1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <map> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machine-sink" 60 61 static cl::opt<bool> 62 SplitEdges("machine-sink-split", 63 cl::desc("Split critical edges during machine sinking"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 UseBlockFreqInfo("machine-sink-bfi", 68 cl::desc("Use block frequency info to find successors to sink"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 72 "machine-sink-split-probability-threshold", 73 cl::desc( 74 "Percentage threshold for splitting single-instruction critical edge. " 75 "If the branch threshold is higher than this threshold, we allow " 76 "speculative execution of up to 1 instruction to avoid branching to " 77 "splitted critical edge"), 78 cl::init(40), cl::Hidden); 79 80 STATISTIC(NumSunk, "Number of machine instructions sunk"); 81 STATISTIC(NumSplit, "Number of critical edges split"); 82 STATISTIC(NumCoalesces, "Number of copies coalesced"); 83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 84 85 namespace { 86 87 class MachineSinking : public MachineFunctionPass { 88 const TargetInstrInfo *TII; 89 const TargetRegisterInfo *TRI; 90 MachineRegisterInfo *MRI; // Machine register information 91 MachineDominatorTree *DT; // Machine dominator tree 92 MachinePostDominatorTree *PDT; // Machine post dominator tree 93 MachineLoopInfo *LI; 94 MachineBlockFrequencyInfo *MBFI; 95 const MachineBranchProbabilityInfo *MBPI; 96 AliasAnalysis *AA; 97 98 // Remember which edges have been considered for breaking. 99 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 100 CEBCandidates; 101 // Remember which edges we are about to split. 102 // This is different from CEBCandidates since those edges 103 // will be split. 104 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 105 106 SparseBitVector<> RegsToClearKillFlags; 107 108 using AllSuccsCache = 109 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 110 111 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 112 /// post-dominated by another DBG_VALUE of the same variable location. 113 /// This is necessary to detect sequences such as: 114 /// %0 = someinst 115 /// DBG_VALUE %0, !123, !DIExpression() 116 /// %1 = anotherinst 117 /// DBG_VALUE %1, !123, !DIExpression() 118 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 119 /// would re-order assignments. 120 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 121 122 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 123 /// debug instructions to sink. 124 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 125 126 /// Record of debug variables that have had their locations set in the 127 /// current block. 128 DenseSet<DebugVariable> SeenDbgVars; 129 130 public: 131 static char ID; // Pass identification 132 133 MachineSinking() : MachineFunctionPass(ID) { 134 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 135 } 136 137 bool runOnMachineFunction(MachineFunction &MF) override; 138 139 void getAnalysisUsage(AnalysisUsage &AU) const override { 140 MachineFunctionPass::getAnalysisUsage(AU); 141 AU.addRequired<AAResultsWrapperPass>(); 142 AU.addRequired<MachineDominatorTree>(); 143 AU.addRequired<MachinePostDominatorTree>(); 144 AU.addRequired<MachineLoopInfo>(); 145 AU.addRequired<MachineBranchProbabilityInfo>(); 146 AU.addPreserved<MachineLoopInfo>(); 147 if (UseBlockFreqInfo) 148 AU.addRequired<MachineBlockFrequencyInfo>(); 149 } 150 151 void releaseMemory() override { 152 CEBCandidates.clear(); 153 } 154 155 private: 156 bool ProcessBlock(MachineBasicBlock &MBB); 157 void ProcessDbgInst(MachineInstr &MI); 158 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 159 MachineBasicBlock *From, 160 MachineBasicBlock *To); 161 162 /// Postpone the splitting of the given critical 163 /// edge (\p From, \p To). 164 /// 165 /// We do not split the edges on the fly. Indeed, this invalidates 166 /// the dominance information and thus triggers a lot of updates 167 /// of that information underneath. 168 /// Instead, we postpone all the splits after each iteration of 169 /// the main loop. That way, the information is at least valid 170 /// for the lifetime of an iteration. 171 /// 172 /// \return True if the edge is marked as toSplit, false otherwise. 173 /// False can be returned if, for instance, this is not profitable. 174 bool PostponeSplitCriticalEdge(MachineInstr &MI, 175 MachineBasicBlock *From, 176 MachineBasicBlock *To, 177 bool BreakPHIEdge); 178 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 179 AllSuccsCache &AllSuccessors); 180 181 /// If we sink a COPY inst, some debug users of it's destination may no 182 /// longer be dominated by the COPY, and will eventually be dropped. 183 /// This is easily rectified by forwarding the non-dominated debug uses 184 /// to the copy source. 185 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 186 MachineBasicBlock *TargetBlock); 187 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 188 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 189 bool &LocalUse) const; 190 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 191 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 192 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 193 MachineBasicBlock *MBB, 194 MachineBasicBlock *SuccToSinkTo, 195 AllSuccsCache &AllSuccessors); 196 197 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 198 MachineBasicBlock *MBB); 199 200 SmallVector<MachineBasicBlock *, 4> & 201 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 202 AllSuccsCache &AllSuccessors) const; 203 }; 204 205 } // end anonymous namespace 206 207 char MachineSinking::ID = 0; 208 209 char &llvm::MachineSinkingID = MachineSinking::ID; 210 211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 212 "Machine code sinking", false, false) 213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 218 "Machine code sinking", false, false) 219 220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 221 MachineBasicBlock *MBB) { 222 if (!MI.isCopy()) 223 return false; 224 225 Register SrcReg = MI.getOperand(1).getReg(); 226 Register DstReg = MI.getOperand(0).getReg(); 227 if (!Register::isVirtualRegister(SrcReg) || 228 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 229 return false; 230 231 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 232 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 233 if (SRC != DRC) 234 return false; 235 236 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 237 if (DefMI->isCopyLike()) 238 return false; 239 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 240 LLVM_DEBUG(dbgs() << "*** to: " << MI); 241 MRI->replaceRegWith(DstReg, SrcReg); 242 MI.eraseFromParent(); 243 244 // Conservatively, clear any kill flags, since it's possible that they are no 245 // longer correct. 246 MRI->clearKillFlags(SrcReg); 247 248 ++NumCoalesces; 249 return true; 250 } 251 252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 253 /// occur in blocks dominated by the specified block. If any use is in the 254 /// definition block, then return false since it is never legal to move def 255 /// after uses. 256 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 257 MachineBasicBlock *MBB, 258 MachineBasicBlock *DefMBB, 259 bool &BreakPHIEdge, 260 bool &LocalUse) const { 261 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 262 263 // Ignore debug uses because debug info doesn't affect the code. 264 if (MRI->use_nodbg_empty(Reg)) 265 return true; 266 267 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 268 // into and they are all PHI nodes. In this case, machine-sink must break 269 // the critical edge first. e.g. 270 // 271 // %bb.1: 272 // Predecessors according to CFG: %bb.0 273 // ... 274 // %def = DEC64_32r %x, implicit-def dead %eflags 275 // ... 276 // JE_4 <%bb.37>, implicit %eflags 277 // Successors according to CFG: %bb.37 %bb.2 278 // 279 // %bb.2: 280 // %p = PHI %y, %bb.0, %def, %bb.1 281 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 282 MachineInstr *UseInst = MO.getParent(); 283 unsigned OpNo = UseInst->getOperandNo(&MO); 284 MachineBasicBlock *UseBlock = UseInst->getParent(); 285 return UseBlock == MBB && UseInst->isPHI() && 286 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 287 })) { 288 BreakPHIEdge = true; 289 return true; 290 } 291 292 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 293 // Determine the block of the use. 294 MachineInstr *UseInst = MO.getParent(); 295 unsigned OpNo = &MO - &UseInst->getOperand(0); 296 MachineBasicBlock *UseBlock = UseInst->getParent(); 297 if (UseInst->isPHI()) { 298 // PHI nodes use the operand in the predecessor block, not the block with 299 // the PHI. 300 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 301 } else if (UseBlock == DefMBB) { 302 LocalUse = true; 303 return false; 304 } 305 306 // Check that it dominates. 307 if (!DT->dominates(MBB, UseBlock)) 308 return false; 309 } 310 311 return true; 312 } 313 314 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 315 if (skipFunction(MF.getFunction())) 316 return false; 317 318 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 319 320 TII = MF.getSubtarget().getInstrInfo(); 321 TRI = MF.getSubtarget().getRegisterInfo(); 322 MRI = &MF.getRegInfo(); 323 DT = &getAnalysis<MachineDominatorTree>(); 324 PDT = &getAnalysis<MachinePostDominatorTree>(); 325 LI = &getAnalysis<MachineLoopInfo>(); 326 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 327 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 328 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 329 330 bool EverMadeChange = false; 331 332 while (true) { 333 bool MadeChange = false; 334 335 // Process all basic blocks. 336 CEBCandidates.clear(); 337 ToSplit.clear(); 338 for (auto &MBB: MF) 339 MadeChange |= ProcessBlock(MBB); 340 341 // If we have anything we marked as toSplit, split it now. 342 for (auto &Pair : ToSplit) { 343 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 344 if (NewSucc != nullptr) { 345 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 346 << printMBBReference(*Pair.first) << " -- " 347 << printMBBReference(*NewSucc) << " -- " 348 << printMBBReference(*Pair.second) << '\n'); 349 if (MBFI) 350 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 351 352 MadeChange = true; 353 ++NumSplit; 354 } else 355 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 356 } 357 // If this iteration over the code changed anything, keep iterating. 358 if (!MadeChange) break; 359 EverMadeChange = true; 360 } 361 362 // Now clear any kill flags for recorded registers. 363 for (auto I : RegsToClearKillFlags) 364 MRI->clearKillFlags(I); 365 RegsToClearKillFlags.clear(); 366 367 return EverMadeChange; 368 } 369 370 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 371 // Can't sink anything out of a block that has less than two successors. 372 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 373 374 // Don't bother sinking code out of unreachable blocks. In addition to being 375 // unprofitable, it can also lead to infinite looping, because in an 376 // unreachable loop there may be nowhere to stop. 377 if (!DT->isReachableFromEntry(&MBB)) return false; 378 379 bool MadeChange = false; 380 381 // Cache all successors, sorted by frequency info and loop depth. 382 AllSuccsCache AllSuccessors; 383 384 // Walk the basic block bottom-up. Remember if we saw a store. 385 MachineBasicBlock::iterator I = MBB.end(); 386 --I; 387 bool ProcessedBegin, SawStore = false; 388 do { 389 MachineInstr &MI = *I; // The instruction to sink. 390 391 // Predecrement I (if it's not begin) so that it isn't invalidated by 392 // sinking. 393 ProcessedBegin = I == MBB.begin(); 394 if (!ProcessedBegin) 395 --I; 396 397 if (MI.isDebugInstr()) { 398 if (MI.isDebugValue()) 399 ProcessDbgInst(MI); 400 continue; 401 } 402 403 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 404 if (Joined) { 405 MadeChange = true; 406 continue; 407 } 408 409 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 410 ++NumSunk; 411 MadeChange = true; 412 } 413 414 // If we just processed the first instruction in the block, we're done. 415 } while (!ProcessedBegin); 416 417 SeenDbgUsers.clear(); 418 SeenDbgVars.clear(); 419 420 return MadeChange; 421 } 422 423 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 424 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 425 // we know what to sink if the vreg def sinks. 426 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 427 428 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 429 MI.getDebugLoc()->getInlinedAt()); 430 bool SeenBefore = SeenDbgVars.count(Var) != 0; 431 432 MachineOperand &MO = MI.getDebugOperand(0); 433 if (MO.isReg() && MO.getReg().isVirtual()) 434 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 435 436 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 437 SeenDbgVars.insert(Var); 438 } 439 440 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 441 MachineBasicBlock *From, 442 MachineBasicBlock *To) { 443 // FIXME: Need much better heuristics. 444 445 // If the pass has already considered breaking this edge (during this pass 446 // through the function), then let's go ahead and break it. This means 447 // sinking multiple "cheap" instructions into the same block. 448 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 449 return true; 450 451 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 452 return true; 453 454 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 455 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 456 return true; 457 458 // MI is cheap, we probably don't want to break the critical edge for it. 459 // However, if this would allow some definitions of its source operands 460 // to be sunk then it's probably worth it. 461 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 462 const MachineOperand &MO = MI.getOperand(i); 463 if (!MO.isReg() || !MO.isUse()) 464 continue; 465 Register Reg = MO.getReg(); 466 if (Reg == 0) 467 continue; 468 469 // We don't move live definitions of physical registers, 470 // so sinking their uses won't enable any opportunities. 471 if (Register::isPhysicalRegister(Reg)) 472 continue; 473 474 // If this instruction is the only user of a virtual register, 475 // check if breaking the edge will enable sinking 476 // both this instruction and the defining instruction. 477 if (MRI->hasOneNonDBGUse(Reg)) { 478 // If the definition resides in same MBB, 479 // claim it's likely we can sink these together. 480 // If definition resides elsewhere, we aren't 481 // blocking it from being sunk so don't break the edge. 482 MachineInstr *DefMI = MRI->getVRegDef(Reg); 483 if (DefMI->getParent() == MI.getParent()) 484 return true; 485 } 486 } 487 488 return false; 489 } 490 491 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 492 MachineBasicBlock *FromBB, 493 MachineBasicBlock *ToBB, 494 bool BreakPHIEdge) { 495 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 496 return false; 497 498 // Avoid breaking back edge. From == To means backedge for single BB loop. 499 if (!SplitEdges || FromBB == ToBB) 500 return false; 501 502 // Check for backedges of more "complex" loops. 503 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 504 LI->isLoopHeader(ToBB)) 505 return false; 506 507 // It's not always legal to break critical edges and sink the computation 508 // to the edge. 509 // 510 // %bb.1: 511 // v1024 512 // Beq %bb.3 513 // <fallthrough> 514 // %bb.2: 515 // ... no uses of v1024 516 // <fallthrough> 517 // %bb.3: 518 // ... 519 // = v1024 520 // 521 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 522 // 523 // %bb.1: 524 // ... 525 // Bne %bb.2 526 // %bb.4: 527 // v1024 = 528 // B %bb.3 529 // %bb.2: 530 // ... no uses of v1024 531 // <fallthrough> 532 // %bb.3: 533 // ... 534 // = v1024 535 // 536 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 537 // flow. We need to ensure the new basic block where the computation is 538 // sunk to dominates all the uses. 539 // It's only legal to break critical edge and sink the computation to the 540 // new block if all the predecessors of "To", except for "From", are 541 // not dominated by "From". Given SSA property, this means these 542 // predecessors are dominated by "To". 543 // 544 // There is no need to do this check if all the uses are PHI nodes. PHI 545 // sources are only defined on the specific predecessor edges. 546 if (!BreakPHIEdge) { 547 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 548 E = ToBB->pred_end(); PI != E; ++PI) { 549 if (*PI == FromBB) 550 continue; 551 if (!DT->dominates(ToBB, *PI)) 552 return false; 553 } 554 } 555 556 ToSplit.insert(std::make_pair(FromBB, ToBB)); 557 558 return true; 559 } 560 561 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 562 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 563 MachineBasicBlock *MBB, 564 MachineBasicBlock *SuccToSinkTo, 565 AllSuccsCache &AllSuccessors) { 566 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 567 568 if (MBB == SuccToSinkTo) 569 return false; 570 571 // It is profitable if SuccToSinkTo does not post dominate current block. 572 if (!PDT->dominates(SuccToSinkTo, MBB)) 573 return true; 574 575 // It is profitable to sink an instruction from a deeper loop to a shallower 576 // loop, even if the latter post-dominates the former (PR21115). 577 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 578 return true; 579 580 // Check if only use in post dominated block is PHI instruction. 581 bool NonPHIUse = false; 582 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 583 MachineBasicBlock *UseBlock = UseInst.getParent(); 584 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 585 NonPHIUse = true; 586 } 587 if (!NonPHIUse) 588 return true; 589 590 // If SuccToSinkTo post dominates then also it may be profitable if MI 591 // can further profitably sinked into another block in next round. 592 bool BreakPHIEdge = false; 593 // FIXME - If finding successor is compile time expensive then cache results. 594 if (MachineBasicBlock *MBB2 = 595 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 596 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 597 598 MachineLoop *ML = LI->getLoopFor(MBB); 599 600 // If the instruction is not inside a loop, it is not profitable to sink MI to 601 // a post dominate block SuccToSinkTo. 602 if (!ML) 603 return false; 604 605 // If this instruction is inside a loop and sinking this instruction can make 606 // more registers live range shorten, it is still prifitable. 607 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 608 const MachineOperand &MO = MI.getOperand(i); 609 // Ignore non-register operands. 610 if (!MO.isReg()) 611 continue; 612 Register Reg = MO.getReg(); 613 if (Reg == 0) 614 continue; 615 616 // Don't handle physical register. 617 if (Register::isPhysicalRegister(Reg)) 618 return false; 619 620 // Users for the defs are all dominated by SuccToSinkTo. 621 if (MO.isDef()) { 622 // This def register's live range is shortened after sinking. 623 bool LocalUse = false; 624 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 625 LocalUse)) 626 return false; 627 } else { 628 MachineInstr *DefMI = MRI->getVRegDef(Reg); 629 // DefMI is defined outside of loop. There should be no live range 630 // impact for this operand. Defination outside of loop means: 631 // 1: defination is outside of loop. 632 // 2: defination is in this loop, but it is a PHI in the loop header. 633 if (LI->getLoopFor(DefMI->getParent()) != ML || 634 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 635 continue; 636 // DefMI is inside the loop. Mark it as not profitable as sinking MI will 637 // enlarge DefMI live range. 638 // FIXME: check the register pressure in block SuccToSinkTo, if it is 639 // smaller than the limit after sinking, it is still profitable to sink. 640 return false; 641 } 642 } 643 644 // If MI is in loop and all its operands are alive across the whole loop, it 645 // is profitable to sink MI. 646 return true; 647 } 648 649 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 650 /// computing it if it was not already cached. 651 SmallVector<MachineBasicBlock *, 4> & 652 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 653 AllSuccsCache &AllSuccessors) const { 654 // Do we have the sorted successors in cache ? 655 auto Succs = AllSuccessors.find(MBB); 656 if (Succs != AllSuccessors.end()) 657 return Succs->second; 658 659 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 660 MBB->succ_end()); 661 662 // Handle cases where sinking can happen but where the sink point isn't a 663 // successor. For example: 664 // 665 // x = computation 666 // if () {} else {} 667 // use x 668 // 669 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 670 // DomTree children of MBB that have MBB as immediate dominator are added. 671 if (DTChild->getIDom()->getBlock() == MI.getParent() && 672 // Skip MBBs already added to the AllSuccs vector above. 673 !MBB->isSuccessor(DTChild->getBlock())) 674 AllSuccs.push_back(DTChild->getBlock()); 675 } 676 677 // Sort Successors according to their loop depth or block frequency info. 678 llvm::stable_sort( 679 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 680 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 681 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 682 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 683 return HasBlockFreq ? LHSFreq < RHSFreq 684 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 685 }); 686 687 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 688 689 return it.first->second; 690 } 691 692 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 693 MachineBasicBlock * 694 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 695 bool &BreakPHIEdge, 696 AllSuccsCache &AllSuccessors) { 697 assert (MBB && "Invalid MachineBasicBlock!"); 698 699 // Loop over all the operands of the specified instruction. If there is 700 // anything we can't handle, bail out. 701 702 // SuccToSinkTo - This is the successor to sink this instruction to, once we 703 // decide. 704 MachineBasicBlock *SuccToSinkTo = nullptr; 705 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 706 const MachineOperand &MO = MI.getOperand(i); 707 if (!MO.isReg()) continue; // Ignore non-register operands. 708 709 Register Reg = MO.getReg(); 710 if (Reg == 0) continue; 711 712 if (Register::isPhysicalRegister(Reg)) { 713 if (MO.isUse()) { 714 // If the physreg has no defs anywhere, it's just an ambient register 715 // and we can freely move its uses. Alternatively, if it's allocatable, 716 // it could get allocated to something with a def during allocation. 717 if (!MRI->isConstantPhysReg(Reg)) 718 return nullptr; 719 } else if (!MO.isDead()) { 720 // A def that isn't dead. We can't move it. 721 return nullptr; 722 } 723 } else { 724 // Virtual register uses are always safe to sink. 725 if (MO.isUse()) continue; 726 727 // If it's not safe to move defs of the register class, then abort. 728 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 729 return nullptr; 730 731 // Virtual register defs can only be sunk if all their uses are in blocks 732 // dominated by one of the successors. 733 if (SuccToSinkTo) { 734 // If a previous operand picked a block to sink to, then this operand 735 // must be sinkable to the same block. 736 bool LocalUse = false; 737 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 738 BreakPHIEdge, LocalUse)) 739 return nullptr; 740 741 continue; 742 } 743 744 // Otherwise, we should look at all the successors and decide which one 745 // we should sink to. If we have reliable block frequency information 746 // (frequency != 0) available, give successors with smaller frequencies 747 // higher priority, otherwise prioritize smaller loop depths. 748 for (MachineBasicBlock *SuccBlock : 749 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 750 bool LocalUse = false; 751 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 752 BreakPHIEdge, LocalUse)) { 753 SuccToSinkTo = SuccBlock; 754 break; 755 } 756 if (LocalUse) 757 // Def is used locally, it's never safe to move this def. 758 return nullptr; 759 } 760 761 // If we couldn't find a block to sink to, ignore this instruction. 762 if (!SuccToSinkTo) 763 return nullptr; 764 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 765 return nullptr; 766 } 767 } 768 769 // It is not possible to sink an instruction into its own block. This can 770 // happen with loops. 771 if (MBB == SuccToSinkTo) 772 return nullptr; 773 774 // It's not safe to sink instructions to EH landing pad. Control flow into 775 // landing pad is implicitly defined. 776 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 777 return nullptr; 778 779 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 780 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 781 // the source block (which this code does not yet do). So for now, forbid 782 // doing so. 783 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 784 return nullptr; 785 786 return SuccToSinkTo; 787 } 788 789 /// Return true if MI is likely to be usable as a memory operation by the 790 /// implicit null check optimization. 791 /// 792 /// This is a "best effort" heuristic, and should not be relied upon for 793 /// correctness. This returning true does not guarantee that the implicit null 794 /// check optimization is legal over MI, and this returning false does not 795 /// guarantee MI cannot possibly be used to do a null check. 796 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 797 const TargetInstrInfo *TII, 798 const TargetRegisterInfo *TRI) { 799 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 800 801 auto *MBB = MI.getParent(); 802 if (MBB->pred_size() != 1) 803 return false; 804 805 auto *PredMBB = *MBB->pred_begin(); 806 auto *PredBB = PredMBB->getBasicBlock(); 807 808 // Frontends that don't use implicit null checks have no reason to emit 809 // branches with make.implicit metadata, and this function should always 810 // return false for them. 811 if (!PredBB || 812 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 813 return false; 814 815 const MachineOperand *BaseOp; 816 int64_t Offset; 817 bool OffsetIsScalable; 818 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 819 return false; 820 821 if (!BaseOp->isReg()) 822 return false; 823 824 if (!(MI.mayLoad() && !MI.isPredicable())) 825 return false; 826 827 MachineBranchPredicate MBP; 828 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 829 return false; 830 831 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 832 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 833 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 834 MBP.LHS.getReg() == BaseOp->getReg(); 835 } 836 837 /// If the sunk instruction is a copy, try to forward the copy instead of 838 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 839 /// there's any subregister weirdness involved. Returns true if copy 840 /// propagation occurred. 841 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 842 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 843 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 844 845 // Copy DBG_VALUE operand and set the original to undef. We then check to 846 // see whether this is something that can be copy-forwarded. If it isn't, 847 // continue around the loop. 848 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 849 850 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 851 auto CopyOperands = TII.isCopyInstr(SinkInst); 852 if (!CopyOperands) 853 return false; 854 SrcMO = CopyOperands->Source; 855 DstMO = CopyOperands->Destination; 856 857 // Check validity of forwarding this copy. 858 bool PostRA = MRI.getNumVirtRegs() == 0; 859 860 // Trying to forward between physical and virtual registers is too hard. 861 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 862 return false; 863 864 // Only try virtual register copy-forwarding before regalloc, and physical 865 // register copy-forwarding after regalloc. 866 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 867 if (arePhysRegs != PostRA) 868 return false; 869 870 // Pre-regalloc, only forward if all subregisters agree (or there are no 871 // subregs at all). More analysis might recover some forwardable copies. 872 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 873 DbgMO.getSubReg() != DstMO->getSubReg())) 874 return false; 875 876 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 877 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 878 // matches the copy destination. 879 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 880 return false; 881 882 DbgMO.setReg(SrcMO->getReg()); 883 DbgMO.setSubReg(SrcMO->getSubReg()); 884 return true; 885 } 886 887 /// Sink an instruction and its associated debug instructions. 888 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 889 MachineBasicBlock::iterator InsertPos, 890 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 891 892 // If we cannot find a location to use (merge with), then we erase the debug 893 // location to prevent debug-info driven tools from potentially reporting 894 // wrong location information. 895 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 896 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 897 InsertPos->getDebugLoc())); 898 else 899 MI.setDebugLoc(DebugLoc()); 900 901 // Move the instruction. 902 MachineBasicBlock *ParentBlock = MI.getParent(); 903 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 904 ++MachineBasicBlock::iterator(MI)); 905 906 // Sink a copy of debug users to the insert position. Mark the original 907 // DBG_VALUE location as 'undef', indicating that any earlier variable 908 // location should be terminated as we've optimised away the value at this 909 // point. 910 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 911 DBE = DbgValuesToSink.end(); 912 DBI != DBE; ++DBI) { 913 MachineInstr *DbgMI = *DBI; 914 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 915 SuccToSinkTo.insert(InsertPos, NewDbgMI); 916 917 if (!attemptDebugCopyProp(MI, *DbgMI)) 918 DbgMI->setDebugValueUndef(); 919 } 920 } 921 922 /// SinkInstruction - Determine whether it is safe to sink the specified machine 923 /// instruction out of its current block into a successor. 924 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 925 AllSuccsCache &AllSuccessors) { 926 // Don't sink instructions that the target prefers not to sink. 927 if (!TII->shouldSink(MI)) 928 return false; 929 930 // Check if it's safe to move the instruction. 931 if (!MI.isSafeToMove(AA, SawStore)) 932 return false; 933 934 // Convergent operations may not be made control-dependent on additional 935 // values. 936 if (MI.isConvergent()) 937 return false; 938 939 // Don't break implicit null checks. This is a performance heuristic, and not 940 // required for correctness. 941 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 942 return false; 943 944 // FIXME: This should include support for sinking instructions within the 945 // block they are currently in to shorten the live ranges. We often get 946 // instructions sunk into the top of a large block, but it would be better to 947 // also sink them down before their first use in the block. This xform has to 948 // be careful not to *increase* register pressure though, e.g. sinking 949 // "x = y + z" down if it kills y and z would increase the live ranges of y 950 // and z and only shrink the live range of x. 951 952 bool BreakPHIEdge = false; 953 MachineBasicBlock *ParentBlock = MI.getParent(); 954 MachineBasicBlock *SuccToSinkTo = 955 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 956 957 // If there are no outputs, it must have side-effects. 958 if (!SuccToSinkTo) 959 return false; 960 961 // If the instruction to move defines a dead physical register which is live 962 // when leaving the basic block, don't move it because it could turn into a 963 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 964 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 965 const MachineOperand &MO = MI.getOperand(I); 966 if (!MO.isReg()) continue; 967 Register Reg = MO.getReg(); 968 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 969 continue; 970 if (SuccToSinkTo->isLiveIn(Reg)) 971 return false; 972 } 973 974 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 975 976 // If the block has multiple predecessors, this is a critical edge. 977 // Decide if we can sink along it or need to break the edge. 978 if (SuccToSinkTo->pred_size() > 1) { 979 // We cannot sink a load across a critical edge - there may be stores in 980 // other code paths. 981 bool TryBreak = false; 982 bool store = true; 983 if (!MI.isSafeToMove(AA, store)) { 984 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 985 TryBreak = true; 986 } 987 988 // We don't want to sink across a critical edge if we don't dominate the 989 // successor. We could be introducing calculations to new code paths. 990 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 991 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 992 TryBreak = true; 993 } 994 995 // Don't sink instructions into a loop. 996 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 997 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 998 TryBreak = true; 999 } 1000 1001 // Otherwise we are OK with sinking along a critical edge. 1002 if (!TryBreak) 1003 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1004 else { 1005 // Mark this edge as to be split. 1006 // If the edge can actually be split, the next iteration of the main loop 1007 // will sink MI in the newly created block. 1008 bool Status = 1009 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1010 if (!Status) 1011 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1012 "break critical edge\n"); 1013 // The instruction will not be sunk this time. 1014 return false; 1015 } 1016 } 1017 1018 if (BreakPHIEdge) { 1019 // BreakPHIEdge is true if all the uses are in the successor MBB being 1020 // sunken into and they are all PHI nodes. In this case, machine-sink must 1021 // break the critical edge first. 1022 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1023 SuccToSinkTo, BreakPHIEdge); 1024 if (!Status) 1025 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1026 "break critical edge\n"); 1027 // The instruction will not be sunk this time. 1028 return false; 1029 } 1030 1031 // Determine where to insert into. Skip phi nodes. 1032 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1033 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1034 ++InsertPos; 1035 1036 // Collect debug users of any vreg that this inst defines. 1037 SmallVector<MachineInstr *, 4> DbgUsersToSink; 1038 for (auto &MO : MI.operands()) { 1039 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1040 continue; 1041 if (!SeenDbgUsers.count(MO.getReg())) 1042 continue; 1043 1044 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1045 auto &Users = SeenDbgUsers[MO.getReg()]; 1046 for (auto &User : Users) { 1047 MachineInstr *DbgMI = User.getPointer(); 1048 if (User.getInt()) { 1049 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1050 // it, it can't be recovered. Set it undef. 1051 if (!attemptDebugCopyProp(MI, *DbgMI)) 1052 DbgMI->setDebugValueUndef(); 1053 } else { 1054 DbgUsersToSink.push_back(DbgMI); 1055 } 1056 } 1057 } 1058 1059 // After sinking, some debug users may not be dominated any more. If possible, 1060 // copy-propagate their operands. As it's expensive, don't do this if there's 1061 // no debuginfo in the program. 1062 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1063 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1064 1065 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1066 1067 // Conservatively, clear any kill flags, since it's possible that they are no 1068 // longer correct. 1069 // Note that we have to clear the kill flags for any register this instruction 1070 // uses as we may sink over another instruction which currently kills the 1071 // used registers. 1072 for (MachineOperand &MO : MI.operands()) { 1073 if (MO.isReg() && MO.isUse()) 1074 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1075 } 1076 1077 return true; 1078 } 1079 1080 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1081 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1082 assert(MI.isCopy()); 1083 assert(MI.getOperand(1).isReg()); 1084 1085 // Enumerate all users of vreg operands that are def'd. Skip those that will 1086 // be sunk. For the rest, if they are not dominated by the block we will sink 1087 // MI into, propagate the copy source to them. 1088 SmallVector<MachineInstr *, 4> DbgDefUsers; 1089 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1090 for (auto &MO : MI.operands()) { 1091 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1092 continue; 1093 for (auto &User : MRI.use_instructions(MO.getReg())) { 1094 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1095 continue; 1096 1097 // If is in same block, will either sink or be use-before-def. 1098 if (User.getParent() == MI.getParent()) 1099 continue; 1100 1101 assert(User.getDebugOperand(0).isReg() && 1102 "DBG_VALUE user of vreg, but non reg operand?"); 1103 DbgDefUsers.push_back(&User); 1104 } 1105 } 1106 1107 // Point the users of this copy that are no longer dominated, at the source 1108 // of the copy. 1109 for (auto *User : DbgDefUsers) { 1110 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1111 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1112 } 1113 } 1114 1115 //===----------------------------------------------------------------------===// 1116 // This pass is not intended to be a replacement or a complete alternative 1117 // for the pre-ra machine sink pass. It is only designed to sink COPY 1118 // instructions which should be handled after RA. 1119 // 1120 // This pass sinks COPY instructions into a successor block, if the COPY is not 1121 // used in the current block and the COPY is live-in to a single successor 1122 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1123 // copy on paths where their results aren't needed. This also exposes 1124 // additional opportunites for dead copy elimination and shrink wrapping. 1125 // 1126 // These copies were either not handled by or are inserted after the MachineSink 1127 // pass. As an example of the former case, the MachineSink pass cannot sink 1128 // COPY instructions with allocatable source registers; for AArch64 these type 1129 // of copy instructions are frequently used to move function parameters (PhyReg) 1130 // into virtual registers in the entry block. 1131 // 1132 // For the machine IR below, this pass will sink %w19 in the entry into its 1133 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1134 // %bb.0: 1135 // %wzr = SUBSWri %w1, 1 1136 // %w19 = COPY %w0 1137 // Bcc 11, %bb.2 1138 // %bb.1: 1139 // Live Ins: %w19 1140 // BL @fun 1141 // %w0 = ADDWrr %w0, %w19 1142 // RET %w0 1143 // %bb.2: 1144 // %w0 = COPY %wzr 1145 // RET %w0 1146 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1147 // able to see %bb.0 as a candidate. 1148 //===----------------------------------------------------------------------===// 1149 namespace { 1150 1151 class PostRAMachineSinking : public MachineFunctionPass { 1152 public: 1153 bool runOnMachineFunction(MachineFunction &MF) override; 1154 1155 static char ID; 1156 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1157 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1158 1159 void getAnalysisUsage(AnalysisUsage &AU) const override { 1160 AU.setPreservesCFG(); 1161 MachineFunctionPass::getAnalysisUsage(AU); 1162 } 1163 1164 MachineFunctionProperties getRequiredProperties() const override { 1165 return MachineFunctionProperties().set( 1166 MachineFunctionProperties::Property::NoVRegs); 1167 } 1168 1169 private: 1170 /// Track which register units have been modified and used. 1171 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1172 1173 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1174 /// entry in this map for each unit it touches. 1175 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1176 1177 /// Sink Copy instructions unused in the same block close to their uses in 1178 /// successors. 1179 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1180 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1181 }; 1182 } // namespace 1183 1184 char PostRAMachineSinking::ID = 0; 1185 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1186 1187 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1188 "PostRA Machine Sink", false, false) 1189 1190 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1191 const TargetRegisterInfo *TRI) { 1192 LiveRegUnits LiveInRegUnits(*TRI); 1193 LiveInRegUnits.addLiveIns(MBB); 1194 return !LiveInRegUnits.available(Reg); 1195 } 1196 1197 static MachineBasicBlock * 1198 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1199 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1200 unsigned Reg, const TargetRegisterInfo *TRI) { 1201 // Try to find a single sinkable successor in which Reg is live-in. 1202 MachineBasicBlock *BB = nullptr; 1203 for (auto *SI : SinkableBBs) { 1204 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1205 // If BB is set here, Reg is live-in to at least two sinkable successors, 1206 // so quit. 1207 if (BB) 1208 return nullptr; 1209 BB = SI; 1210 } 1211 } 1212 // Reg is not live-in to any sinkable successors. 1213 if (!BB) 1214 return nullptr; 1215 1216 // Check if any register aliased with Reg is live-in in other successors. 1217 for (auto *SI : CurBB.successors()) { 1218 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1219 return nullptr; 1220 } 1221 return BB; 1222 } 1223 1224 static MachineBasicBlock * 1225 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1226 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1227 ArrayRef<unsigned> DefedRegsInCopy, 1228 const TargetRegisterInfo *TRI) { 1229 MachineBasicBlock *SingleBB = nullptr; 1230 for (auto DefReg : DefedRegsInCopy) { 1231 MachineBasicBlock *BB = 1232 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1233 if (!BB || (SingleBB && SingleBB != BB)) 1234 return nullptr; 1235 SingleBB = BB; 1236 } 1237 return SingleBB; 1238 } 1239 1240 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1241 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1242 LiveRegUnits &UsedRegUnits, 1243 const TargetRegisterInfo *TRI) { 1244 for (auto U : UsedOpsInCopy) { 1245 MachineOperand &MO = MI->getOperand(U); 1246 Register SrcReg = MO.getReg(); 1247 if (!UsedRegUnits.available(SrcReg)) { 1248 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1249 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1250 if (UI.killsRegister(SrcReg, TRI)) { 1251 UI.clearRegisterKills(SrcReg, TRI); 1252 MO.setIsKill(true); 1253 break; 1254 } 1255 } 1256 } 1257 } 1258 } 1259 1260 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1261 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1262 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1263 MachineFunction &MF = *SuccBB->getParent(); 1264 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1265 for (unsigned DefReg : DefedRegsInCopy) 1266 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1267 SuccBB->removeLiveIn(*S); 1268 for (auto U : UsedOpsInCopy) { 1269 Register SrcReg = MI->getOperand(U).getReg(); 1270 LaneBitmask Mask; 1271 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1272 Mask |= (*S).second; 1273 } 1274 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1275 } 1276 SuccBB->sortUniqueLiveIns(); 1277 } 1278 1279 static bool hasRegisterDependency(MachineInstr *MI, 1280 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1281 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1282 LiveRegUnits &ModifiedRegUnits, 1283 LiveRegUnits &UsedRegUnits) { 1284 bool HasRegDependency = false; 1285 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1286 MachineOperand &MO = MI->getOperand(i); 1287 if (!MO.isReg()) 1288 continue; 1289 Register Reg = MO.getReg(); 1290 if (!Reg) 1291 continue; 1292 if (MO.isDef()) { 1293 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1294 HasRegDependency = true; 1295 break; 1296 } 1297 DefedRegsInCopy.push_back(Reg); 1298 1299 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1300 // For example, we can ignore modifications in reg with undef. However, 1301 // it's not perfectly clear if skipping the internal read is safe in all 1302 // other targets. 1303 } else if (MO.isUse()) { 1304 if (!ModifiedRegUnits.available(Reg)) { 1305 HasRegDependency = true; 1306 break; 1307 } 1308 UsedOpsInCopy.push_back(i); 1309 } 1310 } 1311 return HasRegDependency; 1312 } 1313 1314 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1315 const TargetRegisterInfo *TRI) { 1316 SmallSet<MCRegister, 4> RegUnits; 1317 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1318 RegUnits.insert(*RI); 1319 return RegUnits; 1320 } 1321 1322 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1323 MachineFunction &MF, 1324 const TargetRegisterInfo *TRI, 1325 const TargetInstrInfo *TII) { 1326 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1327 // FIXME: For now, we sink only to a successor which has a single predecessor 1328 // so that we can directly sink COPY instructions to the successor without 1329 // adding any new block or branch instruction. 1330 for (MachineBasicBlock *SI : CurBB.successors()) 1331 if (!SI->livein_empty() && SI->pred_size() == 1) 1332 SinkableBBs.insert(SI); 1333 1334 if (SinkableBBs.empty()) 1335 return false; 1336 1337 bool Changed = false; 1338 1339 // Track which registers have been modified and used between the end of the 1340 // block and the current instruction. 1341 ModifiedRegUnits.clear(); 1342 UsedRegUnits.clear(); 1343 SeenDbgInstrs.clear(); 1344 1345 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1346 MachineInstr *MI = &*I; 1347 ++I; 1348 1349 // Track the operand index for use in Copy. 1350 SmallVector<unsigned, 2> UsedOpsInCopy; 1351 // Track the register number defed in Copy. 1352 SmallVector<unsigned, 2> DefedRegsInCopy; 1353 1354 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1355 // for DBG_VALUEs later, record them when they're encountered. 1356 if (MI->isDebugValue()) { 1357 auto &MO = MI->getDebugOperand(0); 1358 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1359 // Bail if we can already tell the sink would be rejected, rather 1360 // than needlessly accumulating lots of DBG_VALUEs. 1361 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1362 ModifiedRegUnits, UsedRegUnits)) 1363 continue; 1364 1365 // Record debug use of each reg unit. 1366 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1367 for (MCRegister Reg : Units) 1368 SeenDbgInstrs[Reg].push_back(MI); 1369 } 1370 continue; 1371 } 1372 1373 if (MI->isDebugInstr()) 1374 continue; 1375 1376 // Do not move any instruction across function call. 1377 if (MI->isCall()) 1378 return false; 1379 1380 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1381 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1382 TRI); 1383 continue; 1384 } 1385 1386 // Don't sink the COPY if it would violate a register dependency. 1387 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1388 ModifiedRegUnits, UsedRegUnits)) { 1389 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1390 TRI); 1391 continue; 1392 } 1393 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1394 "Unexpect SrcReg or DefReg"); 1395 MachineBasicBlock *SuccBB = 1396 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1397 // Don't sink if we cannot find a single sinkable successor in which Reg 1398 // is live-in. 1399 if (!SuccBB) { 1400 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1401 TRI); 1402 continue; 1403 } 1404 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1405 "Unexpected predecessor"); 1406 1407 // Collect DBG_VALUEs that must sink with this copy. We've previously 1408 // recorded which reg units that DBG_VALUEs read, if this instruction 1409 // writes any of those units then the corresponding DBG_VALUEs must sink. 1410 SetVector<MachineInstr *> DbgValsToSinkSet; 1411 SmallVector<MachineInstr *, 4> DbgValsToSink; 1412 for (auto &MO : MI->operands()) { 1413 if (!MO.isReg() || !MO.isDef()) 1414 continue; 1415 1416 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1417 for (MCRegister Reg : Units) 1418 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1419 DbgValsToSinkSet.insert(MI); 1420 } 1421 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1422 DbgValsToSinkSet.end()); 1423 1424 // Clear the kill flag if SrcReg is killed between MI and the end of the 1425 // block. 1426 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1427 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1428 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1429 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1430 1431 Changed = true; 1432 ++NumPostRACopySink; 1433 } 1434 return Changed; 1435 } 1436 1437 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1438 if (skipFunction(MF.getFunction())) 1439 return false; 1440 1441 bool Changed = false; 1442 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1443 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1444 1445 ModifiedRegUnits.init(*TRI); 1446 UsedRegUnits.init(*TRI); 1447 for (auto &BB : MF) 1448 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1449 1450 return Changed; 1451 } 1452