1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SparseBitVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachinePostDominators.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "machine-sink" 40 41 static cl::opt<bool> 42 SplitEdges("machine-sink-split", 43 cl::desc("Split critical edges during machine sinking"), 44 cl::init(true), cl::Hidden); 45 46 static cl::opt<bool> 47 UseBlockFreqInfo("machine-sink-bfi", 48 cl::desc("Use block frequency info to find successors to sink"), 49 cl::init(true), cl::Hidden); 50 51 52 STATISTIC(NumSunk, "Number of machine instructions sunk"); 53 STATISTIC(NumSplit, "Number of critical edges split"); 54 STATISTIC(NumCoalesces, "Number of copies coalesced"); 55 56 namespace { 57 class MachineSinking : public MachineFunctionPass { 58 const TargetInstrInfo *TII; 59 const TargetRegisterInfo *TRI; 60 MachineRegisterInfo *MRI; // Machine register information 61 MachineDominatorTree *DT; // Machine dominator tree 62 MachinePostDominatorTree *PDT; // Machine post dominator tree 63 MachineLoopInfo *LI; 64 const MachineBlockFrequencyInfo *MBFI; 65 AliasAnalysis *AA; 66 67 // Remember which edges have been considered for breaking. 68 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> 69 CEBCandidates; 70 // Remember which edges we are about to split. 71 // This is different from CEBCandidates since those edges 72 // will be split. 73 SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit; 74 75 SparseBitVector<> RegsToClearKillFlags; 76 77 typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>> 78 AllSuccsCache; 79 80 public: 81 static char ID; // Pass identification 82 MachineSinking() : MachineFunctionPass(ID) { 83 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 84 } 85 86 bool runOnMachineFunction(MachineFunction &MF) override; 87 88 void getAnalysisUsage(AnalysisUsage &AU) const override { 89 AU.setPreservesCFG(); 90 MachineFunctionPass::getAnalysisUsage(AU); 91 AU.addRequired<AAResultsWrapperPass>(); 92 AU.addRequired<MachineDominatorTree>(); 93 AU.addRequired<MachinePostDominatorTree>(); 94 AU.addRequired<MachineLoopInfo>(); 95 AU.addPreserved<MachineDominatorTree>(); 96 AU.addPreserved<MachinePostDominatorTree>(); 97 AU.addPreserved<MachineLoopInfo>(); 98 if (UseBlockFreqInfo) 99 AU.addRequired<MachineBlockFrequencyInfo>(); 100 } 101 102 void releaseMemory() override { 103 CEBCandidates.clear(); 104 } 105 106 private: 107 bool ProcessBlock(MachineBasicBlock &MBB); 108 bool isWorthBreakingCriticalEdge(MachineInstr *MI, 109 MachineBasicBlock *From, 110 MachineBasicBlock *To); 111 /// \brief Postpone the splitting of the given critical 112 /// edge (\p From, \p To). 113 /// 114 /// We do not split the edges on the fly. Indeed, this invalidates 115 /// the dominance information and thus triggers a lot of updates 116 /// of that information underneath. 117 /// Instead, we postpone all the splits after each iteration of 118 /// the main loop. That way, the information is at least valid 119 /// for the lifetime of an iteration. 120 /// 121 /// \return True if the edge is marked as toSplit, false otherwise. 122 /// False can be returned if, for instance, this is not profitable. 123 bool PostponeSplitCriticalEdge(MachineInstr *MI, 124 MachineBasicBlock *From, 125 MachineBasicBlock *To, 126 bool BreakPHIEdge); 127 bool SinkInstruction(MachineInstr *MI, bool &SawStore, 128 AllSuccsCache &AllSuccessors); 129 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 130 MachineBasicBlock *DefMBB, 131 bool &BreakPHIEdge, bool &LocalUse) const; 132 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB, 133 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 134 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 135 MachineBasicBlock *MBB, 136 MachineBasicBlock *SuccToSinkTo, 137 AllSuccsCache &AllSuccessors); 138 139 bool PerformTrivialForwardCoalescing(MachineInstr *MI, 140 MachineBasicBlock *MBB); 141 142 SmallVector<MachineBasicBlock *, 4> & 143 GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB, 144 AllSuccsCache &AllSuccessors) const; 145 }; 146 } // end anonymous namespace 147 148 char MachineSinking::ID = 0; 149 char &llvm::MachineSinkingID = MachineSinking::ID; 150 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 151 "Machine code sinking", false, false) 152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 156 "Machine code sinking", false, false) 157 158 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, 159 MachineBasicBlock *MBB) { 160 if (!MI->isCopy()) 161 return false; 162 163 unsigned SrcReg = MI->getOperand(1).getReg(); 164 unsigned DstReg = MI->getOperand(0).getReg(); 165 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 166 !TargetRegisterInfo::isVirtualRegister(DstReg) || 167 !MRI->hasOneNonDBGUse(SrcReg)) 168 return false; 169 170 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 171 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 172 if (SRC != DRC) 173 return false; 174 175 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 176 if (DefMI->isCopyLike()) 177 return false; 178 DEBUG(dbgs() << "Coalescing: " << *DefMI); 179 DEBUG(dbgs() << "*** to: " << *MI); 180 MRI->replaceRegWith(DstReg, SrcReg); 181 MI->eraseFromParent(); 182 183 // Conservatively, clear any kill flags, since it's possible that they are no 184 // longer correct. 185 MRI->clearKillFlags(SrcReg); 186 187 ++NumCoalesces; 188 return true; 189 } 190 191 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 192 /// occur in blocks dominated by the specified block. If any use is in the 193 /// definition block, then return false since it is never legal to move def 194 /// after uses. 195 bool 196 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 197 MachineBasicBlock *MBB, 198 MachineBasicBlock *DefMBB, 199 bool &BreakPHIEdge, 200 bool &LocalUse) const { 201 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 202 "Only makes sense for vregs"); 203 204 // Ignore debug uses because debug info doesn't affect the code. 205 if (MRI->use_nodbg_empty(Reg)) 206 return true; 207 208 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 209 // into and they are all PHI nodes. In this case, machine-sink must break 210 // the critical edge first. e.g. 211 // 212 // BB#1: derived from LLVM BB %bb4.preheader 213 // Predecessors according to CFG: BB#0 214 // ... 215 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 216 // ... 217 // JE_4 <BB#37>, %EFLAGS<imp-use> 218 // Successors according to CFG: BB#37 BB#2 219 // 220 // BB#2: derived from LLVM BB %bb.nph 221 // Predecessors according to CFG: BB#0 BB#1 222 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 223 BreakPHIEdge = true; 224 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 225 MachineInstr *UseInst = MO.getParent(); 226 unsigned OpNo = &MO - &UseInst->getOperand(0); 227 MachineBasicBlock *UseBlock = UseInst->getParent(); 228 if (!(UseBlock == MBB && UseInst->isPHI() && 229 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 230 BreakPHIEdge = false; 231 break; 232 } 233 } 234 if (BreakPHIEdge) 235 return true; 236 237 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 238 // Determine the block of the use. 239 MachineInstr *UseInst = MO.getParent(); 240 unsigned OpNo = &MO - &UseInst->getOperand(0); 241 MachineBasicBlock *UseBlock = UseInst->getParent(); 242 if (UseInst->isPHI()) { 243 // PHI nodes use the operand in the predecessor block, not the block with 244 // the PHI. 245 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 246 } else if (UseBlock == DefMBB) { 247 LocalUse = true; 248 return false; 249 } 250 251 // Check that it dominates. 252 if (!DT->dominates(MBB, UseBlock)) 253 return false; 254 } 255 256 return true; 257 } 258 259 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 260 if (skipOptnoneFunction(*MF.getFunction())) 261 return false; 262 263 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 264 265 TII = MF.getSubtarget().getInstrInfo(); 266 TRI = MF.getSubtarget().getRegisterInfo(); 267 MRI = &MF.getRegInfo(); 268 DT = &getAnalysis<MachineDominatorTree>(); 269 PDT = &getAnalysis<MachinePostDominatorTree>(); 270 LI = &getAnalysis<MachineLoopInfo>(); 271 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 272 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 273 274 bool EverMadeChange = false; 275 276 while (1) { 277 bool MadeChange = false; 278 279 // Process all basic blocks. 280 CEBCandidates.clear(); 281 ToSplit.clear(); 282 for (auto &MBB: MF) 283 MadeChange |= ProcessBlock(MBB); 284 285 // If we have anything we marked as toSplit, split it now. 286 for (auto &Pair : ToSplit) { 287 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this); 288 if (NewSucc != nullptr) { 289 DEBUG(dbgs() << " *** Splitting critical edge:" 290 " BB#" << Pair.first->getNumber() 291 << " -- BB#" << NewSucc->getNumber() 292 << " -- BB#" << Pair.second->getNumber() << '\n'); 293 MadeChange = true; 294 ++NumSplit; 295 } else 296 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 297 } 298 // If this iteration over the code changed anything, keep iterating. 299 if (!MadeChange) break; 300 EverMadeChange = true; 301 } 302 303 // Now clear any kill flags for recorded registers. 304 for (auto I : RegsToClearKillFlags) 305 MRI->clearKillFlags(I); 306 RegsToClearKillFlags.clear(); 307 308 return EverMadeChange; 309 } 310 311 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 312 // Can't sink anything out of a block that has less than two successors. 313 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 314 315 // Don't bother sinking code out of unreachable blocks. In addition to being 316 // unprofitable, it can also lead to infinite looping, because in an 317 // unreachable loop there may be nowhere to stop. 318 if (!DT->isReachableFromEntry(&MBB)) return false; 319 320 bool MadeChange = false; 321 322 // Cache all successors, sorted by frequency info and loop depth. 323 AllSuccsCache AllSuccessors; 324 325 // Walk the basic block bottom-up. Remember if we saw a store. 326 MachineBasicBlock::iterator I = MBB.end(); 327 --I; 328 bool ProcessedBegin, SawStore = false; 329 do { 330 MachineInstr *MI = I; // The instruction to sink. 331 332 // Predecrement I (if it's not begin) so that it isn't invalidated by 333 // sinking. 334 ProcessedBegin = I == MBB.begin(); 335 if (!ProcessedBegin) 336 --I; 337 338 if (MI->isDebugValue()) 339 continue; 340 341 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 342 if (Joined) { 343 MadeChange = true; 344 continue; 345 } 346 347 if (SinkInstruction(MI, SawStore, AllSuccessors)) 348 ++NumSunk, MadeChange = true; 349 350 // If we just processed the first instruction in the block, we're done. 351 } while (!ProcessedBegin); 352 353 return MadeChange; 354 } 355 356 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, 357 MachineBasicBlock *From, 358 MachineBasicBlock *To) { 359 // FIXME: Need much better heuristics. 360 361 // If the pass has already considered breaking this edge (during this pass 362 // through the function), then let's go ahead and break it. This means 363 // sinking multiple "cheap" instructions into the same block. 364 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 365 return true; 366 367 if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI)) 368 return true; 369 370 // MI is cheap, we probably don't want to break the critical edge for it. 371 // However, if this would allow some definitions of its source operands 372 // to be sunk then it's probably worth it. 373 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 374 const MachineOperand &MO = MI->getOperand(i); 375 if (!MO.isReg() || !MO.isUse()) 376 continue; 377 unsigned Reg = MO.getReg(); 378 if (Reg == 0) 379 continue; 380 381 // We don't move live definitions of physical registers, 382 // so sinking their uses won't enable any opportunities. 383 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 384 continue; 385 386 // If this instruction is the only user of a virtual register, 387 // check if breaking the edge will enable sinking 388 // both this instruction and the defining instruction. 389 if (MRI->hasOneNonDBGUse(Reg)) { 390 // If the definition resides in same MBB, 391 // claim it's likely we can sink these together. 392 // If definition resides elsewhere, we aren't 393 // blocking it from being sunk so don't break the edge. 394 MachineInstr *DefMI = MRI->getVRegDef(Reg); 395 if (DefMI->getParent() == MI->getParent()) 396 return true; 397 } 398 } 399 400 return false; 401 } 402 403 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI, 404 MachineBasicBlock *FromBB, 405 MachineBasicBlock *ToBB, 406 bool BreakPHIEdge) { 407 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 408 return false; 409 410 // Avoid breaking back edge. From == To means backedge for single BB loop. 411 if (!SplitEdges || FromBB == ToBB) 412 return false; 413 414 // Check for backedges of more "complex" loops. 415 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 416 LI->isLoopHeader(ToBB)) 417 return false; 418 419 // It's not always legal to break critical edges and sink the computation 420 // to the edge. 421 // 422 // BB#1: 423 // v1024 424 // Beq BB#3 425 // <fallthrough> 426 // BB#2: 427 // ... no uses of v1024 428 // <fallthrough> 429 // BB#3: 430 // ... 431 // = v1024 432 // 433 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 434 // 435 // BB#1: 436 // ... 437 // Bne BB#2 438 // BB#4: 439 // v1024 = 440 // B BB#3 441 // BB#2: 442 // ... no uses of v1024 443 // <fallthrough> 444 // BB#3: 445 // ... 446 // = v1024 447 // 448 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 449 // flow. We need to ensure the new basic block where the computation is 450 // sunk to dominates all the uses. 451 // It's only legal to break critical edge and sink the computation to the 452 // new block if all the predecessors of "To", except for "From", are 453 // not dominated by "From". Given SSA property, this means these 454 // predecessors are dominated by "To". 455 // 456 // There is no need to do this check if all the uses are PHI nodes. PHI 457 // sources are only defined on the specific predecessor edges. 458 if (!BreakPHIEdge) { 459 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 460 E = ToBB->pred_end(); PI != E; ++PI) { 461 if (*PI == FromBB) 462 continue; 463 if (!DT->dominates(ToBB, *PI)) 464 return false; 465 } 466 } 467 468 ToSplit.insert(std::make_pair(FromBB, ToBB)); 469 470 return true; 471 } 472 473 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { 474 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); 475 } 476 477 /// collectDebgValues - Scan instructions following MI and collect any 478 /// matching DBG_VALUEs. 479 static void collectDebugValues(MachineInstr *MI, 480 SmallVectorImpl<MachineInstr *> &DbgValues) { 481 DbgValues.clear(); 482 if (!MI->getOperand(0).isReg()) 483 return; 484 485 MachineBasicBlock::iterator DI = MI; ++DI; 486 for (MachineBasicBlock::iterator DE = MI->getParent()->end(); 487 DI != DE; ++DI) { 488 if (!DI->isDebugValue()) 489 return; 490 if (DI->getOperand(0).isReg() && 491 DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) 492 DbgValues.push_back(DI); 493 } 494 } 495 496 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 497 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 498 MachineBasicBlock *MBB, 499 MachineBasicBlock *SuccToSinkTo, 500 AllSuccsCache &AllSuccessors) { 501 assert (MI && "Invalid MachineInstr!"); 502 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 503 504 if (MBB == SuccToSinkTo) 505 return false; 506 507 // It is profitable if SuccToSinkTo does not post dominate current block. 508 if (!PDT->dominates(SuccToSinkTo, MBB)) 509 return true; 510 511 // It is profitable to sink an instruction from a deeper loop to a shallower 512 // loop, even if the latter post-dominates the former (PR21115). 513 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 514 return true; 515 516 // Check if only use in post dominated block is PHI instruction. 517 bool NonPHIUse = false; 518 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 519 MachineBasicBlock *UseBlock = UseInst.getParent(); 520 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 521 NonPHIUse = true; 522 } 523 if (!NonPHIUse) 524 return true; 525 526 // If SuccToSinkTo post dominates then also it may be profitable if MI 527 // can further profitably sinked into another block in next round. 528 bool BreakPHIEdge = false; 529 // FIXME - If finding successor is compile time expensive then cache results. 530 if (MachineBasicBlock *MBB2 = 531 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 532 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 533 534 // If SuccToSinkTo is final destination and it is a post dominator of current 535 // block then it is not profitable to sink MI into SuccToSinkTo block. 536 return false; 537 } 538 539 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 540 /// computing it if it was not already cached. 541 SmallVector<MachineBasicBlock *, 4> & 542 MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB, 543 AllSuccsCache &AllSuccessors) const { 544 545 // Do we have the sorted successors in cache ? 546 auto Succs = AllSuccessors.find(MBB); 547 if (Succs != AllSuccessors.end()) 548 return Succs->second; 549 550 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 551 MBB->succ_end()); 552 553 // Handle cases where sinking can happen but where the sink point isn't a 554 // successor. For example: 555 // 556 // x = computation 557 // if () {} else {} 558 // use x 559 // 560 const std::vector<MachineDomTreeNode *> &Children = 561 DT->getNode(MBB)->getChildren(); 562 for (const auto &DTChild : Children) 563 // DomTree children of MBB that have MBB as immediate dominator are added. 564 if (DTChild->getIDom()->getBlock() == MI->getParent() && 565 // Skip MBBs already added to the AllSuccs vector above. 566 !MBB->isSuccessor(DTChild->getBlock())) 567 AllSuccs.push_back(DTChild->getBlock()); 568 569 // Sort Successors according to their loop depth or block frequency info. 570 std::stable_sort( 571 AllSuccs.begin(), AllSuccs.end(), 572 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 573 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 574 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 575 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 576 return HasBlockFreq ? LHSFreq < RHSFreq 577 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 578 }); 579 580 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 581 582 return it.first->second; 583 } 584 585 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 586 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI, 587 MachineBasicBlock *MBB, 588 bool &BreakPHIEdge, 589 AllSuccsCache &AllSuccessors) { 590 591 assert (MI && "Invalid MachineInstr!"); 592 assert (MBB && "Invalid MachineBasicBlock!"); 593 594 // Loop over all the operands of the specified instruction. If there is 595 // anything we can't handle, bail out. 596 597 // SuccToSinkTo - This is the successor to sink this instruction to, once we 598 // decide. 599 MachineBasicBlock *SuccToSinkTo = nullptr; 600 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 601 const MachineOperand &MO = MI->getOperand(i); 602 if (!MO.isReg()) continue; // Ignore non-register operands. 603 604 unsigned Reg = MO.getReg(); 605 if (Reg == 0) continue; 606 607 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 608 if (MO.isUse()) { 609 // If the physreg has no defs anywhere, it's just an ambient register 610 // and we can freely move its uses. Alternatively, if it's allocatable, 611 // it could get allocated to something with a def during allocation. 612 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 613 return nullptr; 614 } else if (!MO.isDead()) { 615 // A def that isn't dead. We can't move it. 616 return nullptr; 617 } 618 } else { 619 // Virtual register uses are always safe to sink. 620 if (MO.isUse()) continue; 621 622 // If it's not safe to move defs of the register class, then abort. 623 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 624 return nullptr; 625 626 // Virtual register defs can only be sunk if all their uses are in blocks 627 // dominated by one of the successors. 628 if (SuccToSinkTo) { 629 // If a previous operand picked a block to sink to, then this operand 630 // must be sinkable to the same block. 631 bool LocalUse = false; 632 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 633 BreakPHIEdge, LocalUse)) 634 return nullptr; 635 636 continue; 637 } 638 639 // Otherwise, we should look at all the successors and decide which one 640 // we should sink to. If we have reliable block frequency information 641 // (frequency != 0) available, give successors with smaller frequencies 642 // higher priority, otherwise prioritize smaller loop depths. 643 for (MachineBasicBlock *SuccBlock : 644 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 645 bool LocalUse = false; 646 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 647 BreakPHIEdge, LocalUse)) { 648 SuccToSinkTo = SuccBlock; 649 break; 650 } 651 if (LocalUse) 652 // Def is used locally, it's never safe to move this def. 653 return nullptr; 654 } 655 656 // If we couldn't find a block to sink to, ignore this instruction. 657 if (!SuccToSinkTo) 658 return nullptr; 659 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 660 return nullptr; 661 } 662 } 663 664 // It is not possible to sink an instruction into its own block. This can 665 // happen with loops. 666 if (MBB == SuccToSinkTo) 667 return nullptr; 668 669 // It's not safe to sink instructions to EH landing pad. Control flow into 670 // landing pad is implicitly defined. 671 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 672 return nullptr; 673 674 return SuccToSinkTo; 675 } 676 677 /// \brief Return true if MI is likely to be usable as a memory operation by the 678 /// implicit null check optimization. 679 /// 680 /// This is a "best effort" heuristic, and should not be relied upon for 681 /// correctness. This returning true does not guarantee that the implicit null 682 /// check optimization is legal over MI, and this returning false does not 683 /// guarantee MI cannot possibly be used to do a null check. 684 static bool SinkingPreventsImplicitNullCheck(MachineInstr *MI, 685 const TargetInstrInfo *TII, 686 const TargetRegisterInfo *TRI) { 687 typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; 688 689 auto *MBB = MI->getParent(); 690 if (MBB->pred_size() != 1) 691 return false; 692 693 auto *PredMBB = *MBB->pred_begin(); 694 auto *PredBB = PredMBB->getBasicBlock(); 695 696 // Frontends that don't use implicit null checks have no reason to emit 697 // branches with make.implicit metadata, and this function should always 698 // return false for them. 699 if (!PredBB || 700 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 701 return false; 702 703 unsigned BaseReg, Offset; 704 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 705 return false; 706 707 if (!(MI->mayLoad() && !MI->isPredicable())) 708 return false; 709 710 MachineBranchPredicate MBP; 711 if (TII->AnalyzeBranchPredicate(*PredMBB, MBP, false)) 712 return false; 713 714 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 715 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 716 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 717 MBP.LHS.getReg() == BaseReg; 718 } 719 720 /// SinkInstruction - Determine whether it is safe to sink the specified machine 721 /// instruction out of its current block into a successor. 722 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore, 723 AllSuccsCache &AllSuccessors) { 724 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to 725 // be close to the source to make it easier to coalesce. 726 if (AvoidsSinking(MI, MRI)) 727 return false; 728 729 // Check if it's safe to move the instruction. 730 if (!MI->isSafeToMove(AA, SawStore)) 731 return false; 732 733 // Convergent operations may not be made control-dependent on additional 734 // values. 735 if (MI->isConvergent()) 736 return false; 737 738 // Don't break implicit null checks. This is a performance heuristic, and not 739 // required for correctness. 740 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 741 return false; 742 743 // FIXME: This should include support for sinking instructions within the 744 // block they are currently in to shorten the live ranges. We often get 745 // instructions sunk into the top of a large block, but it would be better to 746 // also sink them down before their first use in the block. This xform has to 747 // be careful not to *increase* register pressure though, e.g. sinking 748 // "x = y + z" down if it kills y and z would increase the live ranges of y 749 // and z and only shrink the live range of x. 750 751 bool BreakPHIEdge = false; 752 MachineBasicBlock *ParentBlock = MI->getParent(); 753 MachineBasicBlock *SuccToSinkTo = 754 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 755 756 // If there are no outputs, it must have side-effects. 757 if (!SuccToSinkTo) 758 return false; 759 760 761 // If the instruction to move defines a dead physical register which is live 762 // when leaving the basic block, don't move it because it could turn into a 763 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 764 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 765 const MachineOperand &MO = MI->getOperand(I); 766 if (!MO.isReg()) continue; 767 unsigned Reg = MO.getReg(); 768 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 769 if (SuccToSinkTo->isLiveIn(Reg)) 770 return false; 771 } 772 773 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); 774 775 // If the block has multiple predecessors, this is a critical edge. 776 // Decide if we can sink along it or need to break the edge. 777 if (SuccToSinkTo->pred_size() > 1) { 778 // We cannot sink a load across a critical edge - there may be stores in 779 // other code paths. 780 bool TryBreak = false; 781 bool store = true; 782 if (!MI->isSafeToMove(AA, store)) { 783 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 784 TryBreak = true; 785 } 786 787 // We don't want to sink across a critical edge if we don't dominate the 788 // successor. We could be introducing calculations to new code paths. 789 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 790 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 791 TryBreak = true; 792 } 793 794 // Don't sink instructions into a loop. 795 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 796 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 797 TryBreak = true; 798 } 799 800 // Otherwise we are OK with sinking along a critical edge. 801 if (!TryBreak) 802 DEBUG(dbgs() << "Sinking along critical edge.\n"); 803 else { 804 // Mark this edge as to be split. 805 // If the edge can actually be split, the next iteration of the main loop 806 // will sink MI in the newly created block. 807 bool Status = 808 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 809 if (!Status) 810 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 811 "break critical edge\n"); 812 // The instruction will not be sunk this time. 813 return false; 814 } 815 } 816 817 if (BreakPHIEdge) { 818 // BreakPHIEdge is true if all the uses are in the successor MBB being 819 // sunken into and they are all PHI nodes. In this case, machine-sink must 820 // break the critical edge first. 821 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 822 SuccToSinkTo, BreakPHIEdge); 823 if (!Status) 824 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 825 "break critical edge\n"); 826 // The instruction will not be sunk this time. 827 return false; 828 } 829 830 // Determine where to insert into. Skip phi nodes. 831 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 832 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 833 ++InsertPos; 834 835 // collect matching debug values. 836 SmallVector<MachineInstr *, 2> DbgValuesToSink; 837 collectDebugValues(MI, DbgValuesToSink); 838 839 // Move the instruction. 840 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 841 ++MachineBasicBlock::iterator(MI)); 842 843 // Move debug values. 844 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 845 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 846 MachineInstr *DbgMI = *DBI; 847 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 848 ++MachineBasicBlock::iterator(DbgMI)); 849 } 850 851 // Conservatively, clear any kill flags, since it's possible that they are no 852 // longer correct. 853 // Note that we have to clear the kill flags for any register this instruction 854 // uses as we may sink over another instruction which currently kills the 855 // used registers. 856 for (MachineOperand &MO : MI->operands()) { 857 if (MO.isReg() && MO.isUse()) 858 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 859 } 860 861 return true; 862 } 863