1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/MachineValueType.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "machine-scheduler" 74 75 namespace llvm { 76 77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 78 cl::desc("Force top-down list scheduling")); 79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 80 cl::desc("Force bottom-up list scheduling")); 81 cl::opt<bool> 82 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 83 cl::desc("Print critical path length to stdout")); 84 85 } // end namespace llvm 86 87 #ifndef NDEBUG 88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 89 cl::desc("Pop up a window to show MISched dags after they are processed")); 90 91 /// In some situations a few uninteresting nodes depend on nearly all other 92 /// nodes in the graph, provide a cutoff to hide them. 93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 94 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 95 96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 98 99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 100 cl::desc("Only schedule this function")); 101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 102 cl::desc("Only schedule this MBB#")); 103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 104 cl::desc("Print schedule DAGs")); 105 #else 106 static const bool ViewMISchedDAGs = false; 107 static const bool PrintDAGs = false; 108 #endif // NDEBUG 109 110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 111 /// size of the ready lists. 112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 113 cl::desc("Limit ready list to N instructions"), cl::init(256)); 114 115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 116 cl::desc("Enable register pressure scheduling."), cl::init(true)); 117 118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 119 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 120 121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 122 cl::desc("Enable memop clustering."), 123 cl::init(true)); 124 125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 126 cl::desc("Verify machine instrs before and after machine scheduling")); 127 128 // DAG subtrees must have at least this many nodes. 129 static const unsigned MinSubtreeSize = 8; 130 131 // Pin the vtables to this file. 132 void MachineSchedStrategy::anchor() {} 133 134 void ScheduleDAGMutation::anchor() {} 135 136 //===----------------------------------------------------------------------===// 137 // Machine Instruction Scheduling Pass and Registry 138 //===----------------------------------------------------------------------===// 139 140 MachineSchedContext::MachineSchedContext() { 141 RegClassInfo = new RegisterClassInfo(); 142 } 143 144 MachineSchedContext::~MachineSchedContext() { 145 delete RegClassInfo; 146 } 147 148 namespace { 149 150 /// Base class for a machine scheduler class that can run at any point. 151 class MachineSchedulerBase : public MachineSchedContext, 152 public MachineFunctionPass { 153 public: 154 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 155 156 void print(raw_ostream &O, const Module* = nullptr) const override; 157 158 protected: 159 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 160 }; 161 162 /// MachineScheduler runs after coalescing and before register allocation. 163 class MachineScheduler : public MachineSchedulerBase { 164 public: 165 MachineScheduler(); 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override; 168 169 bool runOnMachineFunction(MachineFunction&) override; 170 171 static char ID; // Class identification, replacement for typeinfo 172 173 protected: 174 ScheduleDAGInstrs *createMachineScheduler(); 175 }; 176 177 /// PostMachineScheduler runs after shortly before code emission. 178 class PostMachineScheduler : public MachineSchedulerBase { 179 public: 180 PostMachineScheduler(); 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override; 183 184 bool runOnMachineFunction(MachineFunction&) override; 185 186 static char ID; // Class identification, replacement for typeinfo 187 188 protected: 189 ScheduleDAGInstrs *createPostMachineScheduler(); 190 }; 191 192 } // end anonymous namespace 193 194 char MachineScheduler::ID = 0; 195 196 char &llvm::MachineSchedulerID = MachineScheduler::ID; 197 198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 199 "Machine Instruction Scheduler", false, false) 200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 205 "Machine Instruction Scheduler", false, false) 206 207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 208 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 209 } 210 211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 212 AU.setPreservesCFG(); 213 AU.addRequiredID(MachineDominatorsID); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<AAResultsWrapperPass>(); 216 AU.addRequired<TargetPassConfig>(); 217 AU.addRequired<SlotIndexes>(); 218 AU.addPreserved<SlotIndexes>(); 219 AU.addRequired<LiveIntervals>(); 220 AU.addPreserved<LiveIntervals>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 char PostMachineScheduler::ID = 0; 225 226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 227 228 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 229 "PostRA Machine Instruction Scheduler", false, false) 230 231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 232 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 233 } 234 235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 236 AU.setPreservesCFG(); 237 AU.addRequiredID(MachineDominatorsID); 238 AU.addRequired<MachineLoopInfo>(); 239 AU.addRequired<TargetPassConfig>(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 } 242 243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 244 MachineSchedRegistry::Registry; 245 246 /// A dummy default scheduler factory indicates whether the scheduler 247 /// is overridden on the command line. 248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 249 return nullptr; 250 } 251 252 /// MachineSchedOpt allows command line selection of the scheduler. 253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 254 RegisterPassParser<MachineSchedRegistry>> 255 MachineSchedOpt("misched", 256 cl::init(&useDefaultMachineSched), cl::Hidden, 257 cl::desc("Machine instruction scheduler to use")); 258 259 static MachineSchedRegistry 260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 261 useDefaultMachineSched); 262 263 static cl::opt<bool> EnableMachineSched( 264 "enable-misched", 265 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 266 cl::Hidden); 267 268 static cl::opt<bool> EnablePostRAMachineSched( 269 "enable-post-misched", 270 cl::desc("Enable the post-ra machine instruction scheduling pass."), 271 cl::init(true), cl::Hidden); 272 273 /// Decrement this iterator until reaching the top or a non-debug instr. 274 static MachineBasicBlock::const_iterator 275 priorNonDebug(MachineBasicBlock::const_iterator I, 276 MachineBasicBlock::const_iterator Beg) { 277 assert(I != Beg && "reached the top of the region, cannot decrement"); 278 while (--I != Beg) { 279 if (!I->isDebugInstr()) 280 break; 281 } 282 return I; 283 } 284 285 /// Non-const version. 286 static MachineBasicBlock::iterator 287 priorNonDebug(MachineBasicBlock::iterator I, 288 MachineBasicBlock::const_iterator Beg) { 289 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 290 .getNonConstIterator(); 291 } 292 293 /// If this iterator is a debug value, increment until reaching the End or a 294 /// non-debug instruction. 295 static MachineBasicBlock::const_iterator 296 nextIfDebug(MachineBasicBlock::const_iterator I, 297 MachineBasicBlock::const_iterator End) { 298 for(; I != End; ++I) { 299 if (!I->isDebugInstr()) 300 break; 301 } 302 return I; 303 } 304 305 /// Non-const version. 306 static MachineBasicBlock::iterator 307 nextIfDebug(MachineBasicBlock::iterator I, 308 MachineBasicBlock::const_iterator End) { 309 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 310 .getNonConstIterator(); 311 } 312 313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 315 // Select the scheduler, or set the default. 316 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 317 if (Ctor != useDefaultMachineSched) 318 return Ctor(this); 319 320 // Get the default scheduler set by the target for this function. 321 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 322 if (Scheduler) 323 return Scheduler; 324 325 // Default to GenericScheduler. 326 return createGenericSchedLive(this); 327 } 328 329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 330 /// the caller. We don't have a command line option to override the postRA 331 /// scheduler. The Target must configure it. 332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 333 // Get the postRA scheduler set by the target for this function. 334 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 335 if (Scheduler) 336 return Scheduler; 337 338 // Default to GenericScheduler. 339 return createGenericSchedPostRA(this); 340 } 341 342 /// Top-level MachineScheduler pass driver. 343 /// 344 /// Visit blocks in function order. Divide each block into scheduling regions 345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 346 /// consistent with the DAG builder, which traverses the interior of the 347 /// scheduling regions bottom-up. 348 /// 349 /// This design avoids exposing scheduling boundaries to the DAG builder, 350 /// simplifying the DAG builder's support for "special" target instructions. 351 /// At the same time the design allows target schedulers to operate across 352 /// scheduling boundaries, for example to bundle the boundary instructions 353 /// without reordering them. This creates complexity, because the target 354 /// scheduler must update the RegionBegin and RegionEnd positions cached by 355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 356 /// design would be to split blocks at scheduling boundaries, but LLVM has a 357 /// general bias against block splitting purely for implementation simplicity. 358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 359 if (skipFunction(mf.getFunction())) 360 return false; 361 362 if (EnableMachineSched.getNumOccurrences()) { 363 if (!EnableMachineSched) 364 return false; 365 } else if (!mf.getSubtarget().enableMachineScheduler()) 366 return false; 367 368 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 369 370 // Initialize the context of the pass. 371 MF = &mf; 372 MLI = &getAnalysis<MachineLoopInfo>(); 373 MDT = &getAnalysis<MachineDominatorTree>(); 374 PassConfig = &getAnalysis<TargetPassConfig>(); 375 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 376 377 LIS = &getAnalysis<LiveIntervals>(); 378 379 if (VerifyScheduling) { 380 LLVM_DEBUG(LIS->dump()); 381 MF->verify(this, "Before machine scheduling."); 382 } 383 RegClassInfo->runOnMachineFunction(*MF); 384 385 // Instantiate the selected scheduler for this target, function, and 386 // optimization level. 387 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 388 scheduleRegions(*Scheduler, false); 389 390 LLVM_DEBUG(LIS->dump()); 391 if (VerifyScheduling) 392 MF->verify(this, "After machine scheduling."); 393 return true; 394 } 395 396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 397 if (skipFunction(mf.getFunction())) 398 return false; 399 400 if (EnablePostRAMachineSched.getNumOccurrences()) { 401 if (!EnablePostRAMachineSched) 402 return false; 403 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 404 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 405 return false; 406 } 407 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 408 409 // Initialize the context of the pass. 410 MF = &mf; 411 MLI = &getAnalysis<MachineLoopInfo>(); 412 PassConfig = &getAnalysis<TargetPassConfig>(); 413 414 if (VerifyScheduling) 415 MF->verify(this, "Before post machine scheduling."); 416 417 // Instantiate the selected scheduler for this target, function, and 418 // optimization level. 419 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 420 scheduleRegions(*Scheduler, true); 421 422 if (VerifyScheduling) 423 MF->verify(this, "After post machine scheduling."); 424 return true; 425 } 426 427 /// Return true of the given instruction should not be included in a scheduling 428 /// region. 429 /// 430 /// MachineScheduler does not currently support scheduling across calls. To 431 /// handle calls, the DAG builder needs to be modified to create register 432 /// anti/output dependencies on the registers clobbered by the call's regmask 433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 435 /// the boundary, but there would be no benefit to postRA scheduling across 436 /// calls this late anyway. 437 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 438 MachineBasicBlock *MBB, 439 MachineFunction *MF, 440 const TargetInstrInfo *TII) { 441 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 442 } 443 444 /// A region of an MBB for scheduling. 445 namespace { 446 struct SchedRegion { 447 /// RegionBegin is the first instruction in the scheduling region, and 448 /// RegionEnd is either MBB->end() or the scheduling boundary after the 449 /// last instruction in the scheduling region. These iterators cannot refer 450 /// to instructions outside of the identified scheduling region because 451 /// those may be reordered before scheduling this region. 452 MachineBasicBlock::iterator RegionBegin; 453 MachineBasicBlock::iterator RegionEnd; 454 unsigned NumRegionInstrs; 455 456 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 457 unsigned N) : 458 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 459 }; 460 } // end anonymous namespace 461 462 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 463 464 static void 465 getSchedRegions(MachineBasicBlock *MBB, 466 MBBRegionsVector &Regions, 467 bool RegionsTopDown) { 468 MachineFunction *MF = MBB->getParent(); 469 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 470 471 MachineBasicBlock::iterator I = nullptr; 472 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 473 RegionEnd != MBB->begin(); RegionEnd = I) { 474 475 // Avoid decrementing RegionEnd for blocks with no terminator. 476 if (RegionEnd != MBB->end() || 477 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 478 --RegionEnd; 479 } 480 481 // The next region starts above the previous region. Look backward in the 482 // instruction stream until we find the nearest boundary. 483 unsigned NumRegionInstrs = 0; 484 I = RegionEnd; 485 for (;I != MBB->begin(); --I) { 486 MachineInstr &MI = *std::prev(I); 487 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 488 break; 489 if (!MI.isDebugInstr()) { 490 // MBB::size() uses instr_iterator to count. Here we need a bundle to 491 // count as a single instruction. 492 ++NumRegionInstrs; 493 } 494 } 495 496 // It's possible we found a scheduling region that only has debug 497 // instructions. Don't bother scheduling these. 498 if (NumRegionInstrs != 0) 499 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 500 } 501 502 if (RegionsTopDown) 503 std::reverse(Regions.begin(), Regions.end()); 504 } 505 506 /// Main driver for both MachineScheduler and PostMachineScheduler. 507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 508 bool FixKillFlags) { 509 // Visit all machine basic blocks. 510 // 511 // TODO: Visit blocks in global postorder or postorder within the bottom-up 512 // loop tree. Then we can optionally compute global RegPressure. 513 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 514 MBB != MBBEnd; ++MBB) { 515 516 Scheduler.startBlock(&*MBB); 517 518 #ifndef NDEBUG 519 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 520 continue; 521 if (SchedOnlyBlock.getNumOccurrences() 522 && (int)SchedOnlyBlock != MBB->getNumber()) 523 continue; 524 #endif 525 526 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 527 // points to the scheduling boundary at the bottom of the region. The DAG 528 // does not include RegionEnd, but the region does (i.e. the next 529 // RegionEnd is above the previous RegionBegin). If the current block has 530 // no terminator then RegionEnd == MBB->end() for the bottom region. 531 // 532 // All the regions of MBB are first found and stored in MBBRegions, which 533 // will be processed (MBB) top-down if initialized with true. 534 // 535 // The Scheduler may insert instructions during either schedule() or 536 // exitRegion(), even for empty regions. So the local iterators 'I' and 537 // 'RegionEnd' are invalid across these calls. Instructions must not be 538 // added to other regions than the current one without updating MBBRegions. 539 540 MBBRegionsVector MBBRegions; 541 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 542 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 543 R != MBBRegions.end(); ++R) { 544 MachineBasicBlock::iterator I = R->RegionBegin; 545 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 546 unsigned NumRegionInstrs = R->NumRegionInstrs; 547 548 // Notify the scheduler of the region, even if we may skip scheduling 549 // it. Perhaps it still needs to be bundled. 550 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 551 552 // Skip empty scheduling regions (0 or 1 schedulable instructions). 553 if (I == RegionEnd || I == std::prev(RegionEnd)) { 554 // Close the current region. Bundle the terminator if needed. 555 // This invalidates 'RegionEnd' and 'I'. 556 Scheduler.exitRegion(); 557 continue; 558 } 559 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 560 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 561 << " " << MBB->getName() << "\n From: " << *I 562 << " To: "; 563 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 564 else dbgs() << "End"; 565 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 566 if (DumpCriticalPathLength) { 567 errs() << MF->getName(); 568 errs() << ":%bb. " << MBB->getNumber(); 569 errs() << " " << MBB->getName() << " \n"; 570 } 571 572 // Schedule a region: possibly reorder instructions. 573 // This invalidates the original region iterators. 574 Scheduler.schedule(); 575 576 // Close the current region. 577 Scheduler.exitRegion(); 578 } 579 Scheduler.finishBlock(); 580 // FIXME: Ideally, no further passes should rely on kill flags. However, 581 // thumb2 size reduction is currently an exception, so the PostMIScheduler 582 // needs to do this. 583 if (FixKillFlags) 584 Scheduler.fixupKills(*MBB); 585 } 586 Scheduler.finalizeSchedule(); 587 } 588 589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 590 // unimplemented 591 } 592 593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 594 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 595 dbgs() << "Queue " << Name << ": "; 596 for (const SUnit *SU : Queue) 597 dbgs() << SU->NodeNum << " "; 598 dbgs() << "\n"; 599 } 600 #endif 601 602 //===----------------------------------------------------------------------===// 603 // ScheduleDAGMI - Basic machine instruction scheduling. This is 604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 605 // virtual registers. 606 // ===----------------------------------------------------------------------===/ 607 608 // Provide a vtable anchor. 609 ScheduleDAGMI::~ScheduleDAGMI() = default; 610 611 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 612 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 613 } 614 615 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 616 if (SuccSU != &ExitSU) { 617 // Do not use WillCreateCycle, it assumes SD scheduling. 618 // If Pred is reachable from Succ, then the edge creates a cycle. 619 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 620 return false; 621 Topo.AddPred(SuccSU, PredDep.getSUnit()); 622 } 623 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 624 // Return true regardless of whether a new edge needed to be inserted. 625 return true; 626 } 627 628 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 629 /// NumPredsLeft reaches zero, release the successor node. 630 /// 631 /// FIXME: Adjust SuccSU height based on MinLatency. 632 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 633 SUnit *SuccSU = SuccEdge->getSUnit(); 634 635 if (SuccEdge->isWeak()) { 636 --SuccSU->WeakPredsLeft; 637 if (SuccEdge->isCluster()) 638 NextClusterSucc = SuccSU; 639 return; 640 } 641 #ifndef NDEBUG 642 if (SuccSU->NumPredsLeft == 0) { 643 dbgs() << "*** Scheduling failed! ***\n"; 644 dumpNode(*SuccSU); 645 dbgs() << " has been released too many times!\n"; 646 llvm_unreachable(nullptr); 647 } 648 #endif 649 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 650 // CurrCycle may have advanced since then. 651 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 652 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 653 654 --SuccSU->NumPredsLeft; 655 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 656 SchedImpl->releaseTopNode(SuccSU); 657 } 658 659 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 660 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 661 for (SDep &Succ : SU->Succs) 662 releaseSucc(SU, &Succ); 663 } 664 665 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 666 /// NumSuccsLeft reaches zero, release the predecessor node. 667 /// 668 /// FIXME: Adjust PredSU height based on MinLatency. 669 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 670 SUnit *PredSU = PredEdge->getSUnit(); 671 672 if (PredEdge->isWeak()) { 673 --PredSU->WeakSuccsLeft; 674 if (PredEdge->isCluster()) 675 NextClusterPred = PredSU; 676 return; 677 } 678 #ifndef NDEBUG 679 if (PredSU->NumSuccsLeft == 0) { 680 dbgs() << "*** Scheduling failed! ***\n"; 681 dumpNode(*PredSU); 682 dbgs() << " has been released too many times!\n"; 683 llvm_unreachable(nullptr); 684 } 685 #endif 686 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 687 // CurrCycle may have advanced since then. 688 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 689 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 690 691 --PredSU->NumSuccsLeft; 692 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 693 SchedImpl->releaseBottomNode(PredSU); 694 } 695 696 /// releasePredecessors - Call releasePred on each of SU's predecessors. 697 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 698 for (SDep &Pred : SU->Preds) 699 releasePred(SU, &Pred); 700 } 701 702 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 703 ScheduleDAGInstrs::startBlock(bb); 704 SchedImpl->enterMBB(bb); 705 } 706 707 void ScheduleDAGMI::finishBlock() { 708 SchedImpl->leaveMBB(); 709 ScheduleDAGInstrs::finishBlock(); 710 } 711 712 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 713 /// crossing a scheduling boundary. [begin, end) includes all instructions in 714 /// the region, including the boundary itself and single-instruction regions 715 /// that don't get scheduled. 716 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 717 MachineBasicBlock::iterator begin, 718 MachineBasicBlock::iterator end, 719 unsigned regioninstrs) 720 { 721 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 722 723 SchedImpl->initPolicy(begin, end, regioninstrs); 724 } 725 726 /// This is normally called from the main scheduler loop but may also be invoked 727 /// by the scheduling strategy to perform additional code motion. 728 void ScheduleDAGMI::moveInstruction( 729 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 730 // Advance RegionBegin if the first instruction moves down. 731 if (&*RegionBegin == MI) 732 ++RegionBegin; 733 734 // Update the instruction stream. 735 BB->splice(InsertPos, BB, MI); 736 737 // Update LiveIntervals 738 if (LIS) 739 LIS->handleMove(*MI, /*UpdateFlags=*/true); 740 741 // Recede RegionBegin if an instruction moves above the first. 742 if (RegionBegin == InsertPos) 743 RegionBegin = MI; 744 } 745 746 bool ScheduleDAGMI::checkSchedLimit() { 747 #ifndef NDEBUG 748 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 749 CurrentTop = CurrentBottom; 750 return false; 751 } 752 ++NumInstrsScheduled; 753 #endif 754 return true; 755 } 756 757 /// Per-region scheduling driver, called back from 758 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 759 /// does not consider liveness or register pressure. It is useful for PostRA 760 /// scheduling and potentially other custom schedulers. 761 void ScheduleDAGMI::schedule() { 762 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 763 LLVM_DEBUG(SchedImpl->dumpPolicy()); 764 765 // Build the DAG. 766 buildSchedGraph(AA); 767 768 Topo.InitDAGTopologicalSorting(); 769 770 postprocessDAG(); 771 772 SmallVector<SUnit*, 8> TopRoots, BotRoots; 773 findRootsAndBiasEdges(TopRoots, BotRoots); 774 775 LLVM_DEBUG(dump()); 776 if (PrintDAGs) dump(); 777 if (ViewMISchedDAGs) viewGraph(); 778 779 // Initialize the strategy before modifying the DAG. 780 // This may initialize a DFSResult to be used for queue priority. 781 SchedImpl->initialize(this); 782 783 // Initialize ready queues now that the DAG and priority data are finalized. 784 initQueues(TopRoots, BotRoots); 785 786 bool IsTopNode = false; 787 while (true) { 788 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 789 SUnit *SU = SchedImpl->pickNode(IsTopNode); 790 if (!SU) break; 791 792 assert(!SU->isScheduled && "Node already scheduled"); 793 if (!checkSchedLimit()) 794 break; 795 796 MachineInstr *MI = SU->getInstr(); 797 if (IsTopNode) { 798 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 799 if (&*CurrentTop == MI) 800 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 801 else 802 moveInstruction(MI, CurrentTop); 803 } else { 804 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 805 MachineBasicBlock::iterator priorII = 806 priorNonDebug(CurrentBottom, CurrentTop); 807 if (&*priorII == MI) 808 CurrentBottom = priorII; 809 else { 810 if (&*CurrentTop == MI) 811 CurrentTop = nextIfDebug(++CurrentTop, priorII); 812 moveInstruction(MI, CurrentBottom); 813 CurrentBottom = MI; 814 } 815 } 816 // Notify the scheduling strategy before updating the DAG. 817 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 818 // runs, it can then use the accurate ReadyCycle time to determine whether 819 // newly released nodes can move to the readyQ. 820 SchedImpl->schedNode(SU, IsTopNode); 821 822 updateQueues(SU, IsTopNode); 823 } 824 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 825 826 placeDebugValues(); 827 828 LLVM_DEBUG({ 829 dbgs() << "*** Final schedule for " 830 << printMBBReference(*begin()->getParent()) << " ***\n"; 831 dumpSchedule(); 832 dbgs() << '\n'; 833 }); 834 } 835 836 /// Apply each ScheduleDAGMutation step in order. 837 void ScheduleDAGMI::postprocessDAG() { 838 for (auto &m : Mutations) 839 m->apply(this); 840 } 841 842 void ScheduleDAGMI:: 843 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 844 SmallVectorImpl<SUnit*> &BotRoots) { 845 for (SUnit &SU : SUnits) { 846 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 847 848 // Order predecessors so DFSResult follows the critical path. 849 SU.biasCriticalPath(); 850 851 // A SUnit is ready to top schedule if it has no predecessors. 852 if (!SU.NumPredsLeft) 853 TopRoots.push_back(&SU); 854 // A SUnit is ready to bottom schedule if it has no successors. 855 if (!SU.NumSuccsLeft) 856 BotRoots.push_back(&SU); 857 } 858 ExitSU.biasCriticalPath(); 859 } 860 861 /// Identify DAG roots and setup scheduler queues. 862 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 863 ArrayRef<SUnit*> BotRoots) { 864 NextClusterSucc = nullptr; 865 NextClusterPred = nullptr; 866 867 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 868 // 869 // Nodes with unreleased weak edges can still be roots. 870 // Release top roots in forward order. 871 for (SUnit *SU : TopRoots) 872 SchedImpl->releaseTopNode(SU); 873 874 // Release bottom roots in reverse order so the higher priority nodes appear 875 // first. This is more natural and slightly more efficient. 876 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 877 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 878 SchedImpl->releaseBottomNode(*I); 879 } 880 881 releaseSuccessors(&EntrySU); 882 releasePredecessors(&ExitSU); 883 884 SchedImpl->registerRoots(); 885 886 // Advance past initial DebugValues. 887 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 888 CurrentBottom = RegionEnd; 889 } 890 891 /// Update scheduler queues after scheduling an instruction. 892 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 893 // Release dependent instructions for scheduling. 894 if (IsTopNode) 895 releaseSuccessors(SU); 896 else 897 releasePredecessors(SU); 898 899 SU->isScheduled = true; 900 } 901 902 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 903 void ScheduleDAGMI::placeDebugValues() { 904 // If first instruction was a DBG_VALUE then put it back. 905 if (FirstDbgValue) { 906 BB->splice(RegionBegin, BB, FirstDbgValue); 907 RegionBegin = FirstDbgValue; 908 } 909 910 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 911 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 912 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 913 MachineInstr *DbgValue = P.first; 914 MachineBasicBlock::iterator OrigPrevMI = P.second; 915 if (&*RegionBegin == DbgValue) 916 ++RegionBegin; 917 BB->splice(++OrigPrevMI, BB, DbgValue); 918 if (OrigPrevMI == std::prev(RegionEnd)) 919 RegionEnd = DbgValue; 920 } 921 DbgValues.clear(); 922 FirstDbgValue = nullptr; 923 } 924 925 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 926 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 927 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 928 if (SUnit *SU = getSUnit(&(*MI))) 929 dumpNode(*SU); 930 else 931 dbgs() << "Missing SUnit\n"; 932 } 933 } 934 #endif 935 936 //===----------------------------------------------------------------------===// 937 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 938 // preservation. 939 //===----------------------------------------------------------------------===// 940 941 ScheduleDAGMILive::~ScheduleDAGMILive() { 942 delete DFSResult; 943 } 944 945 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 946 const MachineInstr &MI = *SU.getInstr(); 947 for (const MachineOperand &MO : MI.operands()) { 948 if (!MO.isReg()) 949 continue; 950 if (!MO.readsReg()) 951 continue; 952 if (TrackLaneMasks && !MO.isUse()) 953 continue; 954 955 unsigned Reg = MO.getReg(); 956 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 957 continue; 958 959 // Ignore re-defs. 960 if (TrackLaneMasks) { 961 bool FoundDef = false; 962 for (const MachineOperand &MO2 : MI.operands()) { 963 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 964 FoundDef = true; 965 break; 966 } 967 } 968 if (FoundDef) 969 continue; 970 } 971 972 // Record this local VReg use. 973 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 974 for (; UI != VRegUses.end(); ++UI) { 975 if (UI->SU == &SU) 976 break; 977 } 978 if (UI == VRegUses.end()) 979 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 980 } 981 } 982 983 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 984 /// crossing a scheduling boundary. [begin, end) includes all instructions in 985 /// the region, including the boundary itself and single-instruction regions 986 /// that don't get scheduled. 987 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 988 MachineBasicBlock::iterator begin, 989 MachineBasicBlock::iterator end, 990 unsigned regioninstrs) 991 { 992 // ScheduleDAGMI initializes SchedImpl's per-region policy. 993 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 994 995 // For convenience remember the end of the liveness region. 996 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 997 998 SUPressureDiffs.clear(); 999 1000 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1001 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1002 1003 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1004 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1005 } 1006 1007 // Setup the register pressure trackers for the top scheduled top and bottom 1008 // scheduled regions. 1009 void ScheduleDAGMILive::initRegPressure() { 1010 VRegUses.clear(); 1011 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1012 for (SUnit &SU : SUnits) 1013 collectVRegUses(SU); 1014 1015 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1016 ShouldTrackLaneMasks, false); 1017 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1018 ShouldTrackLaneMasks, false); 1019 1020 // Close the RPTracker to finalize live ins. 1021 RPTracker.closeRegion(); 1022 1023 LLVM_DEBUG(RPTracker.dump()); 1024 1025 // Initialize the live ins and live outs. 1026 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1027 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1028 1029 // Close one end of the tracker so we can call 1030 // getMaxUpward/DownwardPressureDelta before advancing across any 1031 // instructions. This converts currently live regs into live ins/outs. 1032 TopRPTracker.closeTop(); 1033 BotRPTracker.closeBottom(); 1034 1035 BotRPTracker.initLiveThru(RPTracker); 1036 if (!BotRPTracker.getLiveThru().empty()) { 1037 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1038 LLVM_DEBUG(dbgs() << "Live Thru: "; 1039 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1040 }; 1041 1042 // For each live out vreg reduce the pressure change associated with other 1043 // uses of the same vreg below the live-out reaching def. 1044 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1045 1046 // Account for liveness generated by the region boundary. 1047 if (LiveRegionEnd != RegionEnd) { 1048 SmallVector<RegisterMaskPair, 8> LiveUses; 1049 BotRPTracker.recede(&LiveUses); 1050 updatePressureDiffs(LiveUses); 1051 } 1052 1053 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1054 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1055 dbgs() << "Bottom Pressure:\n"; 1056 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1057 1058 assert((BotRPTracker.getPos() == RegionEnd || 1059 (RegionEnd->isDebugInstr() && 1060 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1061 "Can't find the region bottom"); 1062 1063 // Cache the list of excess pressure sets in this region. This will also track 1064 // the max pressure in the scheduled code for these sets. 1065 RegionCriticalPSets.clear(); 1066 const std::vector<unsigned> &RegionPressure = 1067 RPTracker.getPressure().MaxSetPressure; 1068 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1069 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1070 if (RegionPressure[i] > Limit) { 1071 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1072 << " Actual " << RegionPressure[i] << "\n"); 1073 RegionCriticalPSets.push_back(PressureChange(i)); 1074 } 1075 } 1076 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1077 for (const PressureChange &RCPS 1078 : RegionCriticalPSets) dbgs() 1079 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1080 dbgs() << "\n"); 1081 } 1082 1083 void ScheduleDAGMILive:: 1084 updateScheduledPressure(const SUnit *SU, 1085 const std::vector<unsigned> &NewMaxPressure) { 1086 const PressureDiff &PDiff = getPressureDiff(SU); 1087 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1088 for (const PressureChange &PC : PDiff) { 1089 if (!PC.isValid()) 1090 break; 1091 unsigned ID = PC.getPSet(); 1092 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1093 ++CritIdx; 1094 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1095 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1096 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1097 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1098 } 1099 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1100 if (NewMaxPressure[ID] >= Limit - 2) { 1101 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1102 << NewMaxPressure[ID] 1103 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1104 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1105 << " livethru)\n"); 1106 } 1107 } 1108 } 1109 1110 /// Update the PressureDiff array for liveness after scheduling this 1111 /// instruction. 1112 void ScheduleDAGMILive::updatePressureDiffs( 1113 ArrayRef<RegisterMaskPair> LiveUses) { 1114 for (const RegisterMaskPair &P : LiveUses) { 1115 unsigned Reg = P.RegUnit; 1116 /// FIXME: Currently assuming single-use physregs. 1117 if (!TRI->isVirtualRegister(Reg)) 1118 continue; 1119 1120 if (ShouldTrackLaneMasks) { 1121 // If the register has just become live then other uses won't change 1122 // this fact anymore => decrement pressure. 1123 // If the register has just become dead then other uses make it come 1124 // back to life => increment pressure. 1125 bool Decrement = P.LaneMask.any(); 1126 1127 for (const VReg2SUnit &V2SU 1128 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1129 SUnit &SU = *V2SU.SU; 1130 if (SU.isScheduled || &SU == &ExitSU) 1131 continue; 1132 1133 PressureDiff &PDiff = getPressureDiff(&SU); 1134 PDiff.addPressureChange(Reg, Decrement, &MRI); 1135 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1136 << printReg(Reg, TRI) << ':' 1137 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1138 dbgs() << " to "; PDiff.dump(*TRI);); 1139 } 1140 } else { 1141 assert(P.LaneMask.any()); 1142 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1143 // This may be called before CurrentBottom has been initialized. However, 1144 // BotRPTracker must have a valid position. We want the value live into the 1145 // instruction or live out of the block, so ask for the previous 1146 // instruction's live-out. 1147 const LiveInterval &LI = LIS->getInterval(Reg); 1148 VNInfo *VNI; 1149 MachineBasicBlock::const_iterator I = 1150 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1151 if (I == BB->end()) 1152 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1153 else { 1154 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1155 VNI = LRQ.valueIn(); 1156 } 1157 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1158 assert(VNI && "No live value at use."); 1159 for (const VReg2SUnit &V2SU 1160 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1161 SUnit *SU = V2SU.SU; 1162 // If this use comes before the reaching def, it cannot be a last use, 1163 // so decrease its pressure change. 1164 if (!SU->isScheduled && SU != &ExitSU) { 1165 LiveQueryResult LRQ = 1166 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1167 if (LRQ.valueIn() == VNI) { 1168 PressureDiff &PDiff = getPressureDiff(SU); 1169 PDiff.addPressureChange(Reg, true, &MRI); 1170 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1171 << *SU->getInstr(); 1172 dbgs() << " to "; PDiff.dump(*TRI);); 1173 } 1174 } 1175 } 1176 } 1177 } 1178 } 1179 1180 void ScheduleDAGMILive::dump() const { 1181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1182 if (EntrySU.getInstr() != nullptr) 1183 dumpNodeAll(EntrySU); 1184 for (const SUnit &SU : SUnits) { 1185 dumpNodeAll(SU); 1186 if (ShouldTrackPressure) { 1187 dbgs() << " Pressure Diff : "; 1188 getPressureDiff(&SU).dump(*TRI); 1189 } 1190 dbgs() << " Single Issue : "; 1191 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1192 SchedModel.mustEndGroup(SU.getInstr())) 1193 dbgs() << "true;"; 1194 else 1195 dbgs() << "false;"; 1196 dbgs() << '\n'; 1197 } 1198 if (ExitSU.getInstr() != nullptr) 1199 dumpNodeAll(ExitSU); 1200 #endif 1201 } 1202 1203 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1204 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1205 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1206 /// 1207 /// This is a skeletal driver, with all the functionality pushed into helpers, 1208 /// so that it can be easily extended by experimental schedulers. Generally, 1209 /// implementing MachineSchedStrategy should be sufficient to implement a new 1210 /// scheduling algorithm. However, if a scheduler further subclasses 1211 /// ScheduleDAGMILive then it will want to override this virtual method in order 1212 /// to update any specialized state. 1213 void ScheduleDAGMILive::schedule() { 1214 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1215 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1216 buildDAGWithRegPressure(); 1217 1218 Topo.InitDAGTopologicalSorting(); 1219 1220 postprocessDAG(); 1221 1222 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1223 findRootsAndBiasEdges(TopRoots, BotRoots); 1224 1225 // Initialize the strategy before modifying the DAG. 1226 // This may initialize a DFSResult to be used for queue priority. 1227 SchedImpl->initialize(this); 1228 1229 LLVM_DEBUG(dump()); 1230 if (PrintDAGs) dump(); 1231 if (ViewMISchedDAGs) viewGraph(); 1232 1233 // Initialize ready queues now that the DAG and priority data are finalized. 1234 initQueues(TopRoots, BotRoots); 1235 1236 bool IsTopNode = false; 1237 while (true) { 1238 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1239 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1240 if (!SU) break; 1241 1242 assert(!SU->isScheduled && "Node already scheduled"); 1243 if (!checkSchedLimit()) 1244 break; 1245 1246 scheduleMI(SU, IsTopNode); 1247 1248 if (DFSResult) { 1249 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1250 if (!ScheduledTrees.test(SubtreeID)) { 1251 ScheduledTrees.set(SubtreeID); 1252 DFSResult->scheduleTree(SubtreeID); 1253 SchedImpl->scheduleTree(SubtreeID); 1254 } 1255 } 1256 1257 // Notify the scheduling strategy after updating the DAG. 1258 SchedImpl->schedNode(SU, IsTopNode); 1259 1260 updateQueues(SU, IsTopNode); 1261 } 1262 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1263 1264 placeDebugValues(); 1265 1266 LLVM_DEBUG({ 1267 dbgs() << "*** Final schedule for " 1268 << printMBBReference(*begin()->getParent()) << " ***\n"; 1269 dumpSchedule(); 1270 dbgs() << '\n'; 1271 }); 1272 } 1273 1274 /// Build the DAG and setup three register pressure trackers. 1275 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1276 if (!ShouldTrackPressure) { 1277 RPTracker.reset(); 1278 RegionCriticalPSets.clear(); 1279 buildSchedGraph(AA); 1280 return; 1281 } 1282 1283 // Initialize the register pressure tracker used by buildSchedGraph. 1284 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1285 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1286 1287 // Account for liveness generate by the region boundary. 1288 if (LiveRegionEnd != RegionEnd) 1289 RPTracker.recede(); 1290 1291 // Build the DAG, and compute current register pressure. 1292 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1293 1294 // Initialize top/bottom trackers after computing region pressure. 1295 initRegPressure(); 1296 } 1297 1298 void ScheduleDAGMILive::computeDFSResult() { 1299 if (!DFSResult) 1300 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1301 DFSResult->clear(); 1302 ScheduledTrees.clear(); 1303 DFSResult->resize(SUnits.size()); 1304 DFSResult->compute(SUnits); 1305 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1306 } 1307 1308 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1309 /// only provides the critical path for single block loops. To handle loops that 1310 /// span blocks, we could use the vreg path latencies provided by 1311 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1312 /// available for use in the scheduler. 1313 /// 1314 /// The cyclic path estimation identifies a def-use pair that crosses the back 1315 /// edge and considers the depth and height of the nodes. For example, consider 1316 /// the following instruction sequence where each instruction has unit latency 1317 /// and defines an epomymous virtual register: 1318 /// 1319 /// a->b(a,c)->c(b)->d(c)->exit 1320 /// 1321 /// The cyclic critical path is a two cycles: b->c->b 1322 /// The acyclic critical path is four cycles: a->b->c->d->exit 1323 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1324 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1325 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1326 /// LiveInDepth = depth(b) = len(a->b) = 1 1327 /// 1328 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1329 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1330 /// CyclicCriticalPath = min(2, 2) = 2 1331 /// 1332 /// This could be relevant to PostRA scheduling, but is currently implemented 1333 /// assuming LiveIntervals. 1334 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1335 // This only applies to single block loop. 1336 if (!BB->isSuccessor(BB)) 1337 return 0; 1338 1339 unsigned MaxCyclicLatency = 0; 1340 // Visit each live out vreg def to find def/use pairs that cross iterations. 1341 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1342 unsigned Reg = P.RegUnit; 1343 if (!TRI->isVirtualRegister(Reg)) 1344 continue; 1345 const LiveInterval &LI = LIS->getInterval(Reg); 1346 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1347 if (!DefVNI) 1348 continue; 1349 1350 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1351 const SUnit *DefSU = getSUnit(DefMI); 1352 if (!DefSU) 1353 continue; 1354 1355 unsigned LiveOutHeight = DefSU->getHeight(); 1356 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1357 // Visit all local users of the vreg def. 1358 for (const VReg2SUnit &V2SU 1359 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1360 SUnit *SU = V2SU.SU; 1361 if (SU == &ExitSU) 1362 continue; 1363 1364 // Only consider uses of the phi. 1365 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1366 if (!LRQ.valueIn()->isPHIDef()) 1367 continue; 1368 1369 // Assume that a path spanning two iterations is a cycle, which could 1370 // overestimate in strange cases. This allows cyclic latency to be 1371 // estimated as the minimum slack of the vreg's depth or height. 1372 unsigned CyclicLatency = 0; 1373 if (LiveOutDepth > SU->getDepth()) 1374 CyclicLatency = LiveOutDepth - SU->getDepth(); 1375 1376 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1377 if (LiveInHeight > LiveOutHeight) { 1378 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1379 CyclicLatency = LiveInHeight - LiveOutHeight; 1380 } else 1381 CyclicLatency = 0; 1382 1383 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1384 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1385 if (CyclicLatency > MaxCyclicLatency) 1386 MaxCyclicLatency = CyclicLatency; 1387 } 1388 } 1389 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1390 return MaxCyclicLatency; 1391 } 1392 1393 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1394 /// the Top RP tracker in case the region beginning has changed. 1395 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1396 ArrayRef<SUnit*> BotRoots) { 1397 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1398 if (ShouldTrackPressure) { 1399 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1400 TopRPTracker.setPos(CurrentTop); 1401 } 1402 } 1403 1404 /// Move an instruction and update register pressure. 1405 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1406 // Move the instruction to its new location in the instruction stream. 1407 MachineInstr *MI = SU->getInstr(); 1408 1409 if (IsTopNode) { 1410 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1411 if (&*CurrentTop == MI) 1412 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1413 else { 1414 moveInstruction(MI, CurrentTop); 1415 TopRPTracker.setPos(MI); 1416 } 1417 1418 if (ShouldTrackPressure) { 1419 // Update top scheduled pressure. 1420 RegisterOperands RegOpers; 1421 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1422 if (ShouldTrackLaneMasks) { 1423 // Adjust liveness and add missing dead+read-undef flags. 1424 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1425 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1426 } else { 1427 // Adjust for missing dead-def flags. 1428 RegOpers.detectDeadDefs(*MI, *LIS); 1429 } 1430 1431 TopRPTracker.advance(RegOpers); 1432 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1433 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1434 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1435 1436 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1437 } 1438 } else { 1439 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1440 MachineBasicBlock::iterator priorII = 1441 priorNonDebug(CurrentBottom, CurrentTop); 1442 if (&*priorII == MI) 1443 CurrentBottom = priorII; 1444 else { 1445 if (&*CurrentTop == MI) { 1446 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1447 TopRPTracker.setPos(CurrentTop); 1448 } 1449 moveInstruction(MI, CurrentBottom); 1450 CurrentBottom = MI; 1451 BotRPTracker.setPos(CurrentBottom); 1452 } 1453 if (ShouldTrackPressure) { 1454 RegisterOperands RegOpers; 1455 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1456 if (ShouldTrackLaneMasks) { 1457 // Adjust liveness and add missing dead+read-undef flags. 1458 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1459 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1460 } else { 1461 // Adjust for missing dead-def flags. 1462 RegOpers.detectDeadDefs(*MI, *LIS); 1463 } 1464 1465 if (BotRPTracker.getPos() != CurrentBottom) 1466 BotRPTracker.recedeSkipDebugValues(); 1467 SmallVector<RegisterMaskPair, 8> LiveUses; 1468 BotRPTracker.recede(RegOpers, &LiveUses); 1469 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1470 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1471 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1472 1473 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1474 updatePressureDiffs(LiveUses); 1475 } 1476 } 1477 } 1478 1479 //===----------------------------------------------------------------------===// 1480 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1481 //===----------------------------------------------------------------------===// 1482 1483 namespace { 1484 1485 /// Post-process the DAG to create cluster edges between neighboring 1486 /// loads or between neighboring stores. 1487 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1488 struct MemOpInfo { 1489 SUnit *SU; 1490 MachineOperand *BaseOp; 1491 int64_t Offset; 1492 1493 MemOpInfo(SUnit *su, MachineOperand *Op, int64_t ofs) 1494 : SU(su), BaseOp(Op), Offset(ofs) {} 1495 1496 bool operator<(const MemOpInfo &RHS) const { 1497 if (BaseOp->getType() != RHS.BaseOp->getType()) 1498 return BaseOp->getType() < RHS.BaseOp->getType(); 1499 1500 if (BaseOp->isReg()) 1501 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) < 1502 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset, 1503 RHS.SU->NodeNum); 1504 if (BaseOp->isFI()) { 1505 const MachineFunction &MF = 1506 *BaseOp->getParent()->getParent()->getParent(); 1507 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1508 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1509 TargetFrameLowering::StackGrowsDown; 1510 // Can't use tuple comparison here since we might need to use a 1511 // different order when the stack grows down. 1512 if (BaseOp->getIndex() != RHS.BaseOp->getIndex()) 1513 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex() 1514 : BaseOp->getIndex() < RHS.BaseOp->getIndex(); 1515 1516 if (Offset != RHS.Offset) 1517 return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset; 1518 1519 return SU->NodeNum < RHS.SU->NodeNum; 1520 } 1521 1522 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1523 "index bases."); 1524 } 1525 }; 1526 1527 const TargetInstrInfo *TII; 1528 const TargetRegisterInfo *TRI; 1529 bool IsLoad; 1530 1531 public: 1532 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1533 const TargetRegisterInfo *tri, bool IsLoad) 1534 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1535 1536 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1537 1538 protected: 1539 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1540 }; 1541 1542 class StoreClusterMutation : public BaseMemOpClusterMutation { 1543 public: 1544 StoreClusterMutation(const TargetInstrInfo *tii, 1545 const TargetRegisterInfo *tri) 1546 : BaseMemOpClusterMutation(tii, tri, false) {} 1547 }; 1548 1549 class LoadClusterMutation : public BaseMemOpClusterMutation { 1550 public: 1551 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1552 : BaseMemOpClusterMutation(tii, tri, true) {} 1553 }; 1554 1555 } // end anonymous namespace 1556 1557 namespace llvm { 1558 1559 std::unique_ptr<ScheduleDAGMutation> 1560 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1561 const TargetRegisterInfo *TRI) { 1562 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1563 : nullptr; 1564 } 1565 1566 std::unique_ptr<ScheduleDAGMutation> 1567 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1568 const TargetRegisterInfo *TRI) { 1569 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1570 : nullptr; 1571 } 1572 1573 } // end namespace llvm 1574 1575 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1576 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1577 SmallVector<MemOpInfo, 32> MemOpRecords; 1578 for (SUnit *SU : MemOps) { 1579 MachineOperand *BaseOp; 1580 int64_t Offset; 1581 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI)) 1582 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset)); 1583 } 1584 if (MemOpRecords.size() < 2) 1585 return; 1586 1587 llvm::sort(MemOpRecords); 1588 unsigned ClusterLength = 1; 1589 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1590 SUnit *SUa = MemOpRecords[Idx].SU; 1591 SUnit *SUb = MemOpRecords[Idx+1].SU; 1592 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp, 1593 *MemOpRecords[Idx + 1].BaseOp, 1594 ClusterLength) && 1595 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1596 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1597 << SUb->NodeNum << ")\n"); 1598 // Copy successor edges from SUa to SUb. Interleaving computation 1599 // dependent on SUa can prevent load combining due to register reuse. 1600 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1601 // loads should have effectively the same inputs. 1602 for (const SDep &Succ : SUa->Succs) { 1603 if (Succ.getSUnit() == SUb) 1604 continue; 1605 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1606 << ")\n"); 1607 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1608 } 1609 ++ClusterLength; 1610 } else 1611 ClusterLength = 1; 1612 } 1613 } 1614 1615 /// Callback from DAG postProcessing to create cluster edges for loads. 1616 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1617 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1618 1619 // Map DAG NodeNum to store chain ID. 1620 DenseMap<unsigned, unsigned> StoreChainIDs; 1621 // Map each store chain to a set of dependent MemOps. 1622 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1623 for (SUnit &SU : DAG->SUnits) { 1624 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1625 (!IsLoad && !SU.getInstr()->mayStore())) 1626 continue; 1627 1628 unsigned ChainPredID = DAG->SUnits.size(); 1629 for (const SDep &Pred : SU.Preds) { 1630 if (Pred.isCtrl()) { 1631 ChainPredID = Pred.getSUnit()->NodeNum; 1632 break; 1633 } 1634 } 1635 // Check if this chain-like pred has been seen 1636 // before. ChainPredID==MaxNodeID at the top of the schedule. 1637 unsigned NumChains = StoreChainDependents.size(); 1638 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1639 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1640 if (Result.second) 1641 StoreChainDependents.resize(NumChains + 1); 1642 StoreChainDependents[Result.first->second].push_back(&SU); 1643 } 1644 1645 // Iterate over the store chains. 1646 for (auto &SCD : StoreChainDependents) 1647 clusterNeighboringMemOps(SCD, DAG); 1648 } 1649 1650 //===----------------------------------------------------------------------===// 1651 // CopyConstrain - DAG post-processing to encourage copy elimination. 1652 //===----------------------------------------------------------------------===// 1653 1654 namespace { 1655 1656 /// Post-process the DAG to create weak edges from all uses of a copy to 1657 /// the one use that defines the copy's source vreg, most likely an induction 1658 /// variable increment. 1659 class CopyConstrain : public ScheduleDAGMutation { 1660 // Transient state. 1661 SlotIndex RegionBeginIdx; 1662 1663 // RegionEndIdx is the slot index of the last non-debug instruction in the 1664 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1665 SlotIndex RegionEndIdx; 1666 1667 public: 1668 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1669 1670 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1671 1672 protected: 1673 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1674 }; 1675 1676 } // end anonymous namespace 1677 1678 namespace llvm { 1679 1680 std::unique_ptr<ScheduleDAGMutation> 1681 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1682 const TargetRegisterInfo *TRI) { 1683 return llvm::make_unique<CopyConstrain>(TII, TRI); 1684 } 1685 1686 } // end namespace llvm 1687 1688 /// constrainLocalCopy handles two possibilities: 1689 /// 1) Local src: 1690 /// I0: = dst 1691 /// I1: src = ... 1692 /// I2: = dst 1693 /// I3: dst = src (copy) 1694 /// (create pred->succ edges I0->I1, I2->I1) 1695 /// 1696 /// 2) Local copy: 1697 /// I0: dst = src (copy) 1698 /// I1: = dst 1699 /// I2: src = ... 1700 /// I3: = dst 1701 /// (create pred->succ edges I1->I2, I3->I2) 1702 /// 1703 /// Although the MachineScheduler is currently constrained to single blocks, 1704 /// this algorithm should handle extended blocks. An EBB is a set of 1705 /// contiguously numbered blocks such that the previous block in the EBB is 1706 /// always the single predecessor. 1707 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1708 LiveIntervals *LIS = DAG->getLIS(); 1709 MachineInstr *Copy = CopySU->getInstr(); 1710 1711 // Check for pure vreg copies. 1712 const MachineOperand &SrcOp = Copy->getOperand(1); 1713 unsigned SrcReg = SrcOp.getReg(); 1714 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1715 return; 1716 1717 const MachineOperand &DstOp = Copy->getOperand(0); 1718 unsigned DstReg = DstOp.getReg(); 1719 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1720 return; 1721 1722 // Check if either the dest or source is local. If it's live across a back 1723 // edge, it's not local. Note that if both vregs are live across the back 1724 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1725 // If both the copy's source and dest are local live intervals, then we 1726 // should treat the dest as the global for the purpose of adding 1727 // constraints. This adds edges from source's other uses to the copy. 1728 unsigned LocalReg = SrcReg; 1729 unsigned GlobalReg = DstReg; 1730 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1731 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1732 LocalReg = DstReg; 1733 GlobalReg = SrcReg; 1734 LocalLI = &LIS->getInterval(LocalReg); 1735 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1736 return; 1737 } 1738 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1739 1740 // Find the global segment after the start of the local LI. 1741 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1742 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1743 // local live range. We could create edges from other global uses to the local 1744 // start, but the coalescer should have already eliminated these cases, so 1745 // don't bother dealing with it. 1746 if (GlobalSegment == GlobalLI->end()) 1747 return; 1748 1749 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1750 // returned the next global segment. But if GlobalSegment overlaps with 1751 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1752 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1753 if (GlobalSegment->contains(LocalLI->beginIndex())) 1754 ++GlobalSegment; 1755 1756 if (GlobalSegment == GlobalLI->end()) 1757 return; 1758 1759 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1760 if (GlobalSegment != GlobalLI->begin()) { 1761 // Two address defs have no hole. 1762 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1763 GlobalSegment->start)) { 1764 return; 1765 } 1766 // If the prior global segment may be defined by the same two-address 1767 // instruction that also defines LocalLI, then can't make a hole here. 1768 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1769 LocalLI->beginIndex())) { 1770 return; 1771 } 1772 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1773 // it would be a disconnected component in the live range. 1774 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1775 "Disconnected LRG within the scheduling region."); 1776 } 1777 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1778 if (!GlobalDef) 1779 return; 1780 1781 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1782 if (!GlobalSU) 1783 return; 1784 1785 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1786 // constraining the uses of the last local def to precede GlobalDef. 1787 SmallVector<SUnit*,8> LocalUses; 1788 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1789 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1790 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1791 for (const SDep &Succ : LastLocalSU->Succs) { 1792 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1793 continue; 1794 if (Succ.getSUnit() == GlobalSU) 1795 continue; 1796 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1797 return; 1798 LocalUses.push_back(Succ.getSUnit()); 1799 } 1800 // Open the top of the GlobalLI hole by constraining any earlier global uses 1801 // to precede the start of LocalLI. 1802 SmallVector<SUnit*,8> GlobalUses; 1803 MachineInstr *FirstLocalDef = 1804 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1805 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1806 for (const SDep &Pred : GlobalSU->Preds) { 1807 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1808 continue; 1809 if (Pred.getSUnit() == FirstLocalSU) 1810 continue; 1811 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1812 return; 1813 GlobalUses.push_back(Pred.getSUnit()); 1814 } 1815 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1816 // Add the weak edges. 1817 for (SmallVectorImpl<SUnit*>::const_iterator 1818 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1819 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1820 << GlobalSU->NodeNum << ")\n"); 1821 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1822 } 1823 for (SmallVectorImpl<SUnit*>::const_iterator 1824 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1825 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1826 << FirstLocalSU->NodeNum << ")\n"); 1827 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1828 } 1829 } 1830 1831 /// Callback from DAG postProcessing to create weak edges to encourage 1832 /// copy elimination. 1833 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1834 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1835 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1836 1837 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1838 if (FirstPos == DAG->end()) 1839 return; 1840 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1841 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1842 *priorNonDebug(DAG->end(), DAG->begin())); 1843 1844 for (SUnit &SU : DAG->SUnits) { 1845 if (!SU.getInstr()->isCopy()) 1846 continue; 1847 1848 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1849 } 1850 } 1851 1852 //===----------------------------------------------------------------------===// 1853 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1854 // and possibly other custom schedulers. 1855 //===----------------------------------------------------------------------===// 1856 1857 static const unsigned InvalidCycle = ~0U; 1858 1859 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1860 1861 /// Given a Count of resource usage and a Latency value, return true if a 1862 /// SchedBoundary becomes resource limited. 1863 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1864 unsigned Latency) { 1865 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1866 } 1867 1868 void SchedBoundary::reset() { 1869 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1870 // Destroying and reconstructing it is very expensive though. So keep 1871 // invalid, placeholder HazardRecs. 1872 if (HazardRec && HazardRec->isEnabled()) { 1873 delete HazardRec; 1874 HazardRec = nullptr; 1875 } 1876 Available.clear(); 1877 Pending.clear(); 1878 CheckPending = false; 1879 CurrCycle = 0; 1880 CurrMOps = 0; 1881 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1882 ExpectedLatency = 0; 1883 DependentLatency = 0; 1884 RetiredMOps = 0; 1885 MaxExecutedResCount = 0; 1886 ZoneCritResIdx = 0; 1887 IsResourceLimited = false; 1888 ReservedCycles.clear(); 1889 #ifndef NDEBUG 1890 // Track the maximum number of stall cycles that could arise either from the 1891 // latency of a DAG edge or the number of cycles that a processor resource is 1892 // reserved (SchedBoundary::ReservedCycles). 1893 MaxObservedStall = 0; 1894 #endif 1895 // Reserve a zero-count for invalid CritResIdx. 1896 ExecutedResCounts.resize(1); 1897 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1898 } 1899 1900 void SchedRemainder:: 1901 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1902 reset(); 1903 if (!SchedModel->hasInstrSchedModel()) 1904 return; 1905 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1906 for (SUnit &SU : DAG->SUnits) { 1907 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1908 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1909 * SchedModel->getMicroOpFactor(); 1910 for (TargetSchedModel::ProcResIter 1911 PI = SchedModel->getWriteProcResBegin(SC), 1912 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1913 unsigned PIdx = PI->ProcResourceIdx; 1914 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1915 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1916 } 1917 } 1918 } 1919 1920 void SchedBoundary:: 1921 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1922 reset(); 1923 DAG = dag; 1924 SchedModel = smodel; 1925 Rem = rem; 1926 if (SchedModel->hasInstrSchedModel()) { 1927 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1928 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1929 } 1930 } 1931 1932 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1933 /// these "soft stalls" differently than the hard stall cycles based on CPU 1934 /// resources and computed by checkHazard(). A fully in-order model 1935 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1936 /// available for scheduling until they are ready. However, a weaker in-order 1937 /// model may use this for heuristics. For example, if a processor has in-order 1938 /// behavior when reading certain resources, this may come into play. 1939 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1940 if (!SU->isUnbuffered) 1941 return 0; 1942 1943 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1944 if (ReadyCycle > CurrCycle) 1945 return ReadyCycle - CurrCycle; 1946 return 0; 1947 } 1948 1949 /// Compute the next cycle at which the given processor resource can be 1950 /// scheduled. 1951 unsigned SchedBoundary:: 1952 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1953 unsigned NextUnreserved = ReservedCycles[PIdx]; 1954 // If this resource has never been used, always return cycle zero. 1955 if (NextUnreserved == InvalidCycle) 1956 return 0; 1957 // For bottom-up scheduling add the cycles needed for the current operation. 1958 if (!isTop()) 1959 NextUnreserved += Cycles; 1960 return NextUnreserved; 1961 } 1962 1963 /// Does this SU have a hazard within the current instruction group. 1964 /// 1965 /// The scheduler supports two modes of hazard recognition. The first is the 1966 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1967 /// supports highly complicated in-order reservation tables 1968 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1969 /// 1970 /// The second is a streamlined mechanism that checks for hazards based on 1971 /// simple counters that the scheduler itself maintains. It explicitly checks 1972 /// for instruction dispatch limitations, including the number of micro-ops that 1973 /// can dispatch per cycle. 1974 /// 1975 /// TODO: Also check whether the SU must start a new group. 1976 bool SchedBoundary::checkHazard(SUnit *SU) { 1977 if (HazardRec->isEnabled() 1978 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1979 return true; 1980 } 1981 1982 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1983 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1984 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1985 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1986 return true; 1987 } 1988 1989 if (CurrMOps > 0 && 1990 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1991 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1992 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1993 << (isTop() ? "begin" : "end") << " group\n"); 1994 return true; 1995 } 1996 1997 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1998 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1999 for (const MCWriteProcResEntry &PE : 2000 make_range(SchedModel->getWriteProcResBegin(SC), 2001 SchedModel->getWriteProcResEnd(SC))) { 2002 unsigned ResIdx = PE.ProcResourceIdx; 2003 unsigned Cycles = PE.Cycles; 2004 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 2005 if (NRCycle > CurrCycle) { 2006 #ifndef NDEBUG 2007 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2008 #endif 2009 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2010 << SchedModel->getResourceName(ResIdx) << "=" 2011 << NRCycle << "c\n"); 2012 return true; 2013 } 2014 } 2015 } 2016 return false; 2017 } 2018 2019 // Find the unscheduled node in ReadySUs with the highest latency. 2020 unsigned SchedBoundary:: 2021 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2022 SUnit *LateSU = nullptr; 2023 unsigned RemLatency = 0; 2024 for (SUnit *SU : ReadySUs) { 2025 unsigned L = getUnscheduledLatency(SU); 2026 if (L > RemLatency) { 2027 RemLatency = L; 2028 LateSU = SU; 2029 } 2030 } 2031 if (LateSU) { 2032 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2033 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2034 } 2035 return RemLatency; 2036 } 2037 2038 // Count resources in this zone and the remaining unscheduled 2039 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2040 // resource index, or zero if the zone is issue limited. 2041 unsigned SchedBoundary:: 2042 getOtherResourceCount(unsigned &OtherCritIdx) { 2043 OtherCritIdx = 0; 2044 if (!SchedModel->hasInstrSchedModel()) 2045 return 0; 2046 2047 unsigned OtherCritCount = Rem->RemIssueCount 2048 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2049 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2050 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2051 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2052 PIdx != PEnd; ++PIdx) { 2053 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2054 if (OtherCount > OtherCritCount) { 2055 OtherCritCount = OtherCount; 2056 OtherCritIdx = PIdx; 2057 } 2058 } 2059 if (OtherCritIdx) { 2060 LLVM_DEBUG( 2061 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2062 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2063 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2064 } 2065 return OtherCritCount; 2066 } 2067 2068 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2069 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2070 2071 #ifndef NDEBUG 2072 // ReadyCycle was been bumped up to the CurrCycle when this node was 2073 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2074 // scheduling, so may now be greater than ReadyCycle. 2075 if (ReadyCycle > CurrCycle) 2076 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2077 #endif 2078 2079 if (ReadyCycle < MinReadyCycle) 2080 MinReadyCycle = ReadyCycle; 2081 2082 // Check for interlocks first. For the purpose of other heuristics, an 2083 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2084 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2085 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2086 Available.size() >= ReadyListLimit) 2087 Pending.push(SU); 2088 else 2089 Available.push(SU); 2090 } 2091 2092 /// Move the boundary of scheduled code by one cycle. 2093 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2094 if (SchedModel->getMicroOpBufferSize() == 0) { 2095 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2096 "MinReadyCycle uninitialized"); 2097 if (MinReadyCycle > NextCycle) 2098 NextCycle = MinReadyCycle; 2099 } 2100 // Update the current micro-ops, which will issue in the next cycle. 2101 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2102 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2103 2104 // Decrement DependentLatency based on the next cycle. 2105 if ((NextCycle - CurrCycle) > DependentLatency) 2106 DependentLatency = 0; 2107 else 2108 DependentLatency -= (NextCycle - CurrCycle); 2109 2110 if (!HazardRec->isEnabled()) { 2111 // Bypass HazardRec virtual calls. 2112 CurrCycle = NextCycle; 2113 } else { 2114 // Bypass getHazardType calls in case of long latency. 2115 for (; CurrCycle != NextCycle; ++CurrCycle) { 2116 if (isTop()) 2117 HazardRec->AdvanceCycle(); 2118 else 2119 HazardRec->RecedeCycle(); 2120 } 2121 } 2122 CheckPending = true; 2123 IsResourceLimited = 2124 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2125 getScheduledLatency()); 2126 2127 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2128 << '\n'); 2129 } 2130 2131 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2132 ExecutedResCounts[PIdx] += Count; 2133 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2134 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2135 } 2136 2137 /// Add the given processor resource to this scheduled zone. 2138 /// 2139 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2140 /// during which this resource is consumed. 2141 /// 2142 /// \return the next cycle at which the instruction may execute without 2143 /// oversubscribing resources. 2144 unsigned SchedBoundary:: 2145 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2146 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2147 unsigned Count = Factor * Cycles; 2148 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2149 << Cycles << "x" << Factor << "u\n"); 2150 2151 // Update Executed resources counts. 2152 incExecutedResources(PIdx, Count); 2153 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2154 Rem->RemainingCounts[PIdx] -= Count; 2155 2156 // Check if this resource exceeds the current critical resource. If so, it 2157 // becomes the critical resource. 2158 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2159 ZoneCritResIdx = PIdx; 2160 LLVM_DEBUG(dbgs() << " *** Critical resource " 2161 << SchedModel->getResourceName(PIdx) << ": " 2162 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2163 << "c\n"); 2164 } 2165 // For reserved resources, record the highest cycle using the resource. 2166 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2167 if (NextAvailable > CurrCycle) { 2168 LLVM_DEBUG(dbgs() << " Resource conflict: " 2169 << SchedModel->getProcResource(PIdx)->Name 2170 << " reserved until @" << NextAvailable << "\n"); 2171 } 2172 return NextAvailable; 2173 } 2174 2175 /// Move the boundary of scheduled code by one SUnit. 2176 void SchedBoundary::bumpNode(SUnit *SU) { 2177 // Update the reservation table. 2178 if (HazardRec->isEnabled()) { 2179 if (!isTop() && SU->isCall) { 2180 // Calls are scheduled with their preceding instructions. For bottom-up 2181 // scheduling, clear the pipeline state before emitting. 2182 HazardRec->Reset(); 2183 } 2184 HazardRec->EmitInstruction(SU); 2185 } 2186 // checkHazard should prevent scheduling multiple instructions per cycle that 2187 // exceed the issue width. 2188 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2189 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2190 assert( 2191 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2192 "Cannot schedule this instruction's MicroOps in the current cycle."); 2193 2194 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2195 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2196 2197 unsigned NextCycle = CurrCycle; 2198 switch (SchedModel->getMicroOpBufferSize()) { 2199 case 0: 2200 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2201 break; 2202 case 1: 2203 if (ReadyCycle > NextCycle) { 2204 NextCycle = ReadyCycle; 2205 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2206 } 2207 break; 2208 default: 2209 // We don't currently model the OOO reorder buffer, so consider all 2210 // scheduled MOps to be "retired". We do loosely model in-order resource 2211 // latency. If this instruction uses an in-order resource, account for any 2212 // likely stall cycles. 2213 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2214 NextCycle = ReadyCycle; 2215 break; 2216 } 2217 RetiredMOps += IncMOps; 2218 2219 // Update resource counts and critical resource. 2220 if (SchedModel->hasInstrSchedModel()) { 2221 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2222 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2223 Rem->RemIssueCount -= DecRemIssue; 2224 if (ZoneCritResIdx) { 2225 // Scale scheduled micro-ops for comparing with the critical resource. 2226 unsigned ScaledMOps = 2227 RetiredMOps * SchedModel->getMicroOpFactor(); 2228 2229 // If scaled micro-ops are now more than the previous critical resource by 2230 // a full cycle, then micro-ops issue becomes critical. 2231 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2232 >= (int)SchedModel->getLatencyFactor()) { 2233 ZoneCritResIdx = 0; 2234 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2235 << ScaledMOps / SchedModel->getLatencyFactor() 2236 << "c\n"); 2237 } 2238 } 2239 for (TargetSchedModel::ProcResIter 2240 PI = SchedModel->getWriteProcResBegin(SC), 2241 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2242 unsigned RCycle = 2243 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2244 if (RCycle > NextCycle) 2245 NextCycle = RCycle; 2246 } 2247 if (SU->hasReservedResource) { 2248 // For reserved resources, record the highest cycle using the resource. 2249 // For top-down scheduling, this is the cycle in which we schedule this 2250 // instruction plus the number of cycles the operations reserves the 2251 // resource. For bottom-up is it simply the instruction's cycle. 2252 for (TargetSchedModel::ProcResIter 2253 PI = SchedModel->getWriteProcResBegin(SC), 2254 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2255 unsigned PIdx = PI->ProcResourceIdx; 2256 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2257 if (isTop()) { 2258 ReservedCycles[PIdx] = 2259 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2260 } 2261 else 2262 ReservedCycles[PIdx] = NextCycle; 2263 } 2264 } 2265 } 2266 } 2267 // Update ExpectedLatency and DependentLatency. 2268 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2269 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2270 if (SU->getDepth() > TopLatency) { 2271 TopLatency = SU->getDepth(); 2272 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2273 << SU->NodeNum << ") " << TopLatency << "c\n"); 2274 } 2275 if (SU->getHeight() > BotLatency) { 2276 BotLatency = SU->getHeight(); 2277 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2278 << SU->NodeNum << ") " << BotLatency << "c\n"); 2279 } 2280 // If we stall for any reason, bump the cycle. 2281 if (NextCycle > CurrCycle) 2282 bumpCycle(NextCycle); 2283 else 2284 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2285 // resource limited. If a stall occurred, bumpCycle does this. 2286 IsResourceLimited = 2287 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2288 getScheduledLatency()); 2289 2290 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2291 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2292 // one cycle. Since we commonly reach the max MOps here, opportunistically 2293 // bump the cycle to avoid uselessly checking everything in the readyQ. 2294 CurrMOps += IncMOps; 2295 2296 // Bump the cycle count for issue group constraints. 2297 // This must be done after NextCycle has been adjust for all other stalls. 2298 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2299 // currCycle to X. 2300 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2301 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2302 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2303 << " group\n"); 2304 bumpCycle(++NextCycle); 2305 } 2306 2307 while (CurrMOps >= SchedModel->getIssueWidth()) { 2308 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2309 << CurrCycle << '\n'); 2310 bumpCycle(++NextCycle); 2311 } 2312 LLVM_DEBUG(dumpScheduledState()); 2313 } 2314 2315 /// Release pending ready nodes in to the available queue. This makes them 2316 /// visible to heuristics. 2317 void SchedBoundary::releasePending() { 2318 // If the available queue is empty, it is safe to reset MinReadyCycle. 2319 if (Available.empty()) 2320 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2321 2322 // Check to see if any of the pending instructions are ready to issue. If 2323 // so, add them to the available queue. 2324 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2325 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2326 SUnit *SU = *(Pending.begin()+i); 2327 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2328 2329 if (ReadyCycle < MinReadyCycle) 2330 MinReadyCycle = ReadyCycle; 2331 2332 if (!IsBuffered && ReadyCycle > CurrCycle) 2333 continue; 2334 2335 if (checkHazard(SU)) 2336 continue; 2337 2338 if (Available.size() >= ReadyListLimit) 2339 break; 2340 2341 Available.push(SU); 2342 Pending.remove(Pending.begin()+i); 2343 --i; --e; 2344 } 2345 CheckPending = false; 2346 } 2347 2348 /// Remove SU from the ready set for this boundary. 2349 void SchedBoundary::removeReady(SUnit *SU) { 2350 if (Available.isInQueue(SU)) 2351 Available.remove(Available.find(SU)); 2352 else { 2353 assert(Pending.isInQueue(SU) && "bad ready count"); 2354 Pending.remove(Pending.find(SU)); 2355 } 2356 } 2357 2358 /// If this queue only has one ready candidate, return it. As a side effect, 2359 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2360 /// one node is ready. If multiple instructions are ready, return NULL. 2361 SUnit *SchedBoundary::pickOnlyChoice() { 2362 if (CheckPending) 2363 releasePending(); 2364 2365 if (CurrMOps > 0) { 2366 // Defer any ready instrs that now have a hazard. 2367 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2368 if (checkHazard(*I)) { 2369 Pending.push(*I); 2370 I = Available.remove(I); 2371 continue; 2372 } 2373 ++I; 2374 } 2375 } 2376 for (unsigned i = 0; Available.empty(); ++i) { 2377 // FIXME: Re-enable assert once PR20057 is resolved. 2378 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2379 // "permanent hazard"); 2380 (void)i; 2381 bumpCycle(CurrCycle + 1); 2382 releasePending(); 2383 } 2384 2385 LLVM_DEBUG(Pending.dump()); 2386 LLVM_DEBUG(Available.dump()); 2387 2388 if (Available.size() == 1) 2389 return *Available.begin(); 2390 return nullptr; 2391 } 2392 2393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2394 // This is useful information to dump after bumpNode. 2395 // Note that the Queue contents are more useful before pickNodeFromQueue. 2396 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2397 unsigned ResFactor; 2398 unsigned ResCount; 2399 if (ZoneCritResIdx) { 2400 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2401 ResCount = getResourceCount(ZoneCritResIdx); 2402 } else { 2403 ResFactor = SchedModel->getMicroOpFactor(); 2404 ResCount = RetiredMOps * ResFactor; 2405 } 2406 unsigned LFactor = SchedModel->getLatencyFactor(); 2407 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2408 << " Retired: " << RetiredMOps; 2409 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2410 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2411 << ResCount / ResFactor << " " 2412 << SchedModel->getResourceName(ZoneCritResIdx) 2413 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2414 << (IsResourceLimited ? " - Resource" : " - Latency") 2415 << " limited.\n"; 2416 } 2417 #endif 2418 2419 //===----------------------------------------------------------------------===// 2420 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2421 //===----------------------------------------------------------------------===// 2422 2423 void GenericSchedulerBase::SchedCandidate:: 2424 initResourceDelta(const ScheduleDAGMI *DAG, 2425 const TargetSchedModel *SchedModel) { 2426 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2427 return; 2428 2429 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2430 for (TargetSchedModel::ProcResIter 2431 PI = SchedModel->getWriteProcResBegin(SC), 2432 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2433 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2434 ResDelta.CritResources += PI->Cycles; 2435 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2436 ResDelta.DemandedResources += PI->Cycles; 2437 } 2438 } 2439 2440 /// Compute remaining latency. We need this both to determine whether the 2441 /// overall schedule has become latency-limited and whether the instructions 2442 /// outside this zone are resource or latency limited. 2443 /// 2444 /// The "dependent" latency is updated incrementally during scheduling as the 2445 /// max height/depth of scheduled nodes minus the cycles since it was 2446 /// scheduled: 2447 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2448 /// 2449 /// The "independent" latency is the max ready queue depth: 2450 /// ILat = max N.depth for N in Available|Pending 2451 /// 2452 /// RemainingLatency is the greater of independent and dependent latency. 2453 /// 2454 /// These computations are expensive, especially in DAGs with many edges, so 2455 /// only do them if necessary. 2456 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2457 unsigned RemLatency = CurrZone.getDependentLatency(); 2458 RemLatency = std::max(RemLatency, 2459 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2460 RemLatency = std::max(RemLatency, 2461 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2462 return RemLatency; 2463 } 2464 2465 /// Returns true if the current cycle plus remaning latency is greater than 2466 /// the critical path in the scheduling region. 2467 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2468 SchedBoundary &CurrZone, 2469 bool ComputeRemLatency, 2470 unsigned &RemLatency) const { 2471 // The current cycle is already greater than the critical path, so we are 2472 // already latency limited and don't need to compute the remaining latency. 2473 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2474 return true; 2475 2476 // If we haven't scheduled anything yet, then we aren't latency limited. 2477 if (CurrZone.getCurrCycle() == 0) 2478 return false; 2479 2480 if (ComputeRemLatency) 2481 RemLatency = computeRemLatency(CurrZone); 2482 2483 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2484 } 2485 2486 /// Set the CandPolicy given a scheduling zone given the current resources and 2487 /// latencies inside and outside the zone. 2488 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2489 SchedBoundary &CurrZone, 2490 SchedBoundary *OtherZone) { 2491 // Apply preemptive heuristics based on the total latency and resources 2492 // inside and outside this zone. Potential stalls should be considered before 2493 // following this policy. 2494 2495 // Compute the critical resource outside the zone. 2496 unsigned OtherCritIdx = 0; 2497 unsigned OtherCount = 2498 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2499 2500 bool OtherResLimited = false; 2501 unsigned RemLatency = 0; 2502 bool RemLatencyComputed = false; 2503 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2504 RemLatency = computeRemLatency(CurrZone); 2505 RemLatencyComputed = true; 2506 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2507 OtherCount, RemLatency); 2508 } 2509 2510 // Schedule aggressively for latency in PostRA mode. We don't check for 2511 // acyclic latency during PostRA, and highly out-of-order processors will 2512 // skip PostRA scheduling. 2513 if (!OtherResLimited && 2514 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2515 RemLatency))) { 2516 Policy.ReduceLatency |= true; 2517 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2518 << " RemainingLatency " << RemLatency << " + " 2519 << CurrZone.getCurrCycle() << "c > CritPath " 2520 << Rem.CriticalPath << "\n"); 2521 } 2522 // If the same resource is limiting inside and outside the zone, do nothing. 2523 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2524 return; 2525 2526 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2527 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2528 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2529 } if (OtherResLimited) dbgs() 2530 << " RemainingLimit: " 2531 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2532 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2533 << " Latency limited both directions.\n"); 2534 2535 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2536 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2537 2538 if (OtherResLimited) 2539 Policy.DemandResIdx = OtherCritIdx; 2540 } 2541 2542 #ifndef NDEBUG 2543 const char *GenericSchedulerBase::getReasonStr( 2544 GenericSchedulerBase::CandReason Reason) { 2545 switch (Reason) { 2546 case NoCand: return "NOCAND "; 2547 case Only1: return "ONLY1 "; 2548 case PhysReg: return "PHYS-REG "; 2549 case RegExcess: return "REG-EXCESS"; 2550 case RegCritical: return "REG-CRIT "; 2551 case Stall: return "STALL "; 2552 case Cluster: return "CLUSTER "; 2553 case Weak: return "WEAK "; 2554 case RegMax: return "REG-MAX "; 2555 case ResourceReduce: return "RES-REDUCE"; 2556 case ResourceDemand: return "RES-DEMAND"; 2557 case TopDepthReduce: return "TOP-DEPTH "; 2558 case TopPathReduce: return "TOP-PATH "; 2559 case BotHeightReduce:return "BOT-HEIGHT"; 2560 case BotPathReduce: return "BOT-PATH "; 2561 case NextDefUse: return "DEF-USE "; 2562 case NodeOrder: return "ORDER "; 2563 }; 2564 llvm_unreachable("Unknown reason!"); 2565 } 2566 2567 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2568 PressureChange P; 2569 unsigned ResIdx = 0; 2570 unsigned Latency = 0; 2571 switch (Cand.Reason) { 2572 default: 2573 break; 2574 case RegExcess: 2575 P = Cand.RPDelta.Excess; 2576 break; 2577 case RegCritical: 2578 P = Cand.RPDelta.CriticalMax; 2579 break; 2580 case RegMax: 2581 P = Cand.RPDelta.CurrentMax; 2582 break; 2583 case ResourceReduce: 2584 ResIdx = Cand.Policy.ReduceResIdx; 2585 break; 2586 case ResourceDemand: 2587 ResIdx = Cand.Policy.DemandResIdx; 2588 break; 2589 case TopDepthReduce: 2590 Latency = Cand.SU->getDepth(); 2591 break; 2592 case TopPathReduce: 2593 Latency = Cand.SU->getHeight(); 2594 break; 2595 case BotHeightReduce: 2596 Latency = Cand.SU->getHeight(); 2597 break; 2598 case BotPathReduce: 2599 Latency = Cand.SU->getDepth(); 2600 break; 2601 } 2602 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2603 if (P.isValid()) 2604 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2605 << ":" << P.getUnitInc() << " "; 2606 else 2607 dbgs() << " "; 2608 if (ResIdx) 2609 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2610 else 2611 dbgs() << " "; 2612 if (Latency) 2613 dbgs() << " " << Latency << " cycles "; 2614 else 2615 dbgs() << " "; 2616 dbgs() << '\n'; 2617 } 2618 #endif 2619 2620 namespace llvm { 2621 /// Return true if this heuristic determines order. 2622 bool tryLess(int TryVal, int CandVal, 2623 GenericSchedulerBase::SchedCandidate &TryCand, 2624 GenericSchedulerBase::SchedCandidate &Cand, 2625 GenericSchedulerBase::CandReason Reason) { 2626 if (TryVal < CandVal) { 2627 TryCand.Reason = Reason; 2628 return true; 2629 } 2630 if (TryVal > CandVal) { 2631 if (Cand.Reason > Reason) 2632 Cand.Reason = Reason; 2633 return true; 2634 } 2635 return false; 2636 } 2637 2638 bool tryGreater(int TryVal, int CandVal, 2639 GenericSchedulerBase::SchedCandidate &TryCand, 2640 GenericSchedulerBase::SchedCandidate &Cand, 2641 GenericSchedulerBase::CandReason Reason) { 2642 if (TryVal > CandVal) { 2643 TryCand.Reason = Reason; 2644 return true; 2645 } 2646 if (TryVal < CandVal) { 2647 if (Cand.Reason > Reason) 2648 Cand.Reason = Reason; 2649 return true; 2650 } 2651 return false; 2652 } 2653 2654 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2655 GenericSchedulerBase::SchedCandidate &Cand, 2656 SchedBoundary &Zone) { 2657 if (Zone.isTop()) { 2658 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2659 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2660 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2661 return true; 2662 } 2663 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2664 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2665 return true; 2666 } else { 2667 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2668 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2669 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2670 return true; 2671 } 2672 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2673 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2674 return true; 2675 } 2676 return false; 2677 } 2678 } // end namespace llvm 2679 2680 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2681 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2682 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2683 } 2684 2685 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2686 tracePick(Cand.Reason, Cand.AtTop); 2687 } 2688 2689 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2690 assert(dag->hasVRegLiveness() && 2691 "(PreRA)GenericScheduler needs vreg liveness"); 2692 DAG = static_cast<ScheduleDAGMILive*>(dag); 2693 SchedModel = DAG->getSchedModel(); 2694 TRI = DAG->TRI; 2695 2696 Rem.init(DAG, SchedModel); 2697 Top.init(DAG, SchedModel, &Rem); 2698 Bot.init(DAG, SchedModel, &Rem); 2699 2700 // Initialize resource counts. 2701 2702 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2703 // are disabled, then these HazardRecs will be disabled. 2704 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2705 if (!Top.HazardRec) { 2706 Top.HazardRec = 2707 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2708 Itin, DAG); 2709 } 2710 if (!Bot.HazardRec) { 2711 Bot.HazardRec = 2712 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2713 Itin, DAG); 2714 } 2715 TopCand.SU = nullptr; 2716 BotCand.SU = nullptr; 2717 } 2718 2719 /// Initialize the per-region scheduling policy. 2720 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2721 MachineBasicBlock::iterator End, 2722 unsigned NumRegionInstrs) { 2723 const MachineFunction &MF = *Begin->getMF(); 2724 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2725 2726 // Avoid setting up the register pressure tracker for small regions to save 2727 // compile time. As a rough heuristic, only track pressure when the number of 2728 // schedulable instructions exceeds half the integer register file. 2729 RegionPolicy.ShouldTrackPressure = true; 2730 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2731 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2732 if (TLI->isTypeLegal(LegalIntVT)) { 2733 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2734 TLI->getRegClassFor(LegalIntVT)); 2735 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2736 } 2737 } 2738 2739 // For generic targets, we default to bottom-up, because it's simpler and more 2740 // compile-time optimizations have been implemented in that direction. 2741 RegionPolicy.OnlyBottomUp = true; 2742 2743 // Allow the subtarget to override default policy. 2744 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2745 2746 // After subtarget overrides, apply command line options. 2747 if (!EnableRegPressure) 2748 RegionPolicy.ShouldTrackPressure = false; 2749 2750 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2751 // e.g. -misched-bottomup=false allows scheduling in both directions. 2752 assert((!ForceTopDown || !ForceBottomUp) && 2753 "-misched-topdown incompatible with -misched-bottomup"); 2754 if (ForceBottomUp.getNumOccurrences() > 0) { 2755 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2756 if (RegionPolicy.OnlyBottomUp) 2757 RegionPolicy.OnlyTopDown = false; 2758 } 2759 if (ForceTopDown.getNumOccurrences() > 0) { 2760 RegionPolicy.OnlyTopDown = ForceTopDown; 2761 if (RegionPolicy.OnlyTopDown) 2762 RegionPolicy.OnlyBottomUp = false; 2763 } 2764 } 2765 2766 void GenericScheduler::dumpPolicy() const { 2767 // Cannot completely remove virtual function even in release mode. 2768 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2769 dbgs() << "GenericScheduler RegionPolicy: " 2770 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2771 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2772 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2773 << "\n"; 2774 #endif 2775 } 2776 2777 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2778 /// critical path by more cycles than it takes to drain the instruction buffer. 2779 /// We estimate an upper bounds on in-flight instructions as: 2780 /// 2781 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2782 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2783 /// InFlightResources = InFlightIterations * LoopResources 2784 /// 2785 /// TODO: Check execution resources in addition to IssueCount. 2786 void GenericScheduler::checkAcyclicLatency() { 2787 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2788 return; 2789 2790 // Scaled number of cycles per loop iteration. 2791 unsigned IterCount = 2792 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2793 Rem.RemIssueCount); 2794 // Scaled acyclic critical path. 2795 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2796 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2797 unsigned InFlightCount = 2798 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2799 unsigned BufferLimit = 2800 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2801 2802 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2803 2804 LLVM_DEBUG( 2805 dbgs() << "IssueCycles=" 2806 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2807 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2808 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2809 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2810 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2811 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2812 } 2813 2814 void GenericScheduler::registerRoots() { 2815 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2816 2817 // Some roots may not feed into ExitSU. Check all of them in case. 2818 for (const SUnit *SU : Bot.Available) { 2819 if (SU->getDepth() > Rem.CriticalPath) 2820 Rem.CriticalPath = SU->getDepth(); 2821 } 2822 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2823 if (DumpCriticalPathLength) { 2824 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2825 } 2826 2827 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2828 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2829 checkAcyclicLatency(); 2830 } 2831 } 2832 2833 namespace llvm { 2834 bool tryPressure(const PressureChange &TryP, 2835 const PressureChange &CandP, 2836 GenericSchedulerBase::SchedCandidate &TryCand, 2837 GenericSchedulerBase::SchedCandidate &Cand, 2838 GenericSchedulerBase::CandReason Reason, 2839 const TargetRegisterInfo *TRI, 2840 const MachineFunction &MF) { 2841 // If one candidate decreases and the other increases, go with it. 2842 // Invalid candidates have UnitInc==0. 2843 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2844 Reason)) { 2845 return true; 2846 } 2847 // Do not compare the magnitude of pressure changes between top and bottom 2848 // boundary. 2849 if (Cand.AtTop != TryCand.AtTop) 2850 return false; 2851 2852 // If both candidates affect the same set in the same boundary, go with the 2853 // smallest increase. 2854 unsigned TryPSet = TryP.getPSetOrMax(); 2855 unsigned CandPSet = CandP.getPSetOrMax(); 2856 if (TryPSet == CandPSet) { 2857 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2858 Reason); 2859 } 2860 2861 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2862 std::numeric_limits<int>::max(); 2863 2864 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2865 std::numeric_limits<int>::max(); 2866 2867 // If the candidates are decreasing pressure, reverse priority. 2868 if (TryP.getUnitInc() < 0) 2869 std::swap(TryRank, CandRank); 2870 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2871 } 2872 2873 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2874 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2875 } 2876 2877 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2878 /// their physreg def/use. 2879 /// 2880 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2881 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2882 /// with the operation that produces or consumes the physreg. We'll do this when 2883 /// regalloc has support for parallel copies. 2884 int biasPhysReg(const SUnit *SU, bool isTop) { 2885 const MachineInstr *MI = SU->getInstr(); 2886 2887 if (MI->isCopy()) { 2888 unsigned ScheduledOper = isTop ? 1 : 0; 2889 unsigned UnscheduledOper = isTop ? 0 : 1; 2890 // If we have already scheduled the physreg produce/consumer, immediately 2891 // schedule the copy. 2892 if (TargetRegisterInfo::isPhysicalRegister( 2893 MI->getOperand(ScheduledOper).getReg())) 2894 return 1; 2895 // If the physreg is at the boundary, defer it. Otherwise schedule it 2896 // immediately to free the dependent. We can hoist the copy later. 2897 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2898 if (TargetRegisterInfo::isPhysicalRegister( 2899 MI->getOperand(UnscheduledOper).getReg())) 2900 return AtBoundary ? -1 : 1; 2901 } 2902 2903 if (MI->isMoveImmediate()) { 2904 // If we have a move immediate and all successors have been assigned, bias 2905 // towards scheduling this later. Make sure all register defs are to 2906 // physical registers. 2907 bool DoBias = true; 2908 for (const MachineOperand &Op : MI->defs()) { 2909 if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) { 2910 DoBias = false; 2911 break; 2912 } 2913 } 2914 2915 if (DoBias) 2916 return isTop ? -1 : 1; 2917 } 2918 2919 return 0; 2920 } 2921 } // end namespace llvm 2922 2923 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2924 bool AtTop, 2925 const RegPressureTracker &RPTracker, 2926 RegPressureTracker &TempTracker) { 2927 Cand.SU = SU; 2928 Cand.AtTop = AtTop; 2929 if (DAG->isTrackingPressure()) { 2930 if (AtTop) { 2931 TempTracker.getMaxDownwardPressureDelta( 2932 Cand.SU->getInstr(), 2933 Cand.RPDelta, 2934 DAG->getRegionCriticalPSets(), 2935 DAG->getRegPressure().MaxSetPressure); 2936 } else { 2937 if (VerifyScheduling) { 2938 TempTracker.getMaxUpwardPressureDelta( 2939 Cand.SU->getInstr(), 2940 &DAG->getPressureDiff(Cand.SU), 2941 Cand.RPDelta, 2942 DAG->getRegionCriticalPSets(), 2943 DAG->getRegPressure().MaxSetPressure); 2944 } else { 2945 RPTracker.getUpwardPressureDelta( 2946 Cand.SU->getInstr(), 2947 DAG->getPressureDiff(Cand.SU), 2948 Cand.RPDelta, 2949 DAG->getRegionCriticalPSets(), 2950 DAG->getRegPressure().MaxSetPressure); 2951 } 2952 } 2953 } 2954 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2955 << " Try SU(" << Cand.SU->NodeNum << ") " 2956 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 2957 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2958 } 2959 2960 /// Apply a set of heuristics to a new candidate. Heuristics are currently 2961 /// hierarchical. This may be more efficient than a graduated cost model because 2962 /// we don't need to evaluate all aspects of the model for each node in the 2963 /// queue. But it's really done to make the heuristics easier to debug and 2964 /// statistically analyze. 2965 /// 2966 /// \param Cand provides the policy and current best candidate. 2967 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2968 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2969 // if Cand is from a different zone than TryCand. 2970 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2971 SchedCandidate &TryCand, 2972 SchedBoundary *Zone) const { 2973 // Initialize the candidate if needed. 2974 if (!Cand.isValid()) { 2975 TryCand.Reason = NodeOrder; 2976 return; 2977 } 2978 2979 // Bias PhysReg Defs and copies to their uses and defined respectively. 2980 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 2981 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 2982 return; 2983 2984 // Avoid exceeding the target's limit. 2985 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2986 Cand.RPDelta.Excess, 2987 TryCand, Cand, RegExcess, TRI, 2988 DAG->MF)) 2989 return; 2990 2991 // Avoid increasing the max critical pressure in the scheduled region. 2992 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2993 Cand.RPDelta.CriticalMax, 2994 TryCand, Cand, RegCritical, TRI, 2995 DAG->MF)) 2996 return; 2997 2998 // We only compare a subset of features when comparing nodes between 2999 // Top and Bottom boundary. Some properties are simply incomparable, in many 3000 // other instances we should only override the other boundary if something 3001 // is a clear good pick on one boundary. Skip heuristics that are more 3002 // "tie-breaking" in nature. 3003 bool SameBoundary = Zone != nullptr; 3004 if (SameBoundary) { 3005 // For loops that are acyclic path limited, aggressively schedule for 3006 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3007 // heuristics to take precedence. 3008 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3009 tryLatency(TryCand, Cand, *Zone)) 3010 return; 3011 3012 // Prioritize instructions that read unbuffered resources by stall cycles. 3013 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3014 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3015 return; 3016 } 3017 3018 // Keep clustered nodes together to encourage downstream peephole 3019 // optimizations which may reduce resource requirements. 3020 // 3021 // This is a best effort to set things up for a post-RA pass. Optimizations 3022 // like generating loads of multiple registers should ideally be done within 3023 // the scheduler pass by combining the loads during DAG postprocessing. 3024 const SUnit *CandNextClusterSU = 3025 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3026 const SUnit *TryCandNextClusterSU = 3027 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3028 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3029 Cand.SU == CandNextClusterSU, 3030 TryCand, Cand, Cluster)) 3031 return; 3032 3033 if (SameBoundary) { 3034 // Weak edges are for clustering and other constraints. 3035 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3036 getWeakLeft(Cand.SU, Cand.AtTop), 3037 TryCand, Cand, Weak)) 3038 return; 3039 } 3040 3041 // Avoid increasing the max pressure of the entire region. 3042 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3043 Cand.RPDelta.CurrentMax, 3044 TryCand, Cand, RegMax, TRI, 3045 DAG->MF)) 3046 return; 3047 3048 if (SameBoundary) { 3049 // Avoid critical resource consumption and balance the schedule. 3050 TryCand.initResourceDelta(DAG, SchedModel); 3051 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3052 TryCand, Cand, ResourceReduce)) 3053 return; 3054 if (tryGreater(TryCand.ResDelta.DemandedResources, 3055 Cand.ResDelta.DemandedResources, 3056 TryCand, Cand, ResourceDemand)) 3057 return; 3058 3059 // Avoid serializing long latency dependence chains. 3060 // For acyclic path limited loops, latency was already checked above. 3061 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3062 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3063 return; 3064 3065 // Fall through to original instruction order. 3066 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3067 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3068 TryCand.Reason = NodeOrder; 3069 } 3070 } 3071 } 3072 3073 /// Pick the best candidate from the queue. 3074 /// 3075 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3076 /// DAG building. To adjust for the current scheduling location we need to 3077 /// maintain the number of vreg uses remaining to be top-scheduled. 3078 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3079 const CandPolicy &ZonePolicy, 3080 const RegPressureTracker &RPTracker, 3081 SchedCandidate &Cand) { 3082 // getMaxPressureDelta temporarily modifies the tracker. 3083 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3084 3085 ReadyQueue &Q = Zone.Available; 3086 for (SUnit *SU : Q) { 3087 3088 SchedCandidate TryCand(ZonePolicy); 3089 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3090 // Pass SchedBoundary only when comparing nodes from the same boundary. 3091 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3092 tryCandidate(Cand, TryCand, ZoneArg); 3093 if (TryCand.Reason != NoCand) { 3094 // Initialize resource delta if needed in case future heuristics query it. 3095 if (TryCand.ResDelta == SchedResourceDelta()) 3096 TryCand.initResourceDelta(DAG, SchedModel); 3097 Cand.setBest(TryCand); 3098 LLVM_DEBUG(traceCandidate(Cand)); 3099 } 3100 } 3101 } 3102 3103 /// Pick the best candidate node from either the top or bottom queue. 3104 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3105 // Schedule as far as possible in the direction of no choice. This is most 3106 // efficient, but also provides the best heuristics for CriticalPSets. 3107 if (SUnit *SU = Bot.pickOnlyChoice()) { 3108 IsTopNode = false; 3109 tracePick(Only1, false); 3110 return SU; 3111 } 3112 if (SUnit *SU = Top.pickOnlyChoice()) { 3113 IsTopNode = true; 3114 tracePick(Only1, true); 3115 return SU; 3116 } 3117 // Set the bottom-up policy based on the state of the current bottom zone and 3118 // the instructions outside the zone, including the top zone. 3119 CandPolicy BotPolicy; 3120 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3121 // Set the top-down policy based on the state of the current top zone and 3122 // the instructions outside the zone, including the bottom zone. 3123 CandPolicy TopPolicy; 3124 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3125 3126 // See if BotCand is still valid (because we previously scheduled from Top). 3127 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3128 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3129 BotCand.Policy != BotPolicy) { 3130 BotCand.reset(CandPolicy()); 3131 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3132 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3133 } else { 3134 LLVM_DEBUG(traceCandidate(BotCand)); 3135 #ifndef NDEBUG 3136 if (VerifyScheduling) { 3137 SchedCandidate TCand; 3138 TCand.reset(CandPolicy()); 3139 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3140 assert(TCand.SU == BotCand.SU && 3141 "Last pick result should correspond to re-picking right now"); 3142 } 3143 #endif 3144 } 3145 3146 // Check if the top Q has a better candidate. 3147 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3148 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3149 TopCand.Policy != TopPolicy) { 3150 TopCand.reset(CandPolicy()); 3151 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3152 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3153 } else { 3154 LLVM_DEBUG(traceCandidate(TopCand)); 3155 #ifndef NDEBUG 3156 if (VerifyScheduling) { 3157 SchedCandidate TCand; 3158 TCand.reset(CandPolicy()); 3159 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3160 assert(TCand.SU == TopCand.SU && 3161 "Last pick result should correspond to re-picking right now"); 3162 } 3163 #endif 3164 } 3165 3166 // Pick best from BotCand and TopCand. 3167 assert(BotCand.isValid()); 3168 assert(TopCand.isValid()); 3169 SchedCandidate Cand = BotCand; 3170 TopCand.Reason = NoCand; 3171 tryCandidate(Cand, TopCand, nullptr); 3172 if (TopCand.Reason != NoCand) { 3173 Cand.setBest(TopCand); 3174 LLVM_DEBUG(traceCandidate(Cand)); 3175 } 3176 3177 IsTopNode = Cand.AtTop; 3178 tracePick(Cand); 3179 return Cand.SU; 3180 } 3181 3182 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3183 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3184 if (DAG->top() == DAG->bottom()) { 3185 assert(Top.Available.empty() && Top.Pending.empty() && 3186 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3187 return nullptr; 3188 } 3189 SUnit *SU; 3190 do { 3191 if (RegionPolicy.OnlyTopDown) { 3192 SU = Top.pickOnlyChoice(); 3193 if (!SU) { 3194 CandPolicy NoPolicy; 3195 TopCand.reset(NoPolicy); 3196 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3197 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3198 tracePick(TopCand); 3199 SU = TopCand.SU; 3200 } 3201 IsTopNode = true; 3202 } else if (RegionPolicy.OnlyBottomUp) { 3203 SU = Bot.pickOnlyChoice(); 3204 if (!SU) { 3205 CandPolicy NoPolicy; 3206 BotCand.reset(NoPolicy); 3207 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3208 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3209 tracePick(BotCand); 3210 SU = BotCand.SU; 3211 } 3212 IsTopNode = false; 3213 } else { 3214 SU = pickNodeBidirectional(IsTopNode); 3215 } 3216 } while (SU->isScheduled); 3217 3218 if (SU->isTopReady()) 3219 Top.removeReady(SU); 3220 if (SU->isBottomReady()) 3221 Bot.removeReady(SU); 3222 3223 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3224 << *SU->getInstr()); 3225 return SU; 3226 } 3227 3228 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3229 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3230 if (!isTop) 3231 ++InsertPos; 3232 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3233 3234 // Find already scheduled copies with a single physreg dependence and move 3235 // them just above the scheduled instruction. 3236 for (SDep &Dep : Deps) { 3237 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3238 continue; 3239 SUnit *DepSU = Dep.getSUnit(); 3240 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3241 continue; 3242 MachineInstr *Copy = DepSU->getInstr(); 3243 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3244 continue; 3245 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3246 DAG->dumpNode(*Dep.getSUnit())); 3247 DAG->moveInstruction(Copy, InsertPos); 3248 } 3249 } 3250 3251 /// Update the scheduler's state after scheduling a node. This is the same node 3252 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3253 /// update it's state based on the current cycle before MachineSchedStrategy 3254 /// does. 3255 /// 3256 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3257 /// them here. See comments in biasPhysReg. 3258 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3259 if (IsTopNode) { 3260 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3261 Top.bumpNode(SU); 3262 if (SU->hasPhysRegUses) 3263 reschedulePhysReg(SU, true); 3264 } else { 3265 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3266 Bot.bumpNode(SU); 3267 if (SU->hasPhysRegDefs) 3268 reschedulePhysReg(SU, false); 3269 } 3270 } 3271 3272 /// Create the standard converging machine scheduler. This will be used as the 3273 /// default scheduler if the target does not set a default. 3274 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3275 ScheduleDAGMILive *DAG = 3276 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3277 // Register DAG post-processors. 3278 // 3279 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3280 // data and pass it to later mutations. Have a single mutation that gathers 3281 // the interesting nodes in one pass. 3282 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3283 return DAG; 3284 } 3285 3286 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3287 return createGenericSchedLive(C); 3288 } 3289 3290 static MachineSchedRegistry 3291 GenericSchedRegistry("converge", "Standard converging scheduler.", 3292 createConveringSched); 3293 3294 //===----------------------------------------------------------------------===// 3295 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3296 //===----------------------------------------------------------------------===// 3297 3298 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3299 DAG = Dag; 3300 SchedModel = DAG->getSchedModel(); 3301 TRI = DAG->TRI; 3302 3303 Rem.init(DAG, SchedModel); 3304 Top.init(DAG, SchedModel, &Rem); 3305 BotRoots.clear(); 3306 3307 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3308 // or are disabled, then these HazardRecs will be disabled. 3309 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3310 if (!Top.HazardRec) { 3311 Top.HazardRec = 3312 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3313 Itin, DAG); 3314 } 3315 } 3316 3317 void PostGenericScheduler::registerRoots() { 3318 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3319 3320 // Some roots may not feed into ExitSU. Check all of them in case. 3321 for (const SUnit *SU : BotRoots) { 3322 if (SU->getDepth() > Rem.CriticalPath) 3323 Rem.CriticalPath = SU->getDepth(); 3324 } 3325 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3326 if (DumpCriticalPathLength) { 3327 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3328 } 3329 } 3330 3331 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3332 /// 3333 /// \param Cand provides the policy and current best candidate. 3334 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3335 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3336 SchedCandidate &TryCand) { 3337 // Initialize the candidate if needed. 3338 if (!Cand.isValid()) { 3339 TryCand.Reason = NodeOrder; 3340 return; 3341 } 3342 3343 // Prioritize instructions that read unbuffered resources by stall cycles. 3344 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3345 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3346 return; 3347 3348 // Keep clustered nodes together. 3349 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3350 Cand.SU == DAG->getNextClusterSucc(), 3351 TryCand, Cand, Cluster)) 3352 return; 3353 3354 // Avoid critical resource consumption and balance the schedule. 3355 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3356 TryCand, Cand, ResourceReduce)) 3357 return; 3358 if (tryGreater(TryCand.ResDelta.DemandedResources, 3359 Cand.ResDelta.DemandedResources, 3360 TryCand, Cand, ResourceDemand)) 3361 return; 3362 3363 // Avoid serializing long latency dependence chains. 3364 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3365 return; 3366 } 3367 3368 // Fall through to original instruction order. 3369 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3370 TryCand.Reason = NodeOrder; 3371 } 3372 3373 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3374 ReadyQueue &Q = Top.Available; 3375 for (SUnit *SU : Q) { 3376 SchedCandidate TryCand(Cand.Policy); 3377 TryCand.SU = SU; 3378 TryCand.AtTop = true; 3379 TryCand.initResourceDelta(DAG, SchedModel); 3380 tryCandidate(Cand, TryCand); 3381 if (TryCand.Reason != NoCand) { 3382 Cand.setBest(TryCand); 3383 LLVM_DEBUG(traceCandidate(Cand)); 3384 } 3385 } 3386 } 3387 3388 /// Pick the next node to schedule. 3389 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3390 if (DAG->top() == DAG->bottom()) { 3391 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3392 return nullptr; 3393 } 3394 SUnit *SU; 3395 do { 3396 SU = Top.pickOnlyChoice(); 3397 if (SU) { 3398 tracePick(Only1, true); 3399 } else { 3400 CandPolicy NoPolicy; 3401 SchedCandidate TopCand(NoPolicy); 3402 // Set the top-down policy based on the state of the current top zone and 3403 // the instructions outside the zone, including the bottom zone. 3404 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3405 pickNodeFromQueue(TopCand); 3406 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3407 tracePick(TopCand); 3408 SU = TopCand.SU; 3409 } 3410 } while (SU->isScheduled); 3411 3412 IsTopNode = true; 3413 Top.removeReady(SU); 3414 3415 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3416 << *SU->getInstr()); 3417 return SU; 3418 } 3419 3420 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3421 /// scheduled/remaining flags in the DAG nodes. 3422 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3423 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3424 Top.bumpNode(SU); 3425 } 3426 3427 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3428 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3429 /*RemoveKillFlags=*/true); 3430 } 3431 3432 //===----------------------------------------------------------------------===// 3433 // ILP Scheduler. Currently for experimental analysis of heuristics. 3434 //===----------------------------------------------------------------------===// 3435 3436 namespace { 3437 3438 /// Order nodes by the ILP metric. 3439 struct ILPOrder { 3440 const SchedDFSResult *DFSResult = nullptr; 3441 const BitVector *ScheduledTrees = nullptr; 3442 bool MaximizeILP; 3443 3444 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3445 3446 /// Apply a less-than relation on node priority. 3447 /// 3448 /// (Return true if A comes after B in the Q.) 3449 bool operator()(const SUnit *A, const SUnit *B) const { 3450 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3451 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3452 if (SchedTreeA != SchedTreeB) { 3453 // Unscheduled trees have lower priority. 3454 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3455 return ScheduledTrees->test(SchedTreeB); 3456 3457 // Trees with shallower connections have have lower priority. 3458 if (DFSResult->getSubtreeLevel(SchedTreeA) 3459 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3460 return DFSResult->getSubtreeLevel(SchedTreeA) 3461 < DFSResult->getSubtreeLevel(SchedTreeB); 3462 } 3463 } 3464 if (MaximizeILP) 3465 return DFSResult->getILP(A) < DFSResult->getILP(B); 3466 else 3467 return DFSResult->getILP(A) > DFSResult->getILP(B); 3468 } 3469 }; 3470 3471 /// Schedule based on the ILP metric. 3472 class ILPScheduler : public MachineSchedStrategy { 3473 ScheduleDAGMILive *DAG = nullptr; 3474 ILPOrder Cmp; 3475 3476 std::vector<SUnit*> ReadyQ; 3477 3478 public: 3479 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3480 3481 void initialize(ScheduleDAGMI *dag) override { 3482 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3483 DAG = static_cast<ScheduleDAGMILive*>(dag); 3484 DAG->computeDFSResult(); 3485 Cmp.DFSResult = DAG->getDFSResult(); 3486 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3487 ReadyQ.clear(); 3488 } 3489 3490 void registerRoots() override { 3491 // Restore the heap in ReadyQ with the updated DFS results. 3492 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3493 } 3494 3495 /// Implement MachineSchedStrategy interface. 3496 /// ----------------------------------------- 3497 3498 /// Callback to select the highest priority node from the ready Q. 3499 SUnit *pickNode(bool &IsTopNode) override { 3500 if (ReadyQ.empty()) return nullptr; 3501 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3502 SUnit *SU = ReadyQ.back(); 3503 ReadyQ.pop_back(); 3504 IsTopNode = false; 3505 LLVM_DEBUG(dbgs() << "Pick node " 3506 << "SU(" << SU->NodeNum << ") " 3507 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3508 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3509 << " @" 3510 << DAG->getDFSResult()->getSubtreeLevel( 3511 DAG->getDFSResult()->getSubtreeID(SU)) 3512 << '\n' 3513 << "Scheduling " << *SU->getInstr()); 3514 return SU; 3515 } 3516 3517 /// Scheduler callback to notify that a new subtree is scheduled. 3518 void scheduleTree(unsigned SubtreeID) override { 3519 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3520 } 3521 3522 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3523 /// DFSResults, and resort the priority Q. 3524 void schedNode(SUnit *SU, bool IsTopNode) override { 3525 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3526 } 3527 3528 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3529 3530 void releaseBottomNode(SUnit *SU) override { 3531 ReadyQ.push_back(SU); 3532 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3533 } 3534 }; 3535 3536 } // end anonymous namespace 3537 3538 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3539 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3540 } 3541 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3542 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3543 } 3544 3545 static MachineSchedRegistry ILPMaxRegistry( 3546 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3547 static MachineSchedRegistry ILPMinRegistry( 3548 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3549 3550 //===----------------------------------------------------------------------===// 3551 // Machine Instruction Shuffler for Correctness Testing 3552 //===----------------------------------------------------------------------===// 3553 3554 #ifndef NDEBUG 3555 namespace { 3556 3557 /// Apply a less-than relation on the node order, which corresponds to the 3558 /// instruction order prior to scheduling. IsReverse implements greater-than. 3559 template<bool IsReverse> 3560 struct SUnitOrder { 3561 bool operator()(SUnit *A, SUnit *B) const { 3562 if (IsReverse) 3563 return A->NodeNum > B->NodeNum; 3564 else 3565 return A->NodeNum < B->NodeNum; 3566 } 3567 }; 3568 3569 /// Reorder instructions as much as possible. 3570 class InstructionShuffler : public MachineSchedStrategy { 3571 bool IsAlternating; 3572 bool IsTopDown; 3573 3574 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3575 // gives nodes with a higher number higher priority causing the latest 3576 // instructions to be scheduled first. 3577 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3578 TopQ; 3579 3580 // When scheduling bottom-up, use greater-than as the queue priority. 3581 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3582 BottomQ; 3583 3584 public: 3585 InstructionShuffler(bool alternate, bool topdown) 3586 : IsAlternating(alternate), IsTopDown(topdown) {} 3587 3588 void initialize(ScheduleDAGMI*) override { 3589 TopQ.clear(); 3590 BottomQ.clear(); 3591 } 3592 3593 /// Implement MachineSchedStrategy interface. 3594 /// ----------------------------------------- 3595 3596 SUnit *pickNode(bool &IsTopNode) override { 3597 SUnit *SU; 3598 if (IsTopDown) { 3599 do { 3600 if (TopQ.empty()) return nullptr; 3601 SU = TopQ.top(); 3602 TopQ.pop(); 3603 } while (SU->isScheduled); 3604 IsTopNode = true; 3605 } else { 3606 do { 3607 if (BottomQ.empty()) return nullptr; 3608 SU = BottomQ.top(); 3609 BottomQ.pop(); 3610 } while (SU->isScheduled); 3611 IsTopNode = false; 3612 } 3613 if (IsAlternating) 3614 IsTopDown = !IsTopDown; 3615 return SU; 3616 } 3617 3618 void schedNode(SUnit *SU, bool IsTopNode) override {} 3619 3620 void releaseTopNode(SUnit *SU) override { 3621 TopQ.push(SU); 3622 } 3623 void releaseBottomNode(SUnit *SU) override { 3624 BottomQ.push(SU); 3625 } 3626 }; 3627 3628 } // end anonymous namespace 3629 3630 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3631 bool Alternate = !ForceTopDown && !ForceBottomUp; 3632 bool TopDown = !ForceBottomUp; 3633 assert((TopDown || !ForceTopDown) && 3634 "-misched-topdown incompatible with -misched-bottomup"); 3635 return new ScheduleDAGMILive( 3636 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3637 } 3638 3639 static MachineSchedRegistry ShufflerRegistry( 3640 "shuffle", "Shuffle machine instructions alternating directions", 3641 createInstructionShuffler); 3642 #endif // !NDEBUG 3643 3644 //===----------------------------------------------------------------------===// 3645 // GraphWriter support for ScheduleDAGMILive. 3646 //===----------------------------------------------------------------------===// 3647 3648 #ifndef NDEBUG 3649 namespace llvm { 3650 3651 template<> struct GraphTraits< 3652 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3653 3654 template<> 3655 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3656 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3657 3658 static std::string getGraphName(const ScheduleDAG *G) { 3659 return G->MF.getName(); 3660 } 3661 3662 static bool renderGraphFromBottomUp() { 3663 return true; 3664 } 3665 3666 static bool isNodeHidden(const SUnit *Node) { 3667 if (ViewMISchedCutoff == 0) 3668 return false; 3669 return (Node->Preds.size() > ViewMISchedCutoff 3670 || Node->Succs.size() > ViewMISchedCutoff); 3671 } 3672 3673 /// If you want to override the dot attributes printed for a particular 3674 /// edge, override this method. 3675 static std::string getEdgeAttributes(const SUnit *Node, 3676 SUnitIterator EI, 3677 const ScheduleDAG *Graph) { 3678 if (EI.isArtificialDep()) 3679 return "color=cyan,style=dashed"; 3680 if (EI.isCtrlDep()) 3681 return "color=blue,style=dashed"; 3682 return ""; 3683 } 3684 3685 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3686 std::string Str; 3687 raw_string_ostream SS(Str); 3688 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3689 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3690 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3691 SS << "SU:" << SU->NodeNum; 3692 if (DFS) 3693 SS << " I:" << DFS->getNumInstrs(SU); 3694 return SS.str(); 3695 } 3696 3697 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3698 return G->getGraphNodeLabel(SU); 3699 } 3700 3701 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3702 std::string Str("shape=Mrecord"); 3703 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3704 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3705 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3706 if (DFS) { 3707 Str += ",style=filled,fillcolor=\"#"; 3708 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3709 Str += '"'; 3710 } 3711 return Str; 3712 } 3713 }; 3714 3715 } // end namespace llvm 3716 #endif // NDEBUG 3717 3718 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3719 /// rendered using 'dot'. 3720 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3721 #ifndef NDEBUG 3722 ViewGraph(this, Name, false, Title); 3723 #else 3724 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3725 << "systems with Graphviz or gv!\n"; 3726 #endif // NDEBUG 3727 } 3728 3729 /// Out-of-line implementation with no arguments is handy for gdb. 3730 void ScheduleDAGMI::viewGraph() { 3731 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3732 } 3733