1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 // Experimental heuristics 84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 85 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 86 87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 // DAG subtrees must have at least this many nodes. 91 static const unsigned MinSubtreeSize = 8; 92 93 // Pin the vtables to this file. 94 void MachineSchedStrategy::anchor() {} 95 void ScheduleDAGMutation::anchor() {} 96 97 //===----------------------------------------------------------------------===// 98 // Machine Instruction Scheduling Pass and Registry 99 //===----------------------------------------------------------------------===// 100 101 MachineSchedContext::MachineSchedContext(): 102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 103 RegClassInfo = new RegisterClassInfo(); 104 } 105 106 MachineSchedContext::~MachineSchedContext() { 107 delete RegClassInfo; 108 } 109 110 namespace { 111 /// Base class for a machine scheduler class that can run at any point. 112 class MachineSchedulerBase : public MachineSchedContext, 113 public MachineFunctionPass { 114 public: 115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 116 117 void print(raw_ostream &O, const Module* = nullptr) const override; 118 119 protected: 120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 121 }; 122 123 /// MachineScheduler runs after coalescing and before register allocation. 124 class MachineScheduler : public MachineSchedulerBase { 125 public: 126 MachineScheduler(); 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override; 129 130 bool runOnMachineFunction(MachineFunction&) override; 131 132 static char ID; // Class identification, replacement for typeinfo 133 134 protected: 135 ScheduleDAGInstrs *createMachineScheduler(); 136 }; 137 138 /// PostMachineScheduler runs after shortly before code emission. 139 class PostMachineScheduler : public MachineSchedulerBase { 140 public: 141 PostMachineScheduler(); 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override; 144 145 bool runOnMachineFunction(MachineFunction&) override; 146 147 static char ID; // Class identification, replacement for typeinfo 148 149 protected: 150 ScheduleDAGInstrs *createPostMachineScheduler(); 151 }; 152 } // namespace 153 154 char MachineScheduler::ID = 0; 155 156 char &llvm::MachineSchedulerID = MachineScheduler::ID; 157 158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 159 "Machine Instruction Scheduler", false, false) 160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 164 "Machine Instruction Scheduler", false, false) 165 166 MachineScheduler::MachineScheduler() 167 : MachineSchedulerBase(ID) { 168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.setPreservesCFG(); 173 AU.addRequiredID(MachineDominatorsID); 174 AU.addRequired<MachineLoopInfo>(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<SlotIndexes>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveIntervals>(); 180 AU.addPreserved<LiveIntervals>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 char PostMachineScheduler::ID = 0; 185 186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 187 188 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 189 "PostRA Machine Instruction Scheduler", false, false) 190 191 PostMachineScheduler::PostMachineScheduler() 192 : MachineSchedulerBase(ID) { 193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequiredID(MachineDominatorsID); 199 AU.addRequired<MachineLoopInfo>(); 200 AU.addRequired<TargetPassConfig>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 MachinePassRegistry MachineSchedRegistry::Registry; 205 206 /// A dummy default scheduler factory indicates whether the scheduler 207 /// is overridden on the command line. 208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 209 return nullptr; 210 } 211 212 /// MachineSchedOpt allows command line selection of the scheduler. 213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 214 RegisterPassParser<MachineSchedRegistry> > 215 MachineSchedOpt("misched", 216 cl::init(&useDefaultMachineSched), cl::Hidden, 217 cl::desc("Machine instruction scheduler to use")); 218 219 static MachineSchedRegistry 220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 221 useDefaultMachineSched); 222 223 static cl::opt<bool> EnableMachineSched( 224 "enable-misched", 225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 226 cl::Hidden); 227 228 static cl::opt<bool> EnablePostRAMachineSched( 229 "enable-post-misched", 230 cl::desc("Enable the post-ra machine instruction scheduling pass."), 231 cl::init(true), cl::Hidden); 232 233 /// Forward declare the standard machine scheduler. This will be used as the 234 /// default scheduler if the target does not set a default. 235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 237 238 /// Decrement this iterator until reaching the top or a non-debug instr. 239 static MachineBasicBlock::const_iterator 240 priorNonDebug(MachineBasicBlock::const_iterator I, 241 MachineBasicBlock::const_iterator Beg) { 242 assert(I != Beg && "reached the top of the region, cannot decrement"); 243 while (--I != Beg) { 244 if (!I->isDebugValue()) 245 break; 246 } 247 return I; 248 } 249 250 /// Non-const version. 251 static MachineBasicBlock::iterator 252 priorNonDebug(MachineBasicBlock::iterator I, 253 MachineBasicBlock::const_iterator Beg) { 254 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 255 .getNonConstIterator(); 256 } 257 258 /// If this iterator is a debug value, increment until reaching the End or a 259 /// non-debug instruction. 260 static MachineBasicBlock::const_iterator 261 nextIfDebug(MachineBasicBlock::const_iterator I, 262 MachineBasicBlock::const_iterator End) { 263 for(; I != End; ++I) { 264 if (!I->isDebugValue()) 265 break; 266 } 267 return I; 268 } 269 270 /// Non-const version. 271 static MachineBasicBlock::iterator 272 nextIfDebug(MachineBasicBlock::iterator I, 273 MachineBasicBlock::const_iterator End) { 274 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 275 .getNonConstIterator(); 276 } 277 278 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 279 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 280 // Select the scheduler, or set the default. 281 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 282 if (Ctor != useDefaultMachineSched) 283 return Ctor(this); 284 285 // Get the default scheduler set by the target for this function. 286 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 287 if (Scheduler) 288 return Scheduler; 289 290 // Default to GenericScheduler. 291 return createGenericSchedLive(this); 292 } 293 294 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 295 /// the caller. We don't have a command line option to override the postRA 296 /// scheduler. The Target must configure it. 297 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 298 // Get the postRA scheduler set by the target for this function. 299 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 300 if (Scheduler) 301 return Scheduler; 302 303 // Default to GenericScheduler. 304 return createGenericSchedPostRA(this); 305 } 306 307 /// Top-level MachineScheduler pass driver. 308 /// 309 /// Visit blocks in function order. Divide each block into scheduling regions 310 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 311 /// consistent with the DAG builder, which traverses the interior of the 312 /// scheduling regions bottom-up. 313 /// 314 /// This design avoids exposing scheduling boundaries to the DAG builder, 315 /// simplifying the DAG builder's support for "special" target instructions. 316 /// At the same time the design allows target schedulers to operate across 317 /// scheduling boundaries, for example to bundle the boudary instructions 318 /// without reordering them. This creates complexity, because the target 319 /// scheduler must update the RegionBegin and RegionEnd positions cached by 320 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 321 /// design would be to split blocks at scheduling boundaries, but LLVM has a 322 /// general bias against block splitting purely for implementation simplicity. 323 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 324 if (skipFunction(*mf.getFunction())) 325 return false; 326 327 if (EnableMachineSched.getNumOccurrences()) { 328 if (!EnableMachineSched) 329 return false; 330 } else if (!mf.getSubtarget().enableMachineScheduler()) 331 return false; 332 333 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 334 335 // Initialize the context of the pass. 336 MF = &mf; 337 MLI = &getAnalysis<MachineLoopInfo>(); 338 MDT = &getAnalysis<MachineDominatorTree>(); 339 PassConfig = &getAnalysis<TargetPassConfig>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 LIS = &getAnalysis<LiveIntervals>(); 343 344 if (VerifyScheduling) { 345 DEBUG(LIS->dump()); 346 MF->verify(this, "Before machine scheduling."); 347 } 348 RegClassInfo->runOnMachineFunction(*MF); 349 350 // Instantiate the selected scheduler for this target, function, and 351 // optimization level. 352 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 353 scheduleRegions(*Scheduler, false); 354 355 DEBUG(LIS->dump()); 356 if (VerifyScheduling) 357 MF->verify(this, "After machine scheduling."); 358 return true; 359 } 360 361 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 362 if (skipFunction(*mf.getFunction())) 363 return false; 364 365 if (EnablePostRAMachineSched.getNumOccurrences()) { 366 if (!EnablePostRAMachineSched) 367 return false; 368 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 369 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 370 return false; 371 } 372 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 PassConfig = &getAnalysis<TargetPassConfig>(); 377 378 if (VerifyScheduling) 379 MF->verify(this, "Before post machine scheduling."); 380 381 // Instantiate the selected scheduler for this target, function, and 382 // optimization level. 383 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 384 scheduleRegions(*Scheduler, true); 385 386 if (VerifyScheduling) 387 MF->verify(this, "After post machine scheduling."); 388 return true; 389 } 390 391 /// Return true of the given instruction should not be included in a scheduling 392 /// region. 393 /// 394 /// MachineScheduler does not currently support scheduling across calls. To 395 /// handle calls, the DAG builder needs to be modified to create register 396 /// anti/output dependencies on the registers clobbered by the call's regmask 397 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 398 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 399 /// the boundary, but there would be no benefit to postRA scheduling across 400 /// calls this late anyway. 401 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 402 MachineBasicBlock *MBB, 403 MachineFunction *MF, 404 const TargetInstrInfo *TII) { 405 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 406 } 407 408 /// Main driver for both MachineScheduler and PostMachineScheduler. 409 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 410 bool FixKillFlags) { 411 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 412 413 // Visit all machine basic blocks. 414 // 415 // TODO: Visit blocks in global postorder or postorder within the bottom-up 416 // loop tree. Then we can optionally compute global RegPressure. 417 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 418 MBB != MBBEnd; ++MBB) { 419 420 Scheduler.startBlock(&*MBB); 421 422 #ifndef NDEBUG 423 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 424 continue; 425 if (SchedOnlyBlock.getNumOccurrences() 426 && (int)SchedOnlyBlock != MBB->getNumber()) 427 continue; 428 #endif 429 430 // Break the block into scheduling regions [I, RegionEnd), and schedule each 431 // region as soon as it is discovered. RegionEnd points the scheduling 432 // boundary at the bottom of the region. The DAG does not include RegionEnd, 433 // but the region does (i.e. the next RegionEnd is above the previous 434 // RegionBegin). If the current block has no terminator then RegionEnd == 435 // MBB->end() for the bottom region. 436 // 437 // The Scheduler may insert instructions during either schedule() or 438 // exitRegion(), even for empty regions. So the local iterators 'I' and 439 // 'RegionEnd' are invalid across these calls. 440 // 441 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 442 // as a single instruction. 443 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 444 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 445 446 // Avoid decrementing RegionEnd for blocks with no terminator. 447 if (RegionEnd != MBB->end() || 448 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 449 --RegionEnd; 450 } 451 452 // The next region starts above the previous region. Look backward in the 453 // instruction stream until we find the nearest boundary. 454 unsigned NumRegionInstrs = 0; 455 MachineBasicBlock::iterator I = RegionEnd; 456 for (;I != MBB->begin(); --I) { 457 MachineInstr &MI = *std::prev(I); 458 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 459 break; 460 if (!MI.isDebugValue()) 461 ++NumRegionInstrs; 462 } 463 // Notify the scheduler of the region, even if we may skip scheduling 464 // it. Perhaps it still needs to be bundled. 465 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 466 467 // Skip empty scheduling regions (0 or 1 schedulable instructions). 468 if (I == RegionEnd || I == std::prev(RegionEnd)) { 469 // Close the current region. Bundle the terminator if needed. 470 // This invalidates 'RegionEnd' and 'I'. 471 Scheduler.exitRegion(); 472 continue; 473 } 474 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 475 DEBUG(dbgs() << MF->getName() 476 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 477 << "\n From: " << *I << " To: "; 478 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 479 else dbgs() << "End"; 480 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 481 if (DumpCriticalPathLength) { 482 errs() << MF->getName(); 483 errs() << ":BB# " << MBB->getNumber(); 484 errs() << " " << MBB->getName() << " \n"; 485 } 486 487 // Schedule a region: possibly reorder instructions. 488 // This invalidates 'RegionEnd' and 'I'. 489 Scheduler.schedule(); 490 491 // Close the current region. 492 Scheduler.exitRegion(); 493 494 // Scheduling has invalidated the current iterator 'I'. Ask the 495 // scheduler for the top of it's scheduled region. 496 RegionEnd = Scheduler.begin(); 497 } 498 Scheduler.finishBlock(); 499 // FIXME: Ideally, no further passes should rely on kill flags. However, 500 // thumb2 size reduction is currently an exception, so the PostMIScheduler 501 // needs to do this. 502 if (FixKillFlags) 503 Scheduler.fixupKills(&*MBB); 504 } 505 Scheduler.finalizeSchedule(); 506 } 507 508 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 509 // unimplemented 510 } 511 512 LLVM_DUMP_METHOD 513 void ReadyQueue::dump() { 514 dbgs() << "Queue " << Name << ": "; 515 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 516 dbgs() << Queue[i]->NodeNum << " "; 517 dbgs() << "\n"; 518 } 519 520 //===----------------------------------------------------------------------===// 521 // ScheduleDAGMI - Basic machine instruction scheduling. This is 522 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 523 // virtual registers. 524 // ===----------------------------------------------------------------------===/ 525 526 // Provide a vtable anchor. 527 ScheduleDAGMI::~ScheduleDAGMI() { 528 } 529 530 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 531 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 532 } 533 534 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 535 if (SuccSU != &ExitSU) { 536 // Do not use WillCreateCycle, it assumes SD scheduling. 537 // If Pred is reachable from Succ, then the edge creates a cycle. 538 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 539 return false; 540 Topo.AddPred(SuccSU, PredDep.getSUnit()); 541 } 542 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 543 // Return true regardless of whether a new edge needed to be inserted. 544 return true; 545 } 546 547 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 548 /// NumPredsLeft reaches zero, release the successor node. 549 /// 550 /// FIXME: Adjust SuccSU height based on MinLatency. 551 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 552 SUnit *SuccSU = SuccEdge->getSUnit(); 553 554 if (SuccEdge->isWeak()) { 555 --SuccSU->WeakPredsLeft; 556 if (SuccEdge->isCluster()) 557 NextClusterSucc = SuccSU; 558 return; 559 } 560 #ifndef NDEBUG 561 if (SuccSU->NumPredsLeft == 0) { 562 dbgs() << "*** Scheduling failed! ***\n"; 563 SuccSU->dump(this); 564 dbgs() << " has been released too many times!\n"; 565 llvm_unreachable(nullptr); 566 } 567 #endif 568 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 569 // CurrCycle may have advanced since then. 570 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 571 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 572 573 --SuccSU->NumPredsLeft; 574 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 575 SchedImpl->releaseTopNode(SuccSU); 576 } 577 578 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 579 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 580 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 581 I != E; ++I) { 582 releaseSucc(SU, &*I); 583 } 584 } 585 586 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 587 /// NumSuccsLeft reaches zero, release the predecessor node. 588 /// 589 /// FIXME: Adjust PredSU height based on MinLatency. 590 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 591 SUnit *PredSU = PredEdge->getSUnit(); 592 593 if (PredEdge->isWeak()) { 594 --PredSU->WeakSuccsLeft; 595 if (PredEdge->isCluster()) 596 NextClusterPred = PredSU; 597 return; 598 } 599 #ifndef NDEBUG 600 if (PredSU->NumSuccsLeft == 0) { 601 dbgs() << "*** Scheduling failed! ***\n"; 602 PredSU->dump(this); 603 dbgs() << " has been released too many times!\n"; 604 llvm_unreachable(nullptr); 605 } 606 #endif 607 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 608 // CurrCycle may have advanced since then. 609 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 610 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 611 612 --PredSU->NumSuccsLeft; 613 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 614 SchedImpl->releaseBottomNode(PredSU); 615 } 616 617 /// releasePredecessors - Call releasePred on each of SU's predecessors. 618 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 619 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 620 I != E; ++I) { 621 releasePred(SU, &*I); 622 } 623 } 624 625 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 626 /// crossing a scheduling boundary. [begin, end) includes all instructions in 627 /// the region, including the boundary itself and single-instruction regions 628 /// that don't get scheduled. 629 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 630 MachineBasicBlock::iterator begin, 631 MachineBasicBlock::iterator end, 632 unsigned regioninstrs) 633 { 634 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 635 636 SchedImpl->initPolicy(begin, end, regioninstrs); 637 } 638 639 /// This is normally called from the main scheduler loop but may also be invoked 640 /// by the scheduling strategy to perform additional code motion. 641 void ScheduleDAGMI::moveInstruction( 642 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 643 // Advance RegionBegin if the first instruction moves down. 644 if (&*RegionBegin == MI) 645 ++RegionBegin; 646 647 // Update the instruction stream. 648 BB->splice(InsertPos, BB, MI); 649 650 // Update LiveIntervals 651 if (LIS) 652 LIS->handleMove(*MI, /*UpdateFlags=*/true); 653 654 // Recede RegionBegin if an instruction moves above the first. 655 if (RegionBegin == InsertPos) 656 RegionBegin = MI; 657 } 658 659 bool ScheduleDAGMI::checkSchedLimit() { 660 #ifndef NDEBUG 661 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 662 CurrentTop = CurrentBottom; 663 return false; 664 } 665 ++NumInstrsScheduled; 666 #endif 667 return true; 668 } 669 670 /// Per-region scheduling driver, called back from 671 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 672 /// does not consider liveness or register pressure. It is useful for PostRA 673 /// scheduling and potentially other custom schedulers. 674 void ScheduleDAGMI::schedule() { 675 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 676 DEBUG(SchedImpl->dumpPolicy()); 677 678 // Build the DAG. 679 buildSchedGraph(AA); 680 681 Topo.InitDAGTopologicalSorting(); 682 683 postprocessDAG(); 684 685 SmallVector<SUnit*, 8> TopRoots, BotRoots; 686 findRootsAndBiasEdges(TopRoots, BotRoots); 687 688 // Initialize the strategy before modifying the DAG. 689 // This may initialize a DFSResult to be used for queue priority. 690 SchedImpl->initialize(this); 691 692 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 693 SUnits[su].dumpAll(this)); 694 if (ViewMISchedDAGs) viewGraph(); 695 696 // Initialize ready queues now that the DAG and priority data are finalized. 697 initQueues(TopRoots, BotRoots); 698 699 bool IsTopNode = false; 700 while (true) { 701 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 702 SUnit *SU = SchedImpl->pickNode(IsTopNode); 703 if (!SU) break; 704 705 assert(!SU->isScheduled && "Node already scheduled"); 706 if (!checkSchedLimit()) 707 break; 708 709 MachineInstr *MI = SU->getInstr(); 710 if (IsTopNode) { 711 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 712 if (&*CurrentTop == MI) 713 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 714 else 715 moveInstruction(MI, CurrentTop); 716 } else { 717 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 718 MachineBasicBlock::iterator priorII = 719 priorNonDebug(CurrentBottom, CurrentTop); 720 if (&*priorII == MI) 721 CurrentBottom = priorII; 722 else { 723 if (&*CurrentTop == MI) 724 CurrentTop = nextIfDebug(++CurrentTop, priorII); 725 moveInstruction(MI, CurrentBottom); 726 CurrentBottom = MI; 727 } 728 } 729 // Notify the scheduling strategy before updating the DAG. 730 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 731 // runs, it can then use the accurate ReadyCycle time to determine whether 732 // newly released nodes can move to the readyQ. 733 SchedImpl->schedNode(SU, IsTopNode); 734 735 updateQueues(SU, IsTopNode); 736 } 737 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 738 739 placeDebugValues(); 740 741 DEBUG({ 742 unsigned BBNum = begin()->getParent()->getNumber(); 743 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 744 dumpSchedule(); 745 dbgs() << '\n'; 746 }); 747 } 748 749 /// Apply each ScheduleDAGMutation step in order. 750 void ScheduleDAGMI::postprocessDAG() { 751 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 752 Mutations[i]->apply(this); 753 } 754 } 755 756 void ScheduleDAGMI:: 757 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 758 SmallVectorImpl<SUnit*> &BotRoots) { 759 for (std::vector<SUnit>::iterator 760 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 761 SUnit *SU = &(*I); 762 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 763 764 // Order predecessors so DFSResult follows the critical path. 765 SU->biasCriticalPath(); 766 767 // A SUnit is ready to top schedule if it has no predecessors. 768 if (!I->NumPredsLeft) 769 TopRoots.push_back(SU); 770 // A SUnit is ready to bottom schedule if it has no successors. 771 if (!I->NumSuccsLeft) 772 BotRoots.push_back(SU); 773 } 774 ExitSU.biasCriticalPath(); 775 } 776 777 /// Identify DAG roots and setup scheduler queues. 778 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 779 ArrayRef<SUnit*> BotRoots) { 780 NextClusterSucc = nullptr; 781 NextClusterPred = nullptr; 782 783 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 784 // 785 // Nodes with unreleased weak edges can still be roots. 786 // Release top roots in forward order. 787 for (SmallVectorImpl<SUnit*>::const_iterator 788 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 789 SchedImpl->releaseTopNode(*I); 790 } 791 // Release bottom roots in reverse order so the higher priority nodes appear 792 // first. This is more natural and slightly more efficient. 793 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 794 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 795 SchedImpl->releaseBottomNode(*I); 796 } 797 798 releaseSuccessors(&EntrySU); 799 releasePredecessors(&ExitSU); 800 801 SchedImpl->registerRoots(); 802 803 // Advance past initial DebugValues. 804 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 805 CurrentBottom = RegionEnd; 806 } 807 808 /// Update scheduler queues after scheduling an instruction. 809 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 810 // Release dependent instructions for scheduling. 811 if (IsTopNode) 812 releaseSuccessors(SU); 813 else 814 releasePredecessors(SU); 815 816 SU->isScheduled = true; 817 } 818 819 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 820 void ScheduleDAGMI::placeDebugValues() { 821 // If first instruction was a DBG_VALUE then put it back. 822 if (FirstDbgValue) { 823 BB->splice(RegionBegin, BB, FirstDbgValue); 824 RegionBegin = FirstDbgValue; 825 } 826 827 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 828 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 829 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 830 MachineInstr *DbgValue = P.first; 831 MachineBasicBlock::iterator OrigPrevMI = P.second; 832 if (&*RegionBegin == DbgValue) 833 ++RegionBegin; 834 BB->splice(++OrigPrevMI, BB, DbgValue); 835 if (OrigPrevMI == std::prev(RegionEnd)) 836 RegionEnd = DbgValue; 837 } 838 DbgValues.clear(); 839 FirstDbgValue = nullptr; 840 } 841 842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 843 void ScheduleDAGMI::dumpSchedule() const { 844 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 845 if (SUnit *SU = getSUnit(&(*MI))) 846 SU->dump(this); 847 else 848 dbgs() << "Missing SUnit\n"; 849 } 850 } 851 #endif 852 853 //===----------------------------------------------------------------------===// 854 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 855 // preservation. 856 //===----------------------------------------------------------------------===// 857 858 ScheduleDAGMILive::~ScheduleDAGMILive() { 859 delete DFSResult; 860 } 861 862 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 863 /// crossing a scheduling boundary. [begin, end) includes all instructions in 864 /// the region, including the boundary itself and single-instruction regions 865 /// that don't get scheduled. 866 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 867 MachineBasicBlock::iterator begin, 868 MachineBasicBlock::iterator end, 869 unsigned regioninstrs) 870 { 871 // ScheduleDAGMI initializes SchedImpl's per-region policy. 872 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 873 874 // For convenience remember the end of the liveness region. 875 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 876 877 SUPressureDiffs.clear(); 878 879 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 880 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 881 882 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 883 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 884 } 885 886 // Setup the register pressure trackers for the top scheduled top and bottom 887 // scheduled regions. 888 void ScheduleDAGMILive::initRegPressure() { 889 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 890 ShouldTrackLaneMasks, false); 891 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 892 ShouldTrackLaneMasks, false); 893 894 // Close the RPTracker to finalize live ins. 895 RPTracker.closeRegion(); 896 897 DEBUG(RPTracker.dump()); 898 899 // Initialize the live ins and live outs. 900 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 901 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 902 903 // Close one end of the tracker so we can call 904 // getMaxUpward/DownwardPressureDelta before advancing across any 905 // instructions. This converts currently live regs into live ins/outs. 906 TopRPTracker.closeTop(); 907 BotRPTracker.closeBottom(); 908 909 BotRPTracker.initLiveThru(RPTracker); 910 if (!BotRPTracker.getLiveThru().empty()) { 911 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 912 DEBUG(dbgs() << "Live Thru: "; 913 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 914 }; 915 916 // For each live out vreg reduce the pressure change associated with other 917 // uses of the same vreg below the live-out reaching def. 918 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 919 920 // Account for liveness generated by the region boundary. 921 if (LiveRegionEnd != RegionEnd) { 922 SmallVector<RegisterMaskPair, 8> LiveUses; 923 BotRPTracker.recede(&LiveUses); 924 updatePressureDiffs(LiveUses); 925 } 926 927 DEBUG( 928 dbgs() << "Top Pressure:\n"; 929 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 930 dbgs() << "Bottom Pressure:\n"; 931 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 932 ); 933 934 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 935 936 // Cache the list of excess pressure sets in this region. This will also track 937 // the max pressure in the scheduled code for these sets. 938 RegionCriticalPSets.clear(); 939 const std::vector<unsigned> &RegionPressure = 940 RPTracker.getPressure().MaxSetPressure; 941 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 942 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 943 if (RegionPressure[i] > Limit) { 944 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 945 << " Limit " << Limit 946 << " Actual " << RegionPressure[i] << "\n"); 947 RegionCriticalPSets.push_back(PressureChange(i)); 948 } 949 } 950 DEBUG(dbgs() << "Excess PSets: "; 951 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 952 dbgs() << TRI->getRegPressureSetName( 953 RegionCriticalPSets[i].getPSet()) << " "; 954 dbgs() << "\n"); 955 } 956 957 void ScheduleDAGMILive:: 958 updateScheduledPressure(const SUnit *SU, 959 const std::vector<unsigned> &NewMaxPressure) { 960 const PressureDiff &PDiff = getPressureDiff(SU); 961 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 962 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 963 I != E; ++I) { 964 if (!I->isValid()) 965 break; 966 unsigned ID = I->getPSet(); 967 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 968 ++CritIdx; 969 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 970 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 971 && NewMaxPressure[ID] <= INT16_MAX) 972 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 973 } 974 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 975 if (NewMaxPressure[ID] >= Limit - 2) { 976 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 977 << NewMaxPressure[ID] 978 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 979 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 980 } 981 } 982 } 983 984 /// Update the PressureDiff array for liveness after scheduling this 985 /// instruction. 986 void ScheduleDAGMILive::updatePressureDiffs( 987 ArrayRef<RegisterMaskPair> LiveUses) { 988 for (const RegisterMaskPair &P : LiveUses) { 989 unsigned Reg = P.RegUnit; 990 /// FIXME: Currently assuming single-use physregs. 991 if (!TRI->isVirtualRegister(Reg)) 992 continue; 993 994 if (ShouldTrackLaneMasks) { 995 // If the register has just become live then other uses won't change 996 // this fact anymore => decrement pressure. 997 // If the register has just become dead then other uses make it come 998 // back to life => increment pressure. 999 bool Decrement = P.LaneMask != 0; 1000 1001 for (const VReg2SUnit &V2SU 1002 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1003 SUnit &SU = *V2SU.SU; 1004 if (SU.isScheduled || &SU == &ExitSU) 1005 continue; 1006 1007 PressureDiff &PDiff = getPressureDiff(&SU); 1008 PDiff.addPressureChange(Reg, Decrement, &MRI); 1009 DEBUG( 1010 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1011 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1012 << ' ' << *SU.getInstr(); 1013 dbgs() << " to "; 1014 PDiff.dump(*TRI); 1015 ); 1016 } 1017 } else { 1018 assert(P.LaneMask != 0); 1019 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1020 // This may be called before CurrentBottom has been initialized. However, 1021 // BotRPTracker must have a valid position. We want the value live into the 1022 // instruction or live out of the block, so ask for the previous 1023 // instruction's live-out. 1024 const LiveInterval &LI = LIS->getInterval(Reg); 1025 VNInfo *VNI; 1026 MachineBasicBlock::const_iterator I = 1027 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1028 if (I == BB->end()) 1029 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1030 else { 1031 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1032 VNI = LRQ.valueIn(); 1033 } 1034 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1035 assert(VNI && "No live value at use."); 1036 for (const VReg2SUnit &V2SU 1037 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1038 SUnit *SU = V2SU.SU; 1039 // If this use comes before the reaching def, it cannot be a last use, 1040 // so decrease its pressure change. 1041 if (!SU->isScheduled && SU != &ExitSU) { 1042 LiveQueryResult LRQ = 1043 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1044 if (LRQ.valueIn() == VNI) { 1045 PressureDiff &PDiff = getPressureDiff(SU); 1046 PDiff.addPressureChange(Reg, true, &MRI); 1047 DEBUG( 1048 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1049 << *SU->getInstr(); 1050 dbgs() << " to "; 1051 PDiff.dump(*TRI); 1052 ); 1053 } 1054 } 1055 } 1056 } 1057 } 1058 } 1059 1060 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1061 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1062 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1063 /// 1064 /// This is a skeletal driver, with all the functionality pushed into helpers, 1065 /// so that it can be easily extended by experimental schedulers. Generally, 1066 /// implementing MachineSchedStrategy should be sufficient to implement a new 1067 /// scheduling algorithm. However, if a scheduler further subclasses 1068 /// ScheduleDAGMILive then it will want to override this virtual method in order 1069 /// to update any specialized state. 1070 void ScheduleDAGMILive::schedule() { 1071 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1072 DEBUG(SchedImpl->dumpPolicy()); 1073 buildDAGWithRegPressure(); 1074 1075 Topo.InitDAGTopologicalSorting(); 1076 1077 postprocessDAG(); 1078 1079 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1080 findRootsAndBiasEdges(TopRoots, BotRoots); 1081 1082 // Initialize the strategy before modifying the DAG. 1083 // This may initialize a DFSResult to be used for queue priority. 1084 SchedImpl->initialize(this); 1085 1086 DEBUG( 1087 for (const SUnit &SU : SUnits) { 1088 SU.dumpAll(this); 1089 if (ShouldTrackPressure) { 1090 dbgs() << " Pressure Diff : "; 1091 getPressureDiff(&SU).dump(*TRI); 1092 } 1093 dbgs() << '\n'; 1094 } 1095 ); 1096 if (ViewMISchedDAGs) viewGraph(); 1097 1098 // Initialize ready queues now that the DAG and priority data are finalized. 1099 initQueues(TopRoots, BotRoots); 1100 1101 bool IsTopNode = false; 1102 while (true) { 1103 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1104 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1105 if (!SU) break; 1106 1107 assert(!SU->isScheduled && "Node already scheduled"); 1108 if (!checkSchedLimit()) 1109 break; 1110 1111 scheduleMI(SU, IsTopNode); 1112 1113 if (DFSResult) { 1114 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1115 if (!ScheduledTrees.test(SubtreeID)) { 1116 ScheduledTrees.set(SubtreeID); 1117 DFSResult->scheduleTree(SubtreeID); 1118 SchedImpl->scheduleTree(SubtreeID); 1119 } 1120 } 1121 1122 // Notify the scheduling strategy after updating the DAG. 1123 SchedImpl->schedNode(SU, IsTopNode); 1124 1125 updateQueues(SU, IsTopNode); 1126 } 1127 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1128 1129 placeDebugValues(); 1130 1131 DEBUG({ 1132 unsigned BBNum = begin()->getParent()->getNumber(); 1133 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1134 dumpSchedule(); 1135 dbgs() << '\n'; 1136 }); 1137 } 1138 1139 /// Build the DAG and setup three register pressure trackers. 1140 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1141 if (!ShouldTrackPressure) { 1142 RPTracker.reset(); 1143 RegionCriticalPSets.clear(); 1144 buildSchedGraph(AA); 1145 return; 1146 } 1147 1148 // Initialize the register pressure tracker used by buildSchedGraph. 1149 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1150 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1151 1152 // Account for liveness generate by the region boundary. 1153 if (LiveRegionEnd != RegionEnd) 1154 RPTracker.recede(); 1155 1156 // Build the DAG, and compute current register pressure. 1157 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1158 1159 // Initialize top/bottom trackers after computing region pressure. 1160 initRegPressure(); 1161 } 1162 1163 void ScheduleDAGMILive::computeDFSResult() { 1164 if (!DFSResult) 1165 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1166 DFSResult->clear(); 1167 ScheduledTrees.clear(); 1168 DFSResult->resize(SUnits.size()); 1169 DFSResult->compute(SUnits); 1170 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1171 } 1172 1173 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1174 /// only provides the critical path for single block loops. To handle loops that 1175 /// span blocks, we could use the vreg path latencies provided by 1176 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1177 /// available for use in the scheduler. 1178 /// 1179 /// The cyclic path estimation identifies a def-use pair that crosses the back 1180 /// edge and considers the depth and height of the nodes. For example, consider 1181 /// the following instruction sequence where each instruction has unit latency 1182 /// and defines an epomymous virtual register: 1183 /// 1184 /// a->b(a,c)->c(b)->d(c)->exit 1185 /// 1186 /// The cyclic critical path is a two cycles: b->c->b 1187 /// The acyclic critical path is four cycles: a->b->c->d->exit 1188 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1189 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1190 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1191 /// LiveInDepth = depth(b) = len(a->b) = 1 1192 /// 1193 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1194 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1195 /// CyclicCriticalPath = min(2, 2) = 2 1196 /// 1197 /// This could be relevant to PostRA scheduling, but is currently implemented 1198 /// assuming LiveIntervals. 1199 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1200 // This only applies to single block loop. 1201 if (!BB->isSuccessor(BB)) 1202 return 0; 1203 1204 unsigned MaxCyclicLatency = 0; 1205 // Visit each live out vreg def to find def/use pairs that cross iterations. 1206 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1207 unsigned Reg = P.RegUnit; 1208 if (!TRI->isVirtualRegister(Reg)) 1209 continue; 1210 const LiveInterval &LI = LIS->getInterval(Reg); 1211 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1212 if (!DefVNI) 1213 continue; 1214 1215 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1216 const SUnit *DefSU = getSUnit(DefMI); 1217 if (!DefSU) 1218 continue; 1219 1220 unsigned LiveOutHeight = DefSU->getHeight(); 1221 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1222 // Visit all local users of the vreg def. 1223 for (const VReg2SUnit &V2SU 1224 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1225 SUnit *SU = V2SU.SU; 1226 if (SU == &ExitSU) 1227 continue; 1228 1229 // Only consider uses of the phi. 1230 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1231 if (!LRQ.valueIn()->isPHIDef()) 1232 continue; 1233 1234 // Assume that a path spanning two iterations is a cycle, which could 1235 // overestimate in strange cases. This allows cyclic latency to be 1236 // estimated as the minimum slack of the vreg's depth or height. 1237 unsigned CyclicLatency = 0; 1238 if (LiveOutDepth > SU->getDepth()) 1239 CyclicLatency = LiveOutDepth - SU->getDepth(); 1240 1241 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1242 if (LiveInHeight > LiveOutHeight) { 1243 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1244 CyclicLatency = LiveInHeight - LiveOutHeight; 1245 } else 1246 CyclicLatency = 0; 1247 1248 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1249 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1250 if (CyclicLatency > MaxCyclicLatency) 1251 MaxCyclicLatency = CyclicLatency; 1252 } 1253 } 1254 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1255 return MaxCyclicLatency; 1256 } 1257 1258 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1259 /// the Top RP tracker in case the region beginning has changed. 1260 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1261 ArrayRef<SUnit*> BotRoots) { 1262 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1263 if (ShouldTrackPressure) { 1264 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1265 TopRPTracker.setPos(CurrentTop); 1266 } 1267 } 1268 1269 /// Move an instruction and update register pressure. 1270 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1271 // Move the instruction to its new location in the instruction stream. 1272 MachineInstr *MI = SU->getInstr(); 1273 1274 if (IsTopNode) { 1275 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1276 if (&*CurrentTop == MI) 1277 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1278 else { 1279 moveInstruction(MI, CurrentTop); 1280 TopRPTracker.setPos(MI); 1281 } 1282 1283 if (ShouldTrackPressure) { 1284 // Update top scheduled pressure. 1285 RegisterOperands RegOpers; 1286 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1287 if (ShouldTrackLaneMasks) { 1288 // Adjust liveness and add missing dead+read-undef flags. 1289 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1290 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1291 } else { 1292 // Adjust for missing dead-def flags. 1293 RegOpers.detectDeadDefs(*MI, *LIS); 1294 } 1295 1296 TopRPTracker.advance(RegOpers); 1297 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1298 DEBUG( 1299 dbgs() << "Top Pressure:\n"; 1300 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1301 ); 1302 1303 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1304 } 1305 } else { 1306 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1307 MachineBasicBlock::iterator priorII = 1308 priorNonDebug(CurrentBottom, CurrentTop); 1309 if (&*priorII == MI) 1310 CurrentBottom = priorII; 1311 else { 1312 if (&*CurrentTop == MI) { 1313 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1314 TopRPTracker.setPos(CurrentTop); 1315 } 1316 moveInstruction(MI, CurrentBottom); 1317 CurrentBottom = MI; 1318 } 1319 if (ShouldTrackPressure) { 1320 RegisterOperands RegOpers; 1321 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1322 if (ShouldTrackLaneMasks) { 1323 // Adjust liveness and add missing dead+read-undef flags. 1324 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1325 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1326 } else { 1327 // Adjust for missing dead-def flags. 1328 RegOpers.detectDeadDefs(*MI, *LIS); 1329 } 1330 1331 BotRPTracker.recedeSkipDebugValues(); 1332 SmallVector<RegisterMaskPair, 8> LiveUses; 1333 BotRPTracker.recede(RegOpers, &LiveUses); 1334 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1335 DEBUG( 1336 dbgs() << "Bottom Pressure:\n"; 1337 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1338 ); 1339 1340 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1341 updatePressureDiffs(LiveUses); 1342 } 1343 } 1344 } 1345 1346 //===----------------------------------------------------------------------===// 1347 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1348 //===----------------------------------------------------------------------===// 1349 1350 namespace { 1351 /// \brief Post-process the DAG to create cluster edges between neighboring 1352 /// loads or between neighboring stores. 1353 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1354 struct MemOpInfo { 1355 SUnit *SU; 1356 unsigned BaseReg; 1357 int64_t Offset; 1358 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1359 : SU(su), BaseReg(reg), Offset(ofs) {} 1360 1361 bool operator<(const MemOpInfo&RHS) const { 1362 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1363 } 1364 }; 1365 1366 const TargetInstrInfo *TII; 1367 const TargetRegisterInfo *TRI; 1368 bool IsLoad; 1369 1370 public: 1371 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1372 const TargetRegisterInfo *tri, bool IsLoad) 1373 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1374 1375 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1376 1377 protected: 1378 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1379 }; 1380 1381 class StoreClusterMutation : public BaseMemOpClusterMutation { 1382 public: 1383 StoreClusterMutation(const TargetInstrInfo *tii, 1384 const TargetRegisterInfo *tri) 1385 : BaseMemOpClusterMutation(tii, tri, false) {} 1386 }; 1387 1388 class LoadClusterMutation : public BaseMemOpClusterMutation { 1389 public: 1390 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1391 : BaseMemOpClusterMutation(tii, tri, true) {} 1392 }; 1393 } // anonymous 1394 1395 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1396 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1397 SmallVector<MemOpInfo, 32> MemOpRecords; 1398 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1399 SUnit *SU = MemOps[Idx]; 1400 unsigned BaseReg; 1401 int64_t Offset; 1402 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1403 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1404 } 1405 if (MemOpRecords.size() < 2) 1406 return; 1407 1408 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1409 unsigned ClusterLength = 1; 1410 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1411 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1412 ClusterLength = 1; 1413 continue; 1414 } 1415 1416 SUnit *SUa = MemOpRecords[Idx].SU; 1417 SUnit *SUb = MemOpRecords[Idx+1].SU; 1418 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1419 ClusterLength) && 1420 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1421 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1422 << SUb->NodeNum << ")\n"); 1423 // Copy successor edges from SUa to SUb. Interleaving computation 1424 // dependent on SUa can prevent load combining due to register reuse. 1425 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1426 // loads should have effectively the same inputs. 1427 for (SUnit::const_succ_iterator 1428 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1429 if (SI->getSUnit() == SUb) 1430 continue; 1431 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1432 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1433 } 1434 ++ClusterLength; 1435 } else 1436 ClusterLength = 1; 1437 } 1438 } 1439 1440 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1441 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1442 1443 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1444 1445 // Map DAG NodeNum to store chain ID. 1446 DenseMap<unsigned, unsigned> StoreChainIDs; 1447 // Map each store chain to a set of dependent MemOps. 1448 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1449 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1450 SUnit *SU = &DAG->SUnits[Idx]; 1451 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1452 (!IsLoad && !SU->getInstr()->mayStore())) 1453 continue; 1454 1455 unsigned ChainPredID = DAG->SUnits.size(); 1456 for (SUnit::const_pred_iterator 1457 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1458 if (PI->isCtrl()) { 1459 ChainPredID = PI->getSUnit()->NodeNum; 1460 break; 1461 } 1462 } 1463 // Check if this chain-like pred has been seen 1464 // before. ChainPredID==MaxNodeID at the top of the schedule. 1465 unsigned NumChains = StoreChainDependents.size(); 1466 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1467 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1468 if (Result.second) 1469 StoreChainDependents.resize(NumChains + 1); 1470 StoreChainDependents[Result.first->second].push_back(SU); 1471 } 1472 1473 // Iterate over the store chains. 1474 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1475 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1480 //===----------------------------------------------------------------------===// 1481 1482 namespace { 1483 /// \brief Post-process the DAG to create cluster edges between instructions 1484 /// that may be fused by the processor into a single operation. 1485 class MacroFusion : public ScheduleDAGMutation { 1486 const TargetInstrInfo &TII; 1487 const TargetRegisterInfo &TRI; 1488 public: 1489 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1490 : TII(TII), TRI(TRI) {} 1491 1492 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1493 }; 1494 } // anonymous 1495 1496 /// Returns true if \p MI reads a register written by \p Other. 1497 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1498 const MachineInstr &Other) { 1499 for (const MachineOperand &MO : MI.uses()) { 1500 if (!MO.isReg() || !MO.readsReg()) 1501 continue; 1502 1503 unsigned Reg = MO.getReg(); 1504 if (Other.modifiesRegister(Reg, &TRI)) 1505 return true; 1506 } 1507 return false; 1508 } 1509 1510 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1511 /// fused operations. 1512 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1513 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1514 1515 // For now, assume targets can only fuse with the branch. 1516 SUnit &ExitSU = DAG->ExitSU; 1517 MachineInstr *Branch = ExitSU.getInstr(); 1518 if (!Branch) 1519 return; 1520 1521 for (SUnit &SU : DAG->SUnits) { 1522 // SUnits with successors can't be schedule in front of the ExitSU. 1523 if (!SU.Succs.empty()) 1524 continue; 1525 // We only care if the node writes to a register that the branch reads. 1526 MachineInstr *Pred = SU.getInstr(); 1527 if (!HasDataDep(TRI, *Branch, *Pred)) 1528 continue; 1529 1530 if (!TII.shouldScheduleAdjacent(*Pred, *Branch)) 1531 continue; 1532 1533 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1534 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1535 // need to copy predecessor edges from ExitSU to SU, since top-down 1536 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1537 // of SU, we could create an artificial edge from the deepest root, but it 1538 // hasn't been needed yet. 1539 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1540 (void)Success; 1541 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1542 1543 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1544 break; 1545 } 1546 } 1547 1548 //===----------------------------------------------------------------------===// 1549 // CopyConstrain - DAG post-processing to encourage copy elimination. 1550 //===----------------------------------------------------------------------===// 1551 1552 namespace { 1553 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1554 /// the one use that defines the copy's source vreg, most likely an induction 1555 /// variable increment. 1556 class CopyConstrain : public ScheduleDAGMutation { 1557 // Transient state. 1558 SlotIndex RegionBeginIdx; 1559 // RegionEndIdx is the slot index of the last non-debug instruction in the 1560 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1561 SlotIndex RegionEndIdx; 1562 public: 1563 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1564 1565 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1566 1567 protected: 1568 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1569 }; 1570 } // anonymous 1571 1572 /// constrainLocalCopy handles two possibilities: 1573 /// 1) Local src: 1574 /// I0: = dst 1575 /// I1: src = ... 1576 /// I2: = dst 1577 /// I3: dst = src (copy) 1578 /// (create pred->succ edges I0->I1, I2->I1) 1579 /// 1580 /// 2) Local copy: 1581 /// I0: dst = src (copy) 1582 /// I1: = dst 1583 /// I2: src = ... 1584 /// I3: = dst 1585 /// (create pred->succ edges I1->I2, I3->I2) 1586 /// 1587 /// Although the MachineScheduler is currently constrained to single blocks, 1588 /// this algorithm should handle extended blocks. An EBB is a set of 1589 /// contiguously numbered blocks such that the previous block in the EBB is 1590 /// always the single predecessor. 1591 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1592 LiveIntervals *LIS = DAG->getLIS(); 1593 MachineInstr *Copy = CopySU->getInstr(); 1594 1595 // Check for pure vreg copies. 1596 const MachineOperand &SrcOp = Copy->getOperand(1); 1597 unsigned SrcReg = SrcOp.getReg(); 1598 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1599 return; 1600 1601 const MachineOperand &DstOp = Copy->getOperand(0); 1602 unsigned DstReg = DstOp.getReg(); 1603 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1604 return; 1605 1606 // Check if either the dest or source is local. If it's live across a back 1607 // edge, it's not local. Note that if both vregs are live across the back 1608 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1609 // If both the copy's source and dest are local live intervals, then we 1610 // should treat the dest as the global for the purpose of adding 1611 // constraints. This adds edges from source's other uses to the copy. 1612 unsigned LocalReg = SrcReg; 1613 unsigned GlobalReg = DstReg; 1614 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1615 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1616 LocalReg = DstReg; 1617 GlobalReg = SrcReg; 1618 LocalLI = &LIS->getInterval(LocalReg); 1619 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1620 return; 1621 } 1622 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1623 1624 // Find the global segment after the start of the local LI. 1625 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1626 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1627 // local live range. We could create edges from other global uses to the local 1628 // start, but the coalescer should have already eliminated these cases, so 1629 // don't bother dealing with it. 1630 if (GlobalSegment == GlobalLI->end()) 1631 return; 1632 1633 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1634 // returned the next global segment. But if GlobalSegment overlaps with 1635 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1636 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1637 if (GlobalSegment->contains(LocalLI->beginIndex())) 1638 ++GlobalSegment; 1639 1640 if (GlobalSegment == GlobalLI->end()) 1641 return; 1642 1643 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1644 if (GlobalSegment != GlobalLI->begin()) { 1645 // Two address defs have no hole. 1646 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1647 GlobalSegment->start)) { 1648 return; 1649 } 1650 // If the prior global segment may be defined by the same two-address 1651 // instruction that also defines LocalLI, then can't make a hole here. 1652 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1653 LocalLI->beginIndex())) { 1654 return; 1655 } 1656 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1657 // it would be a disconnected component in the live range. 1658 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1659 "Disconnected LRG within the scheduling region."); 1660 } 1661 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1662 if (!GlobalDef) 1663 return; 1664 1665 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1666 if (!GlobalSU) 1667 return; 1668 1669 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1670 // constraining the uses of the last local def to precede GlobalDef. 1671 SmallVector<SUnit*,8> LocalUses; 1672 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1673 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1674 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1675 for (SUnit::const_succ_iterator 1676 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1677 I != E; ++I) { 1678 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1679 continue; 1680 if (I->getSUnit() == GlobalSU) 1681 continue; 1682 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1683 return; 1684 LocalUses.push_back(I->getSUnit()); 1685 } 1686 // Open the top of the GlobalLI hole by constraining any earlier global uses 1687 // to precede the start of LocalLI. 1688 SmallVector<SUnit*,8> GlobalUses; 1689 MachineInstr *FirstLocalDef = 1690 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1691 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1692 for (SUnit::const_pred_iterator 1693 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1694 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1695 continue; 1696 if (I->getSUnit() == FirstLocalSU) 1697 continue; 1698 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1699 return; 1700 GlobalUses.push_back(I->getSUnit()); 1701 } 1702 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1703 // Add the weak edges. 1704 for (SmallVectorImpl<SUnit*>::const_iterator 1705 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1706 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1707 << GlobalSU->NodeNum << ")\n"); 1708 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1709 } 1710 for (SmallVectorImpl<SUnit*>::const_iterator 1711 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1712 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1713 << FirstLocalSU->NodeNum << ")\n"); 1714 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1715 } 1716 } 1717 1718 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1719 /// copy elimination. 1720 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1721 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1722 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1723 1724 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1725 if (FirstPos == DAG->end()) 1726 return; 1727 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1728 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1729 *priorNonDebug(DAG->end(), DAG->begin())); 1730 1731 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1732 SUnit *SU = &DAG->SUnits[Idx]; 1733 if (!SU->getInstr()->isCopy()) 1734 continue; 1735 1736 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1737 } 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1742 // and possibly other custom schedulers. 1743 //===----------------------------------------------------------------------===// 1744 1745 static const unsigned InvalidCycle = ~0U; 1746 1747 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1748 1749 void SchedBoundary::reset() { 1750 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1751 // Destroying and reconstructing it is very expensive though. So keep 1752 // invalid, placeholder HazardRecs. 1753 if (HazardRec && HazardRec->isEnabled()) { 1754 delete HazardRec; 1755 HazardRec = nullptr; 1756 } 1757 Available.clear(); 1758 Pending.clear(); 1759 CheckPending = false; 1760 NextSUs.clear(); 1761 CurrCycle = 0; 1762 CurrMOps = 0; 1763 MinReadyCycle = UINT_MAX; 1764 ExpectedLatency = 0; 1765 DependentLatency = 0; 1766 RetiredMOps = 0; 1767 MaxExecutedResCount = 0; 1768 ZoneCritResIdx = 0; 1769 IsResourceLimited = false; 1770 ReservedCycles.clear(); 1771 #ifndef NDEBUG 1772 // Track the maximum number of stall cycles that could arise either from the 1773 // latency of a DAG edge or the number of cycles that a processor resource is 1774 // reserved (SchedBoundary::ReservedCycles). 1775 MaxObservedStall = 0; 1776 #endif 1777 // Reserve a zero-count for invalid CritResIdx. 1778 ExecutedResCounts.resize(1); 1779 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1780 } 1781 1782 void SchedRemainder:: 1783 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1784 reset(); 1785 if (!SchedModel->hasInstrSchedModel()) 1786 return; 1787 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1788 for (std::vector<SUnit>::iterator 1789 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1790 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1791 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1792 * SchedModel->getMicroOpFactor(); 1793 for (TargetSchedModel::ProcResIter 1794 PI = SchedModel->getWriteProcResBegin(SC), 1795 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1796 unsigned PIdx = PI->ProcResourceIdx; 1797 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1798 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1799 } 1800 } 1801 } 1802 1803 void SchedBoundary:: 1804 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1805 reset(); 1806 DAG = dag; 1807 SchedModel = smodel; 1808 Rem = rem; 1809 if (SchedModel->hasInstrSchedModel()) { 1810 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1811 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1812 } 1813 } 1814 1815 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1816 /// these "soft stalls" differently than the hard stall cycles based on CPU 1817 /// resources and computed by checkHazard(). A fully in-order model 1818 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1819 /// available for scheduling until they are ready. However, a weaker in-order 1820 /// model may use this for heuristics. For example, if a processor has in-order 1821 /// behavior when reading certain resources, this may come into play. 1822 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1823 if (!SU->isUnbuffered) 1824 return 0; 1825 1826 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1827 if (ReadyCycle > CurrCycle) 1828 return ReadyCycle - CurrCycle; 1829 return 0; 1830 } 1831 1832 /// Compute the next cycle at which the given processor resource can be 1833 /// scheduled. 1834 unsigned SchedBoundary:: 1835 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1836 unsigned NextUnreserved = ReservedCycles[PIdx]; 1837 // If this resource has never been used, always return cycle zero. 1838 if (NextUnreserved == InvalidCycle) 1839 return 0; 1840 // For bottom-up scheduling add the cycles needed for the current operation. 1841 if (!isTop()) 1842 NextUnreserved += Cycles; 1843 return NextUnreserved; 1844 } 1845 1846 /// Does this SU have a hazard within the current instruction group. 1847 /// 1848 /// The scheduler supports two modes of hazard recognition. The first is the 1849 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1850 /// supports highly complicated in-order reservation tables 1851 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1852 /// 1853 /// The second is a streamlined mechanism that checks for hazards based on 1854 /// simple counters that the scheduler itself maintains. It explicitly checks 1855 /// for instruction dispatch limitations, including the number of micro-ops that 1856 /// can dispatch per cycle. 1857 /// 1858 /// TODO: Also check whether the SU must start a new group. 1859 bool SchedBoundary::checkHazard(SUnit *SU) { 1860 if (HazardRec->isEnabled() 1861 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1862 return true; 1863 } 1864 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1865 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1866 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1867 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1868 return true; 1869 } 1870 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1871 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1872 for (TargetSchedModel::ProcResIter 1873 PI = SchedModel->getWriteProcResBegin(SC), 1874 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1875 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1876 if (NRCycle > CurrCycle) { 1877 #ifndef NDEBUG 1878 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1879 #endif 1880 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1881 << SchedModel->getResourceName(PI->ProcResourceIdx) 1882 << "=" << NRCycle << "c\n"); 1883 return true; 1884 } 1885 } 1886 } 1887 return false; 1888 } 1889 1890 // Find the unscheduled node in ReadySUs with the highest latency. 1891 unsigned SchedBoundary:: 1892 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1893 SUnit *LateSU = nullptr; 1894 unsigned RemLatency = 0; 1895 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1896 I != E; ++I) { 1897 unsigned L = getUnscheduledLatency(*I); 1898 if (L > RemLatency) { 1899 RemLatency = L; 1900 LateSU = *I; 1901 } 1902 } 1903 if (LateSU) { 1904 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1905 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1906 } 1907 return RemLatency; 1908 } 1909 1910 // Count resources in this zone and the remaining unscheduled 1911 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1912 // resource index, or zero if the zone is issue limited. 1913 unsigned SchedBoundary:: 1914 getOtherResourceCount(unsigned &OtherCritIdx) { 1915 OtherCritIdx = 0; 1916 if (!SchedModel->hasInstrSchedModel()) 1917 return 0; 1918 1919 unsigned OtherCritCount = Rem->RemIssueCount 1920 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1921 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1922 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1923 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1924 PIdx != PEnd; ++PIdx) { 1925 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1926 if (OtherCount > OtherCritCount) { 1927 OtherCritCount = OtherCount; 1928 OtherCritIdx = PIdx; 1929 } 1930 } 1931 if (OtherCritIdx) { 1932 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1933 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1934 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1935 } 1936 return OtherCritCount; 1937 } 1938 1939 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1940 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1941 1942 #ifndef NDEBUG 1943 // ReadyCycle was been bumped up to the CurrCycle when this node was 1944 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1945 // scheduling, so may now be greater than ReadyCycle. 1946 if (ReadyCycle > CurrCycle) 1947 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1948 #endif 1949 1950 if (ReadyCycle < MinReadyCycle) 1951 MinReadyCycle = ReadyCycle; 1952 1953 // Check for interlocks first. For the purpose of other heuristics, an 1954 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1955 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1956 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 1957 Available.size() >= ReadyListLimit) 1958 Pending.push(SU); 1959 else 1960 Available.push(SU); 1961 1962 // Record this node as an immediate dependent of the scheduled node. 1963 NextSUs.insert(SU); 1964 } 1965 1966 void SchedBoundary::releaseTopNode(SUnit *SU) { 1967 if (SU->isScheduled) 1968 return; 1969 1970 releaseNode(SU, SU->TopReadyCycle); 1971 } 1972 1973 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1974 if (SU->isScheduled) 1975 return; 1976 1977 releaseNode(SU, SU->BotReadyCycle); 1978 } 1979 1980 /// Move the boundary of scheduled code by one cycle. 1981 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1982 if (SchedModel->getMicroOpBufferSize() == 0) { 1983 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1984 if (MinReadyCycle > NextCycle) 1985 NextCycle = MinReadyCycle; 1986 } 1987 // Update the current micro-ops, which will issue in the next cycle. 1988 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1989 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1990 1991 // Decrement DependentLatency based on the next cycle. 1992 if ((NextCycle - CurrCycle) > DependentLatency) 1993 DependentLatency = 0; 1994 else 1995 DependentLatency -= (NextCycle - CurrCycle); 1996 1997 if (!HazardRec->isEnabled()) { 1998 // Bypass HazardRec virtual calls. 1999 CurrCycle = NextCycle; 2000 } else { 2001 // Bypass getHazardType calls in case of long latency. 2002 for (; CurrCycle != NextCycle; ++CurrCycle) { 2003 if (isTop()) 2004 HazardRec->AdvanceCycle(); 2005 else 2006 HazardRec->RecedeCycle(); 2007 } 2008 } 2009 CheckPending = true; 2010 unsigned LFactor = SchedModel->getLatencyFactor(); 2011 IsResourceLimited = 2012 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2013 > (int)LFactor; 2014 2015 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2016 } 2017 2018 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2019 ExecutedResCounts[PIdx] += Count; 2020 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2021 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2022 } 2023 2024 /// Add the given processor resource to this scheduled zone. 2025 /// 2026 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2027 /// during which this resource is consumed. 2028 /// 2029 /// \return the next cycle at which the instruction may execute without 2030 /// oversubscribing resources. 2031 unsigned SchedBoundary:: 2032 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2033 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2034 unsigned Count = Factor * Cycles; 2035 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2036 << " +" << Cycles << "x" << Factor << "u\n"); 2037 2038 // Update Executed resources counts. 2039 incExecutedResources(PIdx, Count); 2040 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2041 Rem->RemainingCounts[PIdx] -= Count; 2042 2043 // Check if this resource exceeds the current critical resource. If so, it 2044 // becomes the critical resource. 2045 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2046 ZoneCritResIdx = PIdx; 2047 DEBUG(dbgs() << " *** Critical resource " 2048 << SchedModel->getResourceName(PIdx) << ": " 2049 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2050 } 2051 // For reserved resources, record the highest cycle using the resource. 2052 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2053 if (NextAvailable > CurrCycle) { 2054 DEBUG(dbgs() << " Resource conflict: " 2055 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2056 << NextAvailable << "\n"); 2057 } 2058 return NextAvailable; 2059 } 2060 2061 /// Move the boundary of scheduled code by one SUnit. 2062 void SchedBoundary::bumpNode(SUnit *SU) { 2063 // Update the reservation table. 2064 if (HazardRec->isEnabled()) { 2065 if (!isTop() && SU->isCall) { 2066 // Calls are scheduled with their preceding instructions. For bottom-up 2067 // scheduling, clear the pipeline state before emitting. 2068 HazardRec->Reset(); 2069 } 2070 HazardRec->EmitInstruction(SU); 2071 } 2072 // checkHazard should prevent scheduling multiple instructions per cycle that 2073 // exceed the issue width. 2074 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2075 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2076 assert( 2077 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2078 "Cannot schedule this instruction's MicroOps in the current cycle."); 2079 2080 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2081 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2082 2083 unsigned NextCycle = CurrCycle; 2084 switch (SchedModel->getMicroOpBufferSize()) { 2085 case 0: 2086 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2087 break; 2088 case 1: 2089 if (ReadyCycle > NextCycle) { 2090 NextCycle = ReadyCycle; 2091 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2092 } 2093 break; 2094 default: 2095 // We don't currently model the OOO reorder buffer, so consider all 2096 // scheduled MOps to be "retired". We do loosely model in-order resource 2097 // latency. If this instruction uses an in-order resource, account for any 2098 // likely stall cycles. 2099 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2100 NextCycle = ReadyCycle; 2101 break; 2102 } 2103 RetiredMOps += IncMOps; 2104 2105 // Update resource counts and critical resource. 2106 if (SchedModel->hasInstrSchedModel()) { 2107 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2108 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2109 Rem->RemIssueCount -= DecRemIssue; 2110 if (ZoneCritResIdx) { 2111 // Scale scheduled micro-ops for comparing with the critical resource. 2112 unsigned ScaledMOps = 2113 RetiredMOps * SchedModel->getMicroOpFactor(); 2114 2115 // If scaled micro-ops are now more than the previous critical resource by 2116 // a full cycle, then micro-ops issue becomes critical. 2117 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2118 >= (int)SchedModel->getLatencyFactor()) { 2119 ZoneCritResIdx = 0; 2120 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2121 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2122 } 2123 } 2124 for (TargetSchedModel::ProcResIter 2125 PI = SchedModel->getWriteProcResBegin(SC), 2126 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2127 unsigned RCycle = 2128 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2129 if (RCycle > NextCycle) 2130 NextCycle = RCycle; 2131 } 2132 if (SU->hasReservedResource) { 2133 // For reserved resources, record the highest cycle using the resource. 2134 // For top-down scheduling, this is the cycle in which we schedule this 2135 // instruction plus the number of cycles the operations reserves the 2136 // resource. For bottom-up is it simply the instruction's cycle. 2137 for (TargetSchedModel::ProcResIter 2138 PI = SchedModel->getWriteProcResBegin(SC), 2139 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2140 unsigned PIdx = PI->ProcResourceIdx; 2141 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2142 if (isTop()) { 2143 ReservedCycles[PIdx] = 2144 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2145 } 2146 else 2147 ReservedCycles[PIdx] = NextCycle; 2148 } 2149 } 2150 } 2151 } 2152 // Update ExpectedLatency and DependentLatency. 2153 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2154 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2155 if (SU->getDepth() > TopLatency) { 2156 TopLatency = SU->getDepth(); 2157 DEBUG(dbgs() << " " << Available.getName() 2158 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2159 } 2160 if (SU->getHeight() > BotLatency) { 2161 BotLatency = SU->getHeight(); 2162 DEBUG(dbgs() << " " << Available.getName() 2163 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2164 } 2165 // If we stall for any reason, bump the cycle. 2166 if (NextCycle > CurrCycle) { 2167 bumpCycle(NextCycle); 2168 } else { 2169 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2170 // resource limited. If a stall occurred, bumpCycle does this. 2171 unsigned LFactor = SchedModel->getLatencyFactor(); 2172 IsResourceLimited = 2173 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2174 > (int)LFactor; 2175 } 2176 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2177 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2178 // one cycle. Since we commonly reach the max MOps here, opportunistically 2179 // bump the cycle to avoid uselessly checking everything in the readyQ. 2180 CurrMOps += IncMOps; 2181 while (CurrMOps >= SchedModel->getIssueWidth()) { 2182 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2183 << " at cycle " << CurrCycle << '\n'); 2184 bumpCycle(++NextCycle); 2185 } 2186 DEBUG(dumpScheduledState()); 2187 } 2188 2189 /// Release pending ready nodes in to the available queue. This makes them 2190 /// visible to heuristics. 2191 void SchedBoundary::releasePending() { 2192 // If the available queue is empty, it is safe to reset MinReadyCycle. 2193 if (Available.empty()) 2194 MinReadyCycle = UINT_MAX; 2195 2196 // Check to see if any of the pending instructions are ready to issue. If 2197 // so, add them to the available queue. 2198 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2199 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2200 SUnit *SU = *(Pending.begin()+i); 2201 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2202 2203 if (ReadyCycle < MinReadyCycle) 2204 MinReadyCycle = ReadyCycle; 2205 2206 if (!IsBuffered && ReadyCycle > CurrCycle) 2207 continue; 2208 2209 if (checkHazard(SU)) 2210 continue; 2211 2212 if (Available.size() >= ReadyListLimit) 2213 break; 2214 2215 Available.push(SU); 2216 Pending.remove(Pending.begin()+i); 2217 --i; --e; 2218 } 2219 CheckPending = false; 2220 } 2221 2222 /// Remove SU from the ready set for this boundary. 2223 void SchedBoundary::removeReady(SUnit *SU) { 2224 if (Available.isInQueue(SU)) 2225 Available.remove(Available.find(SU)); 2226 else { 2227 assert(Pending.isInQueue(SU) && "bad ready count"); 2228 Pending.remove(Pending.find(SU)); 2229 } 2230 } 2231 2232 /// If this queue only has one ready candidate, return it. As a side effect, 2233 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2234 /// one node is ready. If multiple instructions are ready, return NULL. 2235 SUnit *SchedBoundary::pickOnlyChoice() { 2236 if (CheckPending) 2237 releasePending(); 2238 2239 if (CurrMOps > 0) { 2240 // Defer any ready instrs that now have a hazard. 2241 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2242 if (checkHazard(*I)) { 2243 Pending.push(*I); 2244 I = Available.remove(I); 2245 continue; 2246 } 2247 ++I; 2248 } 2249 } 2250 for (unsigned i = 0; Available.empty(); ++i) { 2251 // FIXME: Re-enable assert once PR20057 is resolved. 2252 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2253 // "permanent hazard"); 2254 (void)i; 2255 bumpCycle(CurrCycle + 1); 2256 releasePending(); 2257 } 2258 2259 DEBUG(Pending.dump()); 2260 DEBUG(Available.dump()); 2261 2262 if (Available.size() == 1) 2263 return *Available.begin(); 2264 return nullptr; 2265 } 2266 2267 #ifndef NDEBUG 2268 // This is useful information to dump after bumpNode. 2269 // Note that the Queue contents are more useful before pickNodeFromQueue. 2270 void SchedBoundary::dumpScheduledState() { 2271 unsigned ResFactor; 2272 unsigned ResCount; 2273 if (ZoneCritResIdx) { 2274 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2275 ResCount = getResourceCount(ZoneCritResIdx); 2276 } else { 2277 ResFactor = SchedModel->getMicroOpFactor(); 2278 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2279 } 2280 unsigned LFactor = SchedModel->getLatencyFactor(); 2281 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2282 << " Retired: " << RetiredMOps; 2283 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2284 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2285 << ResCount / ResFactor << " " 2286 << SchedModel->getResourceName(ZoneCritResIdx) 2287 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2288 << (IsResourceLimited ? " - Resource" : " - Latency") 2289 << " limited.\n"; 2290 } 2291 #endif 2292 2293 //===----------------------------------------------------------------------===// 2294 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2295 //===----------------------------------------------------------------------===// 2296 2297 void GenericSchedulerBase::SchedCandidate:: 2298 initResourceDelta(const ScheduleDAGMI *DAG, 2299 const TargetSchedModel *SchedModel) { 2300 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2301 return; 2302 2303 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2304 for (TargetSchedModel::ProcResIter 2305 PI = SchedModel->getWriteProcResBegin(SC), 2306 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2307 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2308 ResDelta.CritResources += PI->Cycles; 2309 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2310 ResDelta.DemandedResources += PI->Cycles; 2311 } 2312 } 2313 2314 /// Set the CandPolicy given a scheduling zone given the current resources and 2315 /// latencies inside and outside the zone. 2316 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2317 SchedBoundary &CurrZone, 2318 SchedBoundary *OtherZone) { 2319 // Apply preemptive heuristics based on the total latency and resources 2320 // inside and outside this zone. Potential stalls should be considered before 2321 // following this policy. 2322 2323 // Compute remaining latency. We need this both to determine whether the 2324 // overall schedule has become latency-limited and whether the instructions 2325 // outside this zone are resource or latency limited. 2326 // 2327 // The "dependent" latency is updated incrementally during scheduling as the 2328 // max height/depth of scheduled nodes minus the cycles since it was 2329 // scheduled: 2330 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2331 // 2332 // The "independent" latency is the max ready queue depth: 2333 // ILat = max N.depth for N in Available|Pending 2334 // 2335 // RemainingLatency is the greater of independent and dependent latency. 2336 unsigned RemLatency = CurrZone.getDependentLatency(); 2337 RemLatency = std::max(RemLatency, 2338 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2339 RemLatency = std::max(RemLatency, 2340 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2341 2342 // Compute the critical resource outside the zone. 2343 unsigned OtherCritIdx = 0; 2344 unsigned OtherCount = 2345 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2346 2347 bool OtherResLimited = false; 2348 if (SchedModel->hasInstrSchedModel()) { 2349 unsigned LFactor = SchedModel->getLatencyFactor(); 2350 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2351 } 2352 // Schedule aggressively for latency in PostRA mode. We don't check for 2353 // acyclic latency during PostRA, and highly out-of-order processors will 2354 // skip PostRA scheduling. 2355 if (!OtherResLimited) { 2356 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2357 Policy.ReduceLatency |= true; 2358 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2359 << " RemainingLatency " << RemLatency << " + " 2360 << CurrZone.getCurrCycle() << "c > CritPath " 2361 << Rem.CriticalPath << "\n"); 2362 } 2363 } 2364 // If the same resource is limiting inside and outside the zone, do nothing. 2365 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2366 return; 2367 2368 DEBUG( 2369 if (CurrZone.isResourceLimited()) { 2370 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2371 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2372 << "\n"; 2373 } 2374 if (OtherResLimited) 2375 dbgs() << " RemainingLimit: " 2376 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2377 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2378 dbgs() << " Latency limited both directions.\n"); 2379 2380 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2381 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2382 2383 if (OtherResLimited) 2384 Policy.DemandResIdx = OtherCritIdx; 2385 } 2386 2387 #ifndef NDEBUG 2388 const char *GenericSchedulerBase::getReasonStr( 2389 GenericSchedulerBase::CandReason Reason) { 2390 switch (Reason) { 2391 case NoCand: return "NOCAND "; 2392 case Only1: return "ONLY1 "; 2393 case PhysRegCopy: return "PREG-COPY "; 2394 case RegExcess: return "REG-EXCESS"; 2395 case RegCritical: return "REG-CRIT "; 2396 case Stall: return "STALL "; 2397 case Cluster: return "CLUSTER "; 2398 case Weak: return "WEAK "; 2399 case RegMax: return "REG-MAX "; 2400 case ResourceReduce: return "RES-REDUCE"; 2401 case ResourceDemand: return "RES-DEMAND"; 2402 case TopDepthReduce: return "TOP-DEPTH "; 2403 case TopPathReduce: return "TOP-PATH "; 2404 case BotHeightReduce:return "BOT-HEIGHT"; 2405 case BotPathReduce: return "BOT-PATH "; 2406 case NextDefUse: return "DEF-USE "; 2407 case NodeOrder: return "ORDER "; 2408 }; 2409 llvm_unreachable("Unknown reason!"); 2410 } 2411 2412 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2413 PressureChange P; 2414 unsigned ResIdx = 0; 2415 unsigned Latency = 0; 2416 switch (Cand.Reason) { 2417 default: 2418 break; 2419 case RegExcess: 2420 P = Cand.RPDelta.Excess; 2421 break; 2422 case RegCritical: 2423 P = Cand.RPDelta.CriticalMax; 2424 break; 2425 case RegMax: 2426 P = Cand.RPDelta.CurrentMax; 2427 break; 2428 case ResourceReduce: 2429 ResIdx = Cand.Policy.ReduceResIdx; 2430 break; 2431 case ResourceDemand: 2432 ResIdx = Cand.Policy.DemandResIdx; 2433 break; 2434 case TopDepthReduce: 2435 Latency = Cand.SU->getDepth(); 2436 break; 2437 case TopPathReduce: 2438 Latency = Cand.SU->getHeight(); 2439 break; 2440 case BotHeightReduce: 2441 Latency = Cand.SU->getHeight(); 2442 break; 2443 case BotPathReduce: 2444 Latency = Cand.SU->getDepth(); 2445 break; 2446 } 2447 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2448 if (P.isValid()) 2449 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2450 << ":" << P.getUnitInc() << " "; 2451 else 2452 dbgs() << " "; 2453 if (ResIdx) 2454 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2455 else 2456 dbgs() << " "; 2457 if (Latency) 2458 dbgs() << " " << Latency << " cycles "; 2459 else 2460 dbgs() << " "; 2461 dbgs() << '\n'; 2462 } 2463 #endif 2464 2465 /// Return true if this heuristic determines order. 2466 static bool tryLess(int TryVal, int CandVal, 2467 GenericSchedulerBase::SchedCandidate &TryCand, 2468 GenericSchedulerBase::SchedCandidate &Cand, 2469 GenericSchedulerBase::CandReason Reason) { 2470 if (TryVal < CandVal) { 2471 TryCand.Reason = Reason; 2472 return true; 2473 } 2474 if (TryVal > CandVal) { 2475 if (Cand.Reason > Reason) 2476 Cand.Reason = Reason; 2477 return true; 2478 } 2479 return false; 2480 } 2481 2482 static bool tryGreater(int TryVal, int CandVal, 2483 GenericSchedulerBase::SchedCandidate &TryCand, 2484 GenericSchedulerBase::SchedCandidate &Cand, 2485 GenericSchedulerBase::CandReason Reason) { 2486 if (TryVal > CandVal) { 2487 TryCand.Reason = Reason; 2488 return true; 2489 } 2490 if (TryVal < CandVal) { 2491 if (Cand.Reason > Reason) 2492 Cand.Reason = Reason; 2493 return true; 2494 } 2495 return false; 2496 } 2497 2498 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2499 GenericSchedulerBase::SchedCandidate &Cand, 2500 SchedBoundary &Zone) { 2501 if (Zone.isTop()) { 2502 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2503 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2504 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2505 return true; 2506 } 2507 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2508 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2509 return true; 2510 } else { 2511 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2512 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2513 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2514 return true; 2515 } 2516 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2517 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2518 return true; 2519 } 2520 return false; 2521 } 2522 2523 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2524 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2525 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2526 } 2527 2528 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2529 tracePick(Cand.Reason, Cand.AtTop); 2530 } 2531 2532 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2533 assert(dag->hasVRegLiveness() && 2534 "(PreRA)GenericScheduler needs vreg liveness"); 2535 DAG = static_cast<ScheduleDAGMILive*>(dag); 2536 SchedModel = DAG->getSchedModel(); 2537 TRI = DAG->TRI; 2538 2539 Rem.init(DAG, SchedModel); 2540 Top.init(DAG, SchedModel, &Rem); 2541 Bot.init(DAG, SchedModel, &Rem); 2542 2543 // Initialize resource counts. 2544 2545 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2546 // are disabled, then these HazardRecs will be disabled. 2547 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2548 if (!Top.HazardRec) { 2549 Top.HazardRec = 2550 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2551 Itin, DAG); 2552 } 2553 if (!Bot.HazardRec) { 2554 Bot.HazardRec = 2555 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2556 Itin, DAG); 2557 } 2558 TopCand.SU = nullptr; 2559 BotCand.SU = nullptr; 2560 } 2561 2562 /// Initialize the per-region scheduling policy. 2563 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2564 MachineBasicBlock::iterator End, 2565 unsigned NumRegionInstrs) { 2566 const MachineFunction &MF = *Begin->getParent()->getParent(); 2567 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2568 2569 // Avoid setting up the register pressure tracker for small regions to save 2570 // compile time. As a rough heuristic, only track pressure when the number of 2571 // schedulable instructions exceeds half the integer register file. 2572 RegionPolicy.ShouldTrackPressure = true; 2573 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2574 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2575 if (TLI->isTypeLegal(LegalIntVT)) { 2576 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2577 TLI->getRegClassFor(LegalIntVT)); 2578 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2579 } 2580 } 2581 2582 // For generic targets, we default to bottom-up, because it's simpler and more 2583 // compile-time optimizations have been implemented in that direction. 2584 RegionPolicy.OnlyBottomUp = true; 2585 2586 // Allow the subtarget to override default policy. 2587 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2588 2589 // After subtarget overrides, apply command line options. 2590 if (!EnableRegPressure) 2591 RegionPolicy.ShouldTrackPressure = false; 2592 2593 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2594 // e.g. -misched-bottomup=false allows scheduling in both directions. 2595 assert((!ForceTopDown || !ForceBottomUp) && 2596 "-misched-topdown incompatible with -misched-bottomup"); 2597 if (ForceBottomUp.getNumOccurrences() > 0) { 2598 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2599 if (RegionPolicy.OnlyBottomUp) 2600 RegionPolicy.OnlyTopDown = false; 2601 } 2602 if (ForceTopDown.getNumOccurrences() > 0) { 2603 RegionPolicy.OnlyTopDown = ForceTopDown; 2604 if (RegionPolicy.OnlyTopDown) 2605 RegionPolicy.OnlyBottomUp = false; 2606 } 2607 } 2608 2609 void GenericScheduler::dumpPolicy() { 2610 dbgs() << "GenericScheduler RegionPolicy: " 2611 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2612 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2613 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2614 << "\n"; 2615 } 2616 2617 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2618 /// critical path by more cycles than it takes to drain the instruction buffer. 2619 /// We estimate an upper bounds on in-flight instructions as: 2620 /// 2621 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2622 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2623 /// InFlightResources = InFlightIterations * LoopResources 2624 /// 2625 /// TODO: Check execution resources in addition to IssueCount. 2626 void GenericScheduler::checkAcyclicLatency() { 2627 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2628 return; 2629 2630 // Scaled number of cycles per loop iteration. 2631 unsigned IterCount = 2632 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2633 Rem.RemIssueCount); 2634 // Scaled acyclic critical path. 2635 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2636 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2637 unsigned InFlightCount = 2638 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2639 unsigned BufferLimit = 2640 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2641 2642 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2643 2644 DEBUG(dbgs() << "IssueCycles=" 2645 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2646 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2647 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2648 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2649 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2650 if (Rem.IsAcyclicLatencyLimited) 2651 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2652 } 2653 2654 void GenericScheduler::registerRoots() { 2655 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2656 2657 // Some roots may not feed into ExitSU. Check all of them in case. 2658 for (std::vector<SUnit*>::const_iterator 2659 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2660 if ((*I)->getDepth() > Rem.CriticalPath) 2661 Rem.CriticalPath = (*I)->getDepth(); 2662 } 2663 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2664 if (DumpCriticalPathLength) { 2665 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2666 } 2667 2668 if (EnableCyclicPath) { 2669 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2670 checkAcyclicLatency(); 2671 } 2672 } 2673 2674 static bool tryPressure(const PressureChange &TryP, 2675 const PressureChange &CandP, 2676 GenericSchedulerBase::SchedCandidate &TryCand, 2677 GenericSchedulerBase::SchedCandidate &Cand, 2678 GenericSchedulerBase::CandReason Reason, 2679 const TargetRegisterInfo *TRI, 2680 const MachineFunction &MF) { 2681 // If one candidate decreases and the other increases, go with it. 2682 // Invalid candidates have UnitInc==0. 2683 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2684 Reason)) { 2685 return true; 2686 } 2687 // Do not compare the magnitude of pressure changes between top and bottom 2688 // boundary. 2689 if (Cand.AtTop != TryCand.AtTop) 2690 return false; 2691 2692 // If both candidates affect the same set in the same boundary, go with the 2693 // smallest increase. 2694 unsigned TryPSet = TryP.getPSetOrMax(); 2695 unsigned CandPSet = CandP.getPSetOrMax(); 2696 if (TryPSet == CandPSet) { 2697 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2698 Reason); 2699 } 2700 2701 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2702 std::numeric_limits<int>::max(); 2703 2704 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2705 std::numeric_limits<int>::max(); 2706 2707 // If the candidates are decreasing pressure, reverse priority. 2708 if (TryP.getUnitInc() < 0) 2709 std::swap(TryRank, CandRank); 2710 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2711 } 2712 2713 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2714 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2715 } 2716 2717 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2718 /// their physreg def/use. 2719 /// 2720 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2721 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2722 /// with the operation that produces or consumes the physreg. We'll do this when 2723 /// regalloc has support for parallel copies. 2724 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2725 const MachineInstr *MI = SU->getInstr(); 2726 if (!MI->isCopy()) 2727 return 0; 2728 2729 unsigned ScheduledOper = isTop ? 1 : 0; 2730 unsigned UnscheduledOper = isTop ? 0 : 1; 2731 // If we have already scheduled the physreg produce/consumer, immediately 2732 // schedule the copy. 2733 if (TargetRegisterInfo::isPhysicalRegister( 2734 MI->getOperand(ScheduledOper).getReg())) 2735 return 1; 2736 // If the physreg is at the boundary, defer it. Otherwise schedule it 2737 // immediately to free the dependent. We can hoist the copy later. 2738 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2739 if (TargetRegisterInfo::isPhysicalRegister( 2740 MI->getOperand(UnscheduledOper).getReg())) 2741 return AtBoundary ? -1 : 1; 2742 return 0; 2743 } 2744 2745 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2746 bool AtTop, 2747 const RegPressureTracker &RPTracker, 2748 RegPressureTracker &TempTracker) { 2749 Cand.SU = SU; 2750 Cand.AtTop = AtTop; 2751 if (DAG->isTrackingPressure()) { 2752 if (AtTop) { 2753 TempTracker.getMaxDownwardPressureDelta( 2754 Cand.SU->getInstr(), 2755 Cand.RPDelta, 2756 DAG->getRegionCriticalPSets(), 2757 DAG->getRegPressure().MaxSetPressure); 2758 } else { 2759 if (VerifyScheduling) { 2760 TempTracker.getMaxUpwardPressureDelta( 2761 Cand.SU->getInstr(), 2762 &DAG->getPressureDiff(Cand.SU), 2763 Cand.RPDelta, 2764 DAG->getRegionCriticalPSets(), 2765 DAG->getRegPressure().MaxSetPressure); 2766 } else { 2767 RPTracker.getUpwardPressureDelta( 2768 Cand.SU->getInstr(), 2769 DAG->getPressureDiff(Cand.SU), 2770 Cand.RPDelta, 2771 DAG->getRegionCriticalPSets(), 2772 DAG->getRegPressure().MaxSetPressure); 2773 } 2774 } 2775 } 2776 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2777 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2778 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2779 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2780 } 2781 2782 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2783 /// hierarchical. This may be more efficient than a graduated cost model because 2784 /// we don't need to evaluate all aspects of the model for each node in the 2785 /// queue. But it's really done to make the heuristics easier to debug and 2786 /// statistically analyze. 2787 /// 2788 /// \param Cand provides the policy and current best candidate. 2789 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2790 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2791 // if Cand is from a different zone than TryCand. 2792 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2793 SchedCandidate &TryCand, 2794 SchedBoundary *Zone) { 2795 // Initialize the candidate if needed. 2796 if (!Cand.isValid()) { 2797 TryCand.Reason = NodeOrder; 2798 return; 2799 } 2800 2801 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2802 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2803 TryCand, Cand, PhysRegCopy)) 2804 return; 2805 2806 // Avoid exceeding the target's limit. 2807 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2808 Cand.RPDelta.Excess, 2809 TryCand, Cand, RegExcess, TRI, 2810 DAG->MF)) 2811 return; 2812 2813 // Avoid increasing the max critical pressure in the scheduled region. 2814 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2815 Cand.RPDelta.CriticalMax, 2816 TryCand, Cand, RegCritical, TRI, 2817 DAG->MF)) 2818 return; 2819 2820 // We only compare a subset of features when comparing nodes between 2821 // Top and Bottom boundary. Some properties are simply incomparable, in many 2822 // other instances we should only override the other boundary if something 2823 // is a clear good pick on one boundary. Skip heuristics that are more 2824 // "tie-breaking" in nature. 2825 bool SameBoundary = Zone != nullptr; 2826 if (SameBoundary) { 2827 // For loops that are acyclic path limited, aggressively schedule for 2828 // latency. This can result in very long dependence chains scheduled in 2829 // sequence, so once every cycle (when CurrMOps == 0), switch to normal 2830 // heuristics. 2831 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2832 tryLatency(TryCand, Cand, *Zone)) 2833 return; 2834 2835 // Prioritize instructions that read unbuffered resources by stall cycles. 2836 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2837 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2838 return; 2839 } 2840 2841 // Keep clustered nodes together to encourage downstream peephole 2842 // optimizations which may reduce resource requirements. 2843 // 2844 // This is a best effort to set things up for a post-RA pass. Optimizations 2845 // like generating loads of multiple registers should ideally be done within 2846 // the scheduler pass by combining the loads during DAG postprocessing. 2847 const SUnit *CandNextClusterSU = 2848 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2849 const SUnit *TryCandNextClusterSU = 2850 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2851 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2852 Cand.SU == CandNextClusterSU, 2853 TryCand, Cand, Cluster)) 2854 return; 2855 2856 if (SameBoundary) { 2857 // Weak edges are for clustering and other constraints. 2858 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2859 getWeakLeft(Cand.SU, Cand.AtTop), 2860 TryCand, Cand, Weak)) 2861 return; 2862 } 2863 2864 // Avoid increasing the max pressure of the entire region. 2865 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2866 Cand.RPDelta.CurrentMax, 2867 TryCand, Cand, RegMax, TRI, 2868 DAG->MF)) 2869 return; 2870 2871 if (SameBoundary) { 2872 // Avoid critical resource consumption and balance the schedule. 2873 TryCand.initResourceDelta(DAG, SchedModel); 2874 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2875 TryCand, Cand, ResourceReduce)) 2876 return; 2877 if (tryGreater(TryCand.ResDelta.DemandedResources, 2878 Cand.ResDelta.DemandedResources, 2879 TryCand, Cand, ResourceDemand)) 2880 return; 2881 2882 // Avoid serializing long latency dependence chains. 2883 // For acyclic path limited loops, latency was already checked above. 2884 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2885 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2886 return; 2887 2888 // Prefer immediate defs/users of the last scheduled instruction. This is a 2889 // local pressure avoidance strategy that also makes the machine code 2890 // readable. 2891 if (tryGreater(Zone->isNextSU(TryCand.SU), Zone->isNextSU(Cand.SU), 2892 TryCand, Cand, NextDefUse)) 2893 return; 2894 2895 // Fall through to original instruction order. 2896 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2897 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2898 TryCand.Reason = NodeOrder; 2899 } 2900 } 2901 } 2902 2903 /// Pick the best candidate from the queue. 2904 /// 2905 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2906 /// DAG building. To adjust for the current scheduling location we need to 2907 /// maintain the number of vreg uses remaining to be top-scheduled. 2908 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2909 const CandPolicy &ZonePolicy, 2910 const RegPressureTracker &RPTracker, 2911 SchedCandidate &Cand) { 2912 // getMaxPressureDelta temporarily modifies the tracker. 2913 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2914 2915 ReadyQueue &Q = Zone.Available; 2916 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2917 2918 SchedCandidate TryCand(ZonePolicy); 2919 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2920 // Pass SchedBoundary only when comparing nodes from the same boundary. 2921 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2922 tryCandidate(Cand, TryCand, ZoneArg); 2923 if (TryCand.Reason != NoCand) { 2924 // Initialize resource delta if needed in case future heuristics query it. 2925 if (TryCand.ResDelta == SchedResourceDelta()) 2926 TryCand.initResourceDelta(DAG, SchedModel); 2927 Cand.setBest(TryCand); 2928 DEBUG(traceCandidate(Cand)); 2929 } 2930 } 2931 } 2932 2933 /// Pick the best candidate node from either the top or bottom queue. 2934 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2935 // Schedule as far as possible in the direction of no choice. This is most 2936 // efficient, but also provides the best heuristics for CriticalPSets. 2937 if (SUnit *SU = Bot.pickOnlyChoice()) { 2938 IsTopNode = false; 2939 tracePick(Only1, false); 2940 return SU; 2941 } 2942 if (SUnit *SU = Top.pickOnlyChoice()) { 2943 IsTopNode = true; 2944 tracePick(Only1, true); 2945 return SU; 2946 } 2947 // Set the bottom-up policy based on the state of the current bottom zone and 2948 // the instructions outside the zone, including the top zone. 2949 CandPolicy BotPolicy; 2950 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 2951 // Set the top-down policy based on the state of the current top zone and 2952 // the instructions outside the zone, including the bottom zone. 2953 CandPolicy TopPolicy; 2954 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 2955 2956 // See if BotCand is still valid (because we previously scheduled from Top). 2957 DEBUG(dbgs() << "Picking from Bot:\n"); 2958 if (!BotCand.isValid() || BotCand.SU->isScheduled || 2959 BotCand.Policy != BotPolicy) { 2960 BotCand.reset(CandPolicy()); 2961 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 2962 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2963 } else { 2964 DEBUG(traceCandidate(BotCand)); 2965 #ifndef NDEBUG 2966 if (VerifyScheduling) { 2967 SchedCandidate TCand; 2968 TCand.reset(CandPolicy()); 2969 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 2970 assert(TCand.SU == BotCand.SU && 2971 "Last pick result should correspond to re-picking right now"); 2972 } 2973 #endif 2974 } 2975 2976 // Check if the top Q has a better candidate. 2977 DEBUG(dbgs() << "Picking from Top:\n"); 2978 if (!TopCand.isValid() || TopCand.SU->isScheduled || 2979 TopCand.Policy != TopPolicy) { 2980 TopCand.reset(CandPolicy()); 2981 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 2982 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2983 } else { 2984 DEBUG(traceCandidate(TopCand)); 2985 #ifndef NDEBUG 2986 if (VerifyScheduling) { 2987 SchedCandidate TCand; 2988 TCand.reset(CandPolicy()); 2989 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 2990 assert(TCand.SU == TopCand.SU && 2991 "Last pick result should correspond to re-picking right now"); 2992 } 2993 #endif 2994 } 2995 2996 // Pick best from BotCand and TopCand. 2997 assert(BotCand.isValid()); 2998 assert(TopCand.isValid()); 2999 SchedCandidate Cand = BotCand; 3000 TopCand.Reason = NoCand; 3001 tryCandidate(Cand, TopCand, nullptr); 3002 if (TopCand.Reason != NoCand) { 3003 Cand.setBest(TopCand); 3004 DEBUG(traceCandidate(Cand)); 3005 } 3006 3007 IsTopNode = Cand.AtTop; 3008 tracePick(Cand); 3009 return Cand.SU; 3010 } 3011 3012 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3013 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3014 if (DAG->top() == DAG->bottom()) { 3015 assert(Top.Available.empty() && Top.Pending.empty() && 3016 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3017 return nullptr; 3018 } 3019 SUnit *SU; 3020 do { 3021 if (RegionPolicy.OnlyTopDown) { 3022 SU = Top.pickOnlyChoice(); 3023 if (!SU) { 3024 CandPolicy NoPolicy; 3025 TopCand.reset(NoPolicy); 3026 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3027 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3028 tracePick(TopCand); 3029 SU = TopCand.SU; 3030 } 3031 IsTopNode = true; 3032 } else if (RegionPolicy.OnlyBottomUp) { 3033 SU = Bot.pickOnlyChoice(); 3034 if (!SU) { 3035 CandPolicy NoPolicy; 3036 BotCand.reset(NoPolicy); 3037 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3038 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3039 tracePick(BotCand); 3040 SU = BotCand.SU; 3041 } 3042 IsTopNode = false; 3043 } else { 3044 SU = pickNodeBidirectional(IsTopNode); 3045 } 3046 } while (SU->isScheduled); 3047 3048 if (SU->isTopReady()) 3049 Top.removeReady(SU); 3050 if (SU->isBottomReady()) 3051 Bot.removeReady(SU); 3052 3053 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3054 return SU; 3055 } 3056 3057 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3058 3059 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3060 if (!isTop) 3061 ++InsertPos; 3062 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3063 3064 // Find already scheduled copies with a single physreg dependence and move 3065 // them just above the scheduled instruction. 3066 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3067 I != E; ++I) { 3068 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3069 continue; 3070 SUnit *DepSU = I->getSUnit(); 3071 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3072 continue; 3073 MachineInstr *Copy = DepSU->getInstr(); 3074 if (!Copy->isCopy()) 3075 continue; 3076 DEBUG(dbgs() << " Rescheduling physreg copy "; 3077 I->getSUnit()->dump(DAG)); 3078 DAG->moveInstruction(Copy, InsertPos); 3079 } 3080 } 3081 3082 /// Update the scheduler's state after scheduling a node. This is the same node 3083 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3084 /// update it's state based on the current cycle before MachineSchedStrategy 3085 /// does. 3086 /// 3087 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3088 /// them here. See comments in biasPhysRegCopy. 3089 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3090 if (IsTopNode) { 3091 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3092 Top.bumpNode(SU); 3093 if (SU->hasPhysRegUses) 3094 reschedulePhysRegCopies(SU, true); 3095 } else { 3096 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3097 Bot.bumpNode(SU); 3098 if (SU->hasPhysRegDefs) 3099 reschedulePhysRegCopies(SU, false); 3100 } 3101 } 3102 3103 /// Create the standard converging machine scheduler. This will be used as the 3104 /// default scheduler if the target does not set a default. 3105 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3106 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3107 // Register DAG post-processors. 3108 // 3109 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3110 // data and pass it to later mutations. Have a single mutation that gathers 3111 // the interesting nodes in one pass. 3112 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 3113 if (EnableMemOpCluster) { 3114 if (DAG->TII->enableClusterLoads()) 3115 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 3116 if (DAG->TII->enableClusterStores()) 3117 DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI)); 3118 } 3119 if (EnableMacroFusion) 3120 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 3121 return DAG; 3122 } 3123 3124 static MachineSchedRegistry 3125 GenericSchedRegistry("converge", "Standard converging scheduler.", 3126 createGenericSchedLive); 3127 3128 //===----------------------------------------------------------------------===// 3129 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3130 //===----------------------------------------------------------------------===// 3131 3132 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3133 DAG = Dag; 3134 SchedModel = DAG->getSchedModel(); 3135 TRI = DAG->TRI; 3136 3137 Rem.init(DAG, SchedModel); 3138 Top.init(DAG, SchedModel, &Rem); 3139 BotRoots.clear(); 3140 3141 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3142 // or are disabled, then these HazardRecs will be disabled. 3143 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3144 if (!Top.HazardRec) { 3145 Top.HazardRec = 3146 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3147 Itin, DAG); 3148 } 3149 } 3150 3151 3152 void PostGenericScheduler::registerRoots() { 3153 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3154 3155 // Some roots may not feed into ExitSU. Check all of them in case. 3156 for (SmallVectorImpl<SUnit*>::const_iterator 3157 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3158 if ((*I)->getDepth() > Rem.CriticalPath) 3159 Rem.CriticalPath = (*I)->getDepth(); 3160 } 3161 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3162 if (DumpCriticalPathLength) { 3163 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3164 } 3165 } 3166 3167 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3168 /// 3169 /// \param Cand provides the policy and current best candidate. 3170 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3171 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3172 SchedCandidate &TryCand) { 3173 3174 // Initialize the candidate if needed. 3175 if (!Cand.isValid()) { 3176 TryCand.Reason = NodeOrder; 3177 return; 3178 } 3179 3180 // Prioritize instructions that read unbuffered resources by stall cycles. 3181 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3182 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3183 return; 3184 3185 // Avoid critical resource consumption and balance the schedule. 3186 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3187 TryCand, Cand, ResourceReduce)) 3188 return; 3189 if (tryGreater(TryCand.ResDelta.DemandedResources, 3190 Cand.ResDelta.DemandedResources, 3191 TryCand, Cand, ResourceDemand)) 3192 return; 3193 3194 // Avoid serializing long latency dependence chains. 3195 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3196 return; 3197 } 3198 3199 // Fall through to original instruction order. 3200 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3201 TryCand.Reason = NodeOrder; 3202 } 3203 3204 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3205 ReadyQueue &Q = Top.Available; 3206 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3207 SchedCandidate TryCand(Cand.Policy); 3208 TryCand.SU = *I; 3209 TryCand.AtTop = true; 3210 TryCand.initResourceDelta(DAG, SchedModel); 3211 tryCandidate(Cand, TryCand); 3212 if (TryCand.Reason != NoCand) { 3213 Cand.setBest(TryCand); 3214 DEBUG(traceCandidate(Cand)); 3215 } 3216 } 3217 } 3218 3219 /// Pick the next node to schedule. 3220 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3221 if (DAG->top() == DAG->bottom()) { 3222 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3223 return nullptr; 3224 } 3225 SUnit *SU; 3226 do { 3227 SU = Top.pickOnlyChoice(); 3228 if (SU) { 3229 tracePick(Only1, true); 3230 } else { 3231 CandPolicy NoPolicy; 3232 SchedCandidate TopCand(NoPolicy); 3233 // Set the top-down policy based on the state of the current top zone and 3234 // the instructions outside the zone, including the bottom zone. 3235 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3236 pickNodeFromQueue(TopCand); 3237 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3238 tracePick(TopCand); 3239 SU = TopCand.SU; 3240 } 3241 } while (SU->isScheduled); 3242 3243 IsTopNode = true; 3244 Top.removeReady(SU); 3245 3246 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3247 return SU; 3248 } 3249 3250 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3251 /// scheduled/remaining flags in the DAG nodes. 3252 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3253 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3254 Top.bumpNode(SU); 3255 } 3256 3257 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3258 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3259 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3260 } 3261 3262 //===----------------------------------------------------------------------===// 3263 // ILP Scheduler. Currently for experimental analysis of heuristics. 3264 //===----------------------------------------------------------------------===// 3265 3266 namespace { 3267 /// \brief Order nodes by the ILP metric. 3268 struct ILPOrder { 3269 const SchedDFSResult *DFSResult; 3270 const BitVector *ScheduledTrees; 3271 bool MaximizeILP; 3272 3273 ILPOrder(bool MaxILP) 3274 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3275 3276 /// \brief Apply a less-than relation on node priority. 3277 /// 3278 /// (Return true if A comes after B in the Q.) 3279 bool operator()(const SUnit *A, const SUnit *B) const { 3280 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3281 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3282 if (SchedTreeA != SchedTreeB) { 3283 // Unscheduled trees have lower priority. 3284 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3285 return ScheduledTrees->test(SchedTreeB); 3286 3287 // Trees with shallower connections have have lower priority. 3288 if (DFSResult->getSubtreeLevel(SchedTreeA) 3289 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3290 return DFSResult->getSubtreeLevel(SchedTreeA) 3291 < DFSResult->getSubtreeLevel(SchedTreeB); 3292 } 3293 } 3294 if (MaximizeILP) 3295 return DFSResult->getILP(A) < DFSResult->getILP(B); 3296 else 3297 return DFSResult->getILP(A) > DFSResult->getILP(B); 3298 } 3299 }; 3300 3301 /// \brief Schedule based on the ILP metric. 3302 class ILPScheduler : public MachineSchedStrategy { 3303 ScheduleDAGMILive *DAG; 3304 ILPOrder Cmp; 3305 3306 std::vector<SUnit*> ReadyQ; 3307 public: 3308 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3309 3310 void initialize(ScheduleDAGMI *dag) override { 3311 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3312 DAG = static_cast<ScheduleDAGMILive*>(dag); 3313 DAG->computeDFSResult(); 3314 Cmp.DFSResult = DAG->getDFSResult(); 3315 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3316 ReadyQ.clear(); 3317 } 3318 3319 void registerRoots() override { 3320 // Restore the heap in ReadyQ with the updated DFS results. 3321 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3322 } 3323 3324 /// Implement MachineSchedStrategy interface. 3325 /// ----------------------------------------- 3326 3327 /// Callback to select the highest priority node from the ready Q. 3328 SUnit *pickNode(bool &IsTopNode) override { 3329 if (ReadyQ.empty()) return nullptr; 3330 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3331 SUnit *SU = ReadyQ.back(); 3332 ReadyQ.pop_back(); 3333 IsTopNode = false; 3334 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3335 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3336 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3337 << DAG->getDFSResult()->getSubtreeLevel( 3338 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3339 << "Scheduling " << *SU->getInstr()); 3340 return SU; 3341 } 3342 3343 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3344 void scheduleTree(unsigned SubtreeID) override { 3345 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3346 } 3347 3348 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3349 /// DFSResults, and resort the priority Q. 3350 void schedNode(SUnit *SU, bool IsTopNode) override { 3351 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3352 } 3353 3354 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3355 3356 void releaseBottomNode(SUnit *SU) override { 3357 ReadyQ.push_back(SU); 3358 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3359 } 3360 }; 3361 } // namespace 3362 3363 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3364 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3365 } 3366 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3367 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3368 } 3369 static MachineSchedRegistry ILPMaxRegistry( 3370 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3371 static MachineSchedRegistry ILPMinRegistry( 3372 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3373 3374 //===----------------------------------------------------------------------===// 3375 // Machine Instruction Shuffler for Correctness Testing 3376 //===----------------------------------------------------------------------===// 3377 3378 #ifndef NDEBUG 3379 namespace { 3380 /// Apply a less-than relation on the node order, which corresponds to the 3381 /// instruction order prior to scheduling. IsReverse implements greater-than. 3382 template<bool IsReverse> 3383 struct SUnitOrder { 3384 bool operator()(SUnit *A, SUnit *B) const { 3385 if (IsReverse) 3386 return A->NodeNum > B->NodeNum; 3387 else 3388 return A->NodeNum < B->NodeNum; 3389 } 3390 }; 3391 3392 /// Reorder instructions as much as possible. 3393 class InstructionShuffler : public MachineSchedStrategy { 3394 bool IsAlternating; 3395 bool IsTopDown; 3396 3397 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3398 // gives nodes with a higher number higher priority causing the latest 3399 // instructions to be scheduled first. 3400 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3401 TopQ; 3402 // When scheduling bottom-up, use greater-than as the queue priority. 3403 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3404 BottomQ; 3405 public: 3406 InstructionShuffler(bool alternate, bool topdown) 3407 : IsAlternating(alternate), IsTopDown(topdown) {} 3408 3409 void initialize(ScheduleDAGMI*) override { 3410 TopQ.clear(); 3411 BottomQ.clear(); 3412 } 3413 3414 /// Implement MachineSchedStrategy interface. 3415 /// ----------------------------------------- 3416 3417 SUnit *pickNode(bool &IsTopNode) override { 3418 SUnit *SU; 3419 if (IsTopDown) { 3420 do { 3421 if (TopQ.empty()) return nullptr; 3422 SU = TopQ.top(); 3423 TopQ.pop(); 3424 } while (SU->isScheduled); 3425 IsTopNode = true; 3426 } else { 3427 do { 3428 if (BottomQ.empty()) return nullptr; 3429 SU = BottomQ.top(); 3430 BottomQ.pop(); 3431 } while (SU->isScheduled); 3432 IsTopNode = false; 3433 } 3434 if (IsAlternating) 3435 IsTopDown = !IsTopDown; 3436 return SU; 3437 } 3438 3439 void schedNode(SUnit *SU, bool IsTopNode) override {} 3440 3441 void releaseTopNode(SUnit *SU) override { 3442 TopQ.push(SU); 3443 } 3444 void releaseBottomNode(SUnit *SU) override { 3445 BottomQ.push(SU); 3446 } 3447 }; 3448 } // namespace 3449 3450 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3451 bool Alternate = !ForceTopDown && !ForceBottomUp; 3452 bool TopDown = !ForceBottomUp; 3453 assert((TopDown || !ForceTopDown) && 3454 "-misched-topdown incompatible with -misched-bottomup"); 3455 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3456 } 3457 static MachineSchedRegistry ShufflerRegistry( 3458 "shuffle", "Shuffle machine instructions alternating directions", 3459 createInstructionShuffler); 3460 #endif // !NDEBUG 3461 3462 //===----------------------------------------------------------------------===// 3463 // GraphWriter support for ScheduleDAGMILive. 3464 //===----------------------------------------------------------------------===// 3465 3466 #ifndef NDEBUG 3467 namespace llvm { 3468 3469 template<> struct GraphTraits< 3470 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3471 3472 template<> 3473 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3474 3475 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3476 3477 static std::string getGraphName(const ScheduleDAG *G) { 3478 return G->MF.getName(); 3479 } 3480 3481 static bool renderGraphFromBottomUp() { 3482 return true; 3483 } 3484 3485 static bool isNodeHidden(const SUnit *Node) { 3486 if (ViewMISchedCutoff == 0) 3487 return false; 3488 return (Node->Preds.size() > ViewMISchedCutoff 3489 || Node->Succs.size() > ViewMISchedCutoff); 3490 } 3491 3492 /// If you want to override the dot attributes printed for a particular 3493 /// edge, override this method. 3494 static std::string getEdgeAttributes(const SUnit *Node, 3495 SUnitIterator EI, 3496 const ScheduleDAG *Graph) { 3497 if (EI.isArtificialDep()) 3498 return "color=cyan,style=dashed"; 3499 if (EI.isCtrlDep()) 3500 return "color=blue,style=dashed"; 3501 return ""; 3502 } 3503 3504 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3505 std::string Str; 3506 raw_string_ostream SS(Str); 3507 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3508 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3509 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3510 SS << "SU:" << SU->NodeNum; 3511 if (DFS) 3512 SS << " I:" << DFS->getNumInstrs(SU); 3513 return SS.str(); 3514 } 3515 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3516 return G->getGraphNodeLabel(SU); 3517 } 3518 3519 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3520 std::string Str("shape=Mrecord"); 3521 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3522 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3523 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3524 if (DFS) { 3525 Str += ",style=filled,fillcolor=\"#"; 3526 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3527 Str += '"'; 3528 } 3529 return Str; 3530 } 3531 }; 3532 } // namespace llvm 3533 #endif // NDEBUG 3534 3535 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3536 /// rendered using 'dot'. 3537 /// 3538 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3539 #ifndef NDEBUG 3540 ViewGraph(this, Name, false, Title); 3541 #else 3542 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3543 << "systems with Graphviz or gv!\n"; 3544 #endif // NDEBUG 3545 } 3546 3547 /// Out-of-line implementation with no arguments is handy for gdb. 3548 void ScheduleDAGMI::viewGraph() { 3549 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3550 } 3551