705 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 706 bool &BreakPHIEdge, 707 AllSuccsCache &AllSuccessors) { 708 assert (MBB && "Invalid MachineBasicBlock!"); 709 710 // Loop over all the operands of the specified instruction. If there is 711 // anything we can't handle, bail out. 712 713 // SuccToSinkTo - This is the successor to sink this instruction to, once we 714 // decide. 715 MachineBasicBlock *SuccToSinkTo = nullptr; 716 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 717 const MachineOperand &MO = MI.getOperand(i); 718 if (!MO.isReg()) continue; // Ignore non-register operands. 719 720 Register Reg = MO.getReg(); 721 if (Reg == 0) continue; 722 723 if (Register::isPhysicalRegister(Reg)) { 724 if (MO.isUse()) { 725 // If the physreg has no defs anywhere, it's just an ambient register 726 // and we can freely move its uses. Alternatively, if it's allocatable, 727 // it could get allocated to something with a def during allocation. 728 if (!MRI->isConstantPhysReg(Reg)) 729 return nullptr; 730 } else if (!MO.isDead()) { 731 // A def that isn't dead. We can't move it. 732 return nullptr; 733 } 734 } else { 735 // Virtual register uses are always safe to sink. 736 if (MO.isUse()) continue; 737 738 // If it's not safe to move defs of the register class, then abort. 739 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 740 return nullptr; 741 742 // Virtual register defs can only be sunk if all their uses are in blocks 743 // dominated by one of the successors. 744 if (SuccToSinkTo) { 745 // If a previous operand picked a block to sink to, then this operand 746 // must be sinkable to the same block. 747 bool LocalUse = false; 748 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 749 BreakPHIEdge, LocalUse)) 750 return nullptr; 751 752 continue; 753 } 754 755 // Otherwise, we should look at all the successors and decide which one 756 // we should sink to. If we have reliable block frequency information 757 // (frequency != 0) available, give successors with smaller frequencies 758 // higher priority, otherwise prioritize smaller loop depths. 759 for (MachineBasicBlock *SuccBlock : 760 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 761 bool LocalUse = false; 762 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 763 BreakPHIEdge, LocalUse)) { 764 SuccToSinkTo = SuccBlock; 765 break; 766 } 767 if (LocalUse) 768 // Def is used locally, it's never safe to move this def. 769 return nullptr; 770 } 771 772 // If we couldn't find a block to sink to, ignore this instruction. 773 if (!SuccToSinkTo) 774 return nullptr; 775 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 776 return nullptr; 777 } 778 } 779 780 // It is not possible to sink an instruction into its own block. This can 781 // happen with loops. 782 if (MBB == SuccToSinkTo) 783 return nullptr; 784 785 // It's not safe to sink instructions to EH landing pad. Control flow into 786 // landing pad is implicitly defined. 787 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 788 return nullptr; 789 790 return SuccToSinkTo; 791 } 792 793 /// Return true if MI is likely to be usable as a memory operation by the 794 /// implicit null check optimization. 795 /// 796 /// This is a "best effort" heuristic, and should not be relied upon for 797 /// correctness. This returning true does not guarantee that the implicit null 798 /// check optimization is legal over MI, and this returning false does not 799 /// guarantee MI cannot possibly be used to do a null check. 800 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 801 const TargetInstrInfo *TII, 802 const TargetRegisterInfo *TRI) { 803 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 804 805 auto *MBB = MI.getParent(); 806 if (MBB->pred_size() != 1) 807 return false; 808 809 auto *PredMBB = *MBB->pred_begin(); 810 auto *PredBB = PredMBB->getBasicBlock(); 811 812 // Frontends that don't use implicit null checks have no reason to emit 813 // branches with make.implicit metadata, and this function should always 814 // return false for them. 815 if (!PredBB || 816 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 817 return false; 818 819 const MachineOperand *BaseOp; 820 int64_t Offset; 821 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 822 return false; 823 824 if (!BaseOp->isReg()) 825 return false; 826 827 if (!(MI.mayLoad() && !MI.isPredicable())) 828 return false; 829 830 MachineBranchPredicate MBP; 831 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 832 return false; 833 834 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 835 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 836 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 837 MBP.LHS.getReg() == BaseOp->getReg(); 838 } 839 840 /// If the sunk instruction is a copy, try to forward the copy instead of 841 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 842 /// there's any subregister weirdness involved. Returns true if copy 843 /// propagation occurred. 844 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 845 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 846 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 847 848 // Copy DBG_VALUE operand and set the original to undef. We then check to 849 // see whether this is something that can be copy-forwarded. If it isn't, 850 // continue around the loop. 851 MachineOperand DbgMO = DbgMI.getOperand(0); 852 853 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 854 auto CopyOperands = TII.isCopyInstr(SinkInst); 855 if (!CopyOperands) 856 return false; 857 SrcMO = CopyOperands->Source; 858 DstMO = CopyOperands->Destination; 859 860 // Check validity of forwarding this copy. 861 bool PostRA = MRI.getNumVirtRegs() == 0; 862 863 // Trying to forward between physical and virtual registers is too hard. 864 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 865 return false; 866 867 // Only try virtual register copy-forwarding before regalloc, and physical 868 // register copy-forwarding after regalloc. 869 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 870 if (arePhysRegs != PostRA) 871 return false; 872 873 // Pre-regalloc, only forward if all subregisters agree (or there are no 874 // subregs at all). More analysis might recover some forwardable copies. 875 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 876 DbgMO.getSubReg() != DstMO->getSubReg())) 877 return false; 878 879 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 880 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 881 // matches the copy destination. 882 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 883 return false; 884 885 DbgMI.getOperand(0).setReg(SrcMO->getReg()); 886 DbgMI.getOperand(0).setSubReg(SrcMO->getSubReg()); 887 return true; 888 } 889 890 /// Sink an instruction and its associated debug instructions. 891 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 892 MachineBasicBlock::iterator InsertPos, 893 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 894 895 // If we cannot find a location to use (merge with), then we erase the debug 896 // location to prevent debug-info driven tools from potentially reporting 897 // wrong location information. 898 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 899 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 900 InsertPos->getDebugLoc())); 901 else 902 MI.setDebugLoc(DebugLoc()); 903 904 // Move the instruction. 905 MachineBasicBlock *ParentBlock = MI.getParent(); 906 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 907 ++MachineBasicBlock::iterator(MI)); 908 909 // Sink a copy of debug users to the insert position. Mark the original 910 // DBG_VALUE location as 'undef', indicating that any earlier variable 911 // location should be terminated as we've optimised away the value at this 912 // point. 913 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 914 DBE = DbgValuesToSink.end(); 915 DBI != DBE; ++DBI) { 916 MachineInstr *DbgMI = *DBI; 917 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 918 SuccToSinkTo.insert(InsertPos, NewDbgMI); 919 920 if (!attemptDebugCopyProp(MI, *DbgMI)) 921 DbgMI->getOperand(0).setReg(0); 922 } 923 } 924 925 /// SinkInstruction - Determine whether it is safe to sink the specified machine 926 /// instruction out of its current block into a successor. 927 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 928 AllSuccsCache &AllSuccessors) { 929 // Don't sink instructions that the target prefers not to sink. 930 if (!TII->shouldSink(MI)) 931 return false; 932 933 // Check if it's safe to move the instruction. 934 if (!MI.isSafeToMove(AA, SawStore)) 935 return false; 936 937 // Convergent operations may not be made control-dependent on additional 938 // values. 939 if (MI.isConvergent()) 940 return false; 941 942 // Don't break implicit null checks. This is a performance heuristic, and not 943 // required for correctness. 944 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 945 return false; 946 947 // FIXME: This should include support for sinking instructions within the 948 // block they are currently in to shorten the live ranges. We often get 949 // instructions sunk into the top of a large block, but it would be better to 950 // also sink them down before their first use in the block. This xform has to 951 // be careful not to *increase* register pressure though, e.g. sinking 952 // "x = y + z" down if it kills y and z would increase the live ranges of y 953 // and z and only shrink the live range of x. 954 955 bool BreakPHIEdge = false; 956 MachineBasicBlock *ParentBlock = MI.getParent(); 957 MachineBasicBlock *SuccToSinkTo = 958 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 959 960 // If there are no outputs, it must have side-effects. 961 if (!SuccToSinkTo) 962 return false; 963 964 // If the instruction to move defines a dead physical register which is live 965 // when leaving the basic block, don't move it because it could turn into a 966 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 967 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 968 const MachineOperand &MO = MI.getOperand(I); 969 if (!MO.isReg()) continue; 970 Register Reg = MO.getReg(); 971 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 972 continue; 973 if (SuccToSinkTo->isLiveIn(Reg)) 974 return false; 975 } 976 977 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 978 979 // If the block has multiple predecessors, this is a critical edge. 980 // Decide if we can sink along it or need to break the edge. 981 if (SuccToSinkTo->pred_size() > 1) { 982 // We cannot sink a load across a critical edge - there may be stores in 983 // other code paths. 984 bool TryBreak = false; 985 bool store = true; 986 if (!MI.isSafeToMove(AA, store)) { 987 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 988 TryBreak = true; 989 } 990 991 // We don't want to sink across a critical edge if we don't dominate the 992 // successor. We could be introducing calculations to new code paths. 993 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 994 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 995 TryBreak = true; 996 } 997 998 // Don't sink instructions into a loop. 999 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1000 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1001 TryBreak = true; 1002 } 1003 1004 // Otherwise we are OK with sinking along a critical edge. 1005 if (!TryBreak) 1006 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1007 else { 1008 // Mark this edge as to be split. 1009 // If the edge can actually be split, the next iteration of the main loop 1010 // will sink MI in the newly created block. 1011 bool Status = 1012 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1013 if (!Status) 1014 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1015 "break critical edge\n"); 1016 // The instruction will not be sunk this time. 1017 return false; 1018 } 1019 } 1020 1021 if (BreakPHIEdge) { 1022 // BreakPHIEdge is true if all the uses are in the successor MBB being 1023 // sunken into and they are all PHI nodes. In this case, machine-sink must 1024 // break the critical edge first. 1025 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1026 SuccToSinkTo, BreakPHIEdge); 1027 if (!Status) 1028 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1029 "break critical edge\n"); 1030 // The instruction will not be sunk this time. 1031 return false; 1032 } 1033 1034 // Determine where to insert into. Skip phi nodes. 1035 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1036 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1037 ++InsertPos; 1038 1039 // Collect debug users of any vreg that this inst defines. 1040 for (auto &MO : MI.operands()) { 1041 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1042 continue; 1043 1044 // If no DBG_VALUE uses this reg, skip further analysis. 1045 if (!SeenDbgUsers.count(MO.getReg())) 1046 continue; 1047 1048 SunkDebugDef &SunkDef = SunkDebugDefs[MO.getReg()]; 1049 SunkDef.MI = &MI; 1050 1051 // Record that these DBG_VALUEs refer to this sinking vreg, so that they 1052 // can be re-specified after sinking completes. Try copy-propagating 1053 // the original location too. 1054 auto &Users = SeenDbgUsers[MO.getReg()]; 1055 for (auto &User : Users) { 1056 MachineInstr *DbgMI = User.getPointer(); 1057 DebugVariable Var(DbgMI->getDebugVariable(), DbgMI->getDebugExpression(), 1058 DbgMI->getDebugLoc()->getInlinedAt()); 1059 // If we can't copy-propagate the original DBG_VALUE, mark it undef, as 1060 // its operand will not be available. 1061 if (!attemptDebugCopyProp(MI, *DbgMI)) 1062 DbgMI->getOperand(0).setReg(0); 1063 1064 // Debug users that don't pass any other DBG_VALUEs for this variable 1065 // can be sunk. 1066 if (!User.getInt()) 1067 SunkDef.InstsToSink.insert({Var, DbgMI}); 1068 } 1069 } 1070 1071 // After sinking, some debug users may not be dominated any more. If possible, 1072 // copy-propagate their operands. As it's expensive, don't do this if there's 1073 // no debuginfo in the program. 1074 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1075 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1076 1077 SmallVector<MachineInstr *, 4> DbgUsersToSink; // Deliberately empty 1078 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1079 1080 // Conservatively, clear any kill flags, since it's possible that they are no 1081 // longer correct. 1082 // Note that we have to clear the kill flags for any register this instruction 1083 // uses as we may sink over another instruction which currently kills the 1084 // used registers. 1085 for (MachineOperand &MO : MI.operands()) { 1086 if (MO.isReg() && MO.isUse()) 1087 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1088 } 1089 1090 return true; 1091 } 1092 1093 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1094 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1095 assert(MI.isCopy()); 1096 assert(MI.getOperand(1).isReg()); 1097 1098 // Enumerate all users of vreg operands that are def'd. Skip those that will 1099 // be sunk. For the rest, if they are not dominated by the block we will sink 1100 // MI into, propagate the copy source to them. 1101 SmallVector<MachineInstr *, 4> DbgDefUsers; 1102 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1103 for (auto &MO : MI.operands()) { 1104 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1105 continue; 1106 for (auto &User : MRI.use_instructions(MO.getReg())) { 1107 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1108 continue; 1109 1110 // If is in same block, will either sink or be use-before-def. 1111 if (User.getParent() == MI.getParent()) 1112 continue; 1113 1114 assert(User.getOperand(0).isReg() && 1115 "DBG_VALUE user of vreg, but non reg operand?"); 1116 DbgDefUsers.push_back(&User); 1117 } 1118 } 1119 1120 // Point the users of this copy that are no longer dominated, at the source 1121 // of the copy. 1122 for (auto *User : DbgDefUsers) { 1123 User->getOperand(0).setReg(MI.getOperand(1).getReg()); 1124 User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1125 } 1126 } 1127 1128 //===----------------------------------------------------------------------===// 1129 // This pass is not intended to be a replacement or a complete alternative 1130 // for the pre-ra machine sink pass. It is only designed to sink COPY 1131 // instructions which should be handled after RA. 1132 // 1133 // This pass sinks COPY instructions into a successor block, if the COPY is not 1134 // used in the current block and the COPY is live-in to a single successor 1135 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1136 // copy on paths where their results aren't needed. This also exposes 1137 // additional opportunites for dead copy elimination and shrink wrapping. 1138 // 1139 // These copies were either not handled by or are inserted after the MachineSink 1140 // pass. As an example of the former case, the MachineSink pass cannot sink 1141 // COPY instructions with allocatable source registers; for AArch64 these type 1142 // of copy instructions are frequently used to move function parameters (PhyReg) 1143 // into virtual registers in the entry block. 1144 // 1145 // For the machine IR below, this pass will sink %w19 in the entry into its 1146 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1147 // %bb.0: 1148 // %wzr = SUBSWri %w1, 1 1149 // %w19 = COPY %w0 1150 // Bcc 11, %bb.2 1151 // %bb.1: 1152 // Live Ins: %w19 1153 // BL @fun 1154 // %w0 = ADDWrr %w0, %w19 1155 // RET %w0 1156 // %bb.2: 1157 // %w0 = COPY %wzr 1158 // RET %w0 1159 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1160 // able to see %bb.0 as a candidate. 1161 //===----------------------------------------------------------------------===// 1162 namespace { 1163 1164 class PostRAMachineSinking : public MachineFunctionPass { 1165 public: 1166 bool runOnMachineFunction(MachineFunction &MF) override; 1167 1168 static char ID; 1169 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1170 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1171 1172 void getAnalysisUsage(AnalysisUsage &AU) const override { 1173 AU.setPreservesCFG(); 1174 MachineFunctionPass::getAnalysisUsage(AU); 1175 } 1176 1177 MachineFunctionProperties getRequiredProperties() const override { 1178 return MachineFunctionProperties().set( 1179 MachineFunctionProperties::Property::NoVRegs); 1180 } 1181 1182 private: 1183 /// Track which register units have been modified and used. 1184 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1185 1186 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1187 /// entry in this map for each unit it touches. 1188 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1189 1190 /// Sink Copy instructions unused in the same block close to their uses in 1191 /// successors. 1192 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1193 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1194 }; 1195 } // namespace 1196 1197 char PostRAMachineSinking::ID = 0; 1198 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1199 1200 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1201 "PostRA Machine Sink", false, false) 1202 1203 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1204 const TargetRegisterInfo *TRI) { 1205 LiveRegUnits LiveInRegUnits(*TRI); 1206 LiveInRegUnits.addLiveIns(MBB); 1207 return !LiveInRegUnits.available(Reg); 1208 } 1209 1210 static MachineBasicBlock * 1211 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1212 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1213 unsigned Reg, const TargetRegisterInfo *TRI) { 1214 // Try to find a single sinkable successor in which Reg is live-in. 1215 MachineBasicBlock *BB = nullptr; 1216 for (auto *SI : SinkableBBs) { 1217 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1218 // If BB is set here, Reg is live-in to at least two sinkable successors, 1219 // so quit. 1220 if (BB) 1221 return nullptr; 1222 BB = SI; 1223 } 1224 } 1225 // Reg is not live-in to any sinkable successors. 1226 if (!BB) 1227 return nullptr; 1228 1229 // Check if any register aliased with Reg is live-in in other successors. 1230 for (auto *SI : CurBB.successors()) { 1231 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1232 return nullptr; 1233 } 1234 return BB; 1235 } 1236 1237 static MachineBasicBlock * 1238 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1239 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1240 ArrayRef<unsigned> DefedRegsInCopy, 1241 const TargetRegisterInfo *TRI) { 1242 MachineBasicBlock *SingleBB = nullptr; 1243 for (auto DefReg : DefedRegsInCopy) { 1244 MachineBasicBlock *BB = 1245 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1246 if (!BB || (SingleBB && SingleBB != BB)) 1247 return nullptr; 1248 SingleBB = BB; 1249 } 1250 return SingleBB; 1251 } 1252 1253 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1254 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1255 LiveRegUnits &UsedRegUnits, 1256 const TargetRegisterInfo *TRI) { 1257 for (auto U : UsedOpsInCopy) { 1258 MachineOperand &MO = MI->getOperand(U); 1259 Register SrcReg = MO.getReg(); 1260 if (!UsedRegUnits.available(SrcReg)) { 1261 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1262 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1263 if (UI.killsRegister(SrcReg, TRI)) { 1264 UI.clearRegisterKills(SrcReg, TRI); 1265 MO.setIsKill(true); 1266 break; 1267 } 1268 } 1269 } 1270 } 1271 } 1272 1273 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1274 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1275 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1276 MachineFunction &MF = *SuccBB->getParent(); 1277 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1278 for (unsigned DefReg : DefedRegsInCopy) 1279 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1280 SuccBB->removeLiveIn(*S); 1281 for (auto U : UsedOpsInCopy) { 1282 Register Reg = MI->getOperand(U).getReg(); 1283 if (!SuccBB->isLiveIn(Reg)) 1284 SuccBB->addLiveIn(Reg); 1285 } 1286 } 1287 1288 static bool hasRegisterDependency(MachineInstr *MI, 1289 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1290 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1291 LiveRegUnits &ModifiedRegUnits, 1292 LiveRegUnits &UsedRegUnits) { 1293 bool HasRegDependency = false; 1294 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1295 MachineOperand &MO = MI->getOperand(i); 1296 if (!MO.isReg()) 1297 continue; 1298 Register Reg = MO.getReg(); 1299 if (!Reg) 1300 continue; 1301 if (MO.isDef()) { 1302 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1303 HasRegDependency = true; 1304 break; 1305 } 1306 DefedRegsInCopy.push_back(Reg); 1307 1308 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1309 // For example, we can ignore modifications in reg with undef. However, 1310 // it's not perfectly clear if skipping the internal read is safe in all 1311 // other targets. 1312 } else if (MO.isUse()) { 1313 if (!ModifiedRegUnits.available(Reg)) { 1314 HasRegDependency = true; 1315 break; 1316 } 1317 UsedOpsInCopy.push_back(i); 1318 } 1319 } 1320 return HasRegDependency; 1321 } 1322 1323 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg, 1324 const TargetRegisterInfo *TRI) { 1325 SmallSet<unsigned, 4> RegUnits; 1326 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1327 RegUnits.insert(*RI); 1328 return RegUnits; 1329 } 1330 1331 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1332 MachineFunction &MF, 1333 const TargetRegisterInfo *TRI, 1334 const TargetInstrInfo *TII) { 1335 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1336 // FIXME: For now, we sink only to a successor which has a single predecessor 1337 // so that we can directly sink COPY instructions to the successor without 1338 // adding any new block or branch instruction. 1339 for (MachineBasicBlock *SI : CurBB.successors()) 1340 if (!SI->livein_empty() && SI->pred_size() == 1) 1341 SinkableBBs.insert(SI); 1342 1343 if (SinkableBBs.empty()) 1344 return false; 1345 1346 bool Changed = false; 1347 1348 // Track which registers have been modified and used between the end of the 1349 // block and the current instruction. 1350 ModifiedRegUnits.clear(); 1351 UsedRegUnits.clear(); 1352 SeenDbgInstrs.clear(); 1353 1354 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1355 MachineInstr *MI = &*I; 1356 ++I; 1357 1358 // Track the operand index for use in Copy. 1359 SmallVector<unsigned, 2> UsedOpsInCopy; 1360 // Track the register number defed in Copy. 1361 SmallVector<unsigned, 2> DefedRegsInCopy; 1362 1363 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1364 // for DBG_VALUEs later, record them when they're encountered. 1365 if (MI->isDebugValue()) { 1366 auto &MO = MI->getOperand(0); 1367 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1368 // Bail if we can already tell the sink would be rejected, rather 1369 // than needlessly accumulating lots of DBG_VALUEs. 1370 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1371 ModifiedRegUnits, UsedRegUnits)) 1372 continue; 1373 1374 // Record debug use of each reg unit. 1375 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1376 for (unsigned Reg : Units) 1377 SeenDbgInstrs[Reg].push_back(MI); 1378 } 1379 continue; 1380 } 1381 1382 if (MI->isDebugInstr()) 1383 continue; 1384 1385 // Do not move any instruction across function call. 1386 if (MI->isCall()) 1387 return false; 1388 1389 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1390 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1391 TRI); 1392 continue; 1393 } 1394 1395 // Don't sink the COPY if it would violate a register dependency. 1396 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1397 ModifiedRegUnits, UsedRegUnits)) { 1398 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1399 TRI); 1400 continue; 1401 } 1402 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1403 "Unexpect SrcReg or DefReg"); 1404 MachineBasicBlock *SuccBB = 1405 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1406 // Don't sink if we cannot find a single sinkable successor in which Reg 1407 // is live-in. 1408 if (!SuccBB) { 1409 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1410 TRI); 1411 continue; 1412 } 1413 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1414 "Unexpected predecessor"); 1415 1416 // Collect DBG_VALUEs that must sink with this copy. We've previously 1417 // recorded which reg units that DBG_VALUEs read, if this instruction 1418 // writes any of those units then the corresponding DBG_VALUEs must sink. 1419 SetVector<MachineInstr *> DbgValsToSinkSet; 1420 SmallVector<MachineInstr *, 4> DbgValsToSink; 1421 for (auto &MO : MI->operands()) { 1422 if (!MO.isReg() || !MO.isDef()) 1423 continue; 1424 1425 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1426 for (unsigned Reg : Units) 1427 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1428 DbgValsToSinkSet.insert(MI); 1429 } 1430 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1431 DbgValsToSinkSet.end()); 1432 1433 // Clear the kill flag if SrcReg is killed between MI and the end of the 1434 // block. 1435 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1436 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1437 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1438 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1439 1440 Changed = true; 1441 ++NumPostRACopySink; 1442 } 1443 return Changed; 1444 } 1445 1446 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1447 if (skipFunction(MF.getFunction())) 1448 return false; 1449 1450 bool Changed = false; 1451 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1452 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1453 1454 ModifiedRegUnits.init(*TRI); 1455 UsedRegUnits.init(*TRI); 1456 for (auto &BB : MF) 1457 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1458 1459 return Changed; 1460 } 1461