1 //===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/IR/Function.h"
17 #include "llvm/Support/raw_os_ostream.h"
18 #include "llvm/Target/TargetInstrInfo.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetSubtargetInfo.h"
21 
22 using namespace llvm;
23 
24 // Pin the vtable to this file.
25 void MachineRegisterInfo::Delegate::anchor() {}
26 
27 MachineRegisterInfo::MachineRegisterInfo(const MachineFunction *MF)
28   : MF(MF), TheDelegate(nullptr), IsSSA(true), TracksLiveness(true),
29     TracksSubRegLiveness(false) {
30   unsigned NumRegs = getTargetRegisterInfo()->getNumRegs();
31   VRegInfo.reserve(256);
32   RegAllocHints.reserve(256);
33   UsedPhysRegMask.resize(NumRegs);
34   PhysRegUseDefLists.reset(new MachineOperand*[NumRegs]());
35 }
36 
37 /// setRegClass - Set the register class of the specified virtual register.
38 ///
39 void
40 MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
41   assert(RC && RC->isAllocatable() && "Invalid RC for virtual register");
42   VRegInfo[Reg].first = RC;
43 }
44 
45 const TargetRegisterClass *
46 MachineRegisterInfo::constrainRegClass(unsigned Reg,
47                                        const TargetRegisterClass *RC,
48                                        unsigned MinNumRegs) {
49   const TargetRegisterClass *OldRC = getRegClass(Reg);
50   if (OldRC == RC)
51     return RC;
52   const TargetRegisterClass *NewRC =
53     getTargetRegisterInfo()->getCommonSubClass(OldRC, RC);
54   if (!NewRC || NewRC == OldRC)
55     return NewRC;
56   if (NewRC->getNumRegs() < MinNumRegs)
57     return nullptr;
58   setRegClass(Reg, NewRC);
59   return NewRC;
60 }
61 
62 bool
63 MachineRegisterInfo::recomputeRegClass(unsigned Reg) {
64   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
65   const TargetRegisterClass *OldRC = getRegClass(Reg);
66   const TargetRegisterClass *NewRC =
67       getTargetRegisterInfo()->getLargestLegalSuperClass(OldRC, *MF);
68 
69   // Stop early if there is no room to grow.
70   if (NewRC == OldRC)
71     return false;
72 
73   // Accumulate constraints from all uses.
74   for (MachineOperand &MO : reg_nodbg_operands(Reg)) {
75     // Apply the effect of the given operand to NewRC.
76     MachineInstr *MI = MO.getParent();
77     unsigned OpNo = &MO - &MI->getOperand(0);
78     NewRC = MI->getRegClassConstraintEffect(OpNo, NewRC, TII,
79                                             getTargetRegisterInfo());
80     if (!NewRC || NewRC == OldRC)
81       return false;
82   }
83   setRegClass(Reg, NewRC);
84   return true;
85 }
86 
87 /// createVirtualRegister - Create and return a new virtual register in the
88 /// function with the specified register class.
89 ///
90 unsigned
91 MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
92   assert(RegClass && "Cannot create register without RegClass!");
93   assert(RegClass->isAllocatable() &&
94          "Virtual register RegClass must be allocatable.");
95 
96   // New virtual register number.
97   unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
98   VRegInfo.grow(Reg);
99   VRegInfo[Reg].first = RegClass;
100   RegAllocHints.grow(Reg);
101   if (TheDelegate)
102     TheDelegate->MRI_NoteNewVirtualRegister(Reg);
103   return Reg;
104 }
105 
106 #ifdef LLVM_BUILD_GLOBAL_ISEL
107 unsigned
108 MachineRegisterInfo::getSize(unsigned VReg) const {
109   DenseMap<unsigned, unsigned>::const_iterator SizeIt =
110     VRegToSize.find(VReg);
111   return SizeIt != VRegToSize.end()? SizeIt->second: 0;
112 }
113 
114 unsigned
115 MachineRegisterInfo::createGenericVirtualRegister(unsigned Size) {
116   assert(Size && "Cannot create empty virtual register");
117 
118   // New virtual register number.
119   unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
120   VRegInfo.grow(Reg);
121   // FIXME: Should we use a dummy register class?
122   VRegInfo[Reg].first = nullptr;
123   VRegToSize[Reg] = Size;
124   RegAllocHints.grow(Reg);
125   if (TheDelegate)
126     TheDelegate->MRI_NoteNewVirtualRegister(Reg);
127   return Reg;
128 }
129 #endif // LLVM_BUILD_GLOBAL_ISEL
130 
131 /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
132 void MachineRegisterInfo::clearVirtRegs() {
133 #ifndef NDEBUG
134   for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) {
135     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
136     if (!VRegInfo[Reg].second)
137       continue;
138     verifyUseList(Reg);
139     llvm_unreachable("Remaining virtual register operands");
140   }
141 #endif
142   VRegInfo.clear();
143   for (auto &I : LiveIns)
144     I.second = 0;
145 }
146 
147 void MachineRegisterInfo::verifyUseList(unsigned Reg) const {
148 #ifndef NDEBUG
149   bool Valid = true;
150   for (MachineOperand &M : reg_operands(Reg)) {
151     MachineOperand *MO = &M;
152     MachineInstr *MI = MO->getParent();
153     if (!MI) {
154       errs() << PrintReg(Reg, getTargetRegisterInfo())
155              << " use list MachineOperand " << MO
156              << " has no parent instruction.\n";
157       Valid = false;
158       continue;
159     }
160     MachineOperand *MO0 = &MI->getOperand(0);
161     unsigned NumOps = MI->getNumOperands();
162     if (!(MO >= MO0 && MO < MO0+NumOps)) {
163       errs() << PrintReg(Reg, getTargetRegisterInfo())
164              << " use list MachineOperand " << MO
165              << " doesn't belong to parent MI: " << *MI;
166       Valid = false;
167     }
168     if (!MO->isReg()) {
169       errs() << PrintReg(Reg, getTargetRegisterInfo())
170              << " MachineOperand " << MO << ": " << *MO
171              << " is not a register\n";
172       Valid = false;
173     }
174     if (MO->getReg() != Reg) {
175       errs() << PrintReg(Reg, getTargetRegisterInfo())
176              << " use-list MachineOperand " << MO << ": "
177              << *MO << " is the wrong register\n";
178       Valid = false;
179     }
180   }
181   assert(Valid && "Invalid use list");
182 #endif
183 }
184 
185 void MachineRegisterInfo::verifyUseLists() const {
186 #ifndef NDEBUG
187   for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
188     verifyUseList(TargetRegisterInfo::index2VirtReg(i));
189   for (unsigned i = 1, e = getTargetRegisterInfo()->getNumRegs(); i != e; ++i)
190     verifyUseList(i);
191 #endif
192 }
193 
194 /// Add MO to the linked list of operands for its register.
195 void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) {
196   assert(!MO->isOnRegUseList() && "Already on list");
197   MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
198   MachineOperand *const Head = HeadRef;
199 
200   // Head points to the first list element.
201   // Next is NULL on the last list element.
202   // Prev pointers are circular, so Head->Prev == Last.
203 
204   // Head is NULL for an empty list.
205   if (!Head) {
206     MO->Contents.Reg.Prev = MO;
207     MO->Contents.Reg.Next = nullptr;
208     HeadRef = MO;
209     return;
210   }
211   assert(MO->getReg() == Head->getReg() && "Different regs on the same list!");
212 
213   // Insert MO between Last and Head in the circular Prev chain.
214   MachineOperand *Last = Head->Contents.Reg.Prev;
215   assert(Last && "Inconsistent use list");
216   assert(MO->getReg() == Last->getReg() && "Different regs on the same list!");
217   Head->Contents.Reg.Prev = MO;
218   MO->Contents.Reg.Prev = Last;
219 
220   // Def operands always precede uses. This allows def_iterator to stop early.
221   // Insert def operands at the front, and use operands at the back.
222   if (MO->isDef()) {
223     // Insert def at the front.
224     MO->Contents.Reg.Next = Head;
225     HeadRef = MO;
226   } else {
227     // Insert use at the end.
228     MO->Contents.Reg.Next = nullptr;
229     Last->Contents.Reg.Next = MO;
230   }
231 }
232 
233 /// Remove MO from its use-def list.
234 void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) {
235   assert(MO->isOnRegUseList() && "Operand not on use list");
236   MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
237   MachineOperand *const Head = HeadRef;
238   assert(Head && "List already empty");
239 
240   // Unlink this from the doubly linked list of operands.
241   MachineOperand *Next = MO->Contents.Reg.Next;
242   MachineOperand *Prev = MO->Contents.Reg.Prev;
243 
244   // Prev links are circular, next link is NULL instead of looping back to Head.
245   if (MO == Head)
246     HeadRef = Next;
247   else
248     Prev->Contents.Reg.Next = Next;
249 
250   (Next ? Next : Head)->Contents.Reg.Prev = Prev;
251 
252   MO->Contents.Reg.Prev = nullptr;
253   MO->Contents.Reg.Next = nullptr;
254 }
255 
256 /// Move NumOps operands from Src to Dst, updating use-def lists as needed.
257 ///
258 /// The Dst range is assumed to be uninitialized memory. (Or it may contain
259 /// operands that won't be destroyed, which is OK because the MO destructor is
260 /// trivial anyway).
261 ///
262 /// The Src and Dst ranges may overlap.
263 void MachineRegisterInfo::moveOperands(MachineOperand *Dst,
264                                        MachineOperand *Src,
265                                        unsigned NumOps) {
266   assert(Src != Dst && NumOps && "Noop moveOperands");
267 
268   // Copy backwards if Dst is within the Src range.
269   int Stride = 1;
270   if (Dst >= Src && Dst < Src + NumOps) {
271     Stride = -1;
272     Dst += NumOps - 1;
273     Src += NumOps - 1;
274   }
275 
276   // Copy one operand at a time.
277   do {
278     new (Dst) MachineOperand(*Src);
279 
280     // Dst takes Src's place in the use-def chain.
281     if (Src->isReg()) {
282       MachineOperand *&Head = getRegUseDefListHead(Src->getReg());
283       MachineOperand *Prev = Src->Contents.Reg.Prev;
284       MachineOperand *Next = Src->Contents.Reg.Next;
285       assert(Head && "List empty, but operand is chained");
286       assert(Prev && "Operand was not on use-def list");
287 
288       // Prev links are circular, next link is NULL instead of looping back to
289       // Head.
290       if (Src == Head)
291         Head = Dst;
292       else
293         Prev->Contents.Reg.Next = Dst;
294 
295       // Update Prev pointer. This also works when Src was pointing to itself
296       // in a 1-element list. In that case Head == Dst.
297       (Next ? Next : Head)->Contents.Reg.Prev = Dst;
298     }
299 
300     Dst += Stride;
301     Src += Stride;
302   } while (--NumOps);
303 }
304 
305 /// replaceRegWith - Replace all instances of FromReg with ToReg in the
306 /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
307 /// except that it also changes any definitions of the register as well.
308 /// If ToReg is a physical register we apply the sub register to obtain the
309 /// final/proper physical register.
310 void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
311   assert(FromReg != ToReg && "Cannot replace a reg with itself");
312 
313   const TargetRegisterInfo *TRI = getTargetRegisterInfo();
314 
315   // TODO: This could be more efficient by bulk changing the operands.
316   for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
317     MachineOperand &O = *I;
318     ++I;
319     if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
320       O.substPhysReg(ToReg, *TRI);
321     } else {
322       O.setReg(ToReg);
323     }
324   }
325 }
326 
327 /// getVRegDef - Return the machine instr that defines the specified virtual
328 /// register or null if none is found.  This assumes that the code is in SSA
329 /// form, so there should only be one definition.
330 MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
331   // Since we are in SSA form, we can use the first definition.
332   def_instr_iterator I = def_instr_begin(Reg);
333   assert((I.atEnd() || std::next(I) == def_instr_end()) &&
334          "getVRegDef assumes a single definition or no definition");
335   return !I.atEnd() ? &*I : nullptr;
336 }
337 
338 /// getUniqueVRegDef - Return the unique machine instr that defines the
339 /// specified virtual register or null if none is found.  If there are
340 /// multiple definitions or no definition, return null.
341 MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const {
342   if (def_empty(Reg)) return nullptr;
343   def_instr_iterator I = def_instr_begin(Reg);
344   if (std::next(I) != def_instr_end())
345     return nullptr;
346   return &*I;
347 }
348 
349 bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const {
350   use_nodbg_iterator UI = use_nodbg_begin(RegNo);
351   if (UI == use_nodbg_end())
352     return false;
353   return ++UI == use_nodbg_end();
354 }
355 
356 /// clearKillFlags - Iterate over all the uses of the given register and
357 /// clear the kill flag from the MachineOperand. This function is used by
358 /// optimization passes which extend register lifetimes and need only
359 /// preserve conservative kill flag information.
360 void MachineRegisterInfo::clearKillFlags(unsigned Reg) const {
361   for (MachineOperand &MO : use_operands(Reg))
362     MO.setIsKill(false);
363 }
364 
365 bool MachineRegisterInfo::isLiveIn(unsigned Reg) const {
366   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
367     if (I->first == Reg || I->second == Reg)
368       return true;
369   return false;
370 }
371 
372 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
373 /// corresponding live-in physical register.
374 unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const {
375   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
376     if (I->second == VReg)
377       return I->first;
378   return 0;
379 }
380 
381 /// getLiveInVirtReg - If PReg is a live-in physical register, return the
382 /// corresponding live-in physical register.
383 unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const {
384   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
385     if (I->first == PReg)
386       return I->second;
387   return 0;
388 }
389 
390 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
391 /// into the given entry block.
392 void
393 MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
394                                       const TargetRegisterInfo &TRI,
395                                       const TargetInstrInfo &TII) {
396   // Emit the copies into the top of the block.
397   for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
398     if (LiveIns[i].second) {
399       if (use_empty(LiveIns[i].second)) {
400         // The livein has no uses. Drop it.
401         //
402         // It would be preferable to have isel avoid creating live-in
403         // records for unused arguments in the first place, but it's
404         // complicated by the debug info code for arguments.
405         LiveIns.erase(LiveIns.begin() + i);
406         --i; --e;
407       } else {
408         // Emit a copy.
409         BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
410                 TII.get(TargetOpcode::COPY), LiveIns[i].second)
411           .addReg(LiveIns[i].first);
412 
413         // Add the register to the entry block live-in set.
414         EntryMBB->addLiveIn(LiveIns[i].first);
415       }
416     } else {
417       // Add the register to the entry block live-in set.
418       EntryMBB->addLiveIn(LiveIns[i].first);
419     }
420 }
421 
422 LaneBitmask MachineRegisterInfo::getMaxLaneMaskForVReg(unsigned Reg) const {
423   // Lane masks are only defined for vregs.
424   assert(TargetRegisterInfo::isVirtualRegister(Reg));
425   const TargetRegisterClass &TRC = *getRegClass(Reg);
426   return TRC.getLaneMask();
427 }
428 
429 #ifndef NDEBUG
430 void MachineRegisterInfo::dumpUses(unsigned Reg) const {
431   for (MachineInstr &I : use_instructions(Reg))
432     I.dump();
433 }
434 #endif
435 
436 void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
437   ReservedRegs = getTargetRegisterInfo()->getReservedRegs(MF);
438   assert(ReservedRegs.size() == getTargetRegisterInfo()->getNumRegs() &&
439          "Invalid ReservedRegs vector from target");
440 }
441 
442 bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
443                                             const MachineFunction &MF) const {
444   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));
445 
446   // Check if any overlapping register is modified, or allocatable so it may be
447   // used later.
448   for (MCRegAliasIterator AI(PhysReg, getTargetRegisterInfo(), true);
449        AI.isValid(); ++AI)
450     if (!def_empty(*AI) || isAllocatable(*AI))
451       return false;
452   return true;
453 }
454 
455 /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
456 /// specified register as undefined which causes the DBG_VALUE to be
457 /// deleted during LiveDebugVariables analysis.
458 void MachineRegisterInfo::markUsesInDebugValueAsUndef(unsigned Reg) const {
459   // Mark any DBG_VALUE that uses Reg as undef (but don't delete it.)
460   MachineRegisterInfo::use_instr_iterator nextI;
461   for (use_instr_iterator I = use_instr_begin(Reg), E = use_instr_end();
462        I != E; I = nextI) {
463     nextI = std::next(I);  // I is invalidated by the setReg
464     MachineInstr *UseMI = &*I;
465     if (UseMI->isDebugValue())
466       UseMI->getOperand(0).setReg(0U);
467   }
468 }
469 
470 static const Function *getCalledFunction(const MachineInstr &MI) {
471   for (const MachineOperand &MO : MI.operands()) {
472     if (!MO.isGlobal())
473       continue;
474     const Function *Func = dyn_cast<Function>(MO.getGlobal());
475     if (Func != nullptr)
476       return Func;
477   }
478   return nullptr;
479 }
480 
481 static bool isNoReturnDef(const MachineOperand &MO) {
482   // Anything which is not a noreturn function is a real def.
483   const MachineInstr &MI = *MO.getParent();
484   if (!MI.isCall())
485     return false;
486   const MachineBasicBlock &MBB = *MI.getParent();
487   if (!MBB.succ_empty())
488     return false;
489   const MachineFunction &MF = *MBB.getParent();
490   // We need to keep correct unwind information even if the function will
491   // not return, since the runtime may need it.
492   if (MF.getFunction()->hasFnAttribute(Attribute::UWTable))
493     return false;
494   const Function *Called = getCalledFunction(MI);
495   return !(Called == nullptr || !Called->hasFnAttribute(Attribute::NoReturn) ||
496            !Called->hasFnAttribute(Attribute::NoUnwind));
497 }
498 
499 bool MachineRegisterInfo::isPhysRegModified(unsigned PhysReg) const {
500   if (UsedPhysRegMask.test(PhysReg))
501     return true;
502   const TargetRegisterInfo *TRI = getTargetRegisterInfo();
503   for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) {
504     for (const MachineOperand &MO : make_range(def_begin(*AI), def_end())) {
505       if (isNoReturnDef(MO))
506         continue;
507       return true;
508     }
509   }
510   return false;
511 }
512 
513 bool MachineRegisterInfo::isPhysRegUsed(unsigned PhysReg) const {
514   if (UsedPhysRegMask.test(PhysReg))
515     return true;
516   const TargetRegisterInfo *TRI = getTargetRegisterInfo();
517   for (MCRegAliasIterator AliasReg(PhysReg, TRI, true); AliasReg.isValid();
518        ++AliasReg) {
519     if (!reg_nodbg_empty(*AliasReg))
520       return true;
521   }
522   return false;
523 }
524