1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BranchProbability.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <map> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetInstrInfo *TII; 119 const TargetRegisterInfo *TRI; 120 MachineRegisterInfo *MRI; // Machine register information 121 MachineDominatorTree *DT; // Machine dominator tree 122 MachinePostDominatorTree *PDT; // Machine post dominator tree 123 MachineCycleInfo *CI; 124 MachineBlockFrequencyInfo *MBFI; 125 const MachineBranchProbabilityInfo *MBPI; 126 AliasAnalysis *AA; 127 RegisterClassInfo RegClassInfo; 128 129 // Remember which edges have been considered for breaking. 130 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 131 CEBCandidates; 132 // Remember which edges we are about to split. 133 // This is different from CEBCandidates since those edges 134 // will be split. 135 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 136 137 DenseSet<Register> RegsToClearKillFlags; 138 139 using AllSuccsCache = 140 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 141 142 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 143 /// post-dominated by another DBG_VALUE of the same variable location. 144 /// This is necessary to detect sequences such as: 145 /// %0 = someinst 146 /// DBG_VALUE %0, !123, !DIExpression() 147 /// %1 = anotherinst 148 /// DBG_VALUE %1, !123, !DIExpression() 149 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 150 /// would re-order assignments. 151 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 152 153 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 154 /// debug instructions to sink. 155 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 156 157 /// Record of debug variables that have had their locations set in the 158 /// current block. 159 DenseSet<DebugVariable> SeenDbgVars; 160 161 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 162 HasStoreCache; 163 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 164 std::vector<MachineInstr *>> 165 StoreInstrCache; 166 167 /// Cached BB's register pressure. 168 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 169 170 public: 171 static char ID; // Pass identification 172 173 MachineSinking() : MachineFunctionPass(ID) { 174 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 175 } 176 177 bool runOnMachineFunction(MachineFunction &MF) override; 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override { 180 MachineFunctionPass::getAnalysisUsage(AU); 181 AU.addRequired<AAResultsWrapperPass>(); 182 AU.addRequired<MachineDominatorTree>(); 183 AU.addRequired<MachinePostDominatorTree>(); 184 AU.addRequired<MachineCycleInfoWrapperPass>(); 185 AU.addRequired<MachineBranchProbabilityInfo>(); 186 AU.addPreserved<MachineCycleInfoWrapperPass>(); 187 AU.addPreserved<MachineLoopInfo>(); 188 if (UseBlockFreqInfo) 189 AU.addRequired<MachineBlockFrequencyInfo>(); 190 } 191 192 void releaseMemory() override { 193 CEBCandidates.clear(); 194 } 195 196 private: 197 bool ProcessBlock(MachineBasicBlock &MBB); 198 void ProcessDbgInst(MachineInstr &MI); 199 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 200 MachineBasicBlock *From, 201 MachineBasicBlock *To); 202 203 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 204 MachineInstr &MI); 205 206 /// Postpone the splitting of the given critical 207 /// edge (\p From, \p To). 208 /// 209 /// We do not split the edges on the fly. Indeed, this invalidates 210 /// the dominance information and thus triggers a lot of updates 211 /// of that information underneath. 212 /// Instead, we postpone all the splits after each iteration of 213 /// the main loop. That way, the information is at least valid 214 /// for the lifetime of an iteration. 215 /// 216 /// \return True if the edge is marked as toSplit, false otherwise. 217 /// False can be returned if, for instance, this is not profitable. 218 bool PostponeSplitCriticalEdge(MachineInstr &MI, 219 MachineBasicBlock *From, 220 MachineBasicBlock *To, 221 bool BreakPHIEdge); 222 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 223 AllSuccsCache &AllSuccessors); 224 225 /// If we sink a COPY inst, some debug users of it's destination may no 226 /// longer be dominated by the COPY, and will eventually be dropped. 227 /// This is easily rectified by forwarding the non-dominated debug uses 228 /// to the copy source. 229 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 230 MachineBasicBlock *TargetBlock); 231 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 232 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 233 bool &LocalUse) const; 234 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 235 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 236 237 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 238 SmallVectorImpl<MachineInstr *> &Candidates); 239 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 240 241 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 242 MachineBasicBlock *MBB, 243 MachineBasicBlock *SuccToSinkTo, 244 AllSuccsCache &AllSuccessors); 245 246 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 247 MachineBasicBlock *MBB); 248 249 SmallVector<MachineBasicBlock *, 4> & 250 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 251 AllSuccsCache &AllSuccessors) const; 252 253 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 254 }; 255 256 } // end anonymous namespace 257 258 char MachineSinking::ID = 0; 259 260 char &llvm::MachineSinkingID = MachineSinking::ID; 261 262 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 263 "Machine code sinking", false, false) 264 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 265 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 266 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 267 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 268 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 269 "Machine code sinking", false, false) 270 271 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 272 MachineBasicBlock *MBB) { 273 if (!MI.isCopy()) 274 return false; 275 276 Register SrcReg = MI.getOperand(1).getReg(); 277 Register DstReg = MI.getOperand(0).getReg(); 278 if (!Register::isVirtualRegister(SrcReg) || 279 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 280 return false; 281 282 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 283 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 284 if (SRC != DRC) 285 return false; 286 287 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 288 if (DefMI->isCopyLike()) 289 return false; 290 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 291 LLVM_DEBUG(dbgs() << "*** to: " << MI); 292 MRI->replaceRegWith(DstReg, SrcReg); 293 MI.eraseFromParent(); 294 295 // Conservatively, clear any kill flags, since it's possible that they are no 296 // longer correct. 297 MRI->clearKillFlags(SrcReg); 298 299 ++NumCoalesces; 300 return true; 301 } 302 303 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 304 /// occur in blocks dominated by the specified block. If any use is in the 305 /// definition block, then return false since it is never legal to move def 306 /// after uses. 307 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 308 MachineBasicBlock *MBB, 309 MachineBasicBlock *DefMBB, 310 bool &BreakPHIEdge, 311 bool &LocalUse) const { 312 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 313 314 // Ignore debug uses because debug info doesn't affect the code. 315 if (MRI->use_nodbg_empty(Reg)) 316 return true; 317 318 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 319 // into and they are all PHI nodes. In this case, machine-sink must break 320 // the critical edge first. e.g. 321 // 322 // %bb.1: 323 // Predecessors according to CFG: %bb.0 324 // ... 325 // %def = DEC64_32r %x, implicit-def dead %eflags 326 // ... 327 // JE_4 <%bb.37>, implicit %eflags 328 // Successors according to CFG: %bb.37 %bb.2 329 // 330 // %bb.2: 331 // %p = PHI %y, %bb.0, %def, %bb.1 332 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 333 MachineInstr *UseInst = MO.getParent(); 334 unsigned OpNo = UseInst->getOperandNo(&MO); 335 MachineBasicBlock *UseBlock = UseInst->getParent(); 336 return UseBlock == MBB && UseInst->isPHI() && 337 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 338 })) { 339 BreakPHIEdge = true; 340 return true; 341 } 342 343 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 344 // Determine the block of the use. 345 MachineInstr *UseInst = MO.getParent(); 346 unsigned OpNo = &MO - &UseInst->getOperand(0); 347 MachineBasicBlock *UseBlock = UseInst->getParent(); 348 if (UseInst->isPHI()) { 349 // PHI nodes use the operand in the predecessor block, not the block with 350 // the PHI. 351 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 352 } else if (UseBlock == DefMBB) { 353 LocalUse = true; 354 return false; 355 } 356 357 // Check that it dominates. 358 if (!DT->dominates(MBB, UseBlock)) 359 return false; 360 } 361 362 return true; 363 } 364 365 /// Return true if this machine instruction loads from global offset table or 366 /// constant pool. 367 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 368 assert(MI.mayLoad() && "Expected MI that loads!"); 369 370 // If we lost memory operands, conservatively assume that the instruction 371 // reads from everything.. 372 if (MI.memoperands_empty()) 373 return true; 374 375 for (MachineMemOperand *MemOp : MI.memoperands()) 376 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 377 if (PSV->isGOT() || PSV->isConstantPool()) 378 return true; 379 380 return false; 381 } 382 383 void MachineSinking::FindCycleSinkCandidates( 384 MachineCycle *Cycle, MachineBasicBlock *BB, 385 SmallVectorImpl<MachineInstr *> &Candidates) { 386 for (auto &MI : *BB) { 387 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 388 if (!TII->shouldSink(MI)) { 389 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 390 "target\n"); 391 continue; 392 } 393 if (!isCycleInvariant(Cycle, MI)) { 394 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 395 continue; 396 } 397 bool DontMoveAcrossStore = true; 398 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 399 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 400 continue; 401 } 402 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 403 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 404 continue; 405 } 406 if (MI.isConvergent()) 407 continue; 408 409 const MachineOperand &MO = MI.getOperand(0); 410 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 411 continue; 412 if (!MRI->hasOneDef(MO.getReg())) 413 continue; 414 415 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 416 Candidates.push_back(&MI); 417 } 418 } 419 420 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 421 if (skipFunction(MF.getFunction())) 422 return false; 423 424 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 425 426 TII = MF.getSubtarget().getInstrInfo(); 427 TRI = MF.getSubtarget().getRegisterInfo(); 428 MRI = &MF.getRegInfo(); 429 DT = &getAnalysis<MachineDominatorTree>(); 430 PDT = &getAnalysis<MachinePostDominatorTree>(); 431 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 432 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 433 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 434 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 435 RegClassInfo.runOnMachineFunction(MF); 436 437 bool EverMadeChange = false; 438 439 while (true) { 440 bool MadeChange = false; 441 442 // Process all basic blocks. 443 CEBCandidates.clear(); 444 ToSplit.clear(); 445 for (auto &MBB: MF) 446 MadeChange |= ProcessBlock(MBB); 447 448 // If we have anything we marked as toSplit, split it now. 449 for (auto &Pair : ToSplit) { 450 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 451 if (NewSucc != nullptr) { 452 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 453 << printMBBReference(*Pair.first) << " -- " 454 << printMBBReference(*NewSucc) << " -- " 455 << printMBBReference(*Pair.second) << '\n'); 456 if (MBFI) 457 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 458 459 MadeChange = true; 460 ++NumSplit; 461 } else 462 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 463 } 464 // If this iteration over the code changed anything, keep iterating. 465 if (!MadeChange) break; 466 EverMadeChange = true; 467 } 468 469 if (SinkInstsIntoCycle) { 470 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 471 CI->toplevel_end()); 472 for (auto *Cycle : Cycles) { 473 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 474 if (!Preheader) { 475 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 476 continue; 477 } 478 SmallVector<MachineInstr *, 8> Candidates; 479 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 480 481 // Walk the candidates in reverse order so that we start with the use 482 // of a def-use chain, if there is any. 483 // TODO: Sort the candidates using a cost-model. 484 unsigned i = 0; 485 for (MachineInstr *I : llvm::reverse(Candidates)) { 486 if (i++ == SinkIntoCycleLimit) { 487 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 488 "be analysed."); 489 break; 490 } 491 492 if (!SinkIntoCycle(Cycle, *I)) 493 break; 494 EverMadeChange = true; 495 ++NumCycleSunk; 496 } 497 } 498 } 499 500 HasStoreCache.clear(); 501 StoreInstrCache.clear(); 502 503 // Now clear any kill flags for recorded registers. 504 for (auto I : RegsToClearKillFlags) 505 MRI->clearKillFlags(I); 506 RegsToClearKillFlags.clear(); 507 508 return EverMadeChange; 509 } 510 511 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 512 // Can't sink anything out of a block that has less than two successors. 513 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 514 515 // Don't bother sinking code out of unreachable blocks. In addition to being 516 // unprofitable, it can also lead to infinite looping, because in an 517 // unreachable cycle there may be nowhere to stop. 518 if (!DT->isReachableFromEntry(&MBB)) return false; 519 520 bool MadeChange = false; 521 522 // Cache all successors, sorted by frequency info and cycle depth. 523 AllSuccsCache AllSuccessors; 524 525 // Walk the basic block bottom-up. Remember if we saw a store. 526 MachineBasicBlock::iterator I = MBB.end(); 527 --I; 528 bool ProcessedBegin, SawStore = false; 529 do { 530 MachineInstr &MI = *I; // The instruction to sink. 531 532 // Predecrement I (if it's not begin) so that it isn't invalidated by 533 // sinking. 534 ProcessedBegin = I == MBB.begin(); 535 if (!ProcessedBegin) 536 --I; 537 538 if (MI.isDebugOrPseudoInstr()) { 539 if (MI.isDebugValue()) 540 ProcessDbgInst(MI); 541 continue; 542 } 543 544 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 545 if (Joined) { 546 MadeChange = true; 547 continue; 548 } 549 550 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 551 ++NumSunk; 552 MadeChange = true; 553 } 554 555 // If we just processed the first instruction in the block, we're done. 556 } while (!ProcessedBegin); 557 558 SeenDbgUsers.clear(); 559 SeenDbgVars.clear(); 560 // recalculate the bb register pressure after sinking one BB. 561 CachedRegisterPressure.clear(); 562 563 return MadeChange; 564 } 565 566 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 567 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 568 // we know what to sink if the vreg def sinks. 569 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 570 571 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 572 MI.getDebugLoc()->getInlinedAt()); 573 bool SeenBefore = SeenDbgVars.contains(Var); 574 575 for (MachineOperand &MO : MI.debug_operands()) { 576 if (MO.isReg() && MO.getReg().isVirtual()) 577 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 578 } 579 580 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 581 SeenDbgVars.insert(Var); 582 } 583 584 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 585 MachineBasicBlock *From, 586 MachineBasicBlock *To) { 587 // FIXME: Need much better heuristics. 588 589 // If the pass has already considered breaking this edge (during this pass 590 // through the function), then let's go ahead and break it. This means 591 // sinking multiple "cheap" instructions into the same block. 592 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 593 return true; 594 595 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 596 return true; 597 598 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 599 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 600 return true; 601 602 // MI is cheap, we probably don't want to break the critical edge for it. 603 // However, if this would allow some definitions of its source operands 604 // to be sunk then it's probably worth it. 605 for (const MachineOperand &MO : MI.operands()) { 606 if (!MO.isReg() || !MO.isUse()) 607 continue; 608 Register Reg = MO.getReg(); 609 if (Reg == 0) 610 continue; 611 612 // We don't move live definitions of physical registers, 613 // so sinking their uses won't enable any opportunities. 614 if (Register::isPhysicalRegister(Reg)) 615 continue; 616 617 // If this instruction is the only user of a virtual register, 618 // check if breaking the edge will enable sinking 619 // both this instruction and the defining instruction. 620 if (MRI->hasOneNonDBGUse(Reg)) { 621 // If the definition resides in same MBB, 622 // claim it's likely we can sink these together. 623 // If definition resides elsewhere, we aren't 624 // blocking it from being sunk so don't break the edge. 625 MachineInstr *DefMI = MRI->getVRegDef(Reg); 626 if (DefMI->getParent() == MI.getParent()) 627 return true; 628 } 629 } 630 631 return false; 632 } 633 634 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 635 MachineBasicBlock *FromBB, 636 MachineBasicBlock *ToBB, 637 bool BreakPHIEdge) { 638 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 639 return false; 640 641 // Avoid breaking back edge. From == To means backedge for single BB cycle. 642 if (!SplitEdges || FromBB == ToBB) 643 return false; 644 645 MachineCycle *FromCycle = CI->getCycle(FromBB); 646 MachineCycle *ToCycle = CI->getCycle(ToBB); 647 648 // Check for backedges of more "complex" cycles. 649 if (FromCycle == ToCycle && FromCycle && 650 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 651 return false; 652 653 // It's not always legal to break critical edges and sink the computation 654 // to the edge. 655 // 656 // %bb.1: 657 // v1024 658 // Beq %bb.3 659 // <fallthrough> 660 // %bb.2: 661 // ... no uses of v1024 662 // <fallthrough> 663 // %bb.3: 664 // ... 665 // = v1024 666 // 667 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 668 // 669 // %bb.1: 670 // ... 671 // Bne %bb.2 672 // %bb.4: 673 // v1024 = 674 // B %bb.3 675 // %bb.2: 676 // ... no uses of v1024 677 // <fallthrough> 678 // %bb.3: 679 // ... 680 // = v1024 681 // 682 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 683 // flow. We need to ensure the new basic block where the computation is 684 // sunk to dominates all the uses. 685 // It's only legal to break critical edge and sink the computation to the 686 // new block if all the predecessors of "To", except for "From", are 687 // not dominated by "From". Given SSA property, this means these 688 // predecessors are dominated by "To". 689 // 690 // There is no need to do this check if all the uses are PHI nodes. PHI 691 // sources are only defined on the specific predecessor edges. 692 if (!BreakPHIEdge) { 693 for (MachineBasicBlock *Pred : ToBB->predecessors()) 694 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 695 return false; 696 } 697 698 ToSplit.insert(std::make_pair(FromBB, ToBB)); 699 700 return true; 701 } 702 703 std::vector<unsigned> & 704 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 705 // Currently to save compiling time, MBB's register pressure will not change 706 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 707 // register pressure is changed after sinking any instructions into it. 708 // FIXME: need a accurate and cheap register pressure estiminate model here. 709 auto RP = CachedRegisterPressure.find(&MBB); 710 if (RP != CachedRegisterPressure.end()) 711 return RP->second; 712 713 RegionPressure Pressure; 714 RegPressureTracker RPTracker(Pressure); 715 716 // Initialize the register pressure tracker. 717 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 718 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 719 720 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 721 MIE = MBB.instr_begin(); 722 MII != MIE; --MII) { 723 MachineInstr &MI = *std::prev(MII); 724 if (MI.isDebugInstr() || MI.isPseudoProbe()) 725 continue; 726 RegisterOperands RegOpers; 727 RegOpers.collect(MI, *TRI, *MRI, false, false); 728 RPTracker.recedeSkipDebugValues(); 729 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 730 RPTracker.recede(RegOpers); 731 } 732 733 RPTracker.closeRegion(); 734 auto It = CachedRegisterPressure.insert( 735 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 736 return It.first->second; 737 } 738 739 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 740 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 741 MachineBasicBlock *MBB, 742 MachineBasicBlock *SuccToSinkTo, 743 AllSuccsCache &AllSuccessors) { 744 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 745 746 if (MBB == SuccToSinkTo) 747 return false; 748 749 // It is profitable if SuccToSinkTo does not post dominate current block. 750 if (!PDT->dominates(SuccToSinkTo, MBB)) 751 return true; 752 753 // It is profitable to sink an instruction from a deeper cycle to a shallower 754 // cycle, even if the latter post-dominates the former (PR21115). 755 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 756 return true; 757 758 // Check if only use in post dominated block is PHI instruction. 759 bool NonPHIUse = false; 760 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 761 MachineBasicBlock *UseBlock = UseInst.getParent(); 762 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 763 NonPHIUse = true; 764 } 765 if (!NonPHIUse) 766 return true; 767 768 // If SuccToSinkTo post dominates then also it may be profitable if MI 769 // can further profitably sinked into another block in next round. 770 bool BreakPHIEdge = false; 771 // FIXME - If finding successor is compile time expensive then cache results. 772 if (MachineBasicBlock *MBB2 = 773 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 774 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 775 776 MachineCycle *MCycle = CI->getCycle(MBB); 777 778 // If the instruction is not inside a cycle, it is not profitable to sink MI to 779 // a post dominate block SuccToSinkTo. 780 if (!MCycle) 781 return false; 782 783 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 784 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 785 const int *PS = TRI->getRegClassPressureSets(RC); 786 // Get register pressure for block SuccToSinkTo. 787 std::vector<unsigned> BBRegisterPressure = 788 getBBRegisterPressure(*SuccToSinkTo); 789 for (; *PS != -1; PS++) 790 // check if any register pressure set exceeds limit in block SuccToSinkTo 791 // after sinking. 792 if (Weight + BBRegisterPressure[*PS] >= 793 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 794 return true; 795 return false; 796 }; 797 798 // If this instruction is inside a Cycle and sinking this instruction can make 799 // more registers live range shorten, it is still prifitable. 800 for (const MachineOperand &MO : MI.operands()) { 801 // Ignore non-register operands. 802 if (!MO.isReg()) 803 continue; 804 Register Reg = MO.getReg(); 805 if (Reg == 0) 806 continue; 807 808 if (Register::isPhysicalRegister(Reg)) { 809 if (MO.isUse() && 810 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 811 continue; 812 813 // Don't handle non-constant and non-ignorable physical register. 814 return false; 815 } 816 817 // Users for the defs are all dominated by SuccToSinkTo. 818 if (MO.isDef()) { 819 // This def register's live range is shortened after sinking. 820 bool LocalUse = false; 821 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 822 LocalUse)) 823 return false; 824 } else { 825 MachineInstr *DefMI = MRI->getVRegDef(Reg); 826 if (!DefMI) 827 continue; 828 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 829 // DefMI is defined outside of cycle. There should be no live range 830 // impact for this operand. Defination outside of cycle means: 831 // 1: defination is outside of cycle. 832 // 2: defination is in this cycle, but it is a PHI in the cycle header. 833 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 834 Cycle->getHeader() == DefMI->getParent())) 835 continue; 836 // The DefMI is defined inside the cycle. 837 // If sinking this operand makes some register pressure set exceed limit, 838 // it is not profitable. 839 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 840 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 841 return false; 842 } 843 } 844 } 845 846 // If MI is in cycle and all its operands are alive across the whole cycle or 847 // if no operand sinking make register pressure set exceed limit, it is 848 // profitable to sink MI. 849 return true; 850 } 851 852 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 853 /// computing it if it was not already cached. 854 SmallVector<MachineBasicBlock *, 4> & 855 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 856 AllSuccsCache &AllSuccessors) const { 857 // Do we have the sorted successors in cache ? 858 auto Succs = AllSuccessors.find(MBB); 859 if (Succs != AllSuccessors.end()) 860 return Succs->second; 861 862 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 863 864 // Handle cases where sinking can happen but where the sink point isn't a 865 // successor. For example: 866 // 867 // x = computation 868 // if () {} else {} 869 // use x 870 // 871 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 872 // DomTree children of MBB that have MBB as immediate dominator are added. 873 if (DTChild->getIDom()->getBlock() == MI.getParent() && 874 // Skip MBBs already added to the AllSuccs vector above. 875 !MBB->isSuccessor(DTChild->getBlock())) 876 AllSuccs.push_back(DTChild->getBlock()); 877 } 878 879 // Sort Successors according to their cycle depth or block frequency info. 880 llvm::stable_sort( 881 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 882 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 883 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 884 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 885 return HasBlockFreq ? LHSFreq < RHSFreq 886 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 887 }); 888 889 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 890 891 return it.first->second; 892 } 893 894 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 895 MachineBasicBlock * 896 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 897 bool &BreakPHIEdge, 898 AllSuccsCache &AllSuccessors) { 899 assert (MBB && "Invalid MachineBasicBlock!"); 900 901 // loop over all the operands of the specified instruction. If there is 902 // anything we can't handle, bail out. 903 904 // SuccToSinkTo - This is the successor to sink this instruction to, once we 905 // decide. 906 MachineBasicBlock *SuccToSinkTo = nullptr; 907 for (const MachineOperand &MO : MI.operands()) { 908 if (!MO.isReg()) continue; // Ignore non-register operands. 909 910 Register Reg = MO.getReg(); 911 if (Reg == 0) continue; 912 913 if (Register::isPhysicalRegister(Reg)) { 914 if (MO.isUse()) { 915 // If the physreg has no defs anywhere, it's just an ambient register 916 // and we can freely move its uses. Alternatively, if it's allocatable, 917 // it could get allocated to something with a def during allocation. 918 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 919 return nullptr; 920 } else if (!MO.isDead()) { 921 // A def that isn't dead. We can't move it. 922 return nullptr; 923 } 924 } else { 925 // Virtual register uses are always safe to sink. 926 if (MO.isUse()) continue; 927 928 // If it's not safe to move defs of the register class, then abort. 929 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 930 return nullptr; 931 932 // Virtual register defs can only be sunk if all their uses are in blocks 933 // dominated by one of the successors. 934 if (SuccToSinkTo) { 935 // If a previous operand picked a block to sink to, then this operand 936 // must be sinkable to the same block. 937 bool LocalUse = false; 938 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 939 BreakPHIEdge, LocalUse)) 940 return nullptr; 941 942 continue; 943 } 944 945 // Otherwise, we should look at all the successors and decide which one 946 // we should sink to. If we have reliable block frequency information 947 // (frequency != 0) available, give successors with smaller frequencies 948 // higher priority, otherwise prioritize smaller cycle depths. 949 for (MachineBasicBlock *SuccBlock : 950 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 951 bool LocalUse = false; 952 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 953 BreakPHIEdge, LocalUse)) { 954 SuccToSinkTo = SuccBlock; 955 break; 956 } 957 if (LocalUse) 958 // Def is used locally, it's never safe to move this def. 959 return nullptr; 960 } 961 962 // If we couldn't find a block to sink to, ignore this instruction. 963 if (!SuccToSinkTo) 964 return nullptr; 965 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 966 return nullptr; 967 } 968 } 969 970 // It is not possible to sink an instruction into its own block. This can 971 // happen with cycles. 972 if (MBB == SuccToSinkTo) 973 return nullptr; 974 975 // It's not safe to sink instructions to EH landing pad. Control flow into 976 // landing pad is implicitly defined. 977 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 978 return nullptr; 979 980 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 981 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 982 // the source block (which this code does not yet do). So for now, forbid 983 // doing so. 984 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 985 return nullptr; 986 987 return SuccToSinkTo; 988 } 989 990 /// Return true if MI is likely to be usable as a memory operation by the 991 /// implicit null check optimization. 992 /// 993 /// This is a "best effort" heuristic, and should not be relied upon for 994 /// correctness. This returning true does not guarantee that the implicit null 995 /// check optimization is legal over MI, and this returning false does not 996 /// guarantee MI cannot possibly be used to do a null check. 997 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 998 const TargetInstrInfo *TII, 999 const TargetRegisterInfo *TRI) { 1000 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1001 1002 auto *MBB = MI.getParent(); 1003 if (MBB->pred_size() != 1) 1004 return false; 1005 1006 auto *PredMBB = *MBB->pred_begin(); 1007 auto *PredBB = PredMBB->getBasicBlock(); 1008 1009 // Frontends that don't use implicit null checks have no reason to emit 1010 // branches with make.implicit metadata, and this function should always 1011 // return false for them. 1012 if (!PredBB || 1013 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1014 return false; 1015 1016 const MachineOperand *BaseOp; 1017 int64_t Offset; 1018 bool OffsetIsScalable; 1019 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1020 return false; 1021 1022 if (!BaseOp->isReg()) 1023 return false; 1024 1025 if (!(MI.mayLoad() && !MI.isPredicable())) 1026 return false; 1027 1028 MachineBranchPredicate MBP; 1029 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1030 return false; 1031 1032 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1033 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1034 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1035 MBP.LHS.getReg() == BaseOp->getReg(); 1036 } 1037 1038 /// If the sunk instruction is a copy, try to forward the copy instead of 1039 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1040 /// there's any subregister weirdness involved. Returns true if copy 1041 /// propagation occurred. 1042 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1043 Register Reg) { 1044 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1045 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1046 1047 // Copy DBG_VALUE operand and set the original to undef. We then check to 1048 // see whether this is something that can be copy-forwarded. If it isn't, 1049 // continue around the loop. 1050 1051 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1052 auto CopyOperands = TII.isCopyInstr(SinkInst); 1053 if (!CopyOperands) 1054 return false; 1055 SrcMO = CopyOperands->Source; 1056 DstMO = CopyOperands->Destination; 1057 1058 // Check validity of forwarding this copy. 1059 bool PostRA = MRI.getNumVirtRegs() == 0; 1060 1061 // Trying to forward between physical and virtual registers is too hard. 1062 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1063 return false; 1064 1065 // Only try virtual register copy-forwarding before regalloc, and physical 1066 // register copy-forwarding after regalloc. 1067 bool arePhysRegs = !Reg.isVirtual(); 1068 if (arePhysRegs != PostRA) 1069 return false; 1070 1071 // Pre-regalloc, only forward if all subregisters agree (or there are no 1072 // subregs at all). More analysis might recover some forwardable copies. 1073 if (!PostRA) 1074 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1075 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1076 DbgMO.getSubReg() != DstMO->getSubReg()) 1077 return false; 1078 1079 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1080 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1081 // matches the copy destination. 1082 if (PostRA && Reg != DstMO->getReg()) 1083 return false; 1084 1085 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1086 DbgMO.setReg(SrcMO->getReg()); 1087 DbgMO.setSubReg(SrcMO->getSubReg()); 1088 } 1089 return true; 1090 } 1091 1092 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1093 /// Sink an instruction and its associated debug instructions. 1094 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1095 MachineBasicBlock::iterator InsertPos, 1096 ArrayRef<MIRegs> DbgValuesToSink) { 1097 // If we cannot find a location to use (merge with), then we erase the debug 1098 // location to prevent debug-info driven tools from potentially reporting 1099 // wrong location information. 1100 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1101 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1102 InsertPos->getDebugLoc())); 1103 else 1104 MI.setDebugLoc(DebugLoc()); 1105 1106 // Move the instruction. 1107 MachineBasicBlock *ParentBlock = MI.getParent(); 1108 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1109 ++MachineBasicBlock::iterator(MI)); 1110 1111 // Sink a copy of debug users to the insert position. Mark the original 1112 // DBG_VALUE location as 'undef', indicating that any earlier variable 1113 // location should be terminated as we've optimised away the value at this 1114 // point. 1115 for (const auto &DbgValueToSink : DbgValuesToSink) { 1116 MachineInstr *DbgMI = DbgValueToSink.first; 1117 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1118 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1119 1120 bool PropagatedAllSunkOps = true; 1121 for (unsigned Reg : DbgValueToSink.second) { 1122 if (DbgMI->hasDebugOperandForReg(Reg)) { 1123 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1124 PropagatedAllSunkOps = false; 1125 break; 1126 } 1127 } 1128 } 1129 if (!PropagatedAllSunkOps) 1130 DbgMI->setDebugValueUndef(); 1131 } 1132 } 1133 1134 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1135 /// and To. 1136 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1137 MachineBasicBlock *To, MachineInstr &MI) { 1138 // Make sure From and To are in straight line which means From dominates To 1139 // and To post dominates From. 1140 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1141 return true; 1142 1143 auto BlockPair = std::make_pair(From, To); 1144 1145 // Does these two blocks pair be queried before and have a definite cached 1146 // result? 1147 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1148 return HasStoreCache[BlockPair]; 1149 1150 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1151 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1152 return I->mayAlias(AA, MI, false); 1153 }); 1154 1155 bool SawStore = false; 1156 bool HasAliasedStore = false; 1157 DenseSet<MachineBasicBlock *> HandledBlocks; 1158 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1159 // Go through all reachable blocks from From. 1160 for (MachineBasicBlock *BB : depth_first(From)) { 1161 // We insert the instruction at the start of block To, so no need to worry 1162 // about stores inside To. 1163 // Store in block From should be already considered when just enter function 1164 // SinkInstruction. 1165 if (BB == To || BB == From) 1166 continue; 1167 1168 // We already handle this BB in previous iteration. 1169 if (HandledBlocks.count(BB)) 1170 continue; 1171 1172 HandledBlocks.insert(BB); 1173 // To post dominates BB, it must be a path from block From. 1174 if (PDT->dominates(To, BB)) { 1175 if (!HandledDomBlocks.count(BB)) 1176 HandledDomBlocks.insert(BB); 1177 1178 // If this BB is too big or the block number in straight line between From 1179 // and To is too big, stop searching to save compiling time. 1180 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1181 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1182 for (auto *DomBB : HandledDomBlocks) { 1183 if (DomBB != BB && DT->dominates(DomBB, BB)) 1184 HasStoreCache[std::make_pair(DomBB, To)] = true; 1185 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1186 HasStoreCache[std::make_pair(From, DomBB)] = true; 1187 } 1188 HasStoreCache[BlockPair] = true; 1189 return true; 1190 } 1191 1192 for (MachineInstr &I : *BB) { 1193 // Treat as alias conservatively for a call or an ordered memory 1194 // operation. 1195 if (I.isCall() || I.hasOrderedMemoryRef()) { 1196 for (auto *DomBB : HandledDomBlocks) { 1197 if (DomBB != BB && DT->dominates(DomBB, BB)) 1198 HasStoreCache[std::make_pair(DomBB, To)] = true; 1199 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1200 HasStoreCache[std::make_pair(From, DomBB)] = true; 1201 } 1202 HasStoreCache[BlockPair] = true; 1203 return true; 1204 } 1205 1206 if (I.mayStore()) { 1207 SawStore = true; 1208 // We still have chance to sink MI if all stores between are not 1209 // aliased to MI. 1210 // Cache all store instructions, so that we don't need to go through 1211 // all From reachable blocks for next load instruction. 1212 if (I.mayAlias(AA, MI, false)) 1213 HasAliasedStore = true; 1214 StoreInstrCache[BlockPair].push_back(&I); 1215 } 1216 } 1217 } 1218 } 1219 // If there is no store at all, cache the result. 1220 if (!SawStore) 1221 HasStoreCache[BlockPair] = false; 1222 return HasAliasedStore; 1223 } 1224 1225 /// Sink instructions into cycles if profitable. This especially tries to 1226 /// prevent register spills caused by register pressure if there is little to no 1227 /// overhead moving instructions into cycles. 1228 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1229 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1230 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1231 assert(Preheader && "Cycle sink needs a preheader block"); 1232 MachineBasicBlock *SinkBlock = nullptr; 1233 bool CanSink = true; 1234 const MachineOperand &MO = I.getOperand(0); 1235 1236 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1237 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1238 if (!Cycle->contains(MI.getParent())) { 1239 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1240 CanSink = false; 1241 break; 1242 } 1243 1244 // FIXME: Come up with a proper cost model that estimates whether sinking 1245 // the instruction (and thus possibly executing it on every cycle 1246 // iteration) is more expensive than a register. 1247 // For now assumes that copies are cheap and thus almost always worth it. 1248 if (!MI.isCopy()) { 1249 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1250 CanSink = false; 1251 break; 1252 } 1253 if (!SinkBlock) { 1254 SinkBlock = MI.getParent(); 1255 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1256 << printMBBReference(*SinkBlock) << "\n"); 1257 continue; 1258 } 1259 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1260 if (!SinkBlock) { 1261 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1262 CanSink = false; 1263 break; 1264 } 1265 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1266 printMBBReference(*SinkBlock) << "\n"); 1267 } 1268 1269 if (!CanSink) { 1270 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1271 return false; 1272 } 1273 if (!SinkBlock) { 1274 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1275 return false; 1276 } 1277 if (SinkBlock == Preheader) { 1278 LLVM_DEBUG( 1279 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1280 return false; 1281 } 1282 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) { 1283 LLVM_DEBUG( 1284 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1285 return false; 1286 } 1287 1288 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1289 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1290 I); 1291 1292 // The instruction is moved from its basic block, so do not retain the 1293 // debug information. 1294 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1295 I.setDebugLoc(DebugLoc()); 1296 return true; 1297 } 1298 1299 /// Return true if a target defined block prologue instruction interferes 1300 /// with a sink candidate. 1301 static bool blockPrologueInterferes(MachineBasicBlock *BB, 1302 MachineBasicBlock::iterator End, 1303 MachineInstr &MI, 1304 const TargetRegisterInfo *TRI, 1305 const TargetInstrInfo *TII, 1306 const MachineRegisterInfo *MRI) { 1307 if (BB->begin() == End) 1308 return false; // no prologue 1309 for (MachineBasicBlock::iterator PI = BB->getFirstNonPHI(); PI != End; ++PI) { 1310 // Only check target defined prologue instructions 1311 if (!TII->isBasicBlockPrologue(*PI)) 1312 continue; 1313 for (auto &MO : MI.operands()) { 1314 if (!MO.isReg()) 1315 continue; 1316 Register Reg = MO.getReg(); 1317 if (!Reg) 1318 continue; 1319 if (MO.isUse()) { 1320 if (Register::isPhysicalRegister(Reg) && 1321 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 1322 continue; 1323 if (PI->modifiesRegister(Reg, TRI)) 1324 return true; 1325 } else { 1326 if (PI->readsRegister(Reg, TRI)) 1327 return true; 1328 // Check for interference with non-dead defs 1329 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 1330 if (DefOp && !DefOp->isDead()) 1331 return true; 1332 } 1333 } 1334 } 1335 return false; 1336 } 1337 1338 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1339 /// instruction out of its current block into a successor. 1340 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1341 AllSuccsCache &AllSuccessors) { 1342 // Don't sink instructions that the target prefers not to sink. 1343 if (!TII->shouldSink(MI)) 1344 return false; 1345 1346 // Check if it's safe to move the instruction. 1347 if (!MI.isSafeToMove(AA, SawStore)) 1348 return false; 1349 1350 // Convergent operations may not be made control-dependent on additional 1351 // values. 1352 if (MI.isConvergent()) 1353 return false; 1354 1355 // Don't break implicit null checks. This is a performance heuristic, and not 1356 // required for correctness. 1357 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1358 return false; 1359 1360 // FIXME: This should include support for sinking instructions within the 1361 // block they are currently in to shorten the live ranges. We often get 1362 // instructions sunk into the top of a large block, but it would be better to 1363 // also sink them down before their first use in the block. This xform has to 1364 // be careful not to *increase* register pressure though, e.g. sinking 1365 // "x = y + z" down if it kills y and z would increase the live ranges of y 1366 // and z and only shrink the live range of x. 1367 1368 bool BreakPHIEdge = false; 1369 MachineBasicBlock *ParentBlock = MI.getParent(); 1370 MachineBasicBlock *SuccToSinkTo = 1371 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1372 1373 // If there are no outputs, it must have side-effects. 1374 if (!SuccToSinkTo) 1375 return false; 1376 1377 // If the instruction to move defines a dead physical register which is live 1378 // when leaving the basic block, don't move it because it could turn into a 1379 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1380 for (const MachineOperand &MO : MI.operands()) { 1381 if (!MO.isReg() || MO.isUse()) 1382 continue; 1383 Register Reg = MO.getReg(); 1384 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1385 continue; 1386 if (SuccToSinkTo->isLiveIn(Reg)) 1387 return false; 1388 } 1389 1390 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1391 1392 // If the block has multiple predecessors, this is a critical edge. 1393 // Decide if we can sink along it or need to break the edge. 1394 if (SuccToSinkTo->pred_size() > 1) { 1395 // We cannot sink a load across a critical edge - there may be stores in 1396 // other code paths. 1397 bool TryBreak = false; 1398 bool Store = 1399 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1400 if (!MI.isSafeToMove(AA, Store)) { 1401 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1402 TryBreak = true; 1403 } 1404 1405 // We don't want to sink across a critical edge if we don't dominate the 1406 // successor. We could be introducing calculations to new code paths. 1407 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1408 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1409 TryBreak = true; 1410 } 1411 1412 // Don't sink instructions into a cycle. 1413 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1414 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1415 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1416 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1417 TryBreak = true; 1418 } 1419 1420 // Otherwise we are OK with sinking along a critical edge. 1421 if (!TryBreak) 1422 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1423 else { 1424 // Mark this edge as to be split. 1425 // If the edge can actually be split, the next iteration of the main loop 1426 // will sink MI in the newly created block. 1427 bool Status = 1428 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1429 if (!Status) 1430 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1431 "break critical edge\n"); 1432 // The instruction will not be sunk this time. 1433 return false; 1434 } 1435 } 1436 1437 if (BreakPHIEdge) { 1438 // BreakPHIEdge is true if all the uses are in the successor MBB being 1439 // sunken into and they are all PHI nodes. In this case, machine-sink must 1440 // break the critical edge first. 1441 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1442 SuccToSinkTo, BreakPHIEdge); 1443 if (!Status) 1444 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1445 "break critical edge\n"); 1446 // The instruction will not be sunk this time. 1447 return false; 1448 } 1449 1450 // Determine where to insert into. Skip phi nodes. 1451 MachineBasicBlock::iterator InsertPos = 1452 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1453 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1454 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1455 return false; 1456 } 1457 1458 // Collect debug users of any vreg that this inst defines. 1459 SmallVector<MIRegs, 4> DbgUsersToSink; 1460 for (auto &MO : MI.operands()) { 1461 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1462 continue; 1463 if (!SeenDbgUsers.count(MO.getReg())) 1464 continue; 1465 1466 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1467 auto &Users = SeenDbgUsers[MO.getReg()]; 1468 for (auto &User : Users) { 1469 MachineInstr *DbgMI = User.getPointer(); 1470 if (User.getInt()) { 1471 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1472 // it, it can't be recovered. Set it undef. 1473 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1474 DbgMI->setDebugValueUndef(); 1475 } else { 1476 DbgUsersToSink.push_back( 1477 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1478 } 1479 } 1480 } 1481 1482 // After sinking, some debug users may not be dominated any more. If possible, 1483 // copy-propagate their operands. As it's expensive, don't do this if there's 1484 // no debuginfo in the program. 1485 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1486 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1487 1488 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1489 1490 // Conservatively, clear any kill flags, since it's possible that they are no 1491 // longer correct. 1492 // Note that we have to clear the kill flags for any register this instruction 1493 // uses as we may sink over another instruction which currently kills the 1494 // used registers. 1495 for (MachineOperand &MO : MI.operands()) { 1496 if (MO.isReg() && MO.isUse()) 1497 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1498 } 1499 1500 return true; 1501 } 1502 1503 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1504 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1505 assert(MI.isCopy()); 1506 assert(MI.getOperand(1).isReg()); 1507 1508 // Enumerate all users of vreg operands that are def'd. Skip those that will 1509 // be sunk. For the rest, if they are not dominated by the block we will sink 1510 // MI into, propagate the copy source to them. 1511 SmallVector<MachineInstr *, 4> DbgDefUsers; 1512 SmallVector<Register, 4> DbgUseRegs; 1513 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1514 for (auto &MO : MI.operands()) { 1515 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1516 continue; 1517 DbgUseRegs.push_back(MO.getReg()); 1518 for (auto &User : MRI.use_instructions(MO.getReg())) { 1519 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1520 continue; 1521 1522 // If is in same block, will either sink or be use-before-def. 1523 if (User.getParent() == MI.getParent()) 1524 continue; 1525 1526 assert(User.hasDebugOperandForReg(MO.getReg()) && 1527 "DBG_VALUE user of vreg, but has no operand for it?"); 1528 DbgDefUsers.push_back(&User); 1529 } 1530 } 1531 1532 // Point the users of this copy that are no longer dominated, at the source 1533 // of the copy. 1534 for (auto *User : DbgDefUsers) { 1535 for (auto &Reg : DbgUseRegs) { 1536 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1537 DbgOp.setReg(MI.getOperand(1).getReg()); 1538 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1539 } 1540 } 1541 } 1542 } 1543 1544 //===----------------------------------------------------------------------===// 1545 // This pass is not intended to be a replacement or a complete alternative 1546 // for the pre-ra machine sink pass. It is only designed to sink COPY 1547 // instructions which should be handled after RA. 1548 // 1549 // This pass sinks COPY instructions into a successor block, if the COPY is not 1550 // used in the current block and the COPY is live-in to a single successor 1551 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1552 // copy on paths where their results aren't needed. This also exposes 1553 // additional opportunites for dead copy elimination and shrink wrapping. 1554 // 1555 // These copies were either not handled by or are inserted after the MachineSink 1556 // pass. As an example of the former case, the MachineSink pass cannot sink 1557 // COPY instructions with allocatable source registers; for AArch64 these type 1558 // of copy instructions are frequently used to move function parameters (PhyReg) 1559 // into virtual registers in the entry block. 1560 // 1561 // For the machine IR below, this pass will sink %w19 in the entry into its 1562 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1563 // %bb.0: 1564 // %wzr = SUBSWri %w1, 1 1565 // %w19 = COPY %w0 1566 // Bcc 11, %bb.2 1567 // %bb.1: 1568 // Live Ins: %w19 1569 // BL @fun 1570 // %w0 = ADDWrr %w0, %w19 1571 // RET %w0 1572 // %bb.2: 1573 // %w0 = COPY %wzr 1574 // RET %w0 1575 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1576 // able to see %bb.0 as a candidate. 1577 //===----------------------------------------------------------------------===// 1578 namespace { 1579 1580 class PostRAMachineSinking : public MachineFunctionPass { 1581 public: 1582 bool runOnMachineFunction(MachineFunction &MF) override; 1583 1584 static char ID; 1585 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1586 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1587 1588 void getAnalysisUsage(AnalysisUsage &AU) const override { 1589 AU.setPreservesCFG(); 1590 MachineFunctionPass::getAnalysisUsage(AU); 1591 } 1592 1593 MachineFunctionProperties getRequiredProperties() const override { 1594 return MachineFunctionProperties().set( 1595 MachineFunctionProperties::Property::NoVRegs); 1596 } 1597 1598 private: 1599 /// Track which register units have been modified and used. 1600 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1601 1602 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1603 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1604 /// consists of a pointer to the instruction itself, and a vector of registers 1605 /// referred to by the instruction that overlap the key register unit. 1606 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1607 1608 /// Sink Copy instructions unused in the same block close to their uses in 1609 /// successors. 1610 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1611 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1612 }; 1613 } // namespace 1614 1615 char PostRAMachineSinking::ID = 0; 1616 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1617 1618 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1619 "PostRA Machine Sink", false, false) 1620 1621 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1622 const TargetRegisterInfo *TRI) { 1623 LiveRegUnits LiveInRegUnits(*TRI); 1624 LiveInRegUnits.addLiveIns(MBB); 1625 return !LiveInRegUnits.available(Reg); 1626 } 1627 1628 static MachineBasicBlock * 1629 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1630 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1631 unsigned Reg, const TargetRegisterInfo *TRI) { 1632 // Try to find a single sinkable successor in which Reg is live-in. 1633 MachineBasicBlock *BB = nullptr; 1634 for (auto *SI : SinkableBBs) { 1635 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1636 // If BB is set here, Reg is live-in to at least two sinkable successors, 1637 // so quit. 1638 if (BB) 1639 return nullptr; 1640 BB = SI; 1641 } 1642 } 1643 // Reg is not live-in to any sinkable successors. 1644 if (!BB) 1645 return nullptr; 1646 1647 // Check if any register aliased with Reg is live-in in other successors. 1648 for (auto *SI : CurBB.successors()) { 1649 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1650 return nullptr; 1651 } 1652 return BB; 1653 } 1654 1655 static MachineBasicBlock * 1656 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1657 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1658 ArrayRef<unsigned> DefedRegsInCopy, 1659 const TargetRegisterInfo *TRI) { 1660 MachineBasicBlock *SingleBB = nullptr; 1661 for (auto DefReg : DefedRegsInCopy) { 1662 MachineBasicBlock *BB = 1663 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1664 if (!BB || (SingleBB && SingleBB != BB)) 1665 return nullptr; 1666 SingleBB = BB; 1667 } 1668 return SingleBB; 1669 } 1670 1671 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1672 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1673 LiveRegUnits &UsedRegUnits, 1674 const TargetRegisterInfo *TRI) { 1675 for (auto U : UsedOpsInCopy) { 1676 MachineOperand &MO = MI->getOperand(U); 1677 Register SrcReg = MO.getReg(); 1678 if (!UsedRegUnits.available(SrcReg)) { 1679 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1680 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1681 if (UI.killsRegister(SrcReg, TRI)) { 1682 UI.clearRegisterKills(SrcReg, TRI); 1683 MO.setIsKill(true); 1684 break; 1685 } 1686 } 1687 } 1688 } 1689 } 1690 1691 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1692 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1693 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1694 MachineFunction &MF = *SuccBB->getParent(); 1695 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1696 for (unsigned DefReg : DefedRegsInCopy) 1697 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1698 SuccBB->removeLiveIn(*S); 1699 for (auto U : UsedOpsInCopy) { 1700 Register SrcReg = MI->getOperand(U).getReg(); 1701 LaneBitmask Mask; 1702 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1703 Mask |= (*S).second; 1704 } 1705 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1706 } 1707 SuccBB->sortUniqueLiveIns(); 1708 } 1709 1710 static bool hasRegisterDependency(MachineInstr *MI, 1711 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1712 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1713 LiveRegUnits &ModifiedRegUnits, 1714 LiveRegUnits &UsedRegUnits) { 1715 bool HasRegDependency = false; 1716 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1717 MachineOperand &MO = MI->getOperand(i); 1718 if (!MO.isReg()) 1719 continue; 1720 Register Reg = MO.getReg(); 1721 if (!Reg) 1722 continue; 1723 if (MO.isDef()) { 1724 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1725 HasRegDependency = true; 1726 break; 1727 } 1728 DefedRegsInCopy.push_back(Reg); 1729 1730 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1731 // For example, we can ignore modifications in reg with undef. However, 1732 // it's not perfectly clear if skipping the internal read is safe in all 1733 // other targets. 1734 } else if (MO.isUse()) { 1735 if (!ModifiedRegUnits.available(Reg)) { 1736 HasRegDependency = true; 1737 break; 1738 } 1739 UsedOpsInCopy.push_back(i); 1740 } 1741 } 1742 return HasRegDependency; 1743 } 1744 1745 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1746 MachineFunction &MF, 1747 const TargetRegisterInfo *TRI, 1748 const TargetInstrInfo *TII) { 1749 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1750 // FIXME: For now, we sink only to a successor which has a single predecessor 1751 // so that we can directly sink COPY instructions to the successor without 1752 // adding any new block or branch instruction. 1753 for (MachineBasicBlock *SI : CurBB.successors()) 1754 if (!SI->livein_empty() && SI->pred_size() == 1) 1755 SinkableBBs.insert(SI); 1756 1757 if (SinkableBBs.empty()) 1758 return false; 1759 1760 bool Changed = false; 1761 1762 // Track which registers have been modified and used between the end of the 1763 // block and the current instruction. 1764 ModifiedRegUnits.clear(); 1765 UsedRegUnits.clear(); 1766 SeenDbgInstrs.clear(); 1767 1768 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 1769 // Track the operand index for use in Copy. 1770 SmallVector<unsigned, 2> UsedOpsInCopy; 1771 // Track the register number defed in Copy. 1772 SmallVector<unsigned, 2> DefedRegsInCopy; 1773 1774 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1775 // for DBG_VALUEs later, record them when they're encountered. 1776 if (MI.isDebugValue()) { 1777 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 1778 bool IsValid = true; 1779 for (MachineOperand &MO : MI.debug_operands()) { 1780 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1781 // Bail if we can already tell the sink would be rejected, rather 1782 // than needlessly accumulating lots of DBG_VALUEs. 1783 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1784 ModifiedRegUnits, UsedRegUnits)) { 1785 IsValid = false; 1786 break; 1787 } 1788 1789 // Record debug use of each reg unit. 1790 for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); 1791 ++RI) 1792 MIUnits[*RI].push_back(MO.getReg()); 1793 } 1794 } 1795 if (IsValid) { 1796 for (auto &RegOps : MIUnits) 1797 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 1798 std::move(RegOps.second)); 1799 } 1800 continue; 1801 } 1802 1803 if (MI.isDebugOrPseudoInstr()) 1804 continue; 1805 1806 // Do not move any instruction across function call. 1807 if (MI.isCall()) 1808 return false; 1809 1810 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 1811 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1812 TRI); 1813 continue; 1814 } 1815 1816 // Don't sink the COPY if it would violate a register dependency. 1817 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1818 ModifiedRegUnits, UsedRegUnits)) { 1819 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1820 TRI); 1821 continue; 1822 } 1823 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1824 "Unexpect SrcReg or DefReg"); 1825 MachineBasicBlock *SuccBB = 1826 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1827 // Don't sink if we cannot find a single sinkable successor in which Reg 1828 // is live-in. 1829 if (!SuccBB) { 1830 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1831 TRI); 1832 continue; 1833 } 1834 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1835 "Unexpected predecessor"); 1836 1837 // Collect DBG_VALUEs that must sink with this copy. We've previously 1838 // recorded which reg units that DBG_VALUEs read, if this instruction 1839 // writes any of those units then the corresponding DBG_VALUEs must sink. 1840 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 1841 for (auto &MO : MI.operands()) { 1842 if (!MO.isReg() || !MO.isDef()) 1843 continue; 1844 1845 for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); ++RI) { 1846 for (const auto &MIRegs : SeenDbgInstrs.lookup(*RI)) { 1847 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 1848 for (unsigned Reg : MIRegs.second) 1849 Regs.push_back(Reg); 1850 } 1851 } 1852 } 1853 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 1854 1855 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 1856 1857 MachineBasicBlock::iterator InsertPos = 1858 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 1859 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 1860 LLVM_DEBUG( 1861 dbgs() << " *** Not sinking: prologue interference\n"); 1862 continue; 1863 } 1864 1865 // Clear the kill flag if SrcReg is killed between MI and the end of the 1866 // block. 1867 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1868 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 1869 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1870 1871 Changed = true; 1872 ++NumPostRACopySink; 1873 } 1874 return Changed; 1875 } 1876 1877 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1878 if (skipFunction(MF.getFunction())) 1879 return false; 1880 1881 bool Changed = false; 1882 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1883 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1884 1885 ModifiedRegUnits.init(*TRI); 1886 UsedRegUnits.init(*TRI); 1887 for (auto &BB : MF) 1888 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1889 1890 return Changed; 1891 } 1892