1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DEBUG_TYPE "machine-sink" 20 #include "llvm/CodeGen/Passes.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Target/TargetRegisterInfo.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 static cl::opt<bool> 36 SplitEdges("machine-sink-split", 37 cl::desc("Split critical edges during machine sinking"), 38 cl::init(true), cl::Hidden); 39 40 STATISTIC(NumSunk, "Number of machine instructions sunk"); 41 STATISTIC(NumSplit, "Number of critical edges split"); 42 STATISTIC(NumCoalesces, "Number of copies coalesced"); 43 44 namespace { 45 class MachineSinking : public MachineFunctionPass { 46 const TargetInstrInfo *TII; 47 const TargetRegisterInfo *TRI; 48 MachineRegisterInfo *MRI; // Machine register information 49 MachineDominatorTree *DT; // Machine dominator tree 50 MachineLoopInfo *LI; 51 AliasAnalysis *AA; 52 BitVector AllocatableSet; // Which physregs are allocatable? 53 54 // Remember which edges have been considered for breaking. 55 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> 56 CEBCandidates; 57 58 public: 59 static char ID; // Pass identification 60 MachineSinking() : MachineFunctionPass(ID) { 61 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 62 } 63 64 virtual bool runOnMachineFunction(MachineFunction &MF); 65 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 AU.setPreservesCFG(); 68 MachineFunctionPass::getAnalysisUsage(AU); 69 AU.addRequired<AliasAnalysis>(); 70 AU.addRequired<MachineDominatorTree>(); 71 AU.addRequired<MachineLoopInfo>(); 72 AU.addPreserved<MachineDominatorTree>(); 73 AU.addPreserved<MachineLoopInfo>(); 74 } 75 76 virtual void releaseMemory() { 77 CEBCandidates.clear(); 78 } 79 80 private: 81 bool ProcessBlock(MachineBasicBlock &MBB); 82 bool isWorthBreakingCriticalEdge(MachineInstr *MI, 83 MachineBasicBlock *From, 84 MachineBasicBlock *To); 85 MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI, 86 MachineBasicBlock *From, 87 MachineBasicBlock *To, 88 bool BreakPHIEdge); 89 bool SinkInstruction(MachineInstr *MI, bool &SawStore); 90 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 91 MachineBasicBlock *DefMBB, 92 bool &BreakPHIEdge, bool &LocalUse) const; 93 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB, 94 bool &BreakPHIEdge); 95 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 96 MachineBasicBlock *MBB, 97 MachineBasicBlock *SuccToSinkTo); 98 99 bool PerformTrivialForwardCoalescing(MachineInstr *MI, 100 MachineBasicBlock *MBB); 101 }; 102 } // end anonymous namespace 103 104 char MachineSinking::ID = 0; 105 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 106 "Machine code sinking", false, false) 107 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 108 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 109 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 110 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 111 "Machine code sinking", false, false) 112 113 FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); } 114 115 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, 116 MachineBasicBlock *MBB) { 117 if (!MI->isCopy()) 118 return false; 119 120 unsigned SrcReg = MI->getOperand(1).getReg(); 121 unsigned DstReg = MI->getOperand(0).getReg(); 122 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 123 !TargetRegisterInfo::isVirtualRegister(DstReg) || 124 !MRI->hasOneNonDBGUse(SrcReg)) 125 return false; 126 127 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 128 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 129 if (SRC != DRC) 130 return false; 131 132 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 133 if (DefMI->isCopyLike()) 134 return false; 135 DEBUG(dbgs() << "Coalescing: " << *DefMI); 136 DEBUG(dbgs() << "*** to: " << *MI); 137 MRI->replaceRegWith(DstReg, SrcReg); 138 MI->eraseFromParent(); 139 ++NumCoalesces; 140 return true; 141 } 142 143 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 144 /// occur in blocks dominated by the specified block. If any use is in the 145 /// definition block, then return false since it is never legal to move def 146 /// after uses. 147 bool 148 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 149 MachineBasicBlock *MBB, 150 MachineBasicBlock *DefMBB, 151 bool &BreakPHIEdge, 152 bool &LocalUse) const { 153 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 154 "Only makes sense for vregs"); 155 156 // Ignore debug uses because debug info doesn't affect the code. 157 if (MRI->use_nodbg_empty(Reg)) 158 return true; 159 160 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 161 // into and they are all PHI nodes. In this case, machine-sink must break 162 // the critical edge first. e.g. 163 // 164 // BB#1: derived from LLVM BB %bb4.preheader 165 // Predecessors according to CFG: BB#0 166 // ... 167 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 168 // ... 169 // JE_4 <BB#37>, %EFLAGS<imp-use> 170 // Successors according to CFG: BB#37 BB#2 171 // 172 // BB#2: derived from LLVM BB %bb.nph 173 // Predecessors according to CFG: BB#0 BB#1 174 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 175 BreakPHIEdge = true; 176 for (MachineRegisterInfo::use_nodbg_iterator 177 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 178 I != E; ++I) { 179 MachineInstr *UseInst = &*I; 180 MachineBasicBlock *UseBlock = UseInst->getParent(); 181 if (!(UseBlock == MBB && UseInst->isPHI() && 182 UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) { 183 BreakPHIEdge = false; 184 break; 185 } 186 } 187 if (BreakPHIEdge) 188 return true; 189 190 for (MachineRegisterInfo::use_nodbg_iterator 191 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 192 I != E; ++I) { 193 // Determine the block of the use. 194 MachineInstr *UseInst = &*I; 195 MachineBasicBlock *UseBlock = UseInst->getParent(); 196 if (UseInst->isPHI()) { 197 // PHI nodes use the operand in the predecessor block, not the block with 198 // the PHI. 199 UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB(); 200 } else if (UseBlock == DefMBB) { 201 LocalUse = true; 202 return false; 203 } 204 205 // Check that it dominates. 206 if (!DT->dominates(MBB, UseBlock)) 207 return false; 208 } 209 210 return true; 211 } 212 213 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 214 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 215 216 const TargetMachine &TM = MF.getTarget(); 217 TII = TM.getInstrInfo(); 218 TRI = TM.getRegisterInfo(); 219 MRI = &MF.getRegInfo(); 220 DT = &getAnalysis<MachineDominatorTree>(); 221 LI = &getAnalysis<MachineLoopInfo>(); 222 AA = &getAnalysis<AliasAnalysis>(); 223 AllocatableSet = TRI->getAllocatableSet(MF); 224 225 bool EverMadeChange = false; 226 227 while (1) { 228 bool MadeChange = false; 229 230 // Process all basic blocks. 231 CEBCandidates.clear(); 232 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 233 I != E; ++I) 234 MadeChange |= ProcessBlock(*I); 235 236 // If this iteration over the code changed anything, keep iterating. 237 if (!MadeChange) break; 238 EverMadeChange = true; 239 } 240 return EverMadeChange; 241 } 242 243 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 244 // Can't sink anything out of a block that has less than two successors. 245 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 246 247 // Don't bother sinking code out of unreachable blocks. In addition to being 248 // unprofitable, it can also lead to infinite looping, because in an 249 // unreachable loop there may be nowhere to stop. 250 if (!DT->isReachableFromEntry(&MBB)) return false; 251 252 bool MadeChange = false; 253 254 // Walk the basic block bottom-up. Remember if we saw a store. 255 MachineBasicBlock::iterator I = MBB.end(); 256 --I; 257 bool ProcessedBegin, SawStore = false; 258 do { 259 MachineInstr *MI = I; // The instruction to sink. 260 261 // Predecrement I (if it's not begin) so that it isn't invalidated by 262 // sinking. 263 ProcessedBegin = I == MBB.begin(); 264 if (!ProcessedBegin) 265 --I; 266 267 if (MI->isDebugValue()) 268 continue; 269 270 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 271 if (Joined) { 272 MadeChange = true; 273 continue; 274 } 275 276 if (SinkInstruction(MI, SawStore)) 277 ++NumSunk, MadeChange = true; 278 279 // If we just processed the first instruction in the block, we're done. 280 } while (!ProcessedBegin); 281 282 return MadeChange; 283 } 284 285 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, 286 MachineBasicBlock *From, 287 MachineBasicBlock *To) { 288 // FIXME: Need much better heuristics. 289 290 // If the pass has already considered breaking this edge (during this pass 291 // through the function), then let's go ahead and break it. This means 292 // sinking multiple "cheap" instructions into the same block. 293 if (!CEBCandidates.insert(std::make_pair(From, To))) 294 return true; 295 296 if (!MI->isCopy() && !MI->isAsCheapAsAMove()) 297 return true; 298 299 // MI is cheap, we probably don't want to break the critical edge for it. 300 // However, if this would allow some definitions of its source operands 301 // to be sunk then it's probably worth it. 302 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 303 const MachineOperand &MO = MI->getOperand(i); 304 if (!MO.isReg()) continue; 305 unsigned Reg = MO.getReg(); 306 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) 307 continue; 308 if (MRI->hasOneNonDBGUse(Reg)) 309 return true; 310 } 311 312 return false; 313 } 314 315 MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI, 316 MachineBasicBlock *FromBB, 317 MachineBasicBlock *ToBB, 318 bool BreakPHIEdge) { 319 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 320 return 0; 321 322 // Avoid breaking back edge. From == To means backedge for single BB loop. 323 if (!SplitEdges || FromBB == ToBB) 324 return 0; 325 326 // Check for backedges of more "complex" loops. 327 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 328 LI->isLoopHeader(ToBB)) 329 return 0; 330 331 // It's not always legal to break critical edges and sink the computation 332 // to the edge. 333 // 334 // BB#1: 335 // v1024 336 // Beq BB#3 337 // <fallthrough> 338 // BB#2: 339 // ... no uses of v1024 340 // <fallthrough> 341 // BB#3: 342 // ... 343 // = v1024 344 // 345 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 346 // 347 // BB#1: 348 // ... 349 // Bne BB#2 350 // BB#4: 351 // v1024 = 352 // B BB#3 353 // BB#2: 354 // ... no uses of v1024 355 // <fallthrough> 356 // BB#3: 357 // ... 358 // = v1024 359 // 360 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 361 // flow. We need to ensure the new basic block where the computation is 362 // sunk to dominates all the uses. 363 // It's only legal to break critical edge and sink the computation to the 364 // new block if all the predecessors of "To", except for "From", are 365 // not dominated by "From". Given SSA property, this means these 366 // predecessors are dominated by "To". 367 // 368 // There is no need to do this check if all the uses are PHI nodes. PHI 369 // sources are only defined on the specific predecessor edges. 370 if (!BreakPHIEdge) { 371 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 372 E = ToBB->pred_end(); PI != E; ++PI) { 373 if (*PI == FromBB) 374 continue; 375 if (!DT->dominates(ToBB, *PI)) 376 return 0; 377 } 378 } 379 380 return FromBB->SplitCriticalEdge(ToBB, this); 381 } 382 383 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { 384 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); 385 } 386 387 /// collectDebgValues - Scan instructions following MI and collect any 388 /// matching DBG_VALUEs. 389 static void collectDebugValues(MachineInstr *MI, 390 SmallVector<MachineInstr *, 2> & DbgValues) { 391 DbgValues.clear(); 392 if (!MI->getOperand(0).isReg()) 393 return; 394 395 MachineBasicBlock::iterator DI = MI; ++DI; 396 for (MachineBasicBlock::iterator DE = MI->getParent()->end(); 397 DI != DE; ++DI) { 398 if (!DI->isDebugValue()) 399 return; 400 if (DI->getOperand(0).isReg() && 401 DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) 402 DbgValues.push_back(DI); 403 } 404 } 405 406 /// isPostDominatedBy - Return true if A is post dominated by B. 407 static bool isPostDominatedBy(MachineBasicBlock *A, MachineBasicBlock *B) { 408 409 // FIXME - Use real post dominator. 410 if (A->succ_size() != 2) 411 return false; 412 MachineBasicBlock::succ_iterator I = A->succ_begin(); 413 if (B == *I) 414 ++I; 415 MachineBasicBlock *OtherSuccBlock = *I; 416 if (OtherSuccBlock->succ_size() != 1 || 417 *(OtherSuccBlock->succ_begin()) != B) 418 return false; 419 420 return true; 421 } 422 423 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 424 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 425 MachineBasicBlock *MBB, 426 MachineBasicBlock *SuccToSinkTo) { 427 assert (MI && "Invalid MachineInstr!"); 428 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 429 430 if (MBB == SuccToSinkTo) 431 return false; 432 433 // It is profitable if SuccToSinkTo does not post dominate current block. 434 if (!isPostDominatedBy(MBB, SuccToSinkTo)) 435 return true; 436 437 // Check if only use in post dominated block is PHI instruction. 438 bool NonPHIUse = false; 439 for (MachineRegisterInfo::use_nodbg_iterator 440 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 441 I != E; ++I) { 442 MachineInstr *UseInst = &*I; 443 MachineBasicBlock *UseBlock = UseInst->getParent(); 444 if (UseBlock == SuccToSinkTo && !UseInst->isPHI()) 445 NonPHIUse = true; 446 } 447 if (!NonPHIUse) 448 return true; 449 450 // If SuccToSinkTo post dominates then also it may be profitable if MI 451 // can further profitably sinked into another block in next round. 452 bool BreakPHIEdge = false; 453 // FIXME - If finding successor is compile time expensive then catch results. 454 if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge)) 455 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2); 456 457 // If SuccToSinkTo is final destination and it is a post dominator of current 458 // block then it is not profitable to sink MI into SuccToSinkTo block. 459 return false; 460 } 461 462 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 463 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI, 464 MachineBasicBlock *MBB, 465 bool &BreakPHIEdge) { 466 467 assert (MI && "Invalid MachineInstr!"); 468 assert (MBB && "Invalid MachineBasicBlock!"); 469 470 // Loop over all the operands of the specified instruction. If there is 471 // anything we can't handle, bail out. 472 473 // SuccToSinkTo - This is the successor to sink this instruction to, once we 474 // decide. 475 MachineBasicBlock *SuccToSinkTo = 0; 476 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 477 const MachineOperand &MO = MI->getOperand(i); 478 if (!MO.isReg()) continue; // Ignore non-register operands. 479 480 unsigned Reg = MO.getReg(); 481 if (Reg == 0) continue; 482 483 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 484 if (MO.isUse()) { 485 // If the physreg has no defs anywhere, it's just an ambient register 486 // and we can freely move its uses. Alternatively, if it's allocatable, 487 // it could get allocated to something with a def during allocation. 488 if (!MRI->def_empty(Reg)) 489 return NULL; 490 491 if (AllocatableSet.test(Reg)) 492 return NULL; 493 494 // Check for a def among the register's aliases too. 495 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 496 unsigned AliasReg = *Alias; 497 if (!MRI->def_empty(AliasReg)) 498 return NULL; 499 500 if (AllocatableSet.test(AliasReg)) 501 return NULL; 502 } 503 } else if (!MO.isDead()) { 504 // A def that isn't dead. We can't move it. 505 return NULL; 506 } 507 } else { 508 // Virtual register uses are always safe to sink. 509 if (MO.isUse()) continue; 510 511 // If it's not safe to move defs of the register class, then abort. 512 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 513 return NULL; 514 515 // FIXME: This picks a successor to sink into based on having one 516 // successor that dominates all the uses. However, there are cases where 517 // sinking can happen but where the sink point isn't a successor. For 518 // example: 519 // 520 // x = computation 521 // if () {} else {} 522 // use x 523 // 524 // the instruction could be sunk over the whole diamond for the 525 // if/then/else (or loop, etc), allowing it to be sunk into other blocks 526 // after that. 527 528 // Virtual register defs can only be sunk if all their uses are in blocks 529 // dominated by one of the successors. 530 if (SuccToSinkTo) { 531 // If a previous operand picked a block to sink to, then this operand 532 // must be sinkable to the same block. 533 bool LocalUse = false; 534 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 535 BreakPHIEdge, LocalUse)) 536 return NULL; 537 538 continue; 539 } 540 541 // Otherwise, we should look at all the successors and decide which one 542 // we should sink to. 543 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 544 E = MBB->succ_end(); SI != E; ++SI) { 545 MachineBasicBlock *SuccBlock = *SI; 546 bool LocalUse = false; 547 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 548 BreakPHIEdge, LocalUse)) { 549 SuccToSinkTo = SuccBlock; 550 break; 551 } 552 if (LocalUse) 553 // Def is used locally, it's never safe to move this def. 554 return NULL; 555 } 556 557 // If we couldn't find a block to sink to, ignore this instruction. 558 if (SuccToSinkTo == 0) 559 return NULL; 560 else if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo)) 561 return NULL; 562 } 563 } 564 565 // It is not possible to sink an instruction into its own block. This can 566 // happen with loops. 567 if (MBB == SuccToSinkTo) 568 return NULL; 569 570 // It's not safe to sink instructions to EH landing pad. Control flow into 571 // landing pad is implicitly defined. 572 if (SuccToSinkTo && SuccToSinkTo->isLandingPad()) 573 return NULL; 574 575 return SuccToSinkTo; 576 } 577 578 /// SinkInstruction - Determine whether it is safe to sink the specified machine 579 /// instruction out of its current block into a successor. 580 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { 581 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to 582 // be close to the source to make it easier to coalesce. 583 if (AvoidsSinking(MI, MRI)) 584 return false; 585 586 // Check if it's safe to move the instruction. 587 if (!MI->isSafeToMove(TII, AA, SawStore)) 588 return false; 589 590 // FIXME: This should include support for sinking instructions within the 591 // block they are currently in to shorten the live ranges. We often get 592 // instructions sunk into the top of a large block, but it would be better to 593 // also sink them down before their first use in the block. This xform has to 594 // be careful not to *increase* register pressure though, e.g. sinking 595 // "x = y + z" down if it kills y and z would increase the live ranges of y 596 // and z and only shrink the live range of x. 597 598 bool BreakPHIEdge = false; 599 MachineBasicBlock *ParentBlock = MI->getParent(); 600 MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge); 601 602 // If there are no outputs, it must have side-effects. 603 if (SuccToSinkTo == 0) 604 return false; 605 606 607 // If the instruction to move defines a dead physical register which is live 608 // when leaving the basic block, don't move it because it could turn into a 609 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 610 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 611 const MachineOperand &MO = MI->getOperand(I); 612 if (!MO.isReg()) continue; 613 unsigned Reg = MO.getReg(); 614 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 615 if (SuccToSinkTo->isLiveIn(Reg)) 616 return false; 617 } 618 619 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); 620 621 // If the block has multiple predecessors, this would introduce computation on 622 // a path that it doesn't already exist. We could split the critical edge, 623 // but for now we just punt. 624 if (SuccToSinkTo->pred_size() > 1) { 625 // We cannot sink a load across a critical edge - there may be stores in 626 // other code paths. 627 bool TryBreak = false; 628 bool store = true; 629 if (!MI->isSafeToMove(TII, AA, store)) { 630 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 631 TryBreak = true; 632 } 633 634 // We don't want to sink across a critical edge if we don't dominate the 635 // successor. We could be introducing calculations to new code paths. 636 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 637 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 638 TryBreak = true; 639 } 640 641 // Don't sink instructions into a loop. 642 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 643 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 644 TryBreak = true; 645 } 646 647 // Otherwise we are OK with sinking along a critical edge. 648 if (!TryBreak) 649 DEBUG(dbgs() << "Sinking along critical edge.\n"); 650 else { 651 MachineBasicBlock *NewSucc = 652 SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 653 if (!NewSucc) { 654 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 655 "break critical edge\n"); 656 return false; 657 } else { 658 DEBUG(dbgs() << " *** Splitting critical edge:" 659 " BB#" << ParentBlock->getNumber() 660 << " -- BB#" << NewSucc->getNumber() 661 << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); 662 SuccToSinkTo = NewSucc; 663 ++NumSplit; 664 BreakPHIEdge = false; 665 } 666 } 667 } 668 669 if (BreakPHIEdge) { 670 // BreakPHIEdge is true if all the uses are in the successor MBB being 671 // sunken into and they are all PHI nodes. In this case, machine-sink must 672 // break the critical edge first. 673 MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock, 674 SuccToSinkTo, BreakPHIEdge); 675 if (!NewSucc) { 676 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 677 "break critical edge\n"); 678 return false; 679 } 680 681 DEBUG(dbgs() << " *** Splitting critical edge:" 682 " BB#" << ParentBlock->getNumber() 683 << " -- BB#" << NewSucc->getNumber() 684 << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); 685 SuccToSinkTo = NewSucc; 686 ++NumSplit; 687 } 688 689 // Determine where to insert into. Skip phi nodes. 690 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 691 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 692 ++InsertPos; 693 694 // collect matching debug values. 695 SmallVector<MachineInstr *, 2> DbgValuesToSink; 696 collectDebugValues(MI, DbgValuesToSink); 697 698 // Move the instruction. 699 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 700 ++MachineBasicBlock::iterator(MI)); 701 702 // Move debug values. 703 for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(), 704 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 705 MachineInstr *DbgMI = *DBI; 706 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 707 ++MachineBasicBlock::iterator(DbgMI)); 708 } 709 710 // Conservatively, clear any kill flags, since it's possible that they are no 711 // longer correct. 712 MI->clearKillInfo(); 713 714 return true; 715 } 716