1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <queue> 32 33 using namespace llvm; 34 35 namespace llvm { 36 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 37 cl::desc("Force top-down list scheduling")); 38 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 39 cl::desc("Force bottom-up list scheduling")); 40 } 41 42 #ifndef NDEBUG 43 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 44 cl::desc("Pop up a window to show MISched dags after they are processed")); 45 46 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 47 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 48 #else 49 static bool ViewMISchedDAGs = false; 50 #endif // NDEBUG 51 52 // Experimental heuristics 53 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 54 cl::desc("Enable load clustering."), cl::init(true)); 55 56 // Experimental heuristics 57 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 58 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 59 60 // DAG subtrees must have at least this many nodes. 61 static const unsigned MinSubtreeSize = 8; 62 63 //===----------------------------------------------------------------------===// 64 // Machine Instruction Scheduling Pass and Registry 65 //===----------------------------------------------------------------------===// 66 67 MachineSchedContext::MachineSchedContext(): 68 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 69 RegClassInfo = new RegisterClassInfo(); 70 } 71 72 MachineSchedContext::~MachineSchedContext() { 73 delete RegClassInfo; 74 } 75 76 namespace { 77 /// MachineScheduler runs after coalescing and before register allocation. 78 class MachineScheduler : public MachineSchedContext, 79 public MachineFunctionPass { 80 public: 81 MachineScheduler(); 82 83 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 84 85 virtual void releaseMemory() {} 86 87 virtual bool runOnMachineFunction(MachineFunction&); 88 89 virtual void print(raw_ostream &O, const Module* = 0) const; 90 91 static char ID; // Class identification, replacement for typeinfo 92 }; 93 } // namespace 94 95 char MachineScheduler::ID = 0; 96 97 char &llvm::MachineSchedulerID = MachineScheduler::ID; 98 99 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 100 "Machine Instruction Scheduler", false, false) 101 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 102 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 103 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 104 INITIALIZE_PASS_END(MachineScheduler, "misched", 105 "Machine Instruction Scheduler", false, false) 106 107 MachineScheduler::MachineScheduler() 108 : MachineFunctionPass(ID) { 109 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 110 } 111 112 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 113 AU.setPreservesCFG(); 114 AU.addRequiredID(MachineDominatorsID); 115 AU.addRequired<MachineLoopInfo>(); 116 AU.addRequired<AliasAnalysis>(); 117 AU.addRequired<TargetPassConfig>(); 118 AU.addRequired<SlotIndexes>(); 119 AU.addPreserved<SlotIndexes>(); 120 AU.addRequired<LiveIntervals>(); 121 AU.addPreserved<LiveIntervals>(); 122 MachineFunctionPass::getAnalysisUsage(AU); 123 } 124 125 MachinePassRegistry MachineSchedRegistry::Registry; 126 127 /// A dummy default scheduler factory indicates whether the scheduler 128 /// is overridden on the command line. 129 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 130 return 0; 131 } 132 133 /// MachineSchedOpt allows command line selection of the scheduler. 134 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 135 RegisterPassParser<MachineSchedRegistry> > 136 MachineSchedOpt("misched", 137 cl::init(&useDefaultMachineSched), cl::Hidden, 138 cl::desc("Machine instruction scheduler to use")); 139 140 static MachineSchedRegistry 141 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 142 useDefaultMachineSched); 143 144 /// Forward declare the standard machine scheduler. This will be used as the 145 /// default scheduler if the target does not set a default. 146 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 147 148 149 /// Decrement this iterator until reaching the top or a non-debug instr. 150 static MachineBasicBlock::iterator 151 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 152 assert(I != Beg && "reached the top of the region, cannot decrement"); 153 while (--I != Beg) { 154 if (!I->isDebugValue()) 155 break; 156 } 157 return I; 158 } 159 160 /// If this iterator is a debug value, increment until reaching the End or a 161 /// non-debug instruction. 162 static MachineBasicBlock::iterator 163 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 164 for(; I != End; ++I) { 165 if (!I->isDebugValue()) 166 break; 167 } 168 return I; 169 } 170 171 /// Top-level MachineScheduler pass driver. 172 /// 173 /// Visit blocks in function order. Divide each block into scheduling regions 174 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 175 /// consistent with the DAG builder, which traverses the interior of the 176 /// scheduling regions bottom-up. 177 /// 178 /// This design avoids exposing scheduling boundaries to the DAG builder, 179 /// simplifying the DAG builder's support for "special" target instructions. 180 /// At the same time the design allows target schedulers to operate across 181 /// scheduling boundaries, for example to bundle the boudary instructions 182 /// without reordering them. This creates complexity, because the target 183 /// scheduler must update the RegionBegin and RegionEnd positions cached by 184 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 185 /// design would be to split blocks at scheduling boundaries, but LLVM has a 186 /// general bias against block splitting purely for implementation simplicity. 187 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 188 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 189 190 // Initialize the context of the pass. 191 MF = &mf; 192 MLI = &getAnalysis<MachineLoopInfo>(); 193 MDT = &getAnalysis<MachineDominatorTree>(); 194 PassConfig = &getAnalysis<TargetPassConfig>(); 195 AA = &getAnalysis<AliasAnalysis>(); 196 197 LIS = &getAnalysis<LiveIntervals>(); 198 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 199 200 RegClassInfo->runOnMachineFunction(*MF); 201 202 // Select the scheduler, or set the default. 203 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 204 if (Ctor == useDefaultMachineSched) { 205 // Get the default scheduler set by the target. 206 Ctor = MachineSchedRegistry::getDefault(); 207 if (!Ctor) { 208 Ctor = createConvergingSched; 209 MachineSchedRegistry::setDefault(Ctor); 210 } 211 } 212 // Instantiate the selected scheduler. 213 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 214 215 // Visit all machine basic blocks. 216 // 217 // TODO: Visit blocks in global postorder or postorder within the bottom-up 218 // loop tree. Then we can optionally compute global RegPressure. 219 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 220 MBB != MBBEnd; ++MBB) { 221 222 Scheduler->startBlock(MBB); 223 224 // Break the block into scheduling regions [I, RegionEnd), and schedule each 225 // region as soon as it is discovered. RegionEnd points the scheduling 226 // boundary at the bottom of the region. The DAG does not include RegionEnd, 227 // but the region does (i.e. the next RegionEnd is above the previous 228 // RegionBegin). If the current block has no terminator then RegionEnd == 229 // MBB->end() for the bottom region. 230 // 231 // The Scheduler may insert instructions during either schedule() or 232 // exitRegion(), even for empty regions. So the local iterators 'I' and 233 // 'RegionEnd' are invalid across these calls. 234 unsigned RemainingInstrs = MBB->size(); 235 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 236 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 237 238 // Avoid decrementing RegionEnd for blocks with no terminator. 239 if (RegionEnd != MBB->end() 240 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 241 --RegionEnd; 242 // Count the boundary instruction. 243 --RemainingInstrs; 244 } 245 246 // The next region starts above the previous region. Look backward in the 247 // instruction stream until we find the nearest boundary. 248 MachineBasicBlock::iterator I = RegionEnd; 249 for(;I != MBB->begin(); --I, --RemainingInstrs) { 250 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 251 break; 252 } 253 // Notify the scheduler of the region, even if we may skip scheduling 254 // it. Perhaps it still needs to be bundled. 255 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); 256 257 // Skip empty scheduling regions (0 or 1 schedulable instructions). 258 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 259 // Close the current region. Bundle the terminator if needed. 260 // This invalidates 'RegionEnd' and 'I'. 261 Scheduler->exitRegion(); 262 continue; 263 } 264 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 265 DEBUG(dbgs() << MF->getName() 266 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 267 << "\n From: " << *I << " To: "; 268 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 269 else dbgs() << "End"; 270 dbgs() << " Remaining: " << RemainingInstrs << "\n"); 271 272 // Schedule a region: possibly reorder instructions. 273 // This invalidates 'RegionEnd' and 'I'. 274 Scheduler->schedule(); 275 276 // Close the current region. 277 Scheduler->exitRegion(); 278 279 // Scheduling has invalidated the current iterator 'I'. Ask the 280 // scheduler for the top of it's scheduled region. 281 RegionEnd = Scheduler->begin(); 282 } 283 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 284 Scheduler->finishBlock(); 285 } 286 Scheduler->finalizeSchedule(); 287 DEBUG(LIS->print(dbgs())); 288 return true; 289 } 290 291 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 292 // unimplemented 293 } 294 295 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 296 void ReadyQueue::dump() { 297 dbgs() << Name << ": "; 298 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 299 dbgs() << Queue[i]->NodeNum << " "; 300 dbgs() << "\n"; 301 } 302 #endif 303 304 //===----------------------------------------------------------------------===// 305 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 306 // preservation. 307 //===----------------------------------------------------------------------===// 308 309 ScheduleDAGMI::~ScheduleDAGMI() { 310 delete DFSResult; 311 DeleteContainerPointers(Mutations); 312 delete SchedImpl; 313 } 314 315 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 316 if (SuccSU != &ExitSU) { 317 // Do not use WillCreateCycle, it assumes SD scheduling. 318 // If Pred is reachable from Succ, then the edge creates a cycle. 319 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 320 return false; 321 Topo.AddPred(SuccSU, PredDep.getSUnit()); 322 } 323 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 324 // Return true regardless of whether a new edge needed to be inserted. 325 return true; 326 } 327 328 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 329 /// NumPredsLeft reaches zero, release the successor node. 330 /// 331 /// FIXME: Adjust SuccSU height based on MinLatency. 332 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 333 SUnit *SuccSU = SuccEdge->getSUnit(); 334 335 if (SuccEdge->isWeak()) { 336 --SuccSU->WeakPredsLeft; 337 if (SuccEdge->isCluster()) 338 NextClusterSucc = SuccSU; 339 return; 340 } 341 #ifndef NDEBUG 342 if (SuccSU->NumPredsLeft == 0) { 343 dbgs() << "*** Scheduling failed! ***\n"; 344 SuccSU->dump(this); 345 dbgs() << " has been released too many times!\n"; 346 llvm_unreachable(0); 347 } 348 #endif 349 --SuccSU->NumPredsLeft; 350 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 351 SchedImpl->releaseTopNode(SuccSU); 352 } 353 354 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 355 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 356 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 357 I != E; ++I) { 358 releaseSucc(SU, &*I); 359 } 360 } 361 362 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 363 /// NumSuccsLeft reaches zero, release the predecessor node. 364 /// 365 /// FIXME: Adjust PredSU height based on MinLatency. 366 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 367 SUnit *PredSU = PredEdge->getSUnit(); 368 369 if (PredEdge->isWeak()) { 370 --PredSU->WeakSuccsLeft; 371 if (PredEdge->isCluster()) 372 NextClusterPred = PredSU; 373 return; 374 } 375 #ifndef NDEBUG 376 if (PredSU->NumSuccsLeft == 0) { 377 dbgs() << "*** Scheduling failed! ***\n"; 378 PredSU->dump(this); 379 dbgs() << " has been released too many times!\n"; 380 llvm_unreachable(0); 381 } 382 #endif 383 --PredSU->NumSuccsLeft; 384 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 385 SchedImpl->releaseBottomNode(PredSU); 386 } 387 388 /// releasePredecessors - Call releasePred on each of SU's predecessors. 389 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 390 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 391 I != E; ++I) { 392 releasePred(SU, &*I); 393 } 394 } 395 396 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 397 MachineBasicBlock::iterator InsertPos) { 398 // Advance RegionBegin if the first instruction moves down. 399 if (&*RegionBegin == MI) 400 ++RegionBegin; 401 402 // Update the instruction stream. 403 BB->splice(InsertPos, BB, MI); 404 405 // Update LiveIntervals 406 LIS->handleMove(MI, /*UpdateFlags=*/true); 407 408 // Recede RegionBegin if an instruction moves above the first. 409 if (RegionBegin == InsertPos) 410 RegionBegin = MI; 411 } 412 413 bool ScheduleDAGMI::checkSchedLimit() { 414 #ifndef NDEBUG 415 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 416 CurrentTop = CurrentBottom; 417 return false; 418 } 419 ++NumInstrsScheduled; 420 #endif 421 return true; 422 } 423 424 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 425 /// crossing a scheduling boundary. [begin, end) includes all instructions in 426 /// the region, including the boundary itself and single-instruction regions 427 /// that don't get scheduled. 428 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 429 MachineBasicBlock::iterator begin, 430 MachineBasicBlock::iterator end, 431 unsigned endcount) 432 { 433 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); 434 435 // For convenience remember the end of the liveness region. 436 LiveRegionEnd = 437 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 438 } 439 440 // Setup the register pressure trackers for the top scheduled top and bottom 441 // scheduled regions. 442 void ScheduleDAGMI::initRegPressure() { 443 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 444 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 445 446 // Close the RPTracker to finalize live ins. 447 RPTracker.closeRegion(); 448 449 DEBUG(RPTracker.getPressure().dump(TRI)); 450 451 // Initialize the live ins and live outs. 452 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 453 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 454 455 // Close one end of the tracker so we can call 456 // getMaxUpward/DownwardPressureDelta before advancing across any 457 // instructions. This converts currently live regs into live ins/outs. 458 TopRPTracker.closeTop(); 459 BotRPTracker.closeBottom(); 460 461 // Account for liveness generated by the region boundary. 462 if (LiveRegionEnd != RegionEnd) 463 BotRPTracker.recede(); 464 465 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 466 467 // Cache the list of excess pressure sets in this region. This will also track 468 // the max pressure in the scheduled code for these sets. 469 RegionCriticalPSets.clear(); 470 const std::vector<unsigned> &RegionPressure = 471 RPTracker.getPressure().MaxSetPressure; 472 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 473 unsigned Limit = TRI->getRegPressureSetLimit(i); 474 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 475 << "Limit " << Limit 476 << " Actual " << RegionPressure[i] << "\n"); 477 if (RegionPressure[i] > Limit) 478 RegionCriticalPSets.push_back(PressureElement(i, 0)); 479 } 480 DEBUG(dbgs() << "Excess PSets: "; 481 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 482 dbgs() << TRI->getRegPressureSetName( 483 RegionCriticalPSets[i].PSetID) << " "; 484 dbgs() << "\n"); 485 } 486 487 // FIXME: When the pressure tracker deals in pressure differences then we won't 488 // iterate over all RegionCriticalPSets[i]. 489 void ScheduleDAGMI:: 490 updateScheduledPressure(std::vector<unsigned> NewMaxPressure) { 491 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 492 unsigned ID = RegionCriticalPSets[i].PSetID; 493 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; 494 if ((int)NewMaxPressure[ID] > MaxUnits) 495 MaxUnits = NewMaxPressure[ID]; 496 } 497 } 498 499 /// schedule - Called back from MachineScheduler::runOnMachineFunction 500 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 501 /// only includes instructions that have DAG nodes, not scheduling boundaries. 502 /// 503 /// This is a skeletal driver, with all the functionality pushed into helpers, 504 /// so that it can be easilly extended by experimental schedulers. Generally, 505 /// implementing MachineSchedStrategy should be sufficient to implement a new 506 /// scheduling algorithm. However, if a scheduler further subclasses 507 /// ScheduleDAGMI then it will want to override this virtual method in order to 508 /// update any specialized state. 509 void ScheduleDAGMI::schedule() { 510 buildDAGWithRegPressure(); 511 512 Topo.InitDAGTopologicalSorting(); 513 514 postprocessDAG(); 515 516 SmallVector<SUnit*, 8> TopRoots, BotRoots; 517 findRootsAndBiasEdges(TopRoots, BotRoots); 518 519 // Initialize the strategy before modifying the DAG. 520 // This may initialize a DFSResult to be used for queue priority. 521 SchedImpl->initialize(this); 522 523 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 524 SUnits[su].dumpAll(this)); 525 if (ViewMISchedDAGs) viewGraph(); 526 527 // Initialize ready queues now that the DAG and priority data are finalized. 528 initQueues(TopRoots, BotRoots); 529 530 bool IsTopNode = false; 531 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 532 assert(!SU->isScheduled && "Node already scheduled"); 533 if (!checkSchedLimit()) 534 break; 535 536 scheduleMI(SU, IsTopNode); 537 538 updateQueues(SU, IsTopNode); 539 } 540 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 541 542 placeDebugValues(); 543 544 DEBUG({ 545 unsigned BBNum = begin()->getParent()->getNumber(); 546 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 547 dumpSchedule(); 548 dbgs() << '\n'; 549 }); 550 } 551 552 /// Build the DAG and setup three register pressure trackers. 553 void ScheduleDAGMI::buildDAGWithRegPressure() { 554 // Initialize the register pressure tracker used by buildSchedGraph. 555 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 556 557 // Account for liveness generate by the region boundary. 558 if (LiveRegionEnd != RegionEnd) 559 RPTracker.recede(); 560 561 // Build the DAG, and compute current register pressure. 562 buildSchedGraph(AA, &RPTracker); 563 564 // Initialize top/bottom trackers after computing region pressure. 565 initRegPressure(); 566 } 567 568 /// Apply each ScheduleDAGMutation step in order. 569 void ScheduleDAGMI::postprocessDAG() { 570 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 571 Mutations[i]->apply(this); 572 } 573 } 574 575 void ScheduleDAGMI::computeDFSResult() { 576 if (!DFSResult) 577 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 578 DFSResult->clear(); 579 ScheduledTrees.clear(); 580 DFSResult->resize(SUnits.size()); 581 DFSResult->compute(SUnits); 582 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 583 } 584 585 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 586 SmallVectorImpl<SUnit*> &BotRoots) { 587 for (std::vector<SUnit>::iterator 588 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 589 SUnit *SU = &(*I); 590 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 591 592 // Order predecessors so DFSResult follows the critical path. 593 SU->biasCriticalPath(); 594 595 // A SUnit is ready to top schedule if it has no predecessors. 596 if (!I->NumPredsLeft) 597 TopRoots.push_back(SU); 598 // A SUnit is ready to bottom schedule if it has no successors. 599 if (!I->NumSuccsLeft) 600 BotRoots.push_back(SU); 601 } 602 ExitSU.biasCriticalPath(); 603 } 604 605 /// Identify DAG roots and setup scheduler queues. 606 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 607 ArrayRef<SUnit*> BotRoots) { 608 NextClusterSucc = NULL; 609 NextClusterPred = NULL; 610 611 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 612 // 613 // Nodes with unreleased weak edges can still be roots. 614 // Release top roots in forward order. 615 for (SmallVectorImpl<SUnit*>::const_iterator 616 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 617 SchedImpl->releaseTopNode(*I); 618 } 619 // Release bottom roots in reverse order so the higher priority nodes appear 620 // first. This is more natural and slightly more efficient. 621 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 622 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 623 SchedImpl->releaseBottomNode(*I); 624 } 625 626 releaseSuccessors(&EntrySU); 627 releasePredecessors(&ExitSU); 628 629 SchedImpl->registerRoots(); 630 631 // Advance past initial DebugValues. 632 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 633 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 634 TopRPTracker.setPos(CurrentTop); 635 636 CurrentBottom = RegionEnd; 637 } 638 639 /// Move an instruction and update register pressure. 640 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 641 // Move the instruction to its new location in the instruction stream. 642 MachineInstr *MI = SU->getInstr(); 643 644 if (IsTopNode) { 645 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 646 if (&*CurrentTop == MI) 647 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 648 else { 649 moveInstruction(MI, CurrentTop); 650 TopRPTracker.setPos(MI); 651 } 652 653 // Update top scheduled pressure. 654 TopRPTracker.advance(); 655 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 656 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 657 } 658 else { 659 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 660 MachineBasicBlock::iterator priorII = 661 priorNonDebug(CurrentBottom, CurrentTop); 662 if (&*priorII == MI) 663 CurrentBottom = priorII; 664 else { 665 if (&*CurrentTop == MI) { 666 CurrentTop = nextIfDebug(++CurrentTop, priorII); 667 TopRPTracker.setPos(CurrentTop); 668 } 669 moveInstruction(MI, CurrentBottom); 670 CurrentBottom = MI; 671 } 672 // Update bottom scheduled pressure. 673 BotRPTracker.recede(); 674 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 675 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 676 } 677 } 678 679 /// Update scheduler queues after scheduling an instruction. 680 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 681 // Release dependent instructions for scheduling. 682 if (IsTopNode) 683 releaseSuccessors(SU); 684 else 685 releasePredecessors(SU); 686 687 SU->isScheduled = true; 688 689 if (DFSResult) { 690 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 691 if (!ScheduledTrees.test(SubtreeID)) { 692 ScheduledTrees.set(SubtreeID); 693 DFSResult->scheduleTree(SubtreeID); 694 SchedImpl->scheduleTree(SubtreeID); 695 } 696 } 697 698 // Notify the scheduling strategy after updating the DAG. 699 SchedImpl->schedNode(SU, IsTopNode); 700 } 701 702 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 703 void ScheduleDAGMI::placeDebugValues() { 704 // If first instruction was a DBG_VALUE then put it back. 705 if (FirstDbgValue) { 706 BB->splice(RegionBegin, BB, FirstDbgValue); 707 RegionBegin = FirstDbgValue; 708 } 709 710 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 711 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 712 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 713 MachineInstr *DbgValue = P.first; 714 MachineBasicBlock::iterator OrigPrevMI = P.second; 715 if (&*RegionBegin == DbgValue) 716 ++RegionBegin; 717 BB->splice(++OrigPrevMI, BB, DbgValue); 718 if (OrigPrevMI == llvm::prior(RegionEnd)) 719 RegionEnd = DbgValue; 720 } 721 DbgValues.clear(); 722 FirstDbgValue = NULL; 723 } 724 725 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 726 void ScheduleDAGMI::dumpSchedule() const { 727 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 728 if (SUnit *SU = getSUnit(&(*MI))) 729 SU->dump(this); 730 else 731 dbgs() << "Missing SUnit\n"; 732 } 733 } 734 #endif 735 736 //===----------------------------------------------------------------------===// 737 // LoadClusterMutation - DAG post-processing to cluster loads. 738 //===----------------------------------------------------------------------===// 739 740 namespace { 741 /// \brief Post-process the DAG to create cluster edges between neighboring 742 /// loads. 743 class LoadClusterMutation : public ScheduleDAGMutation { 744 struct LoadInfo { 745 SUnit *SU; 746 unsigned BaseReg; 747 unsigned Offset; 748 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 749 : SU(su), BaseReg(reg), Offset(ofs) {} 750 }; 751 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 752 const LoadClusterMutation::LoadInfo &RHS); 753 754 const TargetInstrInfo *TII; 755 const TargetRegisterInfo *TRI; 756 public: 757 LoadClusterMutation(const TargetInstrInfo *tii, 758 const TargetRegisterInfo *tri) 759 : TII(tii), TRI(tri) {} 760 761 virtual void apply(ScheduleDAGMI *DAG); 762 protected: 763 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 764 }; 765 } // anonymous 766 767 bool LoadClusterMutation::LoadInfoLess( 768 const LoadClusterMutation::LoadInfo &LHS, 769 const LoadClusterMutation::LoadInfo &RHS) { 770 if (LHS.BaseReg != RHS.BaseReg) 771 return LHS.BaseReg < RHS.BaseReg; 772 return LHS.Offset < RHS.Offset; 773 } 774 775 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 776 ScheduleDAGMI *DAG) { 777 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 778 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 779 SUnit *SU = Loads[Idx]; 780 unsigned BaseReg; 781 unsigned Offset; 782 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 783 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 784 } 785 if (LoadRecords.size() < 2) 786 return; 787 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 788 unsigned ClusterLength = 1; 789 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 790 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 791 ClusterLength = 1; 792 continue; 793 } 794 795 SUnit *SUa = LoadRecords[Idx].SU; 796 SUnit *SUb = LoadRecords[Idx+1].SU; 797 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 798 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 799 800 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 801 << SUb->NodeNum << ")\n"); 802 // Copy successor edges from SUa to SUb. Interleaving computation 803 // dependent on SUa can prevent load combining due to register reuse. 804 // Predecessor edges do not need to be copied from SUb to SUa since nearby 805 // loads should have effectively the same inputs. 806 for (SUnit::const_succ_iterator 807 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 808 if (SI->getSUnit() == SUb) 809 continue; 810 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 811 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 812 } 813 ++ClusterLength; 814 } 815 else 816 ClusterLength = 1; 817 } 818 } 819 820 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 821 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 822 // Map DAG NodeNum to store chain ID. 823 DenseMap<unsigned, unsigned> StoreChainIDs; 824 // Map each store chain to a set of dependent loads. 825 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 826 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 827 SUnit *SU = &DAG->SUnits[Idx]; 828 if (!SU->getInstr()->mayLoad()) 829 continue; 830 unsigned ChainPredID = DAG->SUnits.size(); 831 for (SUnit::const_pred_iterator 832 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 833 if (PI->isCtrl()) { 834 ChainPredID = PI->getSUnit()->NodeNum; 835 break; 836 } 837 } 838 // Check if this chain-like pred has been seen 839 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 840 unsigned NumChains = StoreChainDependents.size(); 841 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 842 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 843 if (Result.second) 844 StoreChainDependents.resize(NumChains + 1); 845 StoreChainDependents[Result.first->second].push_back(SU); 846 } 847 // Iterate over the store chains. 848 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 849 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 850 } 851 852 //===----------------------------------------------------------------------===// 853 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 854 //===----------------------------------------------------------------------===// 855 856 namespace { 857 /// \brief Post-process the DAG to create cluster edges between instructions 858 /// that may be fused by the processor into a single operation. 859 class MacroFusion : public ScheduleDAGMutation { 860 const TargetInstrInfo *TII; 861 public: 862 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 863 864 virtual void apply(ScheduleDAGMI *DAG); 865 }; 866 } // anonymous 867 868 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 869 /// fused operations. 870 void MacroFusion::apply(ScheduleDAGMI *DAG) { 871 // For now, assume targets can only fuse with the branch. 872 MachineInstr *Branch = DAG->ExitSU.getInstr(); 873 if (!Branch) 874 return; 875 876 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 877 SUnit *SU = &DAG->SUnits[--Idx]; 878 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 879 continue; 880 881 // Create a single weak edge from SU to ExitSU. The only effect is to cause 882 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 883 // need to copy predecessor edges from ExitSU to SU, since top-down 884 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 885 // of SU, we could create an artificial edge from the deepest root, but it 886 // hasn't been needed yet. 887 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 888 (void)Success; 889 assert(Success && "No DAG nodes should be reachable from ExitSU"); 890 891 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 892 break; 893 } 894 } 895 896 //===----------------------------------------------------------------------===// 897 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. 898 //===----------------------------------------------------------------------===// 899 900 namespace { 901 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 902 /// the schedule. 903 class ConvergingScheduler : public MachineSchedStrategy { 904 public: 905 /// Represent the type of SchedCandidate found within a single queue. 906 /// pickNodeBidirectional depends on these listed by decreasing priority. 907 enum CandReason { 908 NoCand, SingleExcess, SingleCritical, Cluster, 909 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 910 TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, 911 NodeOrder}; 912 913 #ifndef NDEBUG 914 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 915 #endif 916 917 /// Policy for scheduling the next instruction in the candidate's zone. 918 struct CandPolicy { 919 bool ReduceLatency; 920 unsigned ReduceResIdx; 921 unsigned DemandResIdx; 922 923 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 924 }; 925 926 /// Status of an instruction's critical resource consumption. 927 struct SchedResourceDelta { 928 // Count critical resources in the scheduled region required by SU. 929 unsigned CritResources; 930 931 // Count critical resources from another region consumed by SU. 932 unsigned DemandedResources; 933 934 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 935 936 bool operator==(const SchedResourceDelta &RHS) const { 937 return CritResources == RHS.CritResources 938 && DemandedResources == RHS.DemandedResources; 939 } 940 bool operator!=(const SchedResourceDelta &RHS) const { 941 return !operator==(RHS); 942 } 943 }; 944 945 /// Store the state used by ConvergingScheduler heuristics, required for the 946 /// lifetime of one invocation of pickNode(). 947 struct SchedCandidate { 948 CandPolicy Policy; 949 950 // The best SUnit candidate. 951 SUnit *SU; 952 953 // The reason for this candidate. 954 CandReason Reason; 955 956 // Register pressure values for the best candidate. 957 RegPressureDelta RPDelta; 958 959 // Critical resource consumption of the best candidate. 960 SchedResourceDelta ResDelta; 961 962 SchedCandidate(const CandPolicy &policy) 963 : Policy(policy), SU(NULL), Reason(NoCand) {} 964 965 bool isValid() const { return SU; } 966 967 // Copy the status of another candidate without changing policy. 968 void setBest(SchedCandidate &Best) { 969 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 970 SU = Best.SU; 971 Reason = Best.Reason; 972 RPDelta = Best.RPDelta; 973 ResDelta = Best.ResDelta; 974 } 975 976 void initResourceDelta(const ScheduleDAGMI *DAG, 977 const TargetSchedModel *SchedModel); 978 }; 979 980 /// Summarize the unscheduled region. 981 struct SchedRemainder { 982 // Critical path through the DAG in expected latency. 983 unsigned CriticalPath; 984 985 // Unscheduled resources 986 SmallVector<unsigned, 16> RemainingCounts; 987 // Critical resource for the unscheduled zone. 988 unsigned CritResIdx; 989 // Number of micro-ops left to schedule. 990 unsigned RemainingMicroOps; 991 992 void reset() { 993 CriticalPath = 0; 994 RemainingCounts.clear(); 995 CritResIdx = 0; 996 RemainingMicroOps = 0; 997 } 998 999 SchedRemainder() { reset(); } 1000 1001 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1002 1003 unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const { 1004 if (!SchedModel->hasInstrSchedModel()) 1005 return 0; 1006 1007 return std::max( 1008 RemainingMicroOps * SchedModel->getMicroOpFactor(), 1009 RemainingCounts[CritResIdx]); 1010 } 1011 }; 1012 1013 /// Each Scheduling boundary is associated with ready queues. It tracks the 1014 /// current cycle in the direction of movement, and maintains the state 1015 /// of "hazards" and other interlocks at the current cycle. 1016 struct SchedBoundary { 1017 ScheduleDAGMI *DAG; 1018 const TargetSchedModel *SchedModel; 1019 SchedRemainder *Rem; 1020 1021 ReadyQueue Available; 1022 ReadyQueue Pending; 1023 bool CheckPending; 1024 1025 // For heuristics, keep a list of the nodes that immediately depend on the 1026 // most recently scheduled node. 1027 SmallPtrSet<const SUnit*, 8> NextSUs; 1028 1029 ScheduleHazardRecognizer *HazardRec; 1030 1031 unsigned CurrCycle; 1032 unsigned IssueCount; 1033 1034 /// MinReadyCycle - Cycle of the soonest available instruction. 1035 unsigned MinReadyCycle; 1036 1037 // The expected latency of the critical path in this scheduled zone. 1038 unsigned ExpectedLatency; 1039 1040 // Resources used in the scheduled zone beyond this boundary. 1041 SmallVector<unsigned, 16> ResourceCounts; 1042 1043 // Cache the critical resources ID in this scheduled zone. 1044 unsigned CritResIdx; 1045 1046 // Is the scheduled region resource limited vs. latency limited. 1047 bool IsResourceLimited; 1048 1049 unsigned ExpectedCount; 1050 1051 #ifndef NDEBUG 1052 // Remember the greatest min operand latency. 1053 unsigned MaxMinLatency; 1054 #endif 1055 1056 void reset() { 1057 Available.clear(); 1058 Pending.clear(); 1059 CheckPending = false; 1060 NextSUs.clear(); 1061 HazardRec = 0; 1062 CurrCycle = 0; 1063 IssueCount = 0; 1064 MinReadyCycle = UINT_MAX; 1065 ExpectedLatency = 0; 1066 ResourceCounts.resize(1); 1067 assert(!ResourceCounts[0] && "nonzero count for bad resource"); 1068 CritResIdx = 0; 1069 IsResourceLimited = false; 1070 ExpectedCount = 0; 1071 #ifndef NDEBUG 1072 MaxMinLatency = 0; 1073 #endif 1074 // Reserve a zero-count for invalid CritResIdx. 1075 ResourceCounts.resize(1); 1076 } 1077 1078 /// Pending queues extend the ready queues with the same ID and the 1079 /// PendingFlag set. 1080 SchedBoundary(unsigned ID, const Twine &Name): 1081 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1082 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P") { 1083 reset(); 1084 } 1085 1086 ~SchedBoundary() { delete HazardRec; } 1087 1088 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1089 SchedRemainder *rem); 1090 1091 bool isTop() const { 1092 return Available.getID() == ConvergingScheduler::TopQID; 1093 } 1094 1095 unsigned getUnscheduledLatency(SUnit *SU) const { 1096 if (isTop()) 1097 return SU->getHeight(); 1098 return SU->getDepth() + SU->Latency; 1099 } 1100 1101 unsigned getCriticalCount() const { 1102 return ResourceCounts[CritResIdx]; 1103 } 1104 1105 bool checkHazard(SUnit *SU); 1106 1107 void setLatencyPolicy(CandPolicy &Policy); 1108 1109 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1110 1111 void bumpCycle(); 1112 1113 void countResource(unsigned PIdx, unsigned Cycles); 1114 1115 void bumpNode(SUnit *SU); 1116 1117 void releasePending(); 1118 1119 void removeReady(SUnit *SU); 1120 1121 SUnit *pickOnlyChoice(); 1122 }; 1123 1124 private: 1125 ScheduleDAGMI *DAG; 1126 const TargetSchedModel *SchedModel; 1127 const TargetRegisterInfo *TRI; 1128 1129 // State of the top and bottom scheduled instruction boundaries. 1130 SchedRemainder Rem; 1131 SchedBoundary Top; 1132 SchedBoundary Bot; 1133 1134 public: 1135 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1136 enum { 1137 TopQID = 1, 1138 BotQID = 2, 1139 LogMaxQID = 2 1140 }; 1141 1142 ConvergingScheduler(): 1143 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1144 1145 virtual void initialize(ScheduleDAGMI *dag); 1146 1147 virtual SUnit *pickNode(bool &IsTopNode); 1148 1149 virtual void schedNode(SUnit *SU, bool IsTopNode); 1150 1151 virtual void releaseTopNode(SUnit *SU); 1152 1153 virtual void releaseBottomNode(SUnit *SU); 1154 1155 virtual void registerRoots(); 1156 1157 protected: 1158 void balanceZones( 1159 ConvergingScheduler::SchedBoundary &CriticalZone, 1160 ConvergingScheduler::SchedCandidate &CriticalCand, 1161 ConvergingScheduler::SchedBoundary &OppositeZone, 1162 ConvergingScheduler::SchedCandidate &OppositeCand); 1163 1164 void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, 1165 ConvergingScheduler::SchedCandidate &BotCand); 1166 1167 void tryCandidate(SchedCandidate &Cand, 1168 SchedCandidate &TryCand, 1169 SchedBoundary &Zone, 1170 const RegPressureTracker &RPTracker, 1171 RegPressureTracker &TempTracker); 1172 1173 SUnit *pickNodeBidirectional(bool &IsTopNode); 1174 1175 void pickNodeFromQueue(SchedBoundary &Zone, 1176 const RegPressureTracker &RPTracker, 1177 SchedCandidate &Candidate); 1178 1179 #ifndef NDEBUG 1180 void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone); 1181 #endif 1182 }; 1183 } // namespace 1184 1185 void ConvergingScheduler::SchedRemainder:: 1186 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1187 reset(); 1188 if (!SchedModel->hasInstrSchedModel()) 1189 return; 1190 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1191 for (std::vector<SUnit>::iterator 1192 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1193 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1194 RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); 1195 for (TargetSchedModel::ProcResIter 1196 PI = SchedModel->getWriteProcResBegin(SC), 1197 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1198 unsigned PIdx = PI->ProcResourceIdx; 1199 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1200 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1201 } 1202 } 1203 for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds(); 1204 PIdx != PEnd; ++PIdx) { 1205 if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx]) 1206 >= (int)SchedModel->getLatencyFactor()) { 1207 CritResIdx = PIdx; 1208 } 1209 } 1210 } 1211 1212 void ConvergingScheduler::SchedBoundary:: 1213 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1214 reset(); 1215 DAG = dag; 1216 SchedModel = smodel; 1217 Rem = rem; 1218 if (SchedModel->hasInstrSchedModel()) 1219 ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); 1220 } 1221 1222 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1223 DAG = dag; 1224 SchedModel = DAG->getSchedModel(); 1225 TRI = DAG->TRI; 1226 Rem.init(DAG, SchedModel); 1227 Top.init(DAG, SchedModel, &Rem); 1228 Bot.init(DAG, SchedModel, &Rem); 1229 1230 DAG->computeDFSResult(); 1231 1232 // Initialize resource counts. 1233 1234 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1235 // are disabled, then these HazardRecs will be disabled. 1236 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1237 const TargetMachine &TM = DAG->MF.getTarget(); 1238 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1239 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1240 1241 assert((!ForceTopDown || !ForceBottomUp) && 1242 "-misched-topdown incompatible with -misched-bottomup"); 1243 } 1244 1245 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1246 if (SU->isScheduled) 1247 return; 1248 1249 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1250 I != E; ++I) { 1251 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1252 unsigned MinLatency = I->getMinLatency(); 1253 #ifndef NDEBUG 1254 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); 1255 #endif 1256 if (SU->TopReadyCycle < PredReadyCycle + MinLatency) 1257 SU->TopReadyCycle = PredReadyCycle + MinLatency; 1258 } 1259 Top.releaseNode(SU, SU->TopReadyCycle); 1260 } 1261 1262 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1263 if (SU->isScheduled) 1264 return; 1265 1266 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1267 1268 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1269 I != E; ++I) { 1270 if (I->isWeak()) 1271 continue; 1272 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1273 unsigned MinLatency = I->getMinLatency(); 1274 #ifndef NDEBUG 1275 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); 1276 #endif 1277 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) 1278 SU->BotReadyCycle = SuccReadyCycle + MinLatency; 1279 } 1280 Bot.releaseNode(SU, SU->BotReadyCycle); 1281 } 1282 1283 void ConvergingScheduler::registerRoots() { 1284 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1285 // Some roots may not feed into ExitSU. Check all of them in case. 1286 for (std::vector<SUnit*>::const_iterator 1287 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1288 if ((*I)->getDepth() > Rem.CriticalPath) 1289 Rem.CriticalPath = (*I)->getDepth(); 1290 } 1291 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1292 } 1293 1294 /// Does this SU have a hazard within the current instruction group. 1295 /// 1296 /// The scheduler supports two modes of hazard recognition. The first is the 1297 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1298 /// supports highly complicated in-order reservation tables 1299 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1300 /// 1301 /// The second is a streamlined mechanism that checks for hazards based on 1302 /// simple counters that the scheduler itself maintains. It explicitly checks 1303 /// for instruction dispatch limitations, including the number of micro-ops that 1304 /// can dispatch per cycle. 1305 /// 1306 /// TODO: Also check whether the SU must start a new group. 1307 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1308 if (HazardRec->isEnabled()) 1309 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1310 1311 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1312 if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { 1313 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1314 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1315 return true; 1316 } 1317 return false; 1318 } 1319 1320 /// Compute the remaining latency to determine whether ILP should be increased. 1321 void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) { 1322 // FIXME: compile time. In all, we visit four queues here one we should only 1323 // need to visit the one that was last popped if we cache the result. 1324 unsigned RemLatency = 0; 1325 for (ReadyQueue::iterator I = Available.begin(), E = Available.end(); 1326 I != E; ++I) { 1327 unsigned L = getUnscheduledLatency(*I); 1328 if (L > RemLatency) 1329 RemLatency = L; 1330 } 1331 for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end(); 1332 I != E; ++I) { 1333 unsigned L = getUnscheduledLatency(*I); 1334 if (L > RemLatency) 1335 RemLatency = L; 1336 } 1337 unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow(); 1338 if (RemLatency + ExpectedLatency >= CriticalPathLimit 1339 && RemLatency > Rem->getMaxRemainingCount(SchedModel)) { 1340 Policy.ReduceLatency = true; 1341 DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n'); 1342 } 1343 } 1344 1345 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1346 unsigned ReadyCycle) { 1347 1348 if (ReadyCycle < MinReadyCycle) 1349 MinReadyCycle = ReadyCycle; 1350 1351 // Check for interlocks first. For the purpose of other heuristics, an 1352 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1353 if (ReadyCycle > CurrCycle || checkHazard(SU)) 1354 Pending.push(SU); 1355 else 1356 Available.push(SU); 1357 1358 // Record this node as an immediate dependent of the scheduled node. 1359 NextSUs.insert(SU); 1360 } 1361 1362 /// Move the boundary of scheduled code by one cycle. 1363 void ConvergingScheduler::SchedBoundary::bumpCycle() { 1364 unsigned Width = SchedModel->getIssueWidth(); 1365 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; 1366 1367 unsigned NextCycle = CurrCycle + 1; 1368 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1369 if (MinReadyCycle > NextCycle) { 1370 IssueCount = 0; 1371 NextCycle = MinReadyCycle; 1372 } 1373 1374 if (!HazardRec->isEnabled()) { 1375 // Bypass HazardRec virtual calls. 1376 CurrCycle = NextCycle; 1377 } 1378 else { 1379 // Bypass getHazardType calls in case of long latency. 1380 for (; CurrCycle != NextCycle; ++CurrCycle) { 1381 if (isTop()) 1382 HazardRec->AdvanceCycle(); 1383 else 1384 HazardRec->RecedeCycle(); 1385 } 1386 } 1387 CheckPending = true; 1388 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1389 1390 DEBUG(dbgs() << " *** " << Available.getName() << " cycle " 1391 << CurrCycle << '\n'); 1392 } 1393 1394 /// Add the given processor resource to this scheduled zone. 1395 void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, 1396 unsigned Cycles) { 1397 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1398 DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name 1399 << " +(" << Cycles << "x" << Factor 1400 << ") / " << SchedModel->getLatencyFactor() << '\n'); 1401 1402 unsigned Count = Factor * Cycles; 1403 ResourceCounts[PIdx] += Count; 1404 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1405 Rem->RemainingCounts[PIdx] -= Count; 1406 1407 // Check if this resource exceeds the current critical resource by a full 1408 // cycle. If so, it becomes the critical resource. 1409 if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) 1410 >= (int)SchedModel->getLatencyFactor()) { 1411 CritResIdx = PIdx; 1412 DEBUG(dbgs() << " *** Critical resource " 1413 << SchedModel->getProcResource(PIdx)->Name << " x" 1414 << ResourceCounts[PIdx] << '\n'); 1415 } 1416 } 1417 1418 /// Move the boundary of scheduled code by one SUnit. 1419 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1420 // Update the reservation table. 1421 if (HazardRec->isEnabled()) { 1422 if (!isTop() && SU->isCall) { 1423 // Calls are scheduled with their preceding instructions. For bottom-up 1424 // scheduling, clear the pipeline state before emitting. 1425 HazardRec->Reset(); 1426 } 1427 HazardRec->EmitInstruction(SU); 1428 } 1429 // Update resource counts and critical resource. 1430 if (SchedModel->hasInstrSchedModel()) { 1431 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1432 Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); 1433 for (TargetSchedModel::ProcResIter 1434 PI = SchedModel->getWriteProcResBegin(SC), 1435 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1436 countResource(PI->ProcResourceIdx, PI->Cycles); 1437 } 1438 } 1439 if (isTop()) { 1440 if (SU->getDepth() > ExpectedLatency) 1441 ExpectedLatency = SU->getDepth(); 1442 } 1443 else { 1444 if (SU->getHeight() > ExpectedLatency) 1445 ExpectedLatency = SU->getHeight(); 1446 } 1447 1448 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1449 1450 // Check the instruction group dispatch limit. 1451 // TODO: Check if this SU must end a dispatch group. 1452 IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); 1453 1454 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1455 // issue width. However, we commonly reach the maximum. In this case 1456 // opportunistically bump the cycle to avoid uselessly checking everything in 1457 // the readyQ. Furthermore, a single instruction may produce more than one 1458 // cycle's worth of micro-ops. 1459 if (IssueCount >= SchedModel->getIssueWidth()) { 1460 DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); 1461 bumpCycle(); 1462 } 1463 } 1464 1465 /// Release pending ready nodes in to the available queue. This makes them 1466 /// visible to heuristics. 1467 void ConvergingScheduler::SchedBoundary::releasePending() { 1468 // If the available queue is empty, it is safe to reset MinReadyCycle. 1469 if (Available.empty()) 1470 MinReadyCycle = UINT_MAX; 1471 1472 // Check to see if any of the pending instructions are ready to issue. If 1473 // so, add them to the available queue. 1474 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 1475 SUnit *SU = *(Pending.begin()+i); 1476 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 1477 1478 if (ReadyCycle < MinReadyCycle) 1479 MinReadyCycle = ReadyCycle; 1480 1481 if (ReadyCycle > CurrCycle) 1482 continue; 1483 1484 if (checkHazard(SU)) 1485 continue; 1486 1487 Available.push(SU); 1488 Pending.remove(Pending.begin()+i); 1489 --i; --e; 1490 } 1491 DEBUG(if (!Pending.empty()) Pending.dump()); 1492 CheckPending = false; 1493 } 1494 1495 /// Remove SU from the ready set for this boundary. 1496 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 1497 if (Available.isInQueue(SU)) 1498 Available.remove(Available.find(SU)); 1499 else { 1500 assert(Pending.isInQueue(SU) && "bad ready count"); 1501 Pending.remove(Pending.find(SU)); 1502 } 1503 } 1504 1505 /// If this queue only has one ready candidate, return it. As a side effect, 1506 /// defer any nodes that now hit a hazard, and advance the cycle until at least 1507 /// one node is ready. If multiple instructions are ready, return NULL. 1508 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 1509 if (CheckPending) 1510 releasePending(); 1511 1512 if (IssueCount > 0) { 1513 // Defer any ready instrs that now have a hazard. 1514 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 1515 if (checkHazard(*I)) { 1516 Pending.push(*I); 1517 I = Available.remove(I); 1518 continue; 1519 } 1520 ++I; 1521 } 1522 } 1523 for (unsigned i = 0; Available.empty(); ++i) { 1524 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && 1525 "permanent hazard"); (void)i; 1526 bumpCycle(); 1527 releasePending(); 1528 } 1529 if (Available.size() == 1) 1530 return *Available.begin(); 1531 return NULL; 1532 } 1533 1534 /// Record the candidate policy for opposite zones with different critical 1535 /// resources. 1536 /// 1537 /// If the CriticalZone is latency limited, don't force a policy for the 1538 /// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed. 1539 void ConvergingScheduler::balanceZones( 1540 ConvergingScheduler::SchedBoundary &CriticalZone, 1541 ConvergingScheduler::SchedCandidate &CriticalCand, 1542 ConvergingScheduler::SchedBoundary &OppositeZone, 1543 ConvergingScheduler::SchedCandidate &OppositeCand) { 1544 1545 if (!CriticalZone.IsResourceLimited) 1546 return; 1547 assert(SchedModel->hasInstrSchedModel() && "required schedmodel"); 1548 1549 SchedRemainder *Rem = CriticalZone.Rem; 1550 1551 // If the critical zone is overconsuming a resource relative to the 1552 // remainder, try to reduce it. 1553 unsigned RemainingCritCount = 1554 Rem->RemainingCounts[CriticalZone.CritResIdx]; 1555 if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount) 1556 > (int)SchedModel->getLatencyFactor()) { 1557 CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; 1558 DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce " 1559 << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name 1560 << '\n'); 1561 } 1562 // If the other zone is underconsuming a resource relative to the full zone, 1563 // try to increase it. 1564 unsigned OppositeCount = 1565 OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; 1566 if ((int)(OppositeZone.ExpectedCount - OppositeCount) 1567 > (int)SchedModel->getLatencyFactor()) { 1568 OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; 1569 DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand " 1570 << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name 1571 << '\n'); 1572 } 1573 } 1574 1575 /// Determine if the scheduled zones exceed resource limits or critical path and 1576 /// set each candidate's ReduceHeight policy accordingly. 1577 void ConvergingScheduler::checkResourceLimits( 1578 ConvergingScheduler::SchedCandidate &TopCand, 1579 ConvergingScheduler::SchedCandidate &BotCand) { 1580 1581 // Set ReduceLatency to true if needed. 1582 Bot.setLatencyPolicy(BotCand.Policy); 1583 Top.setLatencyPolicy(TopCand.Policy); 1584 1585 // Handle resource-limited regions. 1586 if (Top.IsResourceLimited && Bot.IsResourceLimited 1587 && Top.CritResIdx == Bot.CritResIdx) { 1588 // If the scheduled critical resource in both zones is no longer the 1589 // critical remaining resource, attempt to reduce resource height both ways. 1590 if (Top.CritResIdx != Rem.CritResIdx) { 1591 TopCand.Policy.ReduceResIdx = Top.CritResIdx; 1592 BotCand.Policy.ReduceResIdx = Bot.CritResIdx; 1593 DEBUG(dbgs() << "Reduce scheduled " 1594 << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); 1595 } 1596 return; 1597 } 1598 // Handle latency-limited regions. 1599 if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { 1600 // If the total scheduled expected latency exceeds the region's critical 1601 // path then reduce latency both ways. 1602 // 1603 // Just because a zone is not resource limited does not mean it is latency 1604 // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle 1605 // to exceed expected latency. 1606 if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) 1607 && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { 1608 TopCand.Policy.ReduceLatency = true; 1609 BotCand.Policy.ReduceLatency = true; 1610 DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency 1611 << " + " << Bot.ExpectedLatency << '\n'); 1612 } 1613 return; 1614 } 1615 // The critical resource is different in each zone, so request balancing. 1616 1617 // Compute the cost of each zone. 1618 Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); 1619 Top.ExpectedCount = std::max( 1620 Top.getCriticalCount(), 1621 Top.ExpectedCount * SchedModel->getLatencyFactor()); 1622 Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); 1623 Bot.ExpectedCount = std::max( 1624 Bot.getCriticalCount(), 1625 Bot.ExpectedCount * SchedModel->getLatencyFactor()); 1626 1627 balanceZones(Top, TopCand, Bot, BotCand); 1628 balanceZones(Bot, BotCand, Top, TopCand); 1629 } 1630 1631 void ConvergingScheduler::SchedCandidate:: 1632 initResourceDelta(const ScheduleDAGMI *DAG, 1633 const TargetSchedModel *SchedModel) { 1634 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 1635 return; 1636 1637 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1638 for (TargetSchedModel::ProcResIter 1639 PI = SchedModel->getWriteProcResBegin(SC), 1640 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1641 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 1642 ResDelta.CritResources += PI->Cycles; 1643 if (PI->ProcResourceIdx == Policy.DemandResIdx) 1644 ResDelta.DemandedResources += PI->Cycles; 1645 } 1646 } 1647 1648 /// Return true if this heuristic determines order. 1649 static bool tryLess(unsigned TryVal, unsigned CandVal, 1650 ConvergingScheduler::SchedCandidate &TryCand, 1651 ConvergingScheduler::SchedCandidate &Cand, 1652 ConvergingScheduler::CandReason Reason) { 1653 if (TryVal < CandVal) { 1654 TryCand.Reason = Reason; 1655 return true; 1656 } 1657 if (TryVal > CandVal) { 1658 if (Cand.Reason > Reason) 1659 Cand.Reason = Reason; 1660 return true; 1661 } 1662 return false; 1663 } 1664 1665 static bool tryGreater(unsigned TryVal, unsigned CandVal, 1666 ConvergingScheduler::SchedCandidate &TryCand, 1667 ConvergingScheduler::SchedCandidate &Cand, 1668 ConvergingScheduler::CandReason Reason) { 1669 if (TryVal > CandVal) { 1670 TryCand.Reason = Reason; 1671 return true; 1672 } 1673 if (TryVal < CandVal) { 1674 if (Cand.Reason > Reason) 1675 Cand.Reason = Reason; 1676 return true; 1677 } 1678 return false; 1679 } 1680 1681 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 1682 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 1683 } 1684 1685 /// Apply a set of heursitics to a new candidate. Heuristics are currently 1686 /// hierarchical. This may be more efficient than a graduated cost model because 1687 /// we don't need to evaluate all aspects of the model for each node in the 1688 /// queue. But it's really done to make the heuristics easier to debug and 1689 /// statistically analyze. 1690 /// 1691 /// \param Cand provides the policy and current best candidate. 1692 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 1693 /// \param Zone describes the scheduled zone that we are extending. 1694 /// \param RPTracker describes reg pressure within the scheduled zone. 1695 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 1696 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 1697 SchedCandidate &TryCand, 1698 SchedBoundary &Zone, 1699 const RegPressureTracker &RPTracker, 1700 RegPressureTracker &TempTracker) { 1701 1702 // Always initialize TryCand's RPDelta. 1703 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, 1704 DAG->getRegionCriticalPSets(), 1705 DAG->getRegPressure().MaxSetPressure); 1706 1707 // Initialize the candidate if needed. 1708 if (!Cand.isValid()) { 1709 TryCand.Reason = NodeOrder; 1710 return; 1711 } 1712 // Avoid exceeding the target's limit. 1713 if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, 1714 Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) 1715 return; 1716 if (Cand.Reason == SingleExcess) 1717 Cand.Reason = MultiPressure; 1718 1719 // Avoid increasing the max critical pressure in the scheduled region. 1720 if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, 1721 Cand.RPDelta.CriticalMax.UnitIncrease, 1722 TryCand, Cand, SingleCritical)) 1723 return; 1724 if (Cand.Reason == SingleCritical) 1725 Cand.Reason = MultiPressure; 1726 1727 // Keep clustered nodes together to encourage downstream peephole 1728 // optimizations which may reduce resource requirements. 1729 // 1730 // This is a best effort to set things up for a post-RA pass. Optimizations 1731 // like generating loads of multiple registers should ideally be done within 1732 // the scheduler pass by combining the loads during DAG postprocessing. 1733 const SUnit *NextClusterSU = 1734 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 1735 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 1736 TryCand, Cand, Cluster)) 1737 return; 1738 // Currently, weak edges are for clustering, so we hard-code that reason. 1739 // However, deferring the current TryCand will not change Cand's reason. 1740 CandReason OrigReason = Cand.Reason; 1741 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 1742 getWeakLeft(Cand.SU, Zone.isTop()), 1743 TryCand, Cand, Cluster)) { 1744 Cand.Reason = OrigReason; 1745 return; 1746 } 1747 // Avoid critical resource consumption and balance the schedule. 1748 TryCand.initResourceDelta(DAG, SchedModel); 1749 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 1750 TryCand, Cand, ResourceReduce)) 1751 return; 1752 if (tryGreater(TryCand.ResDelta.DemandedResources, 1753 Cand.ResDelta.DemandedResources, 1754 TryCand, Cand, ResourceDemand)) 1755 return; 1756 1757 // Avoid serializing long latency dependence chains. 1758 if (Cand.Policy.ReduceLatency) { 1759 if (Zone.isTop()) { 1760 if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() 1761 > Zone.ExpectedCount) { 1762 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1763 TryCand, Cand, TopDepthReduce)) 1764 return; 1765 } 1766 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1767 TryCand, Cand, TopPathReduce)) 1768 return; 1769 } 1770 else { 1771 if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() 1772 > Zone.ExpectedCount) { 1773 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1774 TryCand, Cand, BotHeightReduce)) 1775 return; 1776 } 1777 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1778 TryCand, Cand, BotPathReduce)) 1779 return; 1780 } 1781 } 1782 1783 // Avoid increasing the max pressure of the entire region. 1784 if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, 1785 Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) 1786 return; 1787 if (Cand.Reason == SingleMax) 1788 Cand.Reason = MultiPressure; 1789 1790 // Prefer immediate defs/users of the last scheduled instruction. This is a 1791 // nice pressure avoidance strategy that also conserves the processor's 1792 // register renaming resources and keeps the machine code readable. 1793 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 1794 TryCand, Cand, NextDefUse)) 1795 return; 1796 1797 // Fall through to original instruction order. 1798 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 1799 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 1800 TryCand.Reason = NodeOrder; 1801 } 1802 } 1803 1804 /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is 1805 /// more desirable than RHS from scheduling standpoint. 1806 static bool compareRPDelta(const RegPressureDelta &LHS, 1807 const RegPressureDelta &RHS) { 1808 // Compare each component of pressure in decreasing order of importance 1809 // without checking if any are valid. Invalid PressureElements are assumed to 1810 // have UnitIncrease==0, so are neutral. 1811 1812 // Avoid increasing the max critical pressure in the scheduled region. 1813 if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { 1814 DEBUG(dbgs() << "RP excess top - bot: " 1815 << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); 1816 return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; 1817 } 1818 // Avoid increasing the max critical pressure in the scheduled region. 1819 if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { 1820 DEBUG(dbgs() << "RP critical top - bot: " 1821 << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) 1822 << '\n'); 1823 return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; 1824 } 1825 // Avoid increasing the max pressure of the entire region. 1826 if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { 1827 DEBUG(dbgs() << "RP current top - bot: " 1828 << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) 1829 << '\n'); 1830 return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; 1831 } 1832 return false; 1833 } 1834 1835 #ifndef NDEBUG 1836 const char *ConvergingScheduler::getReasonStr( 1837 ConvergingScheduler::CandReason Reason) { 1838 switch (Reason) { 1839 case NoCand: return "NOCAND "; 1840 case SingleExcess: return "REG-EXCESS"; 1841 case SingleCritical: return "REG-CRIT "; 1842 case Cluster: return "CLUSTER "; 1843 case SingleMax: return "REG-MAX "; 1844 case MultiPressure: return "REG-MULTI "; 1845 case ResourceReduce: return "RES-REDUCE"; 1846 case ResourceDemand: return "RES-DEMAND"; 1847 case TopDepthReduce: return "TOP-DEPTH "; 1848 case TopPathReduce: return "TOP-PATH "; 1849 case BotHeightReduce:return "BOT-HEIGHT"; 1850 case BotPathReduce: return "BOT-PATH "; 1851 case NextDefUse: return "DEF-USE "; 1852 case NodeOrder: return "ORDER "; 1853 }; 1854 llvm_unreachable("Unknown reason!"); 1855 } 1856 1857 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand, 1858 const SchedBoundary &Zone) { 1859 const char *Label = getReasonStr(Cand.Reason); 1860 PressureElement P; 1861 unsigned ResIdx = 0; 1862 unsigned Latency = 0; 1863 switch (Cand.Reason) { 1864 default: 1865 break; 1866 case SingleExcess: 1867 P = Cand.RPDelta.Excess; 1868 break; 1869 case SingleCritical: 1870 P = Cand.RPDelta.CriticalMax; 1871 break; 1872 case SingleMax: 1873 P = Cand.RPDelta.CurrentMax; 1874 break; 1875 case ResourceReduce: 1876 ResIdx = Cand.Policy.ReduceResIdx; 1877 break; 1878 case ResourceDemand: 1879 ResIdx = Cand.Policy.DemandResIdx; 1880 break; 1881 case TopDepthReduce: 1882 Latency = Cand.SU->getDepth(); 1883 break; 1884 case TopPathReduce: 1885 Latency = Cand.SU->getHeight(); 1886 break; 1887 case BotHeightReduce: 1888 Latency = Cand.SU->getHeight(); 1889 break; 1890 case BotPathReduce: 1891 Latency = Cand.SU->getDepth(); 1892 break; 1893 } 1894 dbgs() << Label << " " << Zone.Available.getName() << " "; 1895 if (P.isValid()) 1896 dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease 1897 << " "; 1898 else 1899 dbgs() << " "; 1900 if (ResIdx) 1901 dbgs() << SchedModel->getProcResource(ResIdx)->Name << " "; 1902 else 1903 dbgs() << " "; 1904 if (Latency) 1905 dbgs() << Latency << " cycles "; 1906 else 1907 dbgs() << " "; 1908 Cand.SU->dump(DAG); 1909 } 1910 #endif 1911 1912 /// Pick the best candidate from the top queue. 1913 /// 1914 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 1915 /// DAG building. To adjust for the current scheduling location we need to 1916 /// maintain the number of vreg uses remaining to be top-scheduled. 1917 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 1918 const RegPressureTracker &RPTracker, 1919 SchedCandidate &Cand) { 1920 ReadyQueue &Q = Zone.Available; 1921 1922 DEBUG(Q.dump()); 1923 1924 // getMaxPressureDelta temporarily modifies the tracker. 1925 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 1926 1927 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 1928 1929 SchedCandidate TryCand(Cand.Policy); 1930 TryCand.SU = *I; 1931 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 1932 if (TryCand.Reason != NoCand) { 1933 // Initialize resource delta if needed in case future heuristics query it. 1934 if (TryCand.ResDelta == SchedResourceDelta()) 1935 TryCand.initResourceDelta(DAG, SchedModel); 1936 Cand.setBest(TryCand); 1937 DEBUG(traceCandidate(Cand, Zone)); 1938 } 1939 } 1940 } 1941 1942 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 1943 bool IsTop) { 1944 DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot") 1945 << " SU(" << Cand.SU->NodeNum << ") " 1946 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 1947 } 1948 1949 /// Pick the best candidate node from either the top or bottom queue. 1950 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 1951 // Schedule as far as possible in the direction of no choice. This is most 1952 // efficient, but also provides the best heuristics for CriticalPSets. 1953 if (SUnit *SU = Bot.pickOnlyChoice()) { 1954 IsTopNode = false; 1955 return SU; 1956 } 1957 if (SUnit *SU = Top.pickOnlyChoice()) { 1958 IsTopNode = true; 1959 return SU; 1960 } 1961 CandPolicy NoPolicy; 1962 SchedCandidate BotCand(NoPolicy); 1963 SchedCandidate TopCand(NoPolicy); 1964 checkResourceLimits(TopCand, BotCand); 1965 1966 // Prefer bottom scheduling when heuristics are silent. 1967 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 1968 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 1969 1970 // If either Q has a single candidate that provides the least increase in 1971 // Excess pressure, we can immediately schedule from that Q. 1972 // 1973 // RegionCriticalPSets summarizes the pressure within the scheduled region and 1974 // affects picking from either Q. If scheduling in one direction must 1975 // increase pressure for one of the excess PSets, then schedule in that 1976 // direction first to provide more freedom in the other direction. 1977 if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { 1978 IsTopNode = false; 1979 tracePick(BotCand, IsTopNode); 1980 return BotCand.SU; 1981 } 1982 // Check if the top Q has a better candidate. 1983 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 1984 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 1985 1986 // If either Q has a single candidate that minimizes pressure above the 1987 // original region's pressure pick it. 1988 if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { 1989 if (TopCand.Reason < BotCand.Reason) { 1990 IsTopNode = true; 1991 tracePick(TopCand, IsTopNode); 1992 return TopCand.SU; 1993 } 1994 IsTopNode = false; 1995 tracePick(BotCand, IsTopNode); 1996 return BotCand.SU; 1997 } 1998 // Check for a salient pressure difference and pick the best from either side. 1999 if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { 2000 IsTopNode = true; 2001 tracePick(TopCand, IsTopNode); 2002 return TopCand.SU; 2003 } 2004 // Otherwise prefer the bottom candidate, in node order if all else failed. 2005 if (TopCand.Reason < BotCand.Reason) { 2006 IsTopNode = true; 2007 tracePick(TopCand, IsTopNode); 2008 return TopCand.SU; 2009 } 2010 IsTopNode = false; 2011 tracePick(BotCand, IsTopNode); 2012 return BotCand.SU; 2013 } 2014 2015 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2016 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2017 if (DAG->top() == DAG->bottom()) { 2018 assert(Top.Available.empty() && Top.Pending.empty() && 2019 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2020 return NULL; 2021 } 2022 SUnit *SU; 2023 do { 2024 if (ForceTopDown) { 2025 SU = Top.pickOnlyChoice(); 2026 if (!SU) { 2027 CandPolicy NoPolicy; 2028 SchedCandidate TopCand(NoPolicy); 2029 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2030 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2031 SU = TopCand.SU; 2032 } 2033 IsTopNode = true; 2034 } 2035 else if (ForceBottomUp) { 2036 SU = Bot.pickOnlyChoice(); 2037 if (!SU) { 2038 CandPolicy NoPolicy; 2039 SchedCandidate BotCand(NoPolicy); 2040 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2041 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2042 SU = BotCand.SU; 2043 } 2044 IsTopNode = false; 2045 } 2046 else { 2047 SU = pickNodeBidirectional(IsTopNode); 2048 } 2049 } while (SU->isScheduled); 2050 2051 if (SU->isTopReady()) 2052 Top.removeReady(SU); 2053 if (SU->isBottomReady()) 2054 Bot.removeReady(SU); 2055 2056 DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") 2057 << " Scheduling Instruction in cycle " 2058 << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; 2059 SU->dump(DAG)); 2060 return SU; 2061 } 2062 2063 /// Update the scheduler's state after scheduling a node. This is the same node 2064 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2065 /// it's state based on the current cycle before MachineSchedStrategy does. 2066 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2067 if (IsTopNode) { 2068 SU->TopReadyCycle = Top.CurrCycle; 2069 Top.bumpNode(SU); 2070 } 2071 else { 2072 SU->BotReadyCycle = Bot.CurrCycle; 2073 Bot.bumpNode(SU); 2074 } 2075 } 2076 2077 /// Create the standard converging machine scheduler. This will be used as the 2078 /// default scheduler if the target does not set a default. 2079 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2080 assert((!ForceTopDown || !ForceBottomUp) && 2081 "-misched-topdown incompatible with -misched-bottomup"); 2082 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2083 // Register DAG post-processors. 2084 if (EnableLoadCluster) 2085 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2086 if (EnableMacroFusion) 2087 DAG->addMutation(new MacroFusion(DAG->TII)); 2088 return DAG; 2089 } 2090 static MachineSchedRegistry 2091 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2092 createConvergingSched); 2093 2094 //===----------------------------------------------------------------------===// 2095 // ILP Scheduler. Currently for experimental analysis of heuristics. 2096 //===----------------------------------------------------------------------===// 2097 2098 namespace { 2099 /// \brief Order nodes by the ILP metric. 2100 struct ILPOrder { 2101 const SchedDFSResult *DFSResult; 2102 const BitVector *ScheduledTrees; 2103 bool MaximizeILP; 2104 2105 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2106 2107 /// \brief Apply a less-than relation on node priority. 2108 /// 2109 /// (Return true if A comes after B in the Q.) 2110 bool operator()(const SUnit *A, const SUnit *B) const { 2111 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2112 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2113 if (SchedTreeA != SchedTreeB) { 2114 // Unscheduled trees have lower priority. 2115 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2116 return ScheduledTrees->test(SchedTreeB); 2117 2118 // Trees with shallower connections have have lower priority. 2119 if (DFSResult->getSubtreeLevel(SchedTreeA) 2120 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2121 return DFSResult->getSubtreeLevel(SchedTreeA) 2122 < DFSResult->getSubtreeLevel(SchedTreeB); 2123 } 2124 } 2125 if (MaximizeILP) 2126 return DFSResult->getILP(A) < DFSResult->getILP(B); 2127 else 2128 return DFSResult->getILP(A) > DFSResult->getILP(B); 2129 } 2130 }; 2131 2132 /// \brief Schedule based on the ILP metric. 2133 class ILPScheduler : public MachineSchedStrategy { 2134 /// In case all subtrees are eventually connected to a common root through 2135 /// data dependence (e.g. reduction), place an upper limit on their size. 2136 /// 2137 /// FIXME: A subtree limit is generally good, but in the situation commented 2138 /// above, where multiple similar subtrees feed a common root, we should 2139 /// only split at a point where the resulting subtrees will be balanced. 2140 /// (a motivating test case must be found). 2141 static const unsigned SubtreeLimit = 16; 2142 2143 ScheduleDAGMI *DAG; 2144 ILPOrder Cmp; 2145 2146 std::vector<SUnit*> ReadyQ; 2147 public: 2148 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2149 2150 virtual void initialize(ScheduleDAGMI *dag) { 2151 DAG = dag; 2152 DAG->computeDFSResult(); 2153 Cmp.DFSResult = DAG->getDFSResult(); 2154 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2155 ReadyQ.clear(); 2156 } 2157 2158 virtual void registerRoots() { 2159 // Restore the heap in ReadyQ with the updated DFS results. 2160 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2161 } 2162 2163 /// Implement MachineSchedStrategy interface. 2164 /// ----------------------------------------- 2165 2166 /// Callback to select the highest priority node from the ready Q. 2167 virtual SUnit *pickNode(bool &IsTopNode) { 2168 if (ReadyQ.empty()) return NULL; 2169 pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2170 SUnit *SU = ReadyQ.back(); 2171 ReadyQ.pop_back(); 2172 IsTopNode = false; 2173 DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): " 2174 << *SU->getInstr() 2175 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2176 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2177 << DAG->getDFSResult()->getSubtreeLevel( 2178 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'); 2179 return SU; 2180 } 2181 2182 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2183 virtual void scheduleTree(unsigned SubtreeID) { 2184 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2185 } 2186 2187 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2188 /// DFSResults, and resort the priority Q. 2189 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2190 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2191 } 2192 2193 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2194 2195 virtual void releaseBottomNode(SUnit *SU) { 2196 ReadyQ.push_back(SU); 2197 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2198 } 2199 }; 2200 } // namespace 2201 2202 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2203 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2204 } 2205 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2206 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2207 } 2208 static MachineSchedRegistry ILPMaxRegistry( 2209 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2210 static MachineSchedRegistry ILPMinRegistry( 2211 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2212 2213 //===----------------------------------------------------------------------===// 2214 // Machine Instruction Shuffler for Correctness Testing 2215 //===----------------------------------------------------------------------===// 2216 2217 #ifndef NDEBUG 2218 namespace { 2219 /// Apply a less-than relation on the node order, which corresponds to the 2220 /// instruction order prior to scheduling. IsReverse implements greater-than. 2221 template<bool IsReverse> 2222 struct SUnitOrder { 2223 bool operator()(SUnit *A, SUnit *B) const { 2224 if (IsReverse) 2225 return A->NodeNum > B->NodeNum; 2226 else 2227 return A->NodeNum < B->NodeNum; 2228 } 2229 }; 2230 2231 /// Reorder instructions as much as possible. 2232 class InstructionShuffler : public MachineSchedStrategy { 2233 bool IsAlternating; 2234 bool IsTopDown; 2235 2236 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2237 // gives nodes with a higher number higher priority causing the latest 2238 // instructions to be scheduled first. 2239 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2240 TopQ; 2241 // When scheduling bottom-up, use greater-than as the queue priority. 2242 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2243 BottomQ; 2244 public: 2245 InstructionShuffler(bool alternate, bool topdown) 2246 : IsAlternating(alternate), IsTopDown(topdown) {} 2247 2248 virtual void initialize(ScheduleDAGMI *) { 2249 TopQ.clear(); 2250 BottomQ.clear(); 2251 } 2252 2253 /// Implement MachineSchedStrategy interface. 2254 /// ----------------------------------------- 2255 2256 virtual SUnit *pickNode(bool &IsTopNode) { 2257 SUnit *SU; 2258 if (IsTopDown) { 2259 do { 2260 if (TopQ.empty()) return NULL; 2261 SU = TopQ.top(); 2262 TopQ.pop(); 2263 } while (SU->isScheduled); 2264 IsTopNode = true; 2265 } 2266 else { 2267 do { 2268 if (BottomQ.empty()) return NULL; 2269 SU = BottomQ.top(); 2270 BottomQ.pop(); 2271 } while (SU->isScheduled); 2272 IsTopNode = false; 2273 } 2274 if (IsAlternating) 2275 IsTopDown = !IsTopDown; 2276 return SU; 2277 } 2278 2279 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2280 2281 virtual void releaseTopNode(SUnit *SU) { 2282 TopQ.push(SU); 2283 } 2284 virtual void releaseBottomNode(SUnit *SU) { 2285 BottomQ.push(SU); 2286 } 2287 }; 2288 } // namespace 2289 2290 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2291 bool Alternate = !ForceTopDown && !ForceBottomUp; 2292 bool TopDown = !ForceBottomUp; 2293 assert((TopDown || !ForceTopDown) && 2294 "-misched-topdown incompatible with -misched-bottomup"); 2295 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2296 } 2297 static MachineSchedRegistry ShufflerRegistry( 2298 "shuffle", "Shuffle machine instructions alternating directions", 2299 createInstructionShuffler); 2300 #endif // !NDEBUG 2301 2302 //===----------------------------------------------------------------------===// 2303 // GraphWriter support for ScheduleDAGMI. 2304 //===----------------------------------------------------------------------===// 2305 2306 #ifndef NDEBUG 2307 namespace llvm { 2308 2309 template<> struct GraphTraits< 2310 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 2311 2312 template<> 2313 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 2314 2315 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2316 2317 static std::string getGraphName(const ScheduleDAG *G) { 2318 return G->MF.getName(); 2319 } 2320 2321 static bool renderGraphFromBottomUp() { 2322 return true; 2323 } 2324 2325 static bool isNodeHidden(const SUnit *Node) { 2326 return (Node->NumPreds > 10 || Node->NumSuccs > 10); 2327 } 2328 2329 static bool hasNodeAddressLabel(const SUnit *Node, 2330 const ScheduleDAG *Graph) { 2331 return false; 2332 } 2333 2334 /// If you want to override the dot attributes printed for a particular 2335 /// edge, override this method. 2336 static std::string getEdgeAttributes(const SUnit *Node, 2337 SUnitIterator EI, 2338 const ScheduleDAG *Graph) { 2339 if (EI.isArtificialDep()) 2340 return "color=cyan,style=dashed"; 2341 if (EI.isCtrlDep()) 2342 return "color=blue,style=dashed"; 2343 return ""; 2344 } 2345 2346 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 2347 std::string Str; 2348 raw_string_ostream SS(Str); 2349 SS << "SU(" << SU->NodeNum << ')'; 2350 return SS.str(); 2351 } 2352 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 2353 return G->getGraphNodeLabel(SU); 2354 } 2355 2356 static std::string getNodeAttributes(const SUnit *N, 2357 const ScheduleDAG *Graph) { 2358 std::string Str("shape=Mrecord"); 2359 const SchedDFSResult *DFS = 2360 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 2361 if (DFS) { 2362 Str += ",style=filled,fillcolor=\"#"; 2363 Str += DOT::getColorString(DFS->getSubtreeID(N)); 2364 Str += '"'; 2365 } 2366 return Str; 2367 } 2368 }; 2369 } // namespace llvm 2370 #endif // NDEBUG 2371 2372 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 2373 /// rendered using 'dot'. 2374 /// 2375 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 2376 #ifndef NDEBUG 2377 ViewGraph(this, Name, false, Title); 2378 #else 2379 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 2380 << "systems with Graphviz or gv!\n"; 2381 #endif // NDEBUG 2382 } 2383 2384 /// Out-of-line implementation with no arguments is handy for gdb. 2385 void ScheduleDAGMI::viewGraph() { 2386 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 2387 } 2388