1 //===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MachineRegisterInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/CodeGen/MachineInstrBuilder.h" 16 #include "llvm/Target/TargetInstrInfo.h" 17 #include "llvm/Target/TargetMachine.h" 18 using namespace llvm; 19 20 MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI) 21 : TRI(&TRI), IsSSA(true), TracksLiveness(true) { 22 VRegInfo.reserve(256); 23 RegAllocHints.reserve(256); 24 UsedPhysRegs.resize(TRI.getNumRegs()); 25 UsedPhysRegMask.resize(TRI.getNumRegs()); 26 27 // Create the physreg use/def lists. 28 PhysRegUseDefLists = new MachineOperand*[TRI.getNumRegs()]; 29 memset(PhysRegUseDefLists, 0, sizeof(MachineOperand*)*TRI.getNumRegs()); 30 } 31 32 MachineRegisterInfo::~MachineRegisterInfo() { 33 #ifndef NDEBUG 34 clearVirtRegs(); 35 for (unsigned i = 0, e = UsedPhysRegs.size(); i != e; ++i) 36 assert(!PhysRegUseDefLists[i] && 37 "PhysRegUseDefLists has entries after all instructions are deleted"); 38 #endif 39 delete [] PhysRegUseDefLists; 40 } 41 42 /// setRegClass - Set the register class of the specified virtual register. 43 /// 44 void 45 MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) { 46 VRegInfo[Reg].first = RC; 47 } 48 49 const TargetRegisterClass * 50 MachineRegisterInfo::constrainRegClass(unsigned Reg, 51 const TargetRegisterClass *RC, 52 unsigned MinNumRegs) { 53 const TargetRegisterClass *OldRC = getRegClass(Reg); 54 if (OldRC == RC) 55 return RC; 56 const TargetRegisterClass *NewRC = TRI->getCommonSubClass(OldRC, RC); 57 if (!NewRC || NewRC == OldRC) 58 return NewRC; 59 if (NewRC->getNumRegs() < MinNumRegs) 60 return 0; 61 setRegClass(Reg, NewRC); 62 return NewRC; 63 } 64 65 bool 66 MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) { 67 const TargetInstrInfo *TII = TM.getInstrInfo(); 68 const TargetRegisterClass *OldRC = getRegClass(Reg); 69 const TargetRegisterClass *NewRC = TRI->getLargestLegalSuperClass(OldRC); 70 71 // Stop early if there is no room to grow. 72 if (NewRC == OldRC) 73 return false; 74 75 // Accumulate constraints from all uses. 76 for (reg_nodbg_iterator I = reg_nodbg_begin(Reg), E = reg_nodbg_end(); I != E; 77 ++I) { 78 const TargetRegisterClass *OpRC = 79 I->getRegClassConstraint(I.getOperandNo(), TII, TRI); 80 if (unsigned SubIdx = I.getOperand().getSubReg()) { 81 if (OpRC) 82 NewRC = TRI->getMatchingSuperRegClass(NewRC, OpRC, SubIdx); 83 else 84 NewRC = TRI->getSubClassWithSubReg(NewRC, SubIdx); 85 } else if (OpRC) 86 NewRC = TRI->getCommonSubClass(NewRC, OpRC); 87 if (!NewRC || NewRC == OldRC) 88 return false; 89 } 90 setRegClass(Reg, NewRC); 91 return true; 92 } 93 94 /// createVirtualRegister - Create and return a new virtual register in the 95 /// function with the specified register class. 96 /// 97 unsigned 98 MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){ 99 assert(RegClass && "Cannot create register without RegClass!"); 100 assert(RegClass->isAllocatable() && 101 "Virtual register RegClass must be allocatable."); 102 103 // New virtual register number. 104 unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs()); 105 106 // Add a reg, but keep track of whether the vector reallocated or not. 107 const unsigned FirstVirtReg = TargetRegisterInfo::index2VirtReg(0); 108 void *ArrayBase = getNumVirtRegs() == 0 ? 0 : &VRegInfo[FirstVirtReg]; 109 VRegInfo.grow(Reg); 110 VRegInfo[Reg].first = RegClass; 111 RegAllocHints.grow(Reg); 112 113 if (ArrayBase && &VRegInfo[FirstVirtReg] != ArrayBase) 114 // The vector reallocated, handle this now. 115 HandleVRegListReallocation(); 116 return Reg; 117 } 118 119 /// clearVirtRegs - Remove all virtual registers (after physreg assignment). 120 void MachineRegisterInfo::clearVirtRegs() { 121 #ifndef NDEBUG 122 for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) 123 assert(VRegInfo[TargetRegisterInfo::index2VirtReg(i)].second == 0 && 124 "Vreg use list non-empty still?"); 125 #endif 126 VRegInfo.clear(); 127 } 128 129 /// HandleVRegListReallocation - We just added a virtual register to the 130 /// VRegInfo info list and it reallocated. Update the use/def lists info 131 /// pointers. 132 void MachineRegisterInfo::HandleVRegListReallocation() { 133 // The back pointers for the vreg lists point into the previous vector. 134 // Update them to point to their correct slots. 135 for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) { 136 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 137 MachineOperand *List = VRegInfo[Reg].second; 138 if (!List) continue; 139 // Update the back-pointer to be accurate once more. 140 List->Contents.Reg.Prev = &VRegInfo[Reg].second; 141 } 142 } 143 144 /// replaceRegWith - Replace all instances of FromReg with ToReg in the 145 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), 146 /// except that it also changes any definitions of the register as well. 147 void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) { 148 assert(FromReg != ToReg && "Cannot replace a reg with itself"); 149 150 // TODO: This could be more efficient by bulk changing the operands. 151 for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) { 152 MachineOperand &O = I.getOperand(); 153 ++I; 154 O.setReg(ToReg); 155 } 156 } 157 158 159 /// getVRegDef - Return the machine instr that defines the specified virtual 160 /// register or null if none is found. This assumes that the code is in SSA 161 /// form, so there should only be one definition. 162 MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const { 163 // Since we are in SSA form, we can use the first definition. 164 def_iterator I = def_begin(Reg); 165 assert((I.atEnd() || llvm::next(I) == def_end()) && 166 "getVRegDef assumes a single definition or no definition"); 167 return !I.atEnd() ? &*I : 0; 168 } 169 170 /// getUniqueVRegDef - Return the unique machine instr that defines the 171 /// specified virtual register or null if none is found. If there are 172 /// multiple definitions or no definition, return null. 173 MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const { 174 if (def_empty(Reg)) return 0; 175 def_iterator I = def_begin(Reg); 176 if (llvm::next(I) != def_end()) 177 return 0; 178 return &*I; 179 } 180 181 bool MachineRegisterInfo::hasOneUse(unsigned RegNo) const { 182 use_iterator UI = use_begin(RegNo); 183 if (UI == use_end()) 184 return false; 185 return ++UI == use_end(); 186 } 187 188 bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const { 189 use_nodbg_iterator UI = use_nodbg_begin(RegNo); 190 if (UI == use_nodbg_end()) 191 return false; 192 return ++UI == use_nodbg_end(); 193 } 194 195 /// clearKillFlags - Iterate over all the uses of the given register and 196 /// clear the kill flag from the MachineOperand. This function is used by 197 /// optimization passes which extend register lifetimes and need only 198 /// preserve conservative kill flag information. 199 void MachineRegisterInfo::clearKillFlags(unsigned Reg) const { 200 for (use_iterator UI = use_begin(Reg), UE = use_end(); UI != UE; ++UI) 201 UI.getOperand().setIsKill(false); 202 } 203 204 bool MachineRegisterInfo::isLiveIn(unsigned Reg) const { 205 for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) 206 if (I->first == Reg || I->second == Reg) 207 return true; 208 return false; 209 } 210 211 bool MachineRegisterInfo::isLiveOut(unsigned Reg) const { 212 for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I) 213 if (*I == Reg) 214 return true; 215 return false; 216 } 217 218 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the 219 /// corresponding live-in physical register. 220 unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const { 221 for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) 222 if (I->second == VReg) 223 return I->first; 224 return 0; 225 } 226 227 /// getLiveInVirtReg - If PReg is a live-in physical register, return the 228 /// corresponding live-in physical register. 229 unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const { 230 for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) 231 if (I->first == PReg) 232 return I->second; 233 return 0; 234 } 235 236 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers 237 /// into the given entry block. 238 void 239 MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB, 240 const TargetRegisterInfo &TRI, 241 const TargetInstrInfo &TII) { 242 // Emit the copies into the top of the block. 243 for (unsigned i = 0, e = LiveIns.size(); i != e; ++i) 244 if (LiveIns[i].second) { 245 if (use_empty(LiveIns[i].second)) { 246 // The livein has no uses. Drop it. 247 // 248 // It would be preferable to have isel avoid creating live-in 249 // records for unused arguments in the first place, but it's 250 // complicated by the debug info code for arguments. 251 LiveIns.erase(LiveIns.begin() + i); 252 --i; --e; 253 } else { 254 // Emit a copy. 255 BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(), 256 TII.get(TargetOpcode::COPY), LiveIns[i].second) 257 .addReg(LiveIns[i].first); 258 259 // Add the register to the entry block live-in set. 260 EntryMBB->addLiveIn(LiveIns[i].first); 261 } 262 } else { 263 // Add the register to the entry block live-in set. 264 EntryMBB->addLiveIn(LiveIns[i].first); 265 } 266 } 267 268 #ifndef NDEBUG 269 void MachineRegisterInfo::dumpUses(unsigned Reg) const { 270 for (use_iterator I = use_begin(Reg), E = use_end(); I != E; ++I) 271 I.getOperand().getParent()->dump(); 272 } 273 #endif 274 275 void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) { 276 ReservedRegs = TRI->getReservedRegs(MF); 277 } 278 279 bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg, 280 const MachineFunction &MF) const { 281 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg)); 282 283 // Check if any overlapping register is modified. 284 for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) 285 if (!def_empty(*AI)) 286 return false; 287 288 // Check if any overlapping register is allocatable so it may be used later. 289 if (AllocatableRegs.empty()) 290 AllocatableRegs = TRI->getAllocatableSet(MF); 291 for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) 292 if (AllocatableRegs.test(*AI)) 293 return false; 294 return true; 295 } 296