1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 } // end namespace llvm
86 
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89   cl::desc("Pop up a window to show MISched dags after they are processed"));
90 
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
95 
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
98 
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100   cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102                                         cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104                               cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
109 
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113   cl::desc("Limit ready list to N instructions"), cl::init(256));
114 
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116   cl::desc("Enable register pressure scheduling."), cl::init(true));
117 
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
120 
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122                                         cl::desc("Enable memop clustering."),
123                                         cl::init(true));
124 
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126   cl::desc("Verify machine instrs before and after machine scheduling"));
127 
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
130 
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
133 
134 void ScheduleDAGMutation::anchor() {}
135 
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
139 
140 MachineSchedContext::MachineSchedContext() {
141   RegClassInfo = new RegisterClassInfo();
142 }
143 
144 MachineSchedContext::~MachineSchedContext() {
145   delete RegClassInfo;
146 }
147 
148 namespace {
149 
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152                              public MachineFunctionPass {
153 public:
154   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
155 
156   void print(raw_ostream &O, const Module* = nullptr) const override;
157 
158 protected:
159   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
160 };
161 
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165   MachineScheduler();
166 
167   void getAnalysisUsage(AnalysisUsage &AU) const override;
168 
169   bool runOnMachineFunction(MachineFunction&) override;
170 
171   static char ID; // Class identification, replacement for typeinfo
172 
173 protected:
174   ScheduleDAGInstrs *createMachineScheduler();
175 };
176 
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180   PostMachineScheduler();
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override;
183 
184   bool runOnMachineFunction(MachineFunction&) override;
185 
186   static char ID; // Class identification, replacement for typeinfo
187 
188 protected:
189   ScheduleDAGInstrs *createPostMachineScheduler();
190 };
191 
192 } // end anonymous namespace
193 
194 char MachineScheduler::ID = 0;
195 
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
197 
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199                       "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205                     "Machine Instruction Scheduler", false, false)
206 
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
209 }
210 
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212   AU.setPreservesCFG();
213   AU.addRequiredID(MachineDominatorsID);
214   AU.addRequired<MachineLoopInfo>();
215   AU.addRequired<AAResultsWrapperPass>();
216   AU.addRequired<TargetPassConfig>();
217   AU.addRequired<SlotIndexes>();
218   AU.addPreserved<SlotIndexes>();
219   AU.addRequired<LiveIntervals>();
220   AU.addPreserved<LiveIntervals>();
221   MachineFunctionPass::getAnalysisUsage(AU);
222 }
223 
224 char PostMachineScheduler::ID = 0;
225 
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
227 
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229                 "PostRA Machine Instruction Scheduler", false, false)
230 
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
233 }
234 
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236   AU.setPreservesCFG();
237   AU.addRequiredID(MachineDominatorsID);
238   AU.addRequired<MachineLoopInfo>();
239   AU.addRequired<TargetPassConfig>();
240   MachineFunctionPass::getAnalysisUsage(AU);
241 }
242 
243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
244     MachineSchedRegistry::Registry;
245 
246 /// A dummy default scheduler factory indicates whether the scheduler
247 /// is overridden on the command line.
248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
249   return nullptr;
250 }
251 
252 /// MachineSchedOpt allows command line selection of the scheduler.
253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
254                RegisterPassParser<MachineSchedRegistry>>
255 MachineSchedOpt("misched",
256                 cl::init(&useDefaultMachineSched), cl::Hidden,
257                 cl::desc("Machine instruction scheduler to use"));
258 
259 static MachineSchedRegistry
260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
261                      useDefaultMachineSched);
262 
263 static cl::opt<bool> EnableMachineSched(
264     "enable-misched",
265     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
266     cl::Hidden);
267 
268 static cl::opt<bool> EnablePostRAMachineSched(
269     "enable-post-misched",
270     cl::desc("Enable the post-ra machine instruction scheduling pass."),
271     cl::init(true), cl::Hidden);
272 
273 /// Decrement this iterator until reaching the top or a non-debug instr.
274 static MachineBasicBlock::const_iterator
275 priorNonDebug(MachineBasicBlock::const_iterator I,
276               MachineBasicBlock::const_iterator Beg) {
277   assert(I != Beg && "reached the top of the region, cannot decrement");
278   while (--I != Beg) {
279     if (!I->isDebugInstr())
280       break;
281   }
282   return I;
283 }
284 
285 /// Non-const version.
286 static MachineBasicBlock::iterator
287 priorNonDebug(MachineBasicBlock::iterator I,
288               MachineBasicBlock::const_iterator Beg) {
289   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
290       .getNonConstIterator();
291 }
292 
293 /// If this iterator is a debug value, increment until reaching the End or a
294 /// non-debug instruction.
295 static MachineBasicBlock::const_iterator
296 nextIfDebug(MachineBasicBlock::const_iterator I,
297             MachineBasicBlock::const_iterator End) {
298   for(; I != End; ++I) {
299     if (!I->isDebugInstr())
300       break;
301   }
302   return I;
303 }
304 
305 /// Non-const version.
306 static MachineBasicBlock::iterator
307 nextIfDebug(MachineBasicBlock::iterator I,
308             MachineBasicBlock::const_iterator End) {
309   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
310       .getNonConstIterator();
311 }
312 
313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
315   // Select the scheduler, or set the default.
316   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
317   if (Ctor != useDefaultMachineSched)
318     return Ctor(this);
319 
320   // Get the default scheduler set by the target for this function.
321   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
322   if (Scheduler)
323     return Scheduler;
324 
325   // Default to GenericScheduler.
326   return createGenericSchedLive(this);
327 }
328 
329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
330 /// the caller. We don't have a command line option to override the postRA
331 /// scheduler. The Target must configure it.
332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
333   // Get the postRA scheduler set by the target for this function.
334   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
335   if (Scheduler)
336     return Scheduler;
337 
338   // Default to GenericScheduler.
339   return createGenericSchedPostRA(this);
340 }
341 
342 /// Top-level MachineScheduler pass driver.
343 ///
344 /// Visit blocks in function order. Divide each block into scheduling regions
345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
346 /// consistent with the DAG builder, which traverses the interior of the
347 /// scheduling regions bottom-up.
348 ///
349 /// This design avoids exposing scheduling boundaries to the DAG builder,
350 /// simplifying the DAG builder's support for "special" target instructions.
351 /// At the same time the design allows target schedulers to operate across
352 /// scheduling boundaries, for example to bundle the boundary instructions
353 /// without reordering them. This creates complexity, because the target
354 /// scheduler must update the RegionBegin and RegionEnd positions cached by
355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
356 /// design would be to split blocks at scheduling boundaries, but LLVM has a
357 /// general bias against block splitting purely for implementation simplicity.
358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
359   if (skipFunction(mf.getFunction()))
360     return false;
361 
362   if (EnableMachineSched.getNumOccurrences()) {
363     if (!EnableMachineSched)
364       return false;
365   } else if (!mf.getSubtarget().enableMachineScheduler())
366     return false;
367 
368   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
369 
370   // Initialize the context of the pass.
371   MF = &mf;
372   MLI = &getAnalysis<MachineLoopInfo>();
373   MDT = &getAnalysis<MachineDominatorTree>();
374   PassConfig = &getAnalysis<TargetPassConfig>();
375   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
376 
377   LIS = &getAnalysis<LiveIntervals>();
378 
379   if (VerifyScheduling) {
380     LLVM_DEBUG(LIS->dump());
381     MF->verify(this, "Before machine scheduling.");
382   }
383   RegClassInfo->runOnMachineFunction(*MF);
384 
385   // Instantiate the selected scheduler for this target, function, and
386   // optimization level.
387   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
388   scheduleRegions(*Scheduler, false);
389 
390   LLVM_DEBUG(LIS->dump());
391   if (VerifyScheduling)
392     MF->verify(this, "After machine scheduling.");
393   return true;
394 }
395 
396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
397   if (skipFunction(mf.getFunction()))
398     return false;
399 
400   if (EnablePostRAMachineSched.getNumOccurrences()) {
401     if (!EnablePostRAMachineSched)
402       return false;
403   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
404     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
405     return false;
406   }
407   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
408 
409   // Initialize the context of the pass.
410   MF = &mf;
411   MLI = &getAnalysis<MachineLoopInfo>();
412   PassConfig = &getAnalysis<TargetPassConfig>();
413 
414   if (VerifyScheduling)
415     MF->verify(this, "Before post machine scheduling.");
416 
417   // Instantiate the selected scheduler for this target, function, and
418   // optimization level.
419   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
420   scheduleRegions(*Scheduler, true);
421 
422   if (VerifyScheduling)
423     MF->verify(this, "After post machine scheduling.");
424   return true;
425 }
426 
427 /// Return true of the given instruction should not be included in a scheduling
428 /// region.
429 ///
430 /// MachineScheduler does not currently support scheduling across calls. To
431 /// handle calls, the DAG builder needs to be modified to create register
432 /// anti/output dependencies on the registers clobbered by the call's regmask
433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
435 /// the boundary, but there would be no benefit to postRA scheduling across
436 /// calls this late anyway.
437 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
438                             MachineBasicBlock *MBB,
439                             MachineFunction *MF,
440                             const TargetInstrInfo *TII) {
441   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
442 }
443 
444 /// A region of an MBB for scheduling.
445 namespace {
446 struct SchedRegion {
447   /// RegionBegin is the first instruction in the scheduling region, and
448   /// RegionEnd is either MBB->end() or the scheduling boundary after the
449   /// last instruction in the scheduling region. These iterators cannot refer
450   /// to instructions outside of the identified scheduling region because
451   /// those may be reordered before scheduling this region.
452   MachineBasicBlock::iterator RegionBegin;
453   MachineBasicBlock::iterator RegionEnd;
454   unsigned NumRegionInstrs;
455 
456   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
457               unsigned N) :
458     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
459 };
460 } // end anonymous namespace
461 
462 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
463 
464 static void
465 getSchedRegions(MachineBasicBlock *MBB,
466                 MBBRegionsVector &Regions,
467                 bool RegionsTopDown) {
468   MachineFunction *MF = MBB->getParent();
469   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
470 
471   MachineBasicBlock::iterator I = nullptr;
472   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
473       RegionEnd != MBB->begin(); RegionEnd = I) {
474 
475     // Avoid decrementing RegionEnd for blocks with no terminator.
476     if (RegionEnd != MBB->end() ||
477         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
478       --RegionEnd;
479     }
480 
481     // The next region starts above the previous region. Look backward in the
482     // instruction stream until we find the nearest boundary.
483     unsigned NumRegionInstrs = 0;
484     I = RegionEnd;
485     for (;I != MBB->begin(); --I) {
486       MachineInstr &MI = *std::prev(I);
487       if (isSchedBoundary(&MI, &*MBB, MF, TII))
488         break;
489       if (!MI.isDebugInstr()) {
490         // MBB::size() uses instr_iterator to count. Here we need a bundle to
491         // count as a single instruction.
492         ++NumRegionInstrs;
493       }
494     }
495 
496     // It's possible we found a scheduling region that only has debug
497     // instructions. Don't bother scheduling these.
498     if (NumRegionInstrs != 0)
499       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
500   }
501 
502   if (RegionsTopDown)
503     std::reverse(Regions.begin(), Regions.end());
504 }
505 
506 /// Main driver for both MachineScheduler and PostMachineScheduler.
507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
508                                            bool FixKillFlags) {
509   // Visit all machine basic blocks.
510   //
511   // TODO: Visit blocks in global postorder or postorder within the bottom-up
512   // loop tree. Then we can optionally compute global RegPressure.
513   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
514        MBB != MBBEnd; ++MBB) {
515 
516     Scheduler.startBlock(&*MBB);
517 
518 #ifndef NDEBUG
519     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
520       continue;
521     if (SchedOnlyBlock.getNumOccurrences()
522         && (int)SchedOnlyBlock != MBB->getNumber())
523       continue;
524 #endif
525 
526     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
527     // points to the scheduling boundary at the bottom of the region. The DAG
528     // does not include RegionEnd, but the region does (i.e. the next
529     // RegionEnd is above the previous RegionBegin). If the current block has
530     // no terminator then RegionEnd == MBB->end() for the bottom region.
531     //
532     // All the regions of MBB are first found and stored in MBBRegions, which
533     // will be processed (MBB) top-down if initialized with true.
534     //
535     // The Scheduler may insert instructions during either schedule() or
536     // exitRegion(), even for empty regions. So the local iterators 'I' and
537     // 'RegionEnd' are invalid across these calls. Instructions must not be
538     // added to other regions than the current one without updating MBBRegions.
539 
540     MBBRegionsVector MBBRegions;
541     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
542     for (MBBRegionsVector::iterator R = MBBRegions.begin();
543          R != MBBRegions.end(); ++R) {
544       MachineBasicBlock::iterator I = R->RegionBegin;
545       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
546       unsigned NumRegionInstrs = R->NumRegionInstrs;
547 
548       // Notify the scheduler of the region, even if we may skip scheduling
549       // it. Perhaps it still needs to be bundled.
550       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
551 
552       // Skip empty scheduling regions (0 or 1 schedulable instructions).
553       if (I == RegionEnd || I == std::prev(RegionEnd)) {
554         // Close the current region. Bundle the terminator if needed.
555         // This invalidates 'RegionEnd' and 'I'.
556         Scheduler.exitRegion();
557         continue;
558       }
559       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
560       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
561                         << " " << MBB->getName() << "\n  From: " << *I
562                         << "    To: ";
563                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
564                  else dbgs() << "End";
565                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
566       if (DumpCriticalPathLength) {
567         errs() << MF->getName();
568         errs() << ":%bb. " << MBB->getNumber();
569         errs() << " " << MBB->getName() << " \n";
570       }
571 
572       // Schedule a region: possibly reorder instructions.
573       // This invalidates the original region iterators.
574       Scheduler.schedule();
575 
576       // Close the current region.
577       Scheduler.exitRegion();
578     }
579     Scheduler.finishBlock();
580     // FIXME: Ideally, no further passes should rely on kill flags. However,
581     // thumb2 size reduction is currently an exception, so the PostMIScheduler
582     // needs to do this.
583     if (FixKillFlags)
584       Scheduler.fixupKills(*MBB);
585   }
586   Scheduler.finalizeSchedule();
587 }
588 
589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
590   // unimplemented
591 }
592 
593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
594 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
595   dbgs() << "Queue " << Name << ": ";
596   for (const SUnit *SU : Queue)
597     dbgs() << SU->NodeNum << " ";
598   dbgs() << "\n";
599 }
600 #endif
601 
602 //===----------------------------------------------------------------------===//
603 // ScheduleDAGMI - Basic machine instruction scheduling. This is
604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
605 // virtual registers.
606 // ===----------------------------------------------------------------------===/
607 
608 // Provide a vtable anchor.
609 ScheduleDAGMI::~ScheduleDAGMI() = default;
610 
611 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
612   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
613 }
614 
615 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
616   if (SuccSU != &ExitSU) {
617     // Do not use WillCreateCycle, it assumes SD scheduling.
618     // If Pred is reachable from Succ, then the edge creates a cycle.
619     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
620       return false;
621     Topo.AddPred(SuccSU, PredDep.getSUnit());
622   }
623   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
624   // Return true regardless of whether a new edge needed to be inserted.
625   return true;
626 }
627 
628 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
629 /// NumPredsLeft reaches zero, release the successor node.
630 ///
631 /// FIXME: Adjust SuccSU height based on MinLatency.
632 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
633   SUnit *SuccSU = SuccEdge->getSUnit();
634 
635   if (SuccEdge->isWeak()) {
636     --SuccSU->WeakPredsLeft;
637     if (SuccEdge->isCluster())
638       NextClusterSucc = SuccSU;
639     return;
640   }
641 #ifndef NDEBUG
642   if (SuccSU->NumPredsLeft == 0) {
643     dbgs() << "*** Scheduling failed! ***\n";
644     dumpNode(*SuccSU);
645     dbgs() << " has been released too many times!\n";
646     llvm_unreachable(nullptr);
647   }
648 #endif
649   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
650   // CurrCycle may have advanced since then.
651   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
652     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
653 
654   --SuccSU->NumPredsLeft;
655   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
656     SchedImpl->releaseTopNode(SuccSU);
657 }
658 
659 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
660 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
661   for (SDep &Succ : SU->Succs)
662     releaseSucc(SU, &Succ);
663 }
664 
665 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
666 /// NumSuccsLeft reaches zero, release the predecessor node.
667 ///
668 /// FIXME: Adjust PredSU height based on MinLatency.
669 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
670   SUnit *PredSU = PredEdge->getSUnit();
671 
672   if (PredEdge->isWeak()) {
673     --PredSU->WeakSuccsLeft;
674     if (PredEdge->isCluster())
675       NextClusterPred = PredSU;
676     return;
677   }
678 #ifndef NDEBUG
679   if (PredSU->NumSuccsLeft == 0) {
680     dbgs() << "*** Scheduling failed! ***\n";
681     dumpNode(*PredSU);
682     dbgs() << " has been released too many times!\n";
683     llvm_unreachable(nullptr);
684   }
685 #endif
686   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
687   // CurrCycle may have advanced since then.
688   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
689     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
690 
691   --PredSU->NumSuccsLeft;
692   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
693     SchedImpl->releaseBottomNode(PredSU);
694 }
695 
696 /// releasePredecessors - Call releasePred on each of SU's predecessors.
697 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
698   for (SDep &Pred : SU->Preds)
699     releasePred(SU, &Pred);
700 }
701 
702 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
703   ScheduleDAGInstrs::startBlock(bb);
704   SchedImpl->enterMBB(bb);
705 }
706 
707 void ScheduleDAGMI::finishBlock() {
708   SchedImpl->leaveMBB();
709   ScheduleDAGInstrs::finishBlock();
710 }
711 
712 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
713 /// crossing a scheduling boundary. [begin, end) includes all instructions in
714 /// the region, including the boundary itself and single-instruction regions
715 /// that don't get scheduled.
716 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
717                                      MachineBasicBlock::iterator begin,
718                                      MachineBasicBlock::iterator end,
719                                      unsigned regioninstrs)
720 {
721   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
722 
723   SchedImpl->initPolicy(begin, end, regioninstrs);
724 }
725 
726 /// This is normally called from the main scheduler loop but may also be invoked
727 /// by the scheduling strategy to perform additional code motion.
728 void ScheduleDAGMI::moveInstruction(
729   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
730   // Advance RegionBegin if the first instruction moves down.
731   if (&*RegionBegin == MI)
732     ++RegionBegin;
733 
734   // Update the instruction stream.
735   BB->splice(InsertPos, BB, MI);
736 
737   // Update LiveIntervals
738   if (LIS)
739     LIS->handleMove(*MI, /*UpdateFlags=*/true);
740 
741   // Recede RegionBegin if an instruction moves above the first.
742   if (RegionBegin == InsertPos)
743     RegionBegin = MI;
744 }
745 
746 bool ScheduleDAGMI::checkSchedLimit() {
747 #ifndef NDEBUG
748   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
749     CurrentTop = CurrentBottom;
750     return false;
751   }
752   ++NumInstrsScheduled;
753 #endif
754   return true;
755 }
756 
757 /// Per-region scheduling driver, called back from
758 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
759 /// does not consider liveness or register pressure. It is useful for PostRA
760 /// scheduling and potentially other custom schedulers.
761 void ScheduleDAGMI::schedule() {
762   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
763   LLVM_DEBUG(SchedImpl->dumpPolicy());
764 
765   // Build the DAG.
766   buildSchedGraph(AA);
767 
768   Topo.InitDAGTopologicalSorting();
769 
770   postprocessDAG();
771 
772   SmallVector<SUnit*, 8> TopRoots, BotRoots;
773   findRootsAndBiasEdges(TopRoots, BotRoots);
774 
775   LLVM_DEBUG(dump());
776   if (PrintDAGs) dump();
777   if (ViewMISchedDAGs) viewGraph();
778 
779   // Initialize the strategy before modifying the DAG.
780   // This may initialize a DFSResult to be used for queue priority.
781   SchedImpl->initialize(this);
782 
783   // Initialize ready queues now that the DAG and priority data are finalized.
784   initQueues(TopRoots, BotRoots);
785 
786   bool IsTopNode = false;
787   while (true) {
788     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
789     SUnit *SU = SchedImpl->pickNode(IsTopNode);
790     if (!SU) break;
791 
792     assert(!SU->isScheduled && "Node already scheduled");
793     if (!checkSchedLimit())
794       break;
795 
796     MachineInstr *MI = SU->getInstr();
797     if (IsTopNode) {
798       assert(SU->isTopReady() && "node still has unscheduled dependencies");
799       if (&*CurrentTop == MI)
800         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
801       else
802         moveInstruction(MI, CurrentTop);
803     } else {
804       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
805       MachineBasicBlock::iterator priorII =
806         priorNonDebug(CurrentBottom, CurrentTop);
807       if (&*priorII == MI)
808         CurrentBottom = priorII;
809       else {
810         if (&*CurrentTop == MI)
811           CurrentTop = nextIfDebug(++CurrentTop, priorII);
812         moveInstruction(MI, CurrentBottom);
813         CurrentBottom = MI;
814       }
815     }
816     // Notify the scheduling strategy before updating the DAG.
817     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
818     // runs, it can then use the accurate ReadyCycle time to determine whether
819     // newly released nodes can move to the readyQ.
820     SchedImpl->schedNode(SU, IsTopNode);
821 
822     updateQueues(SU, IsTopNode);
823   }
824   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
825 
826   placeDebugValues();
827 
828   LLVM_DEBUG({
829     dbgs() << "*** Final schedule for "
830            << printMBBReference(*begin()->getParent()) << " ***\n";
831     dumpSchedule();
832     dbgs() << '\n';
833   });
834 }
835 
836 /// Apply each ScheduleDAGMutation step in order.
837 void ScheduleDAGMI::postprocessDAG() {
838   for (auto &m : Mutations)
839     m->apply(this);
840 }
841 
842 void ScheduleDAGMI::
843 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
844                       SmallVectorImpl<SUnit*> &BotRoots) {
845   for (SUnit &SU : SUnits) {
846     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
847 
848     // Order predecessors so DFSResult follows the critical path.
849     SU.biasCriticalPath();
850 
851     // A SUnit is ready to top schedule if it has no predecessors.
852     if (!SU.NumPredsLeft)
853       TopRoots.push_back(&SU);
854     // A SUnit is ready to bottom schedule if it has no successors.
855     if (!SU.NumSuccsLeft)
856       BotRoots.push_back(&SU);
857   }
858   ExitSU.biasCriticalPath();
859 }
860 
861 /// Identify DAG roots and setup scheduler queues.
862 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
863                                ArrayRef<SUnit*> BotRoots) {
864   NextClusterSucc = nullptr;
865   NextClusterPred = nullptr;
866 
867   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
868   //
869   // Nodes with unreleased weak edges can still be roots.
870   // Release top roots in forward order.
871   for (SUnit *SU : TopRoots)
872     SchedImpl->releaseTopNode(SU);
873 
874   // Release bottom roots in reverse order so the higher priority nodes appear
875   // first. This is more natural and slightly more efficient.
876   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
877          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
878     SchedImpl->releaseBottomNode(*I);
879   }
880 
881   releaseSuccessors(&EntrySU);
882   releasePredecessors(&ExitSU);
883 
884   SchedImpl->registerRoots();
885 
886   // Advance past initial DebugValues.
887   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
888   CurrentBottom = RegionEnd;
889 }
890 
891 /// Update scheduler queues after scheduling an instruction.
892 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
893   // Release dependent instructions for scheduling.
894   if (IsTopNode)
895     releaseSuccessors(SU);
896   else
897     releasePredecessors(SU);
898 
899   SU->isScheduled = true;
900 }
901 
902 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
903 void ScheduleDAGMI::placeDebugValues() {
904   // If first instruction was a DBG_VALUE then put it back.
905   if (FirstDbgValue) {
906     BB->splice(RegionBegin, BB, FirstDbgValue);
907     RegionBegin = FirstDbgValue;
908   }
909 
910   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
911          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
912     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
913     MachineInstr *DbgValue = P.first;
914     MachineBasicBlock::iterator OrigPrevMI = P.second;
915     if (&*RegionBegin == DbgValue)
916       ++RegionBegin;
917     BB->splice(++OrigPrevMI, BB, DbgValue);
918     if (OrigPrevMI == std::prev(RegionEnd))
919       RegionEnd = DbgValue;
920   }
921   DbgValues.clear();
922   FirstDbgValue = nullptr;
923 }
924 
925 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
926 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
927   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
928     if (SUnit *SU = getSUnit(&(*MI)))
929       dumpNode(*SU);
930     else
931       dbgs() << "Missing SUnit\n";
932   }
933 }
934 #endif
935 
936 //===----------------------------------------------------------------------===//
937 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
938 // preservation.
939 //===----------------------------------------------------------------------===//
940 
941 ScheduleDAGMILive::~ScheduleDAGMILive() {
942   delete DFSResult;
943 }
944 
945 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
946   const MachineInstr &MI = *SU.getInstr();
947   for (const MachineOperand &MO : MI.operands()) {
948     if (!MO.isReg())
949       continue;
950     if (!MO.readsReg())
951       continue;
952     if (TrackLaneMasks && !MO.isUse())
953       continue;
954 
955     unsigned Reg = MO.getReg();
956     if (!TargetRegisterInfo::isVirtualRegister(Reg))
957       continue;
958 
959     // Ignore re-defs.
960     if (TrackLaneMasks) {
961       bool FoundDef = false;
962       for (const MachineOperand &MO2 : MI.operands()) {
963         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
964           FoundDef = true;
965           break;
966         }
967       }
968       if (FoundDef)
969         continue;
970     }
971 
972     // Record this local VReg use.
973     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
974     for (; UI != VRegUses.end(); ++UI) {
975       if (UI->SU == &SU)
976         break;
977     }
978     if (UI == VRegUses.end())
979       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
980   }
981 }
982 
983 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
984 /// crossing a scheduling boundary. [begin, end) includes all instructions in
985 /// the region, including the boundary itself and single-instruction regions
986 /// that don't get scheduled.
987 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
988                                 MachineBasicBlock::iterator begin,
989                                 MachineBasicBlock::iterator end,
990                                 unsigned regioninstrs)
991 {
992   // ScheduleDAGMI initializes SchedImpl's per-region policy.
993   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
994 
995   // For convenience remember the end of the liveness region.
996   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
997 
998   SUPressureDiffs.clear();
999 
1000   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1001   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1002 
1003   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1004          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1005 }
1006 
1007 // Setup the register pressure trackers for the top scheduled top and bottom
1008 // scheduled regions.
1009 void ScheduleDAGMILive::initRegPressure() {
1010   VRegUses.clear();
1011   VRegUses.setUniverse(MRI.getNumVirtRegs());
1012   for (SUnit &SU : SUnits)
1013     collectVRegUses(SU);
1014 
1015   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1016                     ShouldTrackLaneMasks, false);
1017   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1018                     ShouldTrackLaneMasks, false);
1019 
1020   // Close the RPTracker to finalize live ins.
1021   RPTracker.closeRegion();
1022 
1023   LLVM_DEBUG(RPTracker.dump());
1024 
1025   // Initialize the live ins and live outs.
1026   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1027   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1028 
1029   // Close one end of the tracker so we can call
1030   // getMaxUpward/DownwardPressureDelta before advancing across any
1031   // instructions. This converts currently live regs into live ins/outs.
1032   TopRPTracker.closeTop();
1033   BotRPTracker.closeBottom();
1034 
1035   BotRPTracker.initLiveThru(RPTracker);
1036   if (!BotRPTracker.getLiveThru().empty()) {
1037     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1038     LLVM_DEBUG(dbgs() << "Live Thru: ";
1039                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1040   };
1041 
1042   // For each live out vreg reduce the pressure change associated with other
1043   // uses of the same vreg below the live-out reaching def.
1044   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1045 
1046   // Account for liveness generated by the region boundary.
1047   if (LiveRegionEnd != RegionEnd) {
1048     SmallVector<RegisterMaskPair, 8> LiveUses;
1049     BotRPTracker.recede(&LiveUses);
1050     updatePressureDiffs(LiveUses);
1051   }
1052 
1053   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1054              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1055              dbgs() << "Bottom Pressure:\n";
1056              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1057 
1058   assert((BotRPTracker.getPos() == RegionEnd ||
1059           (RegionEnd->isDebugInstr() &&
1060            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1061          "Can't find the region bottom");
1062 
1063   // Cache the list of excess pressure sets in this region. This will also track
1064   // the max pressure in the scheduled code for these sets.
1065   RegionCriticalPSets.clear();
1066   const std::vector<unsigned> &RegionPressure =
1067     RPTracker.getPressure().MaxSetPressure;
1068   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1069     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1070     if (RegionPressure[i] > Limit) {
1071       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1072                         << " Actual " << RegionPressure[i] << "\n");
1073       RegionCriticalPSets.push_back(PressureChange(i));
1074     }
1075   }
1076   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1077              for (const PressureChange &RCPS
1078                   : RegionCriticalPSets) dbgs()
1079              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1080              dbgs() << "\n");
1081 }
1082 
1083 void ScheduleDAGMILive::
1084 updateScheduledPressure(const SUnit *SU,
1085                         const std::vector<unsigned> &NewMaxPressure) {
1086   const PressureDiff &PDiff = getPressureDiff(SU);
1087   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1088   for (const PressureChange &PC : PDiff) {
1089     if (!PC.isValid())
1090       break;
1091     unsigned ID = PC.getPSet();
1092     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1093       ++CritIdx;
1094     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1095       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1096           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1097         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1098     }
1099     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1100     if (NewMaxPressure[ID] >= Limit - 2) {
1101       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1102                         << NewMaxPressure[ID]
1103                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1104                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1105                         << " livethru)\n");
1106     }
1107   }
1108 }
1109 
1110 /// Update the PressureDiff array for liveness after scheduling this
1111 /// instruction.
1112 void ScheduleDAGMILive::updatePressureDiffs(
1113     ArrayRef<RegisterMaskPair> LiveUses) {
1114   for (const RegisterMaskPair &P : LiveUses) {
1115     unsigned Reg = P.RegUnit;
1116     /// FIXME: Currently assuming single-use physregs.
1117     if (!TRI->isVirtualRegister(Reg))
1118       continue;
1119 
1120     if (ShouldTrackLaneMasks) {
1121       // If the register has just become live then other uses won't change
1122       // this fact anymore => decrement pressure.
1123       // If the register has just become dead then other uses make it come
1124       // back to life => increment pressure.
1125       bool Decrement = P.LaneMask.any();
1126 
1127       for (const VReg2SUnit &V2SU
1128            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1129         SUnit &SU = *V2SU.SU;
1130         if (SU.isScheduled || &SU == &ExitSU)
1131           continue;
1132 
1133         PressureDiff &PDiff = getPressureDiff(&SU);
1134         PDiff.addPressureChange(Reg, Decrement, &MRI);
1135         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1136                           << printReg(Reg, TRI) << ':'
1137                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1138                    dbgs() << "              to "; PDiff.dump(*TRI););
1139       }
1140     } else {
1141       assert(P.LaneMask.any());
1142       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1143       // This may be called before CurrentBottom has been initialized. However,
1144       // BotRPTracker must have a valid position. We want the value live into the
1145       // instruction or live out of the block, so ask for the previous
1146       // instruction's live-out.
1147       const LiveInterval &LI = LIS->getInterval(Reg);
1148       VNInfo *VNI;
1149       MachineBasicBlock::const_iterator I =
1150         nextIfDebug(BotRPTracker.getPos(), BB->end());
1151       if (I == BB->end())
1152         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1153       else {
1154         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1155         VNI = LRQ.valueIn();
1156       }
1157       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1158       assert(VNI && "No live value at use.");
1159       for (const VReg2SUnit &V2SU
1160            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1161         SUnit *SU = V2SU.SU;
1162         // If this use comes before the reaching def, it cannot be a last use,
1163         // so decrease its pressure change.
1164         if (!SU->isScheduled && SU != &ExitSU) {
1165           LiveQueryResult LRQ =
1166               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1167           if (LRQ.valueIn() == VNI) {
1168             PressureDiff &PDiff = getPressureDiff(SU);
1169             PDiff.addPressureChange(Reg, true, &MRI);
1170             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1171                               << *SU->getInstr();
1172                        dbgs() << "              to "; PDiff.dump(*TRI););
1173           }
1174         }
1175       }
1176     }
1177   }
1178 }
1179 
1180 void ScheduleDAGMILive::dump() const {
1181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1182   if (EntrySU.getInstr() != nullptr)
1183     dumpNodeAll(EntrySU);
1184   for (const SUnit &SU : SUnits) {
1185     dumpNodeAll(SU);
1186     if (ShouldTrackPressure) {
1187       dbgs() << "  Pressure Diff      : ";
1188       getPressureDiff(&SU).dump(*TRI);
1189     }
1190     dbgs() << "  Single Issue       : ";
1191     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1192         SchedModel.mustEndGroup(SU.getInstr()))
1193       dbgs() << "true;";
1194     else
1195       dbgs() << "false;";
1196     dbgs() << '\n';
1197   }
1198   if (ExitSU.getInstr() != nullptr)
1199     dumpNodeAll(ExitSU);
1200 #endif
1201 }
1202 
1203 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1204 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1205 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1206 ///
1207 /// This is a skeletal driver, with all the functionality pushed into helpers,
1208 /// so that it can be easily extended by experimental schedulers. Generally,
1209 /// implementing MachineSchedStrategy should be sufficient to implement a new
1210 /// scheduling algorithm. However, if a scheduler further subclasses
1211 /// ScheduleDAGMILive then it will want to override this virtual method in order
1212 /// to update any specialized state.
1213 void ScheduleDAGMILive::schedule() {
1214   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1215   LLVM_DEBUG(SchedImpl->dumpPolicy());
1216   buildDAGWithRegPressure();
1217 
1218   Topo.InitDAGTopologicalSorting();
1219 
1220   postprocessDAG();
1221 
1222   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1223   findRootsAndBiasEdges(TopRoots, BotRoots);
1224 
1225   // Initialize the strategy before modifying the DAG.
1226   // This may initialize a DFSResult to be used for queue priority.
1227   SchedImpl->initialize(this);
1228 
1229   LLVM_DEBUG(dump());
1230   if (PrintDAGs) dump();
1231   if (ViewMISchedDAGs) viewGraph();
1232 
1233   // Initialize ready queues now that the DAG and priority data are finalized.
1234   initQueues(TopRoots, BotRoots);
1235 
1236   bool IsTopNode = false;
1237   while (true) {
1238     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1239     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1240     if (!SU) break;
1241 
1242     assert(!SU->isScheduled && "Node already scheduled");
1243     if (!checkSchedLimit())
1244       break;
1245 
1246     scheduleMI(SU, IsTopNode);
1247 
1248     if (DFSResult) {
1249       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1250       if (!ScheduledTrees.test(SubtreeID)) {
1251         ScheduledTrees.set(SubtreeID);
1252         DFSResult->scheduleTree(SubtreeID);
1253         SchedImpl->scheduleTree(SubtreeID);
1254       }
1255     }
1256 
1257     // Notify the scheduling strategy after updating the DAG.
1258     SchedImpl->schedNode(SU, IsTopNode);
1259 
1260     updateQueues(SU, IsTopNode);
1261   }
1262   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1263 
1264   placeDebugValues();
1265 
1266   LLVM_DEBUG({
1267     dbgs() << "*** Final schedule for "
1268            << printMBBReference(*begin()->getParent()) << " ***\n";
1269     dumpSchedule();
1270     dbgs() << '\n';
1271   });
1272 }
1273 
1274 /// Build the DAG and setup three register pressure trackers.
1275 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1276   if (!ShouldTrackPressure) {
1277     RPTracker.reset();
1278     RegionCriticalPSets.clear();
1279     buildSchedGraph(AA);
1280     return;
1281   }
1282 
1283   // Initialize the register pressure tracker used by buildSchedGraph.
1284   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1285                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1286 
1287   // Account for liveness generate by the region boundary.
1288   if (LiveRegionEnd != RegionEnd)
1289     RPTracker.recede();
1290 
1291   // Build the DAG, and compute current register pressure.
1292   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1293 
1294   // Initialize top/bottom trackers after computing region pressure.
1295   initRegPressure();
1296 }
1297 
1298 void ScheduleDAGMILive::computeDFSResult() {
1299   if (!DFSResult)
1300     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1301   DFSResult->clear();
1302   ScheduledTrees.clear();
1303   DFSResult->resize(SUnits.size());
1304   DFSResult->compute(SUnits);
1305   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1306 }
1307 
1308 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1309 /// only provides the critical path for single block loops. To handle loops that
1310 /// span blocks, we could use the vreg path latencies provided by
1311 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1312 /// available for use in the scheduler.
1313 ///
1314 /// The cyclic path estimation identifies a def-use pair that crosses the back
1315 /// edge and considers the depth and height of the nodes. For example, consider
1316 /// the following instruction sequence where each instruction has unit latency
1317 /// and defines an epomymous virtual register:
1318 ///
1319 /// a->b(a,c)->c(b)->d(c)->exit
1320 ///
1321 /// The cyclic critical path is a two cycles: b->c->b
1322 /// The acyclic critical path is four cycles: a->b->c->d->exit
1323 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1324 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1325 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1326 /// LiveInDepth = depth(b) = len(a->b) = 1
1327 ///
1328 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1329 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1330 /// CyclicCriticalPath = min(2, 2) = 2
1331 ///
1332 /// This could be relevant to PostRA scheduling, but is currently implemented
1333 /// assuming LiveIntervals.
1334 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1335   // This only applies to single block loop.
1336   if (!BB->isSuccessor(BB))
1337     return 0;
1338 
1339   unsigned MaxCyclicLatency = 0;
1340   // Visit each live out vreg def to find def/use pairs that cross iterations.
1341   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1342     unsigned Reg = P.RegUnit;
1343     if (!TRI->isVirtualRegister(Reg))
1344         continue;
1345     const LiveInterval &LI = LIS->getInterval(Reg);
1346     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1347     if (!DefVNI)
1348       continue;
1349 
1350     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1351     const SUnit *DefSU = getSUnit(DefMI);
1352     if (!DefSU)
1353       continue;
1354 
1355     unsigned LiveOutHeight = DefSU->getHeight();
1356     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1357     // Visit all local users of the vreg def.
1358     for (const VReg2SUnit &V2SU
1359          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1360       SUnit *SU = V2SU.SU;
1361       if (SU == &ExitSU)
1362         continue;
1363 
1364       // Only consider uses of the phi.
1365       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1366       if (!LRQ.valueIn()->isPHIDef())
1367         continue;
1368 
1369       // Assume that a path spanning two iterations is a cycle, which could
1370       // overestimate in strange cases. This allows cyclic latency to be
1371       // estimated as the minimum slack of the vreg's depth or height.
1372       unsigned CyclicLatency = 0;
1373       if (LiveOutDepth > SU->getDepth())
1374         CyclicLatency = LiveOutDepth - SU->getDepth();
1375 
1376       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1377       if (LiveInHeight > LiveOutHeight) {
1378         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1379           CyclicLatency = LiveInHeight - LiveOutHeight;
1380       } else
1381         CyclicLatency = 0;
1382 
1383       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1384                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1385       if (CyclicLatency > MaxCyclicLatency)
1386         MaxCyclicLatency = CyclicLatency;
1387     }
1388   }
1389   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1390   return MaxCyclicLatency;
1391 }
1392 
1393 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1394 /// the Top RP tracker in case the region beginning has changed.
1395 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1396                                    ArrayRef<SUnit*> BotRoots) {
1397   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1398   if (ShouldTrackPressure) {
1399     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1400     TopRPTracker.setPos(CurrentTop);
1401   }
1402 }
1403 
1404 /// Move an instruction and update register pressure.
1405 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1406   // Move the instruction to its new location in the instruction stream.
1407   MachineInstr *MI = SU->getInstr();
1408 
1409   if (IsTopNode) {
1410     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1411     if (&*CurrentTop == MI)
1412       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1413     else {
1414       moveInstruction(MI, CurrentTop);
1415       TopRPTracker.setPos(MI);
1416     }
1417 
1418     if (ShouldTrackPressure) {
1419       // Update top scheduled pressure.
1420       RegisterOperands RegOpers;
1421       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1422       if (ShouldTrackLaneMasks) {
1423         // Adjust liveness and add missing dead+read-undef flags.
1424         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1425         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1426       } else {
1427         // Adjust for missing dead-def flags.
1428         RegOpers.detectDeadDefs(*MI, *LIS);
1429       }
1430 
1431       TopRPTracker.advance(RegOpers);
1432       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1433       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1434                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1435 
1436       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1437     }
1438   } else {
1439     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1440     MachineBasicBlock::iterator priorII =
1441       priorNonDebug(CurrentBottom, CurrentTop);
1442     if (&*priorII == MI)
1443       CurrentBottom = priorII;
1444     else {
1445       if (&*CurrentTop == MI) {
1446         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1447         TopRPTracker.setPos(CurrentTop);
1448       }
1449       moveInstruction(MI, CurrentBottom);
1450       CurrentBottom = MI;
1451       BotRPTracker.setPos(CurrentBottom);
1452     }
1453     if (ShouldTrackPressure) {
1454       RegisterOperands RegOpers;
1455       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1456       if (ShouldTrackLaneMasks) {
1457         // Adjust liveness and add missing dead+read-undef flags.
1458         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1459         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1460       } else {
1461         // Adjust for missing dead-def flags.
1462         RegOpers.detectDeadDefs(*MI, *LIS);
1463       }
1464 
1465       if (BotRPTracker.getPos() != CurrentBottom)
1466         BotRPTracker.recedeSkipDebugValues();
1467       SmallVector<RegisterMaskPair, 8> LiveUses;
1468       BotRPTracker.recede(RegOpers, &LiveUses);
1469       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1470       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1471                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1472 
1473       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1474       updatePressureDiffs(LiveUses);
1475     }
1476   }
1477 }
1478 
1479 //===----------------------------------------------------------------------===//
1480 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1481 //===----------------------------------------------------------------------===//
1482 
1483 namespace {
1484 
1485 /// Post-process the DAG to create cluster edges between neighboring
1486 /// loads or between neighboring stores.
1487 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1488   struct MemOpInfo {
1489     SUnit *SU;
1490     MachineOperand *BaseOp;
1491     int64_t Offset;
1492 
1493     MemOpInfo(SUnit *su, MachineOperand *Op, int64_t ofs)
1494         : SU(su), BaseOp(Op), Offset(ofs) {}
1495 
1496     bool operator<(const MemOpInfo &RHS) const {
1497       if (BaseOp->getType() != RHS.BaseOp->getType())
1498         return BaseOp->getType() < RHS.BaseOp->getType();
1499 
1500       if (BaseOp->isReg())
1501         return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1502                std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1503                                RHS.SU->NodeNum);
1504       if (BaseOp->isFI()) {
1505         const MachineFunction &MF =
1506             *BaseOp->getParent()->getParent()->getParent();
1507         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1508         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1509                               TargetFrameLowering::StackGrowsDown;
1510         // Can't use tuple comparison here since we might need to use a
1511         // different order when the stack grows down.
1512         if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1513           return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1514                                 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1515 
1516         if (Offset != RHS.Offset)
1517           return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1518 
1519         return SU->NodeNum < RHS.SU->NodeNum;
1520       }
1521 
1522       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1523                        "index bases.");
1524     }
1525   };
1526 
1527   const TargetInstrInfo *TII;
1528   const TargetRegisterInfo *TRI;
1529   bool IsLoad;
1530 
1531 public:
1532   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1533                            const TargetRegisterInfo *tri, bool IsLoad)
1534       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1535 
1536   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1537 
1538 protected:
1539   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1540 };
1541 
1542 class StoreClusterMutation : public BaseMemOpClusterMutation {
1543 public:
1544   StoreClusterMutation(const TargetInstrInfo *tii,
1545                        const TargetRegisterInfo *tri)
1546       : BaseMemOpClusterMutation(tii, tri, false) {}
1547 };
1548 
1549 class LoadClusterMutation : public BaseMemOpClusterMutation {
1550 public:
1551   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1552       : BaseMemOpClusterMutation(tii, tri, true) {}
1553 };
1554 
1555 } // end anonymous namespace
1556 
1557 namespace llvm {
1558 
1559 std::unique_ptr<ScheduleDAGMutation>
1560 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1561                              const TargetRegisterInfo *TRI) {
1562   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1563                             : nullptr;
1564 }
1565 
1566 std::unique_ptr<ScheduleDAGMutation>
1567 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1568                               const TargetRegisterInfo *TRI) {
1569   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1570                             : nullptr;
1571 }
1572 
1573 } // end namespace llvm
1574 
1575 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1576     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1577   SmallVector<MemOpInfo, 32> MemOpRecords;
1578   for (SUnit *SU : MemOps) {
1579     MachineOperand *BaseOp;
1580     int64_t Offset;
1581     if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1582       MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1583   }
1584   if (MemOpRecords.size() < 2)
1585     return;
1586 
1587   llvm::sort(MemOpRecords);
1588   unsigned ClusterLength = 1;
1589   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1590     SUnit *SUa = MemOpRecords[Idx].SU;
1591     SUnit *SUb = MemOpRecords[Idx+1].SU;
1592     if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1593                                  *MemOpRecords[Idx + 1].BaseOp,
1594                                  ClusterLength) &&
1595         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1596       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1597                         << SUb->NodeNum << ")\n");
1598       // Copy successor edges from SUa to SUb. Interleaving computation
1599       // dependent on SUa can prevent load combining due to register reuse.
1600       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1601       // loads should have effectively the same inputs.
1602       for (const SDep &Succ : SUa->Succs) {
1603         if (Succ.getSUnit() == SUb)
1604           continue;
1605         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1606                           << ")\n");
1607         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1608       }
1609       ++ClusterLength;
1610     } else
1611       ClusterLength = 1;
1612   }
1613 }
1614 
1615 /// Callback from DAG postProcessing to create cluster edges for loads.
1616 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1617   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1618 
1619   // Map DAG NodeNum to store chain ID.
1620   DenseMap<unsigned, unsigned> StoreChainIDs;
1621   // Map each store chain to a set of dependent MemOps.
1622   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1623   for (SUnit &SU : DAG->SUnits) {
1624     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1625         (!IsLoad && !SU.getInstr()->mayStore()))
1626       continue;
1627 
1628     unsigned ChainPredID = DAG->SUnits.size();
1629     for (const SDep &Pred : SU.Preds) {
1630       if (Pred.isCtrl()) {
1631         ChainPredID = Pred.getSUnit()->NodeNum;
1632         break;
1633       }
1634     }
1635     // Check if this chain-like pred has been seen
1636     // before. ChainPredID==MaxNodeID at the top of the schedule.
1637     unsigned NumChains = StoreChainDependents.size();
1638     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1639       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1640     if (Result.second)
1641       StoreChainDependents.resize(NumChains + 1);
1642     StoreChainDependents[Result.first->second].push_back(&SU);
1643   }
1644 
1645   // Iterate over the store chains.
1646   for (auto &SCD : StoreChainDependents)
1647     clusterNeighboringMemOps(SCD, DAG);
1648 }
1649 
1650 //===----------------------------------------------------------------------===//
1651 // CopyConstrain - DAG post-processing to encourage copy elimination.
1652 //===----------------------------------------------------------------------===//
1653 
1654 namespace {
1655 
1656 /// Post-process the DAG to create weak edges from all uses of a copy to
1657 /// the one use that defines the copy's source vreg, most likely an induction
1658 /// variable increment.
1659 class CopyConstrain : public ScheduleDAGMutation {
1660   // Transient state.
1661   SlotIndex RegionBeginIdx;
1662 
1663   // RegionEndIdx is the slot index of the last non-debug instruction in the
1664   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1665   SlotIndex RegionEndIdx;
1666 
1667 public:
1668   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1669 
1670   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1671 
1672 protected:
1673   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1674 };
1675 
1676 } // end anonymous namespace
1677 
1678 namespace llvm {
1679 
1680 std::unique_ptr<ScheduleDAGMutation>
1681 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1682                                const TargetRegisterInfo *TRI) {
1683   return llvm::make_unique<CopyConstrain>(TII, TRI);
1684 }
1685 
1686 } // end namespace llvm
1687 
1688 /// constrainLocalCopy handles two possibilities:
1689 /// 1) Local src:
1690 /// I0:     = dst
1691 /// I1: src = ...
1692 /// I2:     = dst
1693 /// I3: dst = src (copy)
1694 /// (create pred->succ edges I0->I1, I2->I1)
1695 ///
1696 /// 2) Local copy:
1697 /// I0: dst = src (copy)
1698 /// I1:     = dst
1699 /// I2: src = ...
1700 /// I3:     = dst
1701 /// (create pred->succ edges I1->I2, I3->I2)
1702 ///
1703 /// Although the MachineScheduler is currently constrained to single blocks,
1704 /// this algorithm should handle extended blocks. An EBB is a set of
1705 /// contiguously numbered blocks such that the previous block in the EBB is
1706 /// always the single predecessor.
1707 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1708   LiveIntervals *LIS = DAG->getLIS();
1709   MachineInstr *Copy = CopySU->getInstr();
1710 
1711   // Check for pure vreg copies.
1712   const MachineOperand &SrcOp = Copy->getOperand(1);
1713   unsigned SrcReg = SrcOp.getReg();
1714   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1715     return;
1716 
1717   const MachineOperand &DstOp = Copy->getOperand(0);
1718   unsigned DstReg = DstOp.getReg();
1719   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1720     return;
1721 
1722   // Check if either the dest or source is local. If it's live across a back
1723   // edge, it's not local. Note that if both vregs are live across the back
1724   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1725   // If both the copy's source and dest are local live intervals, then we
1726   // should treat the dest as the global for the purpose of adding
1727   // constraints. This adds edges from source's other uses to the copy.
1728   unsigned LocalReg = SrcReg;
1729   unsigned GlobalReg = DstReg;
1730   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1731   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1732     LocalReg = DstReg;
1733     GlobalReg = SrcReg;
1734     LocalLI = &LIS->getInterval(LocalReg);
1735     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1736       return;
1737   }
1738   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1739 
1740   // Find the global segment after the start of the local LI.
1741   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1742   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1743   // local live range. We could create edges from other global uses to the local
1744   // start, but the coalescer should have already eliminated these cases, so
1745   // don't bother dealing with it.
1746   if (GlobalSegment == GlobalLI->end())
1747     return;
1748 
1749   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1750   // returned the next global segment. But if GlobalSegment overlaps with
1751   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1752   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1753   if (GlobalSegment->contains(LocalLI->beginIndex()))
1754     ++GlobalSegment;
1755 
1756   if (GlobalSegment == GlobalLI->end())
1757     return;
1758 
1759   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1760   if (GlobalSegment != GlobalLI->begin()) {
1761     // Two address defs have no hole.
1762     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1763                                GlobalSegment->start)) {
1764       return;
1765     }
1766     // If the prior global segment may be defined by the same two-address
1767     // instruction that also defines LocalLI, then can't make a hole here.
1768     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1769                                LocalLI->beginIndex())) {
1770       return;
1771     }
1772     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1773     // it would be a disconnected component in the live range.
1774     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1775            "Disconnected LRG within the scheduling region.");
1776   }
1777   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1778   if (!GlobalDef)
1779     return;
1780 
1781   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1782   if (!GlobalSU)
1783     return;
1784 
1785   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1786   // constraining the uses of the last local def to precede GlobalDef.
1787   SmallVector<SUnit*,8> LocalUses;
1788   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1789   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1790   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1791   for (const SDep &Succ : LastLocalSU->Succs) {
1792     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1793       continue;
1794     if (Succ.getSUnit() == GlobalSU)
1795       continue;
1796     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1797       return;
1798     LocalUses.push_back(Succ.getSUnit());
1799   }
1800   // Open the top of the GlobalLI hole by constraining any earlier global uses
1801   // to precede the start of LocalLI.
1802   SmallVector<SUnit*,8> GlobalUses;
1803   MachineInstr *FirstLocalDef =
1804     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1805   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1806   for (const SDep &Pred : GlobalSU->Preds) {
1807     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1808       continue;
1809     if (Pred.getSUnit() == FirstLocalSU)
1810       continue;
1811     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1812       return;
1813     GlobalUses.push_back(Pred.getSUnit());
1814   }
1815   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1816   // Add the weak edges.
1817   for (SmallVectorImpl<SUnit*>::const_iterator
1818          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1819     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1820                       << GlobalSU->NodeNum << ")\n");
1821     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1822   }
1823   for (SmallVectorImpl<SUnit*>::const_iterator
1824          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1825     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1826                       << FirstLocalSU->NodeNum << ")\n");
1827     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1828   }
1829 }
1830 
1831 /// Callback from DAG postProcessing to create weak edges to encourage
1832 /// copy elimination.
1833 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1834   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1835   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1836 
1837   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1838   if (FirstPos == DAG->end())
1839     return;
1840   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1841   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1842       *priorNonDebug(DAG->end(), DAG->begin()));
1843 
1844   for (SUnit &SU : DAG->SUnits) {
1845     if (!SU.getInstr()->isCopy())
1846       continue;
1847 
1848     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1849   }
1850 }
1851 
1852 //===----------------------------------------------------------------------===//
1853 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1854 // and possibly other custom schedulers.
1855 //===----------------------------------------------------------------------===//
1856 
1857 static const unsigned InvalidCycle = ~0U;
1858 
1859 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1860 
1861 /// Given a Count of resource usage and a Latency value, return true if a
1862 /// SchedBoundary becomes resource limited.
1863 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1864                                unsigned Latency) {
1865   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1866 }
1867 
1868 void SchedBoundary::reset() {
1869   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1870   // Destroying and reconstructing it is very expensive though. So keep
1871   // invalid, placeholder HazardRecs.
1872   if (HazardRec && HazardRec->isEnabled()) {
1873     delete HazardRec;
1874     HazardRec = nullptr;
1875   }
1876   Available.clear();
1877   Pending.clear();
1878   CheckPending = false;
1879   CurrCycle = 0;
1880   CurrMOps = 0;
1881   MinReadyCycle = std::numeric_limits<unsigned>::max();
1882   ExpectedLatency = 0;
1883   DependentLatency = 0;
1884   RetiredMOps = 0;
1885   MaxExecutedResCount = 0;
1886   ZoneCritResIdx = 0;
1887   IsResourceLimited = false;
1888   ReservedCycles.clear();
1889 #ifndef NDEBUG
1890   // Track the maximum number of stall cycles that could arise either from the
1891   // latency of a DAG edge or the number of cycles that a processor resource is
1892   // reserved (SchedBoundary::ReservedCycles).
1893   MaxObservedStall = 0;
1894 #endif
1895   // Reserve a zero-count for invalid CritResIdx.
1896   ExecutedResCounts.resize(1);
1897   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1898 }
1899 
1900 void SchedRemainder::
1901 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1902   reset();
1903   if (!SchedModel->hasInstrSchedModel())
1904     return;
1905   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1906   for (SUnit &SU : DAG->SUnits) {
1907     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1908     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1909       * SchedModel->getMicroOpFactor();
1910     for (TargetSchedModel::ProcResIter
1911            PI = SchedModel->getWriteProcResBegin(SC),
1912            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1913       unsigned PIdx = PI->ProcResourceIdx;
1914       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1915       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1916     }
1917   }
1918 }
1919 
1920 void SchedBoundary::
1921 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1922   reset();
1923   DAG = dag;
1924   SchedModel = smodel;
1925   Rem = rem;
1926   if (SchedModel->hasInstrSchedModel()) {
1927     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1928     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1929   }
1930 }
1931 
1932 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1933 /// these "soft stalls" differently than the hard stall cycles based on CPU
1934 /// resources and computed by checkHazard(). A fully in-order model
1935 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1936 /// available for scheduling until they are ready. However, a weaker in-order
1937 /// model may use this for heuristics. For example, if a processor has in-order
1938 /// behavior when reading certain resources, this may come into play.
1939 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1940   if (!SU->isUnbuffered)
1941     return 0;
1942 
1943   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1944   if (ReadyCycle > CurrCycle)
1945     return ReadyCycle - CurrCycle;
1946   return 0;
1947 }
1948 
1949 /// Compute the next cycle at which the given processor resource can be
1950 /// scheduled.
1951 unsigned SchedBoundary::
1952 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1953   unsigned NextUnreserved = ReservedCycles[PIdx];
1954   // If this resource has never been used, always return cycle zero.
1955   if (NextUnreserved == InvalidCycle)
1956     return 0;
1957   // For bottom-up scheduling add the cycles needed for the current operation.
1958   if (!isTop())
1959     NextUnreserved += Cycles;
1960   return NextUnreserved;
1961 }
1962 
1963 /// Does this SU have a hazard within the current instruction group.
1964 ///
1965 /// The scheduler supports two modes of hazard recognition. The first is the
1966 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1967 /// supports highly complicated in-order reservation tables
1968 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1969 ///
1970 /// The second is a streamlined mechanism that checks for hazards based on
1971 /// simple counters that the scheduler itself maintains. It explicitly checks
1972 /// for instruction dispatch limitations, including the number of micro-ops that
1973 /// can dispatch per cycle.
1974 ///
1975 /// TODO: Also check whether the SU must start a new group.
1976 bool SchedBoundary::checkHazard(SUnit *SU) {
1977   if (HazardRec->isEnabled()
1978       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1979     return true;
1980   }
1981 
1982   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1983   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1984     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1985                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1986     return true;
1987   }
1988 
1989   if (CurrMOps > 0 &&
1990       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1991        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1992     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1993                       << (isTop() ? "begin" : "end") << " group\n");
1994     return true;
1995   }
1996 
1997   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1998     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1999     for (const MCWriteProcResEntry &PE :
2000           make_range(SchedModel->getWriteProcResBegin(SC),
2001                      SchedModel->getWriteProcResEnd(SC))) {
2002       unsigned ResIdx = PE.ProcResourceIdx;
2003       unsigned Cycles = PE.Cycles;
2004       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
2005       if (NRCycle > CurrCycle) {
2006 #ifndef NDEBUG
2007         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2008 #endif
2009         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2010                           << SchedModel->getResourceName(ResIdx) << "="
2011                           << NRCycle << "c\n");
2012         return true;
2013       }
2014     }
2015   }
2016   return false;
2017 }
2018 
2019 // Find the unscheduled node in ReadySUs with the highest latency.
2020 unsigned SchedBoundary::
2021 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2022   SUnit *LateSU = nullptr;
2023   unsigned RemLatency = 0;
2024   for (SUnit *SU : ReadySUs) {
2025     unsigned L = getUnscheduledLatency(SU);
2026     if (L > RemLatency) {
2027       RemLatency = L;
2028       LateSU = SU;
2029     }
2030   }
2031   if (LateSU) {
2032     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2033                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2034   }
2035   return RemLatency;
2036 }
2037 
2038 // Count resources in this zone and the remaining unscheduled
2039 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2040 // resource index, or zero if the zone is issue limited.
2041 unsigned SchedBoundary::
2042 getOtherResourceCount(unsigned &OtherCritIdx) {
2043   OtherCritIdx = 0;
2044   if (!SchedModel->hasInstrSchedModel())
2045     return 0;
2046 
2047   unsigned OtherCritCount = Rem->RemIssueCount
2048     + (RetiredMOps * SchedModel->getMicroOpFactor());
2049   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2050                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2051   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2052        PIdx != PEnd; ++PIdx) {
2053     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2054     if (OtherCount > OtherCritCount) {
2055       OtherCritCount = OtherCount;
2056       OtherCritIdx = PIdx;
2057     }
2058   }
2059   if (OtherCritIdx) {
2060     LLVM_DEBUG(
2061         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2062                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2063                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2064   }
2065   return OtherCritCount;
2066 }
2067 
2068 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2069   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2070 
2071 #ifndef NDEBUG
2072   // ReadyCycle was been bumped up to the CurrCycle when this node was
2073   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2074   // scheduling, so may now be greater than ReadyCycle.
2075   if (ReadyCycle > CurrCycle)
2076     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2077 #endif
2078 
2079   if (ReadyCycle < MinReadyCycle)
2080     MinReadyCycle = ReadyCycle;
2081 
2082   // Check for interlocks first. For the purpose of other heuristics, an
2083   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2084   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2085   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2086       Available.size() >= ReadyListLimit)
2087     Pending.push(SU);
2088   else
2089     Available.push(SU);
2090 }
2091 
2092 /// Move the boundary of scheduled code by one cycle.
2093 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2094   if (SchedModel->getMicroOpBufferSize() == 0) {
2095     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2096            "MinReadyCycle uninitialized");
2097     if (MinReadyCycle > NextCycle)
2098       NextCycle = MinReadyCycle;
2099   }
2100   // Update the current micro-ops, which will issue in the next cycle.
2101   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2102   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2103 
2104   // Decrement DependentLatency based on the next cycle.
2105   if ((NextCycle - CurrCycle) > DependentLatency)
2106     DependentLatency = 0;
2107   else
2108     DependentLatency -= (NextCycle - CurrCycle);
2109 
2110   if (!HazardRec->isEnabled()) {
2111     // Bypass HazardRec virtual calls.
2112     CurrCycle = NextCycle;
2113   } else {
2114     // Bypass getHazardType calls in case of long latency.
2115     for (; CurrCycle != NextCycle; ++CurrCycle) {
2116       if (isTop())
2117         HazardRec->AdvanceCycle();
2118       else
2119         HazardRec->RecedeCycle();
2120     }
2121   }
2122   CheckPending = true;
2123   IsResourceLimited =
2124       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2125                          getScheduledLatency());
2126 
2127   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2128                     << '\n');
2129 }
2130 
2131 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2132   ExecutedResCounts[PIdx] += Count;
2133   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2134     MaxExecutedResCount = ExecutedResCounts[PIdx];
2135 }
2136 
2137 /// Add the given processor resource to this scheduled zone.
2138 ///
2139 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2140 /// during which this resource is consumed.
2141 ///
2142 /// \return the next cycle at which the instruction may execute without
2143 /// oversubscribing resources.
2144 unsigned SchedBoundary::
2145 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2146   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2147   unsigned Count = Factor * Cycles;
2148   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2149                     << Cycles << "x" << Factor << "u\n");
2150 
2151   // Update Executed resources counts.
2152   incExecutedResources(PIdx, Count);
2153   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2154   Rem->RemainingCounts[PIdx] -= Count;
2155 
2156   // Check if this resource exceeds the current critical resource. If so, it
2157   // becomes the critical resource.
2158   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2159     ZoneCritResIdx = PIdx;
2160     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2161                       << SchedModel->getResourceName(PIdx) << ": "
2162                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2163                       << "c\n");
2164   }
2165   // For reserved resources, record the highest cycle using the resource.
2166   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2167   if (NextAvailable > CurrCycle) {
2168     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2169                       << SchedModel->getProcResource(PIdx)->Name
2170                       << " reserved until @" << NextAvailable << "\n");
2171   }
2172   return NextAvailable;
2173 }
2174 
2175 /// Move the boundary of scheduled code by one SUnit.
2176 void SchedBoundary::bumpNode(SUnit *SU) {
2177   // Update the reservation table.
2178   if (HazardRec->isEnabled()) {
2179     if (!isTop() && SU->isCall) {
2180       // Calls are scheduled with their preceding instructions. For bottom-up
2181       // scheduling, clear the pipeline state before emitting.
2182       HazardRec->Reset();
2183     }
2184     HazardRec->EmitInstruction(SU);
2185   }
2186   // checkHazard should prevent scheduling multiple instructions per cycle that
2187   // exceed the issue width.
2188   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2189   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2190   assert(
2191       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2192       "Cannot schedule this instruction's MicroOps in the current cycle.");
2193 
2194   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2195   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2196 
2197   unsigned NextCycle = CurrCycle;
2198   switch (SchedModel->getMicroOpBufferSize()) {
2199   case 0:
2200     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2201     break;
2202   case 1:
2203     if (ReadyCycle > NextCycle) {
2204       NextCycle = ReadyCycle;
2205       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2206     }
2207     break;
2208   default:
2209     // We don't currently model the OOO reorder buffer, so consider all
2210     // scheduled MOps to be "retired". We do loosely model in-order resource
2211     // latency. If this instruction uses an in-order resource, account for any
2212     // likely stall cycles.
2213     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2214       NextCycle = ReadyCycle;
2215     break;
2216   }
2217   RetiredMOps += IncMOps;
2218 
2219   // Update resource counts and critical resource.
2220   if (SchedModel->hasInstrSchedModel()) {
2221     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2222     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2223     Rem->RemIssueCount -= DecRemIssue;
2224     if (ZoneCritResIdx) {
2225       // Scale scheduled micro-ops for comparing with the critical resource.
2226       unsigned ScaledMOps =
2227         RetiredMOps * SchedModel->getMicroOpFactor();
2228 
2229       // If scaled micro-ops are now more than the previous critical resource by
2230       // a full cycle, then micro-ops issue becomes critical.
2231       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2232           >= (int)SchedModel->getLatencyFactor()) {
2233         ZoneCritResIdx = 0;
2234         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2235                           << ScaledMOps / SchedModel->getLatencyFactor()
2236                           << "c\n");
2237       }
2238     }
2239     for (TargetSchedModel::ProcResIter
2240            PI = SchedModel->getWriteProcResBegin(SC),
2241            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2242       unsigned RCycle =
2243         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2244       if (RCycle > NextCycle)
2245         NextCycle = RCycle;
2246     }
2247     if (SU->hasReservedResource) {
2248       // For reserved resources, record the highest cycle using the resource.
2249       // For top-down scheduling, this is the cycle in which we schedule this
2250       // instruction plus the number of cycles the operations reserves the
2251       // resource. For bottom-up is it simply the instruction's cycle.
2252       for (TargetSchedModel::ProcResIter
2253              PI = SchedModel->getWriteProcResBegin(SC),
2254              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2255         unsigned PIdx = PI->ProcResourceIdx;
2256         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2257           if (isTop()) {
2258             ReservedCycles[PIdx] =
2259               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2260           }
2261           else
2262             ReservedCycles[PIdx] = NextCycle;
2263         }
2264       }
2265     }
2266   }
2267   // Update ExpectedLatency and DependentLatency.
2268   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2269   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2270   if (SU->getDepth() > TopLatency) {
2271     TopLatency = SU->getDepth();
2272     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2273                       << SU->NodeNum << ") " << TopLatency << "c\n");
2274   }
2275   if (SU->getHeight() > BotLatency) {
2276     BotLatency = SU->getHeight();
2277     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2278                       << SU->NodeNum << ") " << BotLatency << "c\n");
2279   }
2280   // If we stall for any reason, bump the cycle.
2281   if (NextCycle > CurrCycle)
2282     bumpCycle(NextCycle);
2283   else
2284     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2285     // resource limited. If a stall occurred, bumpCycle does this.
2286     IsResourceLimited =
2287         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2288                            getScheduledLatency());
2289 
2290   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2291   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2292   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2293   // bump the cycle to avoid uselessly checking everything in the readyQ.
2294   CurrMOps += IncMOps;
2295 
2296   // Bump the cycle count for issue group constraints.
2297   // This must be done after NextCycle has been adjust for all other stalls.
2298   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2299   // currCycle to X.
2300   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2301       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2302     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2303                       << " group\n");
2304     bumpCycle(++NextCycle);
2305   }
2306 
2307   while (CurrMOps >= SchedModel->getIssueWidth()) {
2308     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2309                       << CurrCycle << '\n');
2310     bumpCycle(++NextCycle);
2311   }
2312   LLVM_DEBUG(dumpScheduledState());
2313 }
2314 
2315 /// Release pending ready nodes in to the available queue. This makes them
2316 /// visible to heuristics.
2317 void SchedBoundary::releasePending() {
2318   // If the available queue is empty, it is safe to reset MinReadyCycle.
2319   if (Available.empty())
2320     MinReadyCycle = std::numeric_limits<unsigned>::max();
2321 
2322   // Check to see if any of the pending instructions are ready to issue.  If
2323   // so, add them to the available queue.
2324   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2325   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2326     SUnit *SU = *(Pending.begin()+i);
2327     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2328 
2329     if (ReadyCycle < MinReadyCycle)
2330       MinReadyCycle = ReadyCycle;
2331 
2332     if (!IsBuffered && ReadyCycle > CurrCycle)
2333       continue;
2334 
2335     if (checkHazard(SU))
2336       continue;
2337 
2338     if (Available.size() >= ReadyListLimit)
2339       break;
2340 
2341     Available.push(SU);
2342     Pending.remove(Pending.begin()+i);
2343     --i; --e;
2344   }
2345   CheckPending = false;
2346 }
2347 
2348 /// Remove SU from the ready set for this boundary.
2349 void SchedBoundary::removeReady(SUnit *SU) {
2350   if (Available.isInQueue(SU))
2351     Available.remove(Available.find(SU));
2352   else {
2353     assert(Pending.isInQueue(SU) && "bad ready count");
2354     Pending.remove(Pending.find(SU));
2355   }
2356 }
2357 
2358 /// If this queue only has one ready candidate, return it. As a side effect,
2359 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2360 /// one node is ready. If multiple instructions are ready, return NULL.
2361 SUnit *SchedBoundary::pickOnlyChoice() {
2362   if (CheckPending)
2363     releasePending();
2364 
2365   if (CurrMOps > 0) {
2366     // Defer any ready instrs that now have a hazard.
2367     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2368       if (checkHazard(*I)) {
2369         Pending.push(*I);
2370         I = Available.remove(I);
2371         continue;
2372       }
2373       ++I;
2374     }
2375   }
2376   for (unsigned i = 0; Available.empty(); ++i) {
2377 //  FIXME: Re-enable assert once PR20057 is resolved.
2378 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2379 //           "permanent hazard");
2380     (void)i;
2381     bumpCycle(CurrCycle + 1);
2382     releasePending();
2383   }
2384 
2385   LLVM_DEBUG(Pending.dump());
2386   LLVM_DEBUG(Available.dump());
2387 
2388   if (Available.size() == 1)
2389     return *Available.begin();
2390   return nullptr;
2391 }
2392 
2393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2394 // This is useful information to dump after bumpNode.
2395 // Note that the Queue contents are more useful before pickNodeFromQueue.
2396 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2397   unsigned ResFactor;
2398   unsigned ResCount;
2399   if (ZoneCritResIdx) {
2400     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2401     ResCount = getResourceCount(ZoneCritResIdx);
2402   } else {
2403     ResFactor = SchedModel->getMicroOpFactor();
2404     ResCount = RetiredMOps * ResFactor;
2405   }
2406   unsigned LFactor = SchedModel->getLatencyFactor();
2407   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2408          << "  Retired: " << RetiredMOps;
2409   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2410   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2411          << ResCount / ResFactor << " "
2412          << SchedModel->getResourceName(ZoneCritResIdx)
2413          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2414          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2415          << " limited.\n";
2416 }
2417 #endif
2418 
2419 //===----------------------------------------------------------------------===//
2420 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2421 //===----------------------------------------------------------------------===//
2422 
2423 void GenericSchedulerBase::SchedCandidate::
2424 initResourceDelta(const ScheduleDAGMI *DAG,
2425                   const TargetSchedModel *SchedModel) {
2426   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2427     return;
2428 
2429   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2430   for (TargetSchedModel::ProcResIter
2431          PI = SchedModel->getWriteProcResBegin(SC),
2432          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2433     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2434       ResDelta.CritResources += PI->Cycles;
2435     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2436       ResDelta.DemandedResources += PI->Cycles;
2437   }
2438 }
2439 
2440 /// Compute remaining latency. We need this both to determine whether the
2441 /// overall schedule has become latency-limited and whether the instructions
2442 /// outside this zone are resource or latency limited.
2443 ///
2444 /// The "dependent" latency is updated incrementally during scheduling as the
2445 /// max height/depth of scheduled nodes minus the cycles since it was
2446 /// scheduled:
2447 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2448 ///
2449 /// The "independent" latency is the max ready queue depth:
2450 ///   ILat = max N.depth for N in Available|Pending
2451 ///
2452 /// RemainingLatency is the greater of independent and dependent latency.
2453 ///
2454 /// These computations are expensive, especially in DAGs with many edges, so
2455 /// only do them if necessary.
2456 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2457   unsigned RemLatency = CurrZone.getDependentLatency();
2458   RemLatency = std::max(RemLatency,
2459                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2460   RemLatency = std::max(RemLatency,
2461                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2462   return RemLatency;
2463 }
2464 
2465 /// Returns true if the current cycle plus remaning latency is greater than
2466 /// the critical path in the scheduling region.
2467 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2468                                                SchedBoundary &CurrZone,
2469                                                bool ComputeRemLatency,
2470                                                unsigned &RemLatency) const {
2471   // The current cycle is already greater than the critical path, so we are
2472   // already latency limited and don't need to compute the remaining latency.
2473   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2474     return true;
2475 
2476   // If we haven't scheduled anything yet, then we aren't latency limited.
2477   if (CurrZone.getCurrCycle() == 0)
2478     return false;
2479 
2480   if (ComputeRemLatency)
2481     RemLatency = computeRemLatency(CurrZone);
2482 
2483   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2484 }
2485 
2486 /// Set the CandPolicy given a scheduling zone given the current resources and
2487 /// latencies inside and outside the zone.
2488 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2489                                      SchedBoundary &CurrZone,
2490                                      SchedBoundary *OtherZone) {
2491   // Apply preemptive heuristics based on the total latency and resources
2492   // inside and outside this zone. Potential stalls should be considered before
2493   // following this policy.
2494 
2495   // Compute the critical resource outside the zone.
2496   unsigned OtherCritIdx = 0;
2497   unsigned OtherCount =
2498     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2499 
2500   bool OtherResLimited = false;
2501   unsigned RemLatency = 0;
2502   bool RemLatencyComputed = false;
2503   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2504     RemLatency = computeRemLatency(CurrZone);
2505     RemLatencyComputed = true;
2506     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2507                                          OtherCount, RemLatency);
2508   }
2509 
2510   // Schedule aggressively for latency in PostRA mode. We don't check for
2511   // acyclic latency during PostRA, and highly out-of-order processors will
2512   // skip PostRA scheduling.
2513   if (!OtherResLimited &&
2514       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2515                                        RemLatency))) {
2516     Policy.ReduceLatency |= true;
2517     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2518                       << " RemainingLatency " << RemLatency << " + "
2519                       << CurrZone.getCurrCycle() << "c > CritPath "
2520                       << Rem.CriticalPath << "\n");
2521   }
2522   // If the same resource is limiting inside and outside the zone, do nothing.
2523   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2524     return;
2525 
2526   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2527     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2528            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2529   } if (OtherResLimited) dbgs()
2530                  << "  RemainingLimit: "
2531                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2532              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2533              << "  Latency limited both directions.\n");
2534 
2535   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2536     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2537 
2538   if (OtherResLimited)
2539     Policy.DemandResIdx = OtherCritIdx;
2540 }
2541 
2542 #ifndef NDEBUG
2543 const char *GenericSchedulerBase::getReasonStr(
2544   GenericSchedulerBase::CandReason Reason) {
2545   switch (Reason) {
2546   case NoCand:         return "NOCAND    ";
2547   case Only1:          return "ONLY1     ";
2548   case PhysReg:        return "PHYS-REG  ";
2549   case RegExcess:      return "REG-EXCESS";
2550   case RegCritical:    return "REG-CRIT  ";
2551   case Stall:          return "STALL     ";
2552   case Cluster:        return "CLUSTER   ";
2553   case Weak:           return "WEAK      ";
2554   case RegMax:         return "REG-MAX   ";
2555   case ResourceReduce: return "RES-REDUCE";
2556   case ResourceDemand: return "RES-DEMAND";
2557   case TopDepthReduce: return "TOP-DEPTH ";
2558   case TopPathReduce:  return "TOP-PATH  ";
2559   case BotHeightReduce:return "BOT-HEIGHT";
2560   case BotPathReduce:  return "BOT-PATH  ";
2561   case NextDefUse:     return "DEF-USE   ";
2562   case NodeOrder:      return "ORDER     ";
2563   };
2564   llvm_unreachable("Unknown reason!");
2565 }
2566 
2567 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2568   PressureChange P;
2569   unsigned ResIdx = 0;
2570   unsigned Latency = 0;
2571   switch (Cand.Reason) {
2572   default:
2573     break;
2574   case RegExcess:
2575     P = Cand.RPDelta.Excess;
2576     break;
2577   case RegCritical:
2578     P = Cand.RPDelta.CriticalMax;
2579     break;
2580   case RegMax:
2581     P = Cand.RPDelta.CurrentMax;
2582     break;
2583   case ResourceReduce:
2584     ResIdx = Cand.Policy.ReduceResIdx;
2585     break;
2586   case ResourceDemand:
2587     ResIdx = Cand.Policy.DemandResIdx;
2588     break;
2589   case TopDepthReduce:
2590     Latency = Cand.SU->getDepth();
2591     break;
2592   case TopPathReduce:
2593     Latency = Cand.SU->getHeight();
2594     break;
2595   case BotHeightReduce:
2596     Latency = Cand.SU->getHeight();
2597     break;
2598   case BotPathReduce:
2599     Latency = Cand.SU->getDepth();
2600     break;
2601   }
2602   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2603   if (P.isValid())
2604     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2605            << ":" << P.getUnitInc() << " ";
2606   else
2607     dbgs() << "      ";
2608   if (ResIdx)
2609     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2610   else
2611     dbgs() << "         ";
2612   if (Latency)
2613     dbgs() << " " << Latency << " cycles ";
2614   else
2615     dbgs() << "          ";
2616   dbgs() << '\n';
2617 }
2618 #endif
2619 
2620 namespace llvm {
2621 /// Return true if this heuristic determines order.
2622 bool tryLess(int TryVal, int CandVal,
2623              GenericSchedulerBase::SchedCandidate &TryCand,
2624              GenericSchedulerBase::SchedCandidate &Cand,
2625              GenericSchedulerBase::CandReason Reason) {
2626   if (TryVal < CandVal) {
2627     TryCand.Reason = Reason;
2628     return true;
2629   }
2630   if (TryVal > CandVal) {
2631     if (Cand.Reason > Reason)
2632       Cand.Reason = Reason;
2633     return true;
2634   }
2635   return false;
2636 }
2637 
2638 bool tryGreater(int TryVal, int CandVal,
2639                 GenericSchedulerBase::SchedCandidate &TryCand,
2640                 GenericSchedulerBase::SchedCandidate &Cand,
2641                 GenericSchedulerBase::CandReason Reason) {
2642   if (TryVal > CandVal) {
2643     TryCand.Reason = Reason;
2644     return true;
2645   }
2646   if (TryVal < CandVal) {
2647     if (Cand.Reason > Reason)
2648       Cand.Reason = Reason;
2649     return true;
2650   }
2651   return false;
2652 }
2653 
2654 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2655                 GenericSchedulerBase::SchedCandidate &Cand,
2656                 SchedBoundary &Zone) {
2657   if (Zone.isTop()) {
2658     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2659       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2660                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2661         return true;
2662     }
2663     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2664                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2665       return true;
2666   } else {
2667     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2668       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2669                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2670         return true;
2671     }
2672     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2673                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2674       return true;
2675   }
2676   return false;
2677 }
2678 } // end namespace llvm
2679 
2680 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2681   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2682                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2683 }
2684 
2685 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2686   tracePick(Cand.Reason, Cand.AtTop);
2687 }
2688 
2689 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2690   assert(dag->hasVRegLiveness() &&
2691          "(PreRA)GenericScheduler needs vreg liveness");
2692   DAG = static_cast<ScheduleDAGMILive*>(dag);
2693   SchedModel = DAG->getSchedModel();
2694   TRI = DAG->TRI;
2695 
2696   Rem.init(DAG, SchedModel);
2697   Top.init(DAG, SchedModel, &Rem);
2698   Bot.init(DAG, SchedModel, &Rem);
2699 
2700   // Initialize resource counts.
2701 
2702   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2703   // are disabled, then these HazardRecs will be disabled.
2704   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2705   if (!Top.HazardRec) {
2706     Top.HazardRec =
2707         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2708             Itin, DAG);
2709   }
2710   if (!Bot.HazardRec) {
2711     Bot.HazardRec =
2712         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2713             Itin, DAG);
2714   }
2715   TopCand.SU = nullptr;
2716   BotCand.SU = nullptr;
2717 }
2718 
2719 /// Initialize the per-region scheduling policy.
2720 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2721                                   MachineBasicBlock::iterator End,
2722                                   unsigned NumRegionInstrs) {
2723   const MachineFunction &MF = *Begin->getMF();
2724   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2725 
2726   // Avoid setting up the register pressure tracker for small regions to save
2727   // compile time. As a rough heuristic, only track pressure when the number of
2728   // schedulable instructions exceeds half the integer register file.
2729   RegionPolicy.ShouldTrackPressure = true;
2730   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2731     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2732     if (TLI->isTypeLegal(LegalIntVT)) {
2733       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2734         TLI->getRegClassFor(LegalIntVT));
2735       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2736     }
2737   }
2738 
2739   // For generic targets, we default to bottom-up, because it's simpler and more
2740   // compile-time optimizations have been implemented in that direction.
2741   RegionPolicy.OnlyBottomUp = true;
2742 
2743   // Allow the subtarget to override default policy.
2744   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2745 
2746   // After subtarget overrides, apply command line options.
2747   if (!EnableRegPressure)
2748     RegionPolicy.ShouldTrackPressure = false;
2749 
2750   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2751   // e.g. -misched-bottomup=false allows scheduling in both directions.
2752   assert((!ForceTopDown || !ForceBottomUp) &&
2753          "-misched-topdown incompatible with -misched-bottomup");
2754   if (ForceBottomUp.getNumOccurrences() > 0) {
2755     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2756     if (RegionPolicy.OnlyBottomUp)
2757       RegionPolicy.OnlyTopDown = false;
2758   }
2759   if (ForceTopDown.getNumOccurrences() > 0) {
2760     RegionPolicy.OnlyTopDown = ForceTopDown;
2761     if (RegionPolicy.OnlyTopDown)
2762       RegionPolicy.OnlyBottomUp = false;
2763   }
2764 }
2765 
2766 void GenericScheduler::dumpPolicy() const {
2767   // Cannot completely remove virtual function even in release mode.
2768 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2769   dbgs() << "GenericScheduler RegionPolicy: "
2770          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2771          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2772          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2773          << "\n";
2774 #endif
2775 }
2776 
2777 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2778 /// critical path by more cycles than it takes to drain the instruction buffer.
2779 /// We estimate an upper bounds on in-flight instructions as:
2780 ///
2781 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2782 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2783 /// InFlightResources = InFlightIterations * LoopResources
2784 ///
2785 /// TODO: Check execution resources in addition to IssueCount.
2786 void GenericScheduler::checkAcyclicLatency() {
2787   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2788     return;
2789 
2790   // Scaled number of cycles per loop iteration.
2791   unsigned IterCount =
2792     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2793              Rem.RemIssueCount);
2794   // Scaled acyclic critical path.
2795   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2796   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2797   unsigned InFlightCount =
2798     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2799   unsigned BufferLimit =
2800     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2801 
2802   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2803 
2804   LLVM_DEBUG(
2805       dbgs() << "IssueCycles="
2806              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2807              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2808              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2809              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2810              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2811       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2812 }
2813 
2814 void GenericScheduler::registerRoots() {
2815   Rem.CriticalPath = DAG->ExitSU.getDepth();
2816 
2817   // Some roots may not feed into ExitSU. Check all of them in case.
2818   for (const SUnit *SU : Bot.Available) {
2819     if (SU->getDepth() > Rem.CriticalPath)
2820       Rem.CriticalPath = SU->getDepth();
2821   }
2822   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2823   if (DumpCriticalPathLength) {
2824     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2825   }
2826 
2827   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2828     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2829     checkAcyclicLatency();
2830   }
2831 }
2832 
2833 namespace llvm {
2834 bool tryPressure(const PressureChange &TryP,
2835                  const PressureChange &CandP,
2836                  GenericSchedulerBase::SchedCandidate &TryCand,
2837                  GenericSchedulerBase::SchedCandidate &Cand,
2838                  GenericSchedulerBase::CandReason Reason,
2839                  const TargetRegisterInfo *TRI,
2840                  const MachineFunction &MF) {
2841   // If one candidate decreases and the other increases, go with it.
2842   // Invalid candidates have UnitInc==0.
2843   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2844                  Reason)) {
2845     return true;
2846   }
2847   // Do not compare the magnitude of pressure changes between top and bottom
2848   // boundary.
2849   if (Cand.AtTop != TryCand.AtTop)
2850     return false;
2851 
2852   // If both candidates affect the same set in the same boundary, go with the
2853   // smallest increase.
2854   unsigned TryPSet = TryP.getPSetOrMax();
2855   unsigned CandPSet = CandP.getPSetOrMax();
2856   if (TryPSet == CandPSet) {
2857     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2858                    Reason);
2859   }
2860 
2861   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2862                                  std::numeric_limits<int>::max();
2863 
2864   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2865                                    std::numeric_limits<int>::max();
2866 
2867   // If the candidates are decreasing pressure, reverse priority.
2868   if (TryP.getUnitInc() < 0)
2869     std::swap(TryRank, CandRank);
2870   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2871 }
2872 
2873 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2874   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2875 }
2876 
2877 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2878 /// their physreg def/use.
2879 ///
2880 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2881 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2882 /// with the operation that produces or consumes the physreg. We'll do this when
2883 /// regalloc has support for parallel copies.
2884 int biasPhysReg(const SUnit *SU, bool isTop) {
2885   const MachineInstr *MI = SU->getInstr();
2886 
2887   if (MI->isCopy()) {
2888     unsigned ScheduledOper = isTop ? 1 : 0;
2889     unsigned UnscheduledOper = isTop ? 0 : 1;
2890     // If we have already scheduled the physreg produce/consumer, immediately
2891     // schedule the copy.
2892     if (TargetRegisterInfo::isPhysicalRegister(
2893             MI->getOperand(ScheduledOper).getReg()))
2894       return 1;
2895     // If the physreg is at the boundary, defer it. Otherwise schedule it
2896     // immediately to free the dependent. We can hoist the copy later.
2897     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2898     if (TargetRegisterInfo::isPhysicalRegister(
2899             MI->getOperand(UnscheduledOper).getReg()))
2900       return AtBoundary ? -1 : 1;
2901   }
2902 
2903   if (MI->isMoveImmediate()) {
2904     // If we have a move immediate and all successors have been assigned, bias
2905     // towards scheduling this later. Make sure all register defs are to
2906     // physical registers.
2907     bool DoBias = true;
2908     for (const MachineOperand &Op : MI->defs()) {
2909       if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) {
2910         DoBias = false;
2911         break;
2912       }
2913     }
2914 
2915     if (DoBias)
2916       return isTop ? -1 : 1;
2917   }
2918 
2919   return 0;
2920 }
2921 } // end namespace llvm
2922 
2923 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2924                                      bool AtTop,
2925                                      const RegPressureTracker &RPTracker,
2926                                      RegPressureTracker &TempTracker) {
2927   Cand.SU = SU;
2928   Cand.AtTop = AtTop;
2929   if (DAG->isTrackingPressure()) {
2930     if (AtTop) {
2931       TempTracker.getMaxDownwardPressureDelta(
2932         Cand.SU->getInstr(),
2933         Cand.RPDelta,
2934         DAG->getRegionCriticalPSets(),
2935         DAG->getRegPressure().MaxSetPressure);
2936     } else {
2937       if (VerifyScheduling) {
2938         TempTracker.getMaxUpwardPressureDelta(
2939           Cand.SU->getInstr(),
2940           &DAG->getPressureDiff(Cand.SU),
2941           Cand.RPDelta,
2942           DAG->getRegionCriticalPSets(),
2943           DAG->getRegPressure().MaxSetPressure);
2944       } else {
2945         RPTracker.getUpwardPressureDelta(
2946           Cand.SU->getInstr(),
2947           DAG->getPressureDiff(Cand.SU),
2948           Cand.RPDelta,
2949           DAG->getRegionCriticalPSets(),
2950           DAG->getRegPressure().MaxSetPressure);
2951       }
2952     }
2953   }
2954   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2955              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2956              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2957              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2958 }
2959 
2960 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2961 /// hierarchical. This may be more efficient than a graduated cost model because
2962 /// we don't need to evaluate all aspects of the model for each node in the
2963 /// queue. But it's really done to make the heuristics easier to debug and
2964 /// statistically analyze.
2965 ///
2966 /// \param Cand provides the policy and current best candidate.
2967 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2968 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2969 //              if Cand is from a different zone than TryCand.
2970 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2971                                     SchedCandidate &TryCand,
2972                                     SchedBoundary *Zone) const {
2973   // Initialize the candidate if needed.
2974   if (!Cand.isValid()) {
2975     TryCand.Reason = NodeOrder;
2976     return;
2977   }
2978 
2979   // Bias PhysReg Defs and copies to their uses and defined respectively.
2980   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
2981                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
2982     return;
2983 
2984   // Avoid exceeding the target's limit.
2985   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2986                                                Cand.RPDelta.Excess,
2987                                                TryCand, Cand, RegExcess, TRI,
2988                                                DAG->MF))
2989     return;
2990 
2991   // Avoid increasing the max critical pressure in the scheduled region.
2992   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2993                                                Cand.RPDelta.CriticalMax,
2994                                                TryCand, Cand, RegCritical, TRI,
2995                                                DAG->MF))
2996     return;
2997 
2998   // We only compare a subset of features when comparing nodes between
2999   // Top and Bottom boundary. Some properties are simply incomparable, in many
3000   // other instances we should only override the other boundary if something
3001   // is a clear good pick on one boundary. Skip heuristics that are more
3002   // "tie-breaking" in nature.
3003   bool SameBoundary = Zone != nullptr;
3004   if (SameBoundary) {
3005     // For loops that are acyclic path limited, aggressively schedule for
3006     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3007     // heuristics to take precedence.
3008     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3009         tryLatency(TryCand, Cand, *Zone))
3010       return;
3011 
3012     // Prioritize instructions that read unbuffered resources by stall cycles.
3013     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3014                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3015       return;
3016   }
3017 
3018   // Keep clustered nodes together to encourage downstream peephole
3019   // optimizations which may reduce resource requirements.
3020   //
3021   // This is a best effort to set things up for a post-RA pass. Optimizations
3022   // like generating loads of multiple registers should ideally be done within
3023   // the scheduler pass by combining the loads during DAG postprocessing.
3024   const SUnit *CandNextClusterSU =
3025     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3026   const SUnit *TryCandNextClusterSU =
3027     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3028   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3029                  Cand.SU == CandNextClusterSU,
3030                  TryCand, Cand, Cluster))
3031     return;
3032 
3033   if (SameBoundary) {
3034     // Weak edges are for clustering and other constraints.
3035     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3036                 getWeakLeft(Cand.SU, Cand.AtTop),
3037                 TryCand, Cand, Weak))
3038       return;
3039   }
3040 
3041   // Avoid increasing the max pressure of the entire region.
3042   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3043                                                Cand.RPDelta.CurrentMax,
3044                                                TryCand, Cand, RegMax, TRI,
3045                                                DAG->MF))
3046     return;
3047 
3048   if (SameBoundary) {
3049     // Avoid critical resource consumption and balance the schedule.
3050     TryCand.initResourceDelta(DAG, SchedModel);
3051     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3052                 TryCand, Cand, ResourceReduce))
3053       return;
3054     if (tryGreater(TryCand.ResDelta.DemandedResources,
3055                    Cand.ResDelta.DemandedResources,
3056                    TryCand, Cand, ResourceDemand))
3057       return;
3058 
3059     // Avoid serializing long latency dependence chains.
3060     // For acyclic path limited loops, latency was already checked above.
3061     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3062         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3063       return;
3064 
3065     // Fall through to original instruction order.
3066     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3067         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3068       TryCand.Reason = NodeOrder;
3069     }
3070   }
3071 }
3072 
3073 /// Pick the best candidate from the queue.
3074 ///
3075 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3076 /// DAG building. To adjust for the current scheduling location we need to
3077 /// maintain the number of vreg uses remaining to be top-scheduled.
3078 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3079                                          const CandPolicy &ZonePolicy,
3080                                          const RegPressureTracker &RPTracker,
3081                                          SchedCandidate &Cand) {
3082   // getMaxPressureDelta temporarily modifies the tracker.
3083   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3084 
3085   ReadyQueue &Q = Zone.Available;
3086   for (SUnit *SU : Q) {
3087 
3088     SchedCandidate TryCand(ZonePolicy);
3089     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3090     // Pass SchedBoundary only when comparing nodes from the same boundary.
3091     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3092     tryCandidate(Cand, TryCand, ZoneArg);
3093     if (TryCand.Reason != NoCand) {
3094       // Initialize resource delta if needed in case future heuristics query it.
3095       if (TryCand.ResDelta == SchedResourceDelta())
3096         TryCand.initResourceDelta(DAG, SchedModel);
3097       Cand.setBest(TryCand);
3098       LLVM_DEBUG(traceCandidate(Cand));
3099     }
3100   }
3101 }
3102 
3103 /// Pick the best candidate node from either the top or bottom queue.
3104 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3105   // Schedule as far as possible in the direction of no choice. This is most
3106   // efficient, but also provides the best heuristics for CriticalPSets.
3107   if (SUnit *SU = Bot.pickOnlyChoice()) {
3108     IsTopNode = false;
3109     tracePick(Only1, false);
3110     return SU;
3111   }
3112   if (SUnit *SU = Top.pickOnlyChoice()) {
3113     IsTopNode = true;
3114     tracePick(Only1, true);
3115     return SU;
3116   }
3117   // Set the bottom-up policy based on the state of the current bottom zone and
3118   // the instructions outside the zone, including the top zone.
3119   CandPolicy BotPolicy;
3120   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3121   // Set the top-down policy based on the state of the current top zone and
3122   // the instructions outside the zone, including the bottom zone.
3123   CandPolicy TopPolicy;
3124   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3125 
3126   // See if BotCand is still valid (because we previously scheduled from Top).
3127   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3128   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3129       BotCand.Policy != BotPolicy) {
3130     BotCand.reset(CandPolicy());
3131     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3132     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3133   } else {
3134     LLVM_DEBUG(traceCandidate(BotCand));
3135 #ifndef NDEBUG
3136     if (VerifyScheduling) {
3137       SchedCandidate TCand;
3138       TCand.reset(CandPolicy());
3139       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3140       assert(TCand.SU == BotCand.SU &&
3141              "Last pick result should correspond to re-picking right now");
3142     }
3143 #endif
3144   }
3145 
3146   // Check if the top Q has a better candidate.
3147   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3148   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3149       TopCand.Policy != TopPolicy) {
3150     TopCand.reset(CandPolicy());
3151     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3152     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3153   } else {
3154     LLVM_DEBUG(traceCandidate(TopCand));
3155 #ifndef NDEBUG
3156     if (VerifyScheduling) {
3157       SchedCandidate TCand;
3158       TCand.reset(CandPolicy());
3159       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3160       assert(TCand.SU == TopCand.SU &&
3161            "Last pick result should correspond to re-picking right now");
3162     }
3163 #endif
3164   }
3165 
3166   // Pick best from BotCand and TopCand.
3167   assert(BotCand.isValid());
3168   assert(TopCand.isValid());
3169   SchedCandidate Cand = BotCand;
3170   TopCand.Reason = NoCand;
3171   tryCandidate(Cand, TopCand, nullptr);
3172   if (TopCand.Reason != NoCand) {
3173     Cand.setBest(TopCand);
3174     LLVM_DEBUG(traceCandidate(Cand));
3175   }
3176 
3177   IsTopNode = Cand.AtTop;
3178   tracePick(Cand);
3179   return Cand.SU;
3180 }
3181 
3182 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3183 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3184   if (DAG->top() == DAG->bottom()) {
3185     assert(Top.Available.empty() && Top.Pending.empty() &&
3186            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3187     return nullptr;
3188   }
3189   SUnit *SU;
3190   do {
3191     if (RegionPolicy.OnlyTopDown) {
3192       SU = Top.pickOnlyChoice();
3193       if (!SU) {
3194         CandPolicy NoPolicy;
3195         TopCand.reset(NoPolicy);
3196         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3197         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3198         tracePick(TopCand);
3199         SU = TopCand.SU;
3200       }
3201       IsTopNode = true;
3202     } else if (RegionPolicy.OnlyBottomUp) {
3203       SU = Bot.pickOnlyChoice();
3204       if (!SU) {
3205         CandPolicy NoPolicy;
3206         BotCand.reset(NoPolicy);
3207         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3208         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3209         tracePick(BotCand);
3210         SU = BotCand.SU;
3211       }
3212       IsTopNode = false;
3213     } else {
3214       SU = pickNodeBidirectional(IsTopNode);
3215     }
3216   } while (SU->isScheduled);
3217 
3218   if (SU->isTopReady())
3219     Top.removeReady(SU);
3220   if (SU->isBottomReady())
3221     Bot.removeReady(SU);
3222 
3223   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3224                     << *SU->getInstr());
3225   return SU;
3226 }
3227 
3228 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3229   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3230   if (!isTop)
3231     ++InsertPos;
3232   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3233 
3234   // Find already scheduled copies with a single physreg dependence and move
3235   // them just above the scheduled instruction.
3236   for (SDep &Dep : Deps) {
3237     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3238       continue;
3239     SUnit *DepSU = Dep.getSUnit();
3240     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3241       continue;
3242     MachineInstr *Copy = DepSU->getInstr();
3243     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3244       continue;
3245     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3246                DAG->dumpNode(*Dep.getSUnit()));
3247     DAG->moveInstruction(Copy, InsertPos);
3248   }
3249 }
3250 
3251 /// Update the scheduler's state after scheduling a node. This is the same node
3252 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3253 /// update it's state based on the current cycle before MachineSchedStrategy
3254 /// does.
3255 ///
3256 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3257 /// them here. See comments in biasPhysReg.
3258 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3259   if (IsTopNode) {
3260     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3261     Top.bumpNode(SU);
3262     if (SU->hasPhysRegUses)
3263       reschedulePhysReg(SU, true);
3264   } else {
3265     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3266     Bot.bumpNode(SU);
3267     if (SU->hasPhysRegDefs)
3268       reschedulePhysReg(SU, false);
3269   }
3270 }
3271 
3272 /// Create the standard converging machine scheduler. This will be used as the
3273 /// default scheduler if the target does not set a default.
3274 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3275   ScheduleDAGMILive *DAG =
3276       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3277   // Register DAG post-processors.
3278   //
3279   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3280   // data and pass it to later mutations. Have a single mutation that gathers
3281   // the interesting nodes in one pass.
3282   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3283   return DAG;
3284 }
3285 
3286 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3287   return createGenericSchedLive(C);
3288 }
3289 
3290 static MachineSchedRegistry
3291 GenericSchedRegistry("converge", "Standard converging scheduler.",
3292                      createConveringSched);
3293 
3294 //===----------------------------------------------------------------------===//
3295 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3296 //===----------------------------------------------------------------------===//
3297 
3298 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3299   DAG = Dag;
3300   SchedModel = DAG->getSchedModel();
3301   TRI = DAG->TRI;
3302 
3303   Rem.init(DAG, SchedModel);
3304   Top.init(DAG, SchedModel, &Rem);
3305   BotRoots.clear();
3306 
3307   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3308   // or are disabled, then these HazardRecs will be disabled.
3309   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3310   if (!Top.HazardRec) {
3311     Top.HazardRec =
3312         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3313             Itin, DAG);
3314   }
3315 }
3316 
3317 void PostGenericScheduler::registerRoots() {
3318   Rem.CriticalPath = DAG->ExitSU.getDepth();
3319 
3320   // Some roots may not feed into ExitSU. Check all of them in case.
3321   for (const SUnit *SU : BotRoots) {
3322     if (SU->getDepth() > Rem.CriticalPath)
3323       Rem.CriticalPath = SU->getDepth();
3324   }
3325   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3326   if (DumpCriticalPathLength) {
3327     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3328   }
3329 }
3330 
3331 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3332 ///
3333 /// \param Cand provides the policy and current best candidate.
3334 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3335 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3336                                         SchedCandidate &TryCand) {
3337   // Initialize the candidate if needed.
3338   if (!Cand.isValid()) {
3339     TryCand.Reason = NodeOrder;
3340     return;
3341   }
3342 
3343   // Prioritize instructions that read unbuffered resources by stall cycles.
3344   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3345               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3346     return;
3347 
3348   // Keep clustered nodes together.
3349   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3350                  Cand.SU == DAG->getNextClusterSucc(),
3351                  TryCand, Cand, Cluster))
3352     return;
3353 
3354   // Avoid critical resource consumption and balance the schedule.
3355   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3356               TryCand, Cand, ResourceReduce))
3357     return;
3358   if (tryGreater(TryCand.ResDelta.DemandedResources,
3359                  Cand.ResDelta.DemandedResources,
3360                  TryCand, Cand, ResourceDemand))
3361     return;
3362 
3363   // Avoid serializing long latency dependence chains.
3364   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3365     return;
3366   }
3367 
3368   // Fall through to original instruction order.
3369   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3370     TryCand.Reason = NodeOrder;
3371 }
3372 
3373 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3374   ReadyQueue &Q = Top.Available;
3375   for (SUnit *SU : Q) {
3376     SchedCandidate TryCand(Cand.Policy);
3377     TryCand.SU = SU;
3378     TryCand.AtTop = true;
3379     TryCand.initResourceDelta(DAG, SchedModel);
3380     tryCandidate(Cand, TryCand);
3381     if (TryCand.Reason != NoCand) {
3382       Cand.setBest(TryCand);
3383       LLVM_DEBUG(traceCandidate(Cand));
3384     }
3385   }
3386 }
3387 
3388 /// Pick the next node to schedule.
3389 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3390   if (DAG->top() == DAG->bottom()) {
3391     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3392     return nullptr;
3393   }
3394   SUnit *SU;
3395   do {
3396     SU = Top.pickOnlyChoice();
3397     if (SU) {
3398       tracePick(Only1, true);
3399     } else {
3400       CandPolicy NoPolicy;
3401       SchedCandidate TopCand(NoPolicy);
3402       // Set the top-down policy based on the state of the current top zone and
3403       // the instructions outside the zone, including the bottom zone.
3404       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3405       pickNodeFromQueue(TopCand);
3406       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3407       tracePick(TopCand);
3408       SU = TopCand.SU;
3409     }
3410   } while (SU->isScheduled);
3411 
3412   IsTopNode = true;
3413   Top.removeReady(SU);
3414 
3415   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3416                     << *SU->getInstr());
3417   return SU;
3418 }
3419 
3420 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3421 /// scheduled/remaining flags in the DAG nodes.
3422 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3423   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3424   Top.bumpNode(SU);
3425 }
3426 
3427 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3428   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3429                            /*RemoveKillFlags=*/true);
3430 }
3431 
3432 //===----------------------------------------------------------------------===//
3433 // ILP Scheduler. Currently for experimental analysis of heuristics.
3434 //===----------------------------------------------------------------------===//
3435 
3436 namespace {
3437 
3438 /// Order nodes by the ILP metric.
3439 struct ILPOrder {
3440   const SchedDFSResult *DFSResult = nullptr;
3441   const BitVector *ScheduledTrees = nullptr;
3442   bool MaximizeILP;
3443 
3444   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3445 
3446   /// Apply a less-than relation on node priority.
3447   ///
3448   /// (Return true if A comes after B in the Q.)
3449   bool operator()(const SUnit *A, const SUnit *B) const {
3450     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3451     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3452     if (SchedTreeA != SchedTreeB) {
3453       // Unscheduled trees have lower priority.
3454       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3455         return ScheduledTrees->test(SchedTreeB);
3456 
3457       // Trees with shallower connections have have lower priority.
3458       if (DFSResult->getSubtreeLevel(SchedTreeA)
3459           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3460         return DFSResult->getSubtreeLevel(SchedTreeA)
3461           < DFSResult->getSubtreeLevel(SchedTreeB);
3462       }
3463     }
3464     if (MaximizeILP)
3465       return DFSResult->getILP(A) < DFSResult->getILP(B);
3466     else
3467       return DFSResult->getILP(A) > DFSResult->getILP(B);
3468   }
3469 };
3470 
3471 /// Schedule based on the ILP metric.
3472 class ILPScheduler : public MachineSchedStrategy {
3473   ScheduleDAGMILive *DAG = nullptr;
3474   ILPOrder Cmp;
3475 
3476   std::vector<SUnit*> ReadyQ;
3477 
3478 public:
3479   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3480 
3481   void initialize(ScheduleDAGMI *dag) override {
3482     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3483     DAG = static_cast<ScheduleDAGMILive*>(dag);
3484     DAG->computeDFSResult();
3485     Cmp.DFSResult = DAG->getDFSResult();
3486     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3487     ReadyQ.clear();
3488   }
3489 
3490   void registerRoots() override {
3491     // Restore the heap in ReadyQ with the updated DFS results.
3492     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3493   }
3494 
3495   /// Implement MachineSchedStrategy interface.
3496   /// -----------------------------------------
3497 
3498   /// Callback to select the highest priority node from the ready Q.
3499   SUnit *pickNode(bool &IsTopNode) override {
3500     if (ReadyQ.empty()) return nullptr;
3501     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3502     SUnit *SU = ReadyQ.back();
3503     ReadyQ.pop_back();
3504     IsTopNode = false;
3505     LLVM_DEBUG(dbgs() << "Pick node "
3506                       << "SU(" << SU->NodeNum << ") "
3507                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3508                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3509                       << " @"
3510                       << DAG->getDFSResult()->getSubtreeLevel(
3511                              DAG->getDFSResult()->getSubtreeID(SU))
3512                       << '\n'
3513                       << "Scheduling " << *SU->getInstr());
3514     return SU;
3515   }
3516 
3517   /// Scheduler callback to notify that a new subtree is scheduled.
3518   void scheduleTree(unsigned SubtreeID) override {
3519     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3520   }
3521 
3522   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3523   /// DFSResults, and resort the priority Q.
3524   void schedNode(SUnit *SU, bool IsTopNode) override {
3525     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3526   }
3527 
3528   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3529 
3530   void releaseBottomNode(SUnit *SU) override {
3531     ReadyQ.push_back(SU);
3532     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3533   }
3534 };
3535 
3536 } // end anonymous namespace
3537 
3538 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3539   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3540 }
3541 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3542   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3543 }
3544 
3545 static MachineSchedRegistry ILPMaxRegistry(
3546   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3547 static MachineSchedRegistry ILPMinRegistry(
3548   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3549 
3550 //===----------------------------------------------------------------------===//
3551 // Machine Instruction Shuffler for Correctness Testing
3552 //===----------------------------------------------------------------------===//
3553 
3554 #ifndef NDEBUG
3555 namespace {
3556 
3557 /// Apply a less-than relation on the node order, which corresponds to the
3558 /// instruction order prior to scheduling. IsReverse implements greater-than.
3559 template<bool IsReverse>
3560 struct SUnitOrder {
3561   bool operator()(SUnit *A, SUnit *B) const {
3562     if (IsReverse)
3563       return A->NodeNum > B->NodeNum;
3564     else
3565       return A->NodeNum < B->NodeNum;
3566   }
3567 };
3568 
3569 /// Reorder instructions as much as possible.
3570 class InstructionShuffler : public MachineSchedStrategy {
3571   bool IsAlternating;
3572   bool IsTopDown;
3573 
3574   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3575   // gives nodes with a higher number higher priority causing the latest
3576   // instructions to be scheduled first.
3577   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3578     TopQ;
3579 
3580   // When scheduling bottom-up, use greater-than as the queue priority.
3581   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3582     BottomQ;
3583 
3584 public:
3585   InstructionShuffler(bool alternate, bool topdown)
3586     : IsAlternating(alternate), IsTopDown(topdown) {}
3587 
3588   void initialize(ScheduleDAGMI*) override {
3589     TopQ.clear();
3590     BottomQ.clear();
3591   }
3592 
3593   /// Implement MachineSchedStrategy interface.
3594   /// -----------------------------------------
3595 
3596   SUnit *pickNode(bool &IsTopNode) override {
3597     SUnit *SU;
3598     if (IsTopDown) {
3599       do {
3600         if (TopQ.empty()) return nullptr;
3601         SU = TopQ.top();
3602         TopQ.pop();
3603       } while (SU->isScheduled);
3604       IsTopNode = true;
3605     } else {
3606       do {
3607         if (BottomQ.empty()) return nullptr;
3608         SU = BottomQ.top();
3609         BottomQ.pop();
3610       } while (SU->isScheduled);
3611       IsTopNode = false;
3612     }
3613     if (IsAlternating)
3614       IsTopDown = !IsTopDown;
3615     return SU;
3616   }
3617 
3618   void schedNode(SUnit *SU, bool IsTopNode) override {}
3619 
3620   void releaseTopNode(SUnit *SU) override {
3621     TopQ.push(SU);
3622   }
3623   void releaseBottomNode(SUnit *SU) override {
3624     BottomQ.push(SU);
3625   }
3626 };
3627 
3628 } // end anonymous namespace
3629 
3630 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3631   bool Alternate = !ForceTopDown && !ForceBottomUp;
3632   bool TopDown = !ForceBottomUp;
3633   assert((TopDown || !ForceTopDown) &&
3634          "-misched-topdown incompatible with -misched-bottomup");
3635   return new ScheduleDAGMILive(
3636       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3637 }
3638 
3639 static MachineSchedRegistry ShufflerRegistry(
3640   "shuffle", "Shuffle machine instructions alternating directions",
3641   createInstructionShuffler);
3642 #endif // !NDEBUG
3643 
3644 //===----------------------------------------------------------------------===//
3645 // GraphWriter support for ScheduleDAGMILive.
3646 //===----------------------------------------------------------------------===//
3647 
3648 #ifndef NDEBUG
3649 namespace llvm {
3650 
3651 template<> struct GraphTraits<
3652   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3653 
3654 template<>
3655 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3656   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3657 
3658   static std::string getGraphName(const ScheduleDAG *G) {
3659     return G->MF.getName();
3660   }
3661 
3662   static bool renderGraphFromBottomUp() {
3663     return true;
3664   }
3665 
3666   static bool isNodeHidden(const SUnit *Node) {
3667     if (ViewMISchedCutoff == 0)
3668       return false;
3669     return (Node->Preds.size() > ViewMISchedCutoff
3670          || Node->Succs.size() > ViewMISchedCutoff);
3671   }
3672 
3673   /// If you want to override the dot attributes printed for a particular
3674   /// edge, override this method.
3675   static std::string getEdgeAttributes(const SUnit *Node,
3676                                        SUnitIterator EI,
3677                                        const ScheduleDAG *Graph) {
3678     if (EI.isArtificialDep())
3679       return "color=cyan,style=dashed";
3680     if (EI.isCtrlDep())
3681       return "color=blue,style=dashed";
3682     return "";
3683   }
3684 
3685   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3686     std::string Str;
3687     raw_string_ostream SS(Str);
3688     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3689     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3690       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3691     SS << "SU:" << SU->NodeNum;
3692     if (DFS)
3693       SS << " I:" << DFS->getNumInstrs(SU);
3694     return SS.str();
3695   }
3696 
3697   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3698     return G->getGraphNodeLabel(SU);
3699   }
3700 
3701   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3702     std::string Str("shape=Mrecord");
3703     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3704     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3705       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3706     if (DFS) {
3707       Str += ",style=filled,fillcolor=\"#";
3708       Str += DOT::getColorString(DFS->getSubtreeID(N));
3709       Str += '"';
3710     }
3711     return Str;
3712   }
3713 };
3714 
3715 } // end namespace llvm
3716 #endif // NDEBUG
3717 
3718 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3719 /// rendered using 'dot'.
3720 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3721 #ifndef NDEBUG
3722   ViewGraph(this, Name, false, Title);
3723 #else
3724   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3725          << "systems with Graphviz or gv!\n";
3726 #endif  // NDEBUG
3727 }
3728 
3729 /// Out-of-line implementation with no arguments is handy for gdb.
3730 void ScheduleDAGMI::viewGraph() {
3731   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3732 }
3733