1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * insertOutlinerEpilogue
29 ///   * insertOutlinedCall
30 ///   * insertOutlinerPrologue
31 ///   * isFunctionSafeToOutlineFrom
32 ///
33 /// in order to make use of the MachineOutliner.
34 ///
35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37 /// how this pass works, the talk is available on YouTube at
38 ///
39 /// https://www.youtube.com/watch?v=yorld-WSOeU
40 ///
41 /// The slides for the talk are available at
42 ///
43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44 ///
45 /// The talk provides an overview of how the outliner finds candidates and
46 /// ultimately outlines them. It describes how the main data structure for this
47 /// pass, the suffix tree, is queried and purged for candidates. It also gives
48 /// a simplified suffix tree construction algorithm for suffix trees based off
49 /// of the algorithm actually used here, Ukkonen's algorithm.
50 ///
51 /// For the original RFC for this pass, please see
52 ///
53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54 ///
55 /// For more information on the suffix tree data structure, please see
56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57 ///
58 //===----------------------------------------------------------------------===//
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/Passes.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetRegisterInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/Support/Allocator.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <functional>
74 #include <map>
75 #include <sstream>
76 #include <tuple>
77 #include <vector>
78 
79 #define DEBUG_TYPE "machine-outliner"
80 
81 using namespace llvm;
82 using namespace ore;
83 
84 STATISTIC(NumOutlined, "Number of candidates outlined");
85 STATISTIC(FunctionsCreated, "Number of functions created");
86 
87 namespace {
88 
89 /// \brief An individual sequence of instructions to be replaced with a call to
90 /// an outlined function.
91 struct Candidate {
92 private:
93   /// The start index of this \p Candidate in the instruction list.
94   unsigned StartIdx;
95 
96   /// The number of instructions in this \p Candidate.
97   unsigned Len;
98 
99 public:
100   /// Set to false if the candidate overlapped with another candidate.
101   bool InCandidateList = true;
102 
103   /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of
104   /// \p OutlinedFunctions.
105   unsigned FunctionIdx;
106 
107   /// Contains all target-specific information for this \p Candidate.
108   TargetInstrInfo::MachineOutlinerInfo MInfo;
109 
110   /// Return the number of instructions in this Candidate.
111   unsigned getLength() const { return Len; }
112 
113   /// Return the start index of this candidate.
114   unsigned getStartIdx() const { return StartIdx; }
115 
116   // Return the end index of this candidate.
117   unsigned getEndIdx() const { return StartIdx + Len - 1; }
118 
119   /// \brief The number of instructions that would be saved by outlining every
120   /// candidate of this type.
121   ///
122   /// This is a fixed value which is not updated during the candidate pruning
123   /// process. It is only used for deciding which candidate to keep if two
124   /// candidates overlap. The true benefit is stored in the OutlinedFunction
125   /// for some given candidate.
126   unsigned Benefit = 0;
127 
128   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx)
129       : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
130 
131   Candidate() {}
132 
133   /// \brief Used to ensure that \p Candidates are outlined in an order that
134   /// preserves the start and end indices of other \p Candidates.
135   bool operator<(const Candidate &RHS) const {
136     return getStartIdx() > RHS.getStartIdx();
137   }
138 };
139 
140 /// \brief The information necessary to create an outlined function for some
141 /// class of candidate.
142 struct OutlinedFunction {
143 
144 private:
145   /// The number of candidates for this \p OutlinedFunction.
146   unsigned OccurrenceCount = 0;
147 
148 public:
149   std::vector<std::shared_ptr<Candidate>> Candidates;
150 
151   /// The actual outlined function created.
152   /// This is initialized after we go through and create the actual function.
153   MachineFunction *MF = nullptr;
154 
155   /// A number assigned to this function which appears at the end of its name.
156   unsigned Name;
157 
158   /// \brief The sequence of integers corresponding to the instructions in this
159   /// function.
160   std::vector<unsigned> Sequence;
161 
162   /// Contains all target-specific information for this \p OutlinedFunction.
163   TargetInstrInfo::MachineOutlinerInfo MInfo;
164 
165   /// Return the number of candidates for this \p OutlinedFunction.
166   unsigned getOccurrenceCount() { return OccurrenceCount; }
167 
168   /// Decrement the occurrence count of this OutlinedFunction and return the
169   /// new count.
170   unsigned decrement() {
171     assert(OccurrenceCount > 0 && "Can't decrement an empty function!");
172     OccurrenceCount--;
173     return getOccurrenceCount();
174   }
175 
176   /// \brief Return the number of instructions it would take to outline this
177   /// function.
178   unsigned getOutliningCost() {
179     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
180            MInfo.FrameOverhead;
181   }
182 
183   /// \brief Return the number of instructions that would be saved by outlining
184   /// this function.
185   unsigned getBenefit() {
186     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
187     unsigned OutlinedCost = getOutliningCost();
188     return (NotOutlinedCost < OutlinedCost) ? 0
189                                             : NotOutlinedCost - OutlinedCost;
190   }
191 
192   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
193                    const std::vector<unsigned> &Sequence,
194                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
195       : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence),
196         MInfo(MInfo) {}
197 };
198 
199 /// Represents an undefined index in the suffix tree.
200 const unsigned EmptyIdx = -1;
201 
202 /// A node in a suffix tree which represents a substring or suffix.
203 ///
204 /// Each node has either no children or at least two children, with the root
205 /// being a exception in the empty tree.
206 ///
207 /// Children are represented as a map between unsigned integers and nodes. If
208 /// a node N has a child M on unsigned integer k, then the mapping represented
209 /// by N is a proper prefix of the mapping represented by M. Note that this,
210 /// although similar to a trie is somewhat different: each node stores a full
211 /// substring of the full mapping rather than a single character state.
212 ///
213 /// Each internal node contains a pointer to the internal node representing
214 /// the same string, but with the first character chopped off. This is stored
215 /// in \p Link. Each leaf node stores the start index of its respective
216 /// suffix in \p SuffixIdx.
217 struct SuffixTreeNode {
218 
219   /// The children of this node.
220   ///
221   /// A child existing on an unsigned integer implies that from the mapping
222   /// represented by the current node, there is a way to reach another
223   /// mapping by tacking that character on the end of the current string.
224   DenseMap<unsigned, SuffixTreeNode *> Children;
225 
226   /// A flag set to false if the node has been pruned from the tree.
227   bool IsInTree = true;
228 
229   /// The start index of this node's substring in the main string.
230   unsigned StartIdx = EmptyIdx;
231 
232   /// The end index of this node's substring in the main string.
233   ///
234   /// Every leaf node must have its \p EndIdx incremented at the end of every
235   /// step in the construction algorithm. To avoid having to update O(N)
236   /// nodes individually at the end of every step, the end index is stored
237   /// as a pointer.
238   unsigned *EndIdx = nullptr;
239 
240   /// For leaves, the start index of the suffix represented by this node.
241   ///
242   /// For all other nodes, this is ignored.
243   unsigned SuffixIdx = EmptyIdx;
244 
245   /// \brief For internal nodes, a pointer to the internal node representing
246   /// the same sequence with the first character chopped off.
247   ///
248   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
249   /// Ukkonen's algorithm does to achieve linear-time construction is
250   /// keep track of which node the next insert should be at. This makes each
251   /// insert O(1), and there are a total of O(N) inserts. The suffix link
252   /// helps with inserting children of internal nodes.
253   ///
254   /// Say we add a child to an internal node with associated mapping S. The
255   /// next insertion must be at the node representing S - its first character.
256   /// This is given by the way that we iteratively build the tree in Ukkonen's
257   /// algorithm. The main idea is to look at the suffixes of each prefix in the
258   /// string, starting with the longest suffix of the prefix, and ending with
259   /// the shortest. Therefore, if we keep pointers between such nodes, we can
260   /// move to the next insertion point in O(1) time. If we don't, then we'd
261   /// have to query from the root, which takes O(N) time. This would make the
262   /// construction algorithm O(N^2) rather than O(N).
263   SuffixTreeNode *Link = nullptr;
264 
265   /// The parent of this node. Every node except for the root has a parent.
266   SuffixTreeNode *Parent = nullptr;
267 
268   /// The number of times this node's string appears in the tree.
269   ///
270   /// This is equal to the number of leaf children of the string. It represents
271   /// the number of suffixes that the node's string is a prefix of.
272   unsigned OccurrenceCount = 0;
273 
274   /// The length of the string formed by concatenating the edge labels from the
275   /// root to this node.
276   unsigned ConcatLen = 0;
277 
278   /// Returns true if this node is a leaf.
279   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
280 
281   /// Returns true if this node is the root of its owning \p SuffixTree.
282   bool isRoot() const { return StartIdx == EmptyIdx; }
283 
284   /// Return the number of elements in the substring associated with this node.
285   size_t size() const {
286 
287     // Is it the root? If so, it's the empty string so return 0.
288     if (isRoot())
289       return 0;
290 
291     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
292 
293     // Size = the number of elements in the string.
294     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
295     return *EndIdx - StartIdx + 1;
296   }
297 
298   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
299                  SuffixTreeNode *Parent)
300       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
301 
302   SuffixTreeNode() {}
303 };
304 
305 /// A data structure for fast substring queries.
306 ///
307 /// Suffix trees represent the suffixes of their input strings in their leaves.
308 /// A suffix tree is a type of compressed trie structure where each node
309 /// represents an entire substring rather than a single character. Each leaf
310 /// of the tree is a suffix.
311 ///
312 /// A suffix tree can be seen as a type of state machine where each state is a
313 /// substring of the full string. The tree is structured so that, for a string
314 /// of length N, there are exactly N leaves in the tree. This structure allows
315 /// us to quickly find repeated substrings of the input string.
316 ///
317 /// In this implementation, a "string" is a vector of unsigned integers.
318 /// These integers may result from hashing some data type. A suffix tree can
319 /// contain 1 or many strings, which can then be queried as one large string.
320 ///
321 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
322 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
323 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
324 /// paper is available at
325 ///
326 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
327 class SuffixTree {
328 public:
329   /// Stores each leaf node in the tree.
330   ///
331   /// This is used for finding outlining candidates.
332   std::vector<SuffixTreeNode *> LeafVector;
333 
334   /// Each element is an integer representing an instruction in the module.
335   ArrayRef<unsigned> Str;
336 
337 private:
338   /// Maintains each node in the tree.
339   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
340 
341   /// The root of the suffix tree.
342   ///
343   /// The root represents the empty string. It is maintained by the
344   /// \p NodeAllocator like every other node in the tree.
345   SuffixTreeNode *Root = nullptr;
346 
347   /// Maintains the end indices of the internal nodes in the tree.
348   ///
349   /// Each internal node is guaranteed to never have its end index change
350   /// during the construction algorithm; however, leaves must be updated at
351   /// every step. Therefore, we need to store leaf end indices by reference
352   /// to avoid updating O(N) leaves at every step of construction. Thus,
353   /// every internal node must be allocated its own end index.
354   BumpPtrAllocator InternalEndIdxAllocator;
355 
356   /// The end index of each leaf in the tree.
357   unsigned LeafEndIdx = -1;
358 
359   /// \brief Helper struct which keeps track of the next insertion point in
360   /// Ukkonen's algorithm.
361   struct ActiveState {
362     /// The next node to insert at.
363     SuffixTreeNode *Node;
364 
365     /// The index of the first character in the substring currently being added.
366     unsigned Idx = EmptyIdx;
367 
368     /// The length of the substring we have to add at the current step.
369     unsigned Len = 0;
370   };
371 
372   /// \brief The point the next insertion will take place at in the
373   /// construction algorithm.
374   ActiveState Active;
375 
376   /// Allocate a leaf node and add it to the tree.
377   ///
378   /// \param Parent The parent of this node.
379   /// \param StartIdx The start index of this node's associated string.
380   /// \param Edge The label on the edge leaving \p Parent to this node.
381   ///
382   /// \returns A pointer to the allocated leaf node.
383   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
384                              unsigned Edge) {
385 
386     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
387 
388     SuffixTreeNode *N = new (NodeAllocator.Allocate())
389         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
390     Parent.Children[Edge] = N;
391 
392     return N;
393   }
394 
395   /// Allocate an internal node and add it to the tree.
396   ///
397   /// \param Parent The parent of this node. Only null when allocating the root.
398   /// \param StartIdx The start index of this node's associated string.
399   /// \param EndIdx The end index of this node's associated string.
400   /// \param Edge The label on the edge leaving \p Parent to this node.
401   ///
402   /// \returns A pointer to the allocated internal node.
403   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
404                                      unsigned EndIdx, unsigned Edge) {
405 
406     assert(StartIdx <= EndIdx && "String can't start after it ends!");
407     assert(!(!Parent && StartIdx != EmptyIdx) &&
408            "Non-root internal nodes must have parents!");
409 
410     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
411     SuffixTreeNode *N = new (NodeAllocator.Allocate())
412         SuffixTreeNode(StartIdx, E, Root, Parent);
413     if (Parent)
414       Parent->Children[Edge] = N;
415 
416     return N;
417   }
418 
419   /// \brief Set the suffix indices of the leaves to the start indices of their
420   /// respective suffixes. Also stores each leaf in \p LeafVector at its
421   /// respective suffix index.
422   ///
423   /// \param[in] CurrNode The node currently being visited.
424   /// \param CurrIdx The current index of the string being visited.
425   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
426 
427     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
428 
429     // Store the length of the concatenation of all strings from the root to
430     // this node.
431     if (!CurrNode.isRoot()) {
432       if (CurrNode.ConcatLen == 0)
433         CurrNode.ConcatLen = CurrNode.size();
434 
435       if (CurrNode.Parent)
436         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
437     }
438 
439     // Traverse the tree depth-first.
440     for (auto &ChildPair : CurrNode.Children) {
441       assert(ChildPair.second && "Node had a null child!");
442       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
443     }
444 
445     // Is this node a leaf?
446     if (IsLeaf) {
447       // If yes, give it a suffix index and bump its parent's occurrence count.
448       CurrNode.SuffixIdx = Str.size() - CurrIdx;
449       assert(CurrNode.Parent && "CurrNode had no parent!");
450       CurrNode.Parent->OccurrenceCount++;
451 
452       // Store the leaf in the leaf vector for pruning later.
453       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
454     }
455   }
456 
457   /// \brief Construct the suffix tree for the prefix of the input ending at
458   /// \p EndIdx.
459   ///
460   /// Used to construct the full suffix tree iteratively. At the end of each
461   /// step, the constructed suffix tree is either a valid suffix tree, or a
462   /// suffix tree with implicit suffixes. At the end of the final step, the
463   /// suffix tree is a valid tree.
464   ///
465   /// \param EndIdx The end index of the current prefix in the main string.
466   /// \param SuffixesToAdd The number of suffixes that must be added
467   /// to complete the suffix tree at the current phase.
468   ///
469   /// \returns The number of suffixes that have not been added at the end of
470   /// this step.
471   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
472     SuffixTreeNode *NeedsLink = nullptr;
473 
474     while (SuffixesToAdd > 0) {
475 
476       // Are we waiting to add anything other than just the last character?
477       if (Active.Len == 0) {
478         // If not, then say the active index is the end index.
479         Active.Idx = EndIdx;
480       }
481 
482       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
483 
484       // The first character in the current substring we're looking at.
485       unsigned FirstChar = Str[Active.Idx];
486 
487       // Have we inserted anything starting with FirstChar at the current node?
488       if (Active.Node->Children.count(FirstChar) == 0) {
489         // If not, then we can just insert a leaf and move too the next step.
490         insertLeaf(*Active.Node, EndIdx, FirstChar);
491 
492         // The active node is an internal node, and we visited it, so it must
493         // need a link if it doesn't have one.
494         if (NeedsLink) {
495           NeedsLink->Link = Active.Node;
496           NeedsLink = nullptr;
497         }
498       } else {
499         // There's a match with FirstChar, so look for the point in the tree to
500         // insert a new node.
501         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
502 
503         unsigned SubstringLen = NextNode->size();
504 
505         // Is the current suffix we're trying to insert longer than the size of
506         // the child we want to move to?
507         if (Active.Len >= SubstringLen) {
508           // If yes, then consume the characters we've seen and move to the next
509           // node.
510           Active.Idx += SubstringLen;
511           Active.Len -= SubstringLen;
512           Active.Node = NextNode;
513           continue;
514         }
515 
516         // Otherwise, the suffix we're trying to insert must be contained in the
517         // next node we want to move to.
518         unsigned LastChar = Str[EndIdx];
519 
520         // Is the string we're trying to insert a substring of the next node?
521         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
522           // If yes, then we're done for this step. Remember our insertion point
523           // and move to the next end index. At this point, we have an implicit
524           // suffix tree.
525           if (NeedsLink && !Active.Node->isRoot()) {
526             NeedsLink->Link = Active.Node;
527             NeedsLink = nullptr;
528           }
529 
530           Active.Len++;
531           break;
532         }
533 
534         // The string we're trying to insert isn't a substring of the next node,
535         // but matches up to a point. Split the node.
536         //
537         // For example, say we ended our search at a node n and we're trying to
538         // insert ABD. Then we'll create a new node s for AB, reduce n to just
539         // representing C, and insert a new leaf node l to represent d. This
540         // allows us to ensure that if n was a leaf, it remains a leaf.
541         //
542         //   | ABC  ---split--->  | AB
543         //   n                    s
544         //                     C / \ D
545         //                      n   l
546 
547         // The node s from the diagram
548         SuffixTreeNode *SplitNode =
549             insertInternalNode(Active.Node, NextNode->StartIdx,
550                                NextNode->StartIdx + Active.Len - 1, FirstChar);
551 
552         // Insert the new node representing the new substring into the tree as
553         // a child of the split node. This is the node l from the diagram.
554         insertLeaf(*SplitNode, EndIdx, LastChar);
555 
556         // Make the old node a child of the split node and update its start
557         // index. This is the node n from the diagram.
558         NextNode->StartIdx += Active.Len;
559         NextNode->Parent = SplitNode;
560         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
561 
562         // SplitNode is an internal node, update the suffix link.
563         if (NeedsLink)
564           NeedsLink->Link = SplitNode;
565 
566         NeedsLink = SplitNode;
567       }
568 
569       // We've added something new to the tree, so there's one less suffix to
570       // add.
571       SuffixesToAdd--;
572 
573       if (Active.Node->isRoot()) {
574         if (Active.Len > 0) {
575           Active.Len--;
576           Active.Idx = EndIdx - SuffixesToAdd + 1;
577         }
578       } else {
579         // Start the next phase at the next smallest suffix.
580         Active.Node = Active.Node->Link;
581       }
582     }
583 
584     return SuffixesToAdd;
585   }
586 
587 public:
588   /// Construct a suffix tree from a sequence of unsigned integers.
589   ///
590   /// \param Str The string to construct the suffix tree for.
591   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
592     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
593     Root->IsInTree = true;
594     Active.Node = Root;
595     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
596 
597     // Keep track of the number of suffixes we have to add of the current
598     // prefix.
599     unsigned SuffixesToAdd = 0;
600     Active.Node = Root;
601 
602     // Construct the suffix tree iteratively on each prefix of the string.
603     // PfxEndIdx is the end index of the current prefix.
604     // End is one past the last element in the string.
605     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
606          PfxEndIdx++) {
607       SuffixesToAdd++;
608       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
609       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
610     }
611 
612     // Set the suffix indices of each leaf.
613     assert(Root && "Root node can't be nullptr!");
614     setSuffixIndices(*Root, 0);
615   }
616 };
617 
618 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
619 struct InstructionMapper {
620 
621   /// \brief The next available integer to assign to a \p MachineInstr that
622   /// cannot be outlined.
623   ///
624   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
625   unsigned IllegalInstrNumber = -3;
626 
627   /// \brief The next available integer to assign to a \p MachineInstr that can
628   /// be outlined.
629   unsigned LegalInstrNumber = 0;
630 
631   /// Correspondence from \p MachineInstrs to unsigned integers.
632   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
633       InstructionIntegerMap;
634 
635   /// Corresponcence from unsigned integers to \p MachineInstrs.
636   /// Inverse of \p InstructionIntegerMap.
637   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
638 
639   /// The vector of unsigned integers that the module is mapped to.
640   std::vector<unsigned> UnsignedVec;
641 
642   /// \brief Stores the location of the instruction associated with the integer
643   /// at index i in \p UnsignedVec for each index i.
644   std::vector<MachineBasicBlock::iterator> InstrList;
645 
646   /// \brief Maps \p *It to a legal integer.
647   ///
648   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
649   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
650   ///
651   /// \returns The integer that \p *It was mapped to.
652   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
653 
654     // Get the integer for this instruction or give it the current
655     // LegalInstrNumber.
656     InstrList.push_back(It);
657     MachineInstr &MI = *It;
658     bool WasInserted;
659     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
660         ResultIt;
661     std::tie(ResultIt, WasInserted) =
662         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
663     unsigned MINumber = ResultIt->second;
664 
665     // There was an insertion.
666     if (WasInserted) {
667       LegalInstrNumber++;
668       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
669     }
670 
671     UnsignedVec.push_back(MINumber);
672 
673     // Make sure we don't overflow or use any integers reserved by the DenseMap.
674     if (LegalInstrNumber >= IllegalInstrNumber)
675       report_fatal_error("Instruction mapping overflow!");
676 
677     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
678            "Tried to assign DenseMap tombstone or empty key to instruction.");
679     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
680            "Tried to assign DenseMap tombstone or empty key to instruction.");
681 
682     return MINumber;
683   }
684 
685   /// Maps \p *It to an illegal integer.
686   ///
687   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
688   ///
689   /// \returns The integer that \p *It was mapped to.
690   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
691     unsigned MINumber = IllegalInstrNumber;
692 
693     InstrList.push_back(It);
694     UnsignedVec.push_back(IllegalInstrNumber);
695     IllegalInstrNumber--;
696 
697     assert(LegalInstrNumber < IllegalInstrNumber &&
698            "Instruction mapping overflow!");
699 
700     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
701            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
702 
703     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
704            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
705 
706     return MINumber;
707   }
708 
709   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
710   /// and appends it to \p UnsignedVec and \p InstrList.
711   ///
712   /// Two instructions are assigned the same integer if they are identical.
713   /// If an instruction is deemed unsafe to outline, then it will be assigned an
714   /// unique integer. The resulting mapping is placed into a suffix tree and
715   /// queried for candidates.
716   ///
717   /// \param MBB The \p MachineBasicBlock to be translated into integers.
718   /// \param TRI \p TargetRegisterInfo for the module.
719   /// \param TII \p TargetInstrInfo for the module.
720   void convertToUnsignedVec(MachineBasicBlock &MBB,
721                             const TargetRegisterInfo &TRI,
722                             const TargetInstrInfo &TII) {
723     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
724 
725     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
726          It++) {
727 
728       // Keep track of where this instruction is in the module.
729       switch (TII.getOutliningType(It, Flags)) {
730       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
731         mapToIllegalUnsigned(It);
732         break;
733 
734       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
735         mapToLegalUnsigned(It);
736         break;
737 
738       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
739         break;
740       }
741     }
742 
743     // After we're done every insertion, uniquely terminate this part of the
744     // "string". This makes sure we won't match across basic block or function
745     // boundaries since the "end" is encoded uniquely and thus appears in no
746     // repeated substring.
747     InstrList.push_back(MBB.end());
748     UnsignedVec.push_back(IllegalInstrNumber);
749     IllegalInstrNumber--;
750   }
751 
752   InstructionMapper() {
753     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
754     // changed.
755     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
756            "DenseMapInfo<unsigned>'s empty key isn't -1!");
757     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
758            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
759   }
760 };
761 
762 /// \brief An interprocedural pass which finds repeated sequences of
763 /// instructions and replaces them with calls to functions.
764 ///
765 /// Each instruction is mapped to an unsigned integer and placed in a string.
766 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
767 /// is then repeatedly queried for repeated sequences of instructions. Each
768 /// non-overlapping repeated sequence is then placed in its own
769 /// \p MachineFunction and each instance is then replaced with a call to that
770 /// function.
771 struct MachineOutliner : public ModulePass {
772 
773   static char ID;
774 
775   /// \brief Set to true if the outliner should consider functions with
776   /// linkonceodr linkage.
777   bool OutlineFromLinkOnceODRs = false;
778 
779   StringRef getPassName() const override { return "Machine Outliner"; }
780 
781   void getAnalysisUsage(AnalysisUsage &AU) const override {
782     AU.addRequired<MachineModuleInfo>();
783     AU.addPreserved<MachineModuleInfo>();
784     AU.setPreservesAll();
785     ModulePass::getAnalysisUsage(AU);
786   }
787 
788   MachineOutliner(bool OutlineFromLinkOnceODRs = false)
789       : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
790     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
791   }
792 
793   /// Find all repeated substrings that satisfy the outlining cost model.
794   ///
795   /// If a substring appears at least twice, then it must be represented by
796   /// an internal node which appears in at least two suffixes. Each suffix is
797   /// represented by a leaf node. To do this, we visit each internal node in
798   /// the tree, using the leaf children of each internal node. If an internal
799   /// node represents a beneficial substring, then we use each of its leaf
800   /// children to find the locations of its substring.
801   ///
802   /// \param ST A suffix tree to query.
803   /// \param TII TargetInstrInfo for the target.
804   /// \param Mapper Contains outlining mapping information.
805   /// \param[out] CandidateList Filled with candidates representing each
806   /// beneficial substring.
807   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
808   /// type of candidate.
809   ///
810   /// \returns The length of the longest candidate found.
811   unsigned
812   findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
813                  InstructionMapper &Mapper,
814                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
815                  std::vector<OutlinedFunction> &FunctionList);
816 
817   /// \brief Replace the sequences of instructions represented by the
818   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
819   /// described in \p FunctionList.
820   ///
821   /// \param M The module we are outlining from.
822   /// \param CandidateList A list of candidates to be outlined.
823   /// \param FunctionList A list of functions to be inserted into the module.
824   /// \param Mapper Contains the instruction mappings for the module.
825   bool outline(Module &M,
826                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
827                std::vector<OutlinedFunction> &FunctionList,
828                InstructionMapper &Mapper);
829 
830   /// Creates a function for \p OF and inserts it into the module.
831   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
832                                           InstructionMapper &Mapper);
833 
834   /// Find potential outlining candidates and store them in \p CandidateList.
835   ///
836   /// For each type of potential candidate, also build an \p OutlinedFunction
837   /// struct containing the information to build the function for that
838   /// candidate.
839   ///
840   /// \param[out] CandidateList Filled with outlining candidates for the module.
841   /// \param[out] FunctionList Filled with functions corresponding to each type
842   /// of \p Candidate.
843   /// \param ST The suffix tree for the module.
844   /// \param TII TargetInstrInfo for the module.
845   ///
846   /// \returns The length of the longest candidate found. 0 if there are none.
847   unsigned
848   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
849                      std::vector<OutlinedFunction> &FunctionList,
850                      SuffixTree &ST, InstructionMapper &Mapper,
851                      const TargetInstrInfo &TII);
852 
853   /// Helper function for pruneOverlaps.
854   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
855   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
856 
857   /// \brief Remove any overlapping candidates that weren't handled by the
858   /// suffix tree's pruning method.
859   ///
860   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
861   /// If a short candidate is chosen for outlining, then a longer candidate
862   /// which has that short candidate as a suffix is chosen, the tree's pruning
863   /// method will not find it. Thus, we need to prune before outlining as well.
864   ///
865   /// \param[in,out] CandidateList A list of outlining candidates.
866   /// \param[in,out] FunctionList A list of functions to be outlined.
867   /// \param Mapper Contains instruction mapping info for outlining.
868   /// \param MaxCandidateLen The length of the longest candidate.
869   /// \param TII TargetInstrInfo for the module.
870   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
871                      std::vector<OutlinedFunction> &FunctionList,
872                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
873                      const TargetInstrInfo &TII);
874 
875   /// Construct a suffix tree on the instructions in \p M and outline repeated
876   /// strings from that tree.
877   bool runOnModule(Module &M) override;
878 };
879 
880 } // Anonymous namespace.
881 
882 char MachineOutliner::ID = 0;
883 
884 namespace llvm {
885 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
886   return new MachineOutliner(OutlineFromLinkOnceODRs);
887 }
888 
889 } // namespace llvm
890 
891 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
892                 false)
893 
894 unsigned MachineOutliner::findCandidates(
895     SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper,
896     std::vector<std::shared_ptr<Candidate>> &CandidateList,
897     std::vector<OutlinedFunction> &FunctionList) {
898   CandidateList.clear();
899   FunctionList.clear();
900   unsigned MaxLen = 0;
901 
902   // FIXME: Visit internal nodes instead of leaves.
903   for (SuffixTreeNode *Leaf : ST.LeafVector) {
904     assert(Leaf && "Leaves in LeafVector cannot be null!");
905     if (!Leaf->IsInTree)
906       continue;
907 
908     assert(Leaf->Parent && "All leaves must have parents!");
909     SuffixTreeNode &Parent = *(Leaf->Parent);
910 
911     // If it doesn't appear enough, or we already outlined from it, skip it.
912     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
913       continue;
914 
915     // Figure out if this candidate is beneficial.
916     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
917 
918     // Too short to be beneficial; skip it.
919     // FIXME: This isn't necessarily true for, say, X86. If we factor in
920     // instruction lengths we need more information than this.
921     if (StringLen < 2)
922       continue;
923 
924     // If this is a beneficial class of candidate, then every one is stored in
925     // this vector.
926     std::vector<Candidate> CandidatesForRepeatedSeq;
927 
928     // Describes the start and end point of each candidate. This allows the
929     // target to infer some information about each occurrence of each repeated
930     // sequence.
931     // FIXME: CandidatesForRepeatedSeq and this should be combined.
932     std::vector<
933         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
934         RepeatedSequenceLocs;
935 
936     // Figure out the call overhead for each instance of the sequence.
937     for (auto &ChildPair : Parent.Children) {
938       SuffixTreeNode *M = ChildPair.second;
939 
940       if (M && M->IsInTree && M->isLeaf()) {
941         // Never visit this leaf again.
942         M->IsInTree = false;
943         unsigned StartIdx = M->SuffixIdx;
944         unsigned EndIdx = StartIdx + StringLen - 1;
945 
946         // Trick: Discard some candidates that would be incompatible with the
947         // ones we've already found for this sequence. This will save us some
948         // work in candidate selection.
949         //
950         // If two candidates overlap, then we can't outline them both. This
951         // happens when we have candidates that look like, say
952         //
953         // AA (where each "A" is an instruction).
954         //
955         // We might have some portion of the module that looks like this:
956         // AAAAAA (6 A's)
957         //
958         // In this case, there are 5 different copies of "AA" in this range, but
959         // at most 3 can be outlined. If only outlining 3 of these is going to
960         // be unbeneficial, then we ought to not bother.
961         //
962         // Note that two things DON'T overlap when they look like this:
963         // start1...end1 .... start2...end2
964         // That is, one must either
965         // * End before the other starts
966         // * Start after the other ends
967         if (std::all_of(CandidatesForRepeatedSeq.begin(),
968                         CandidatesForRepeatedSeq.end(),
969                         [&StartIdx, &EndIdx](const Candidate &C) {
970                           return (EndIdx < C.getStartIdx() ||
971                                   StartIdx > C.getEndIdx());
972                         })) {
973           // It doesn't overlap with anything, so we can outline it.
974           // Each sequence is over [StartIt, EndIt].
975           MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
976           MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
977 
978           // Save the candidate and its location.
979           CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen,
980                                                 FunctionList.size());
981           RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
982         }
983       }
984     }
985 
986     // We've found something we might want to outline.
987     // Create an OutlinedFunction to store it and check if it'd be beneficial
988     // to outline.
989     TargetInstrInfo::MachineOutlinerInfo MInfo =
990         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
991     std::vector<unsigned> Seq;
992     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
993       Seq.push_back(ST.Str[i]);
994     OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(),
995                         Seq, MInfo);
996     unsigned Benefit = OF.getBenefit();
997 
998     // Is it better to outline this candidate than not?
999     if (Benefit < 1) {
1000       // Outlining this candidate would take more instructions than not
1001       // outlining.
1002       // Emit a remark explaining why we didn't outline this candidate.
1003       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
1004           RepeatedSequenceLocs[0];
1005       MachineOptimizationRemarkEmitter MORE(
1006           *(C.first->getParent()->getParent()), nullptr);
1007       MORE.emit([&]() {
1008         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
1009                                           C.first->getDebugLoc(),
1010                                           C.first->getParent());
1011         R << "Did not outline " << NV("Length", StringLen) << " instructions"
1012           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
1013           << " locations."
1014           << " Instructions from outlining all occurrences ("
1015           << NV("OutliningCost", OF.getOutliningCost()) << ")"
1016           << " >= Unoutlined instruction count ("
1017           << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")"
1018           << " (Also found at: ";
1019 
1020         // Tell the user the other places the candidate was found.
1021         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
1022           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
1023                   RepeatedSequenceLocs[i].first->getDebugLoc());
1024           if (i != e - 1)
1025             R << ", ";
1026         }
1027 
1028         R << ")";
1029         return R;
1030       });
1031 
1032       // Move to the next candidate.
1033       continue;
1034     }
1035 
1036     if (StringLen > MaxLen)
1037       MaxLen = StringLen;
1038 
1039     // At this point, the candidate class is seen as beneficial. Set their
1040     // benefit values and save them in the candidate list.
1041     std::vector<std::shared_ptr<Candidate>> CandidatesForFn;
1042     for (Candidate &C : CandidatesForRepeatedSeq) {
1043       C.Benefit = Benefit;
1044       C.MInfo = MInfo;
1045       std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C);
1046       CandidateList.push_back(Cptr);
1047       CandidatesForFn.push_back(Cptr);
1048     }
1049 
1050     FunctionList.push_back(OF);
1051     FunctionList.back().Candidates = CandidatesForFn;
1052 
1053     // Move to the next function.
1054     Parent.IsInTree = false;
1055   }
1056 
1057   return MaxLen;
1058 }
1059 
1060 // Remove C from the candidate space, and update its OutlinedFunction.
1061 void MachineOutliner::prune(Candidate &C,
1062                             std::vector<OutlinedFunction> &FunctionList) {
1063   // Get the OutlinedFunction associated with this Candidate.
1064   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1065 
1066   // Update C's associated function's occurrence count.
1067   F.decrement();
1068 
1069   // Remove C from the CandidateList.
1070   C.InCandidateList = false;
1071 
1072   DEBUG(dbgs() << "- Removed a Candidate \n";
1073         dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount()
1074                << "\n";
1075         dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1076                << "\n";);
1077 }
1078 
1079 void MachineOutliner::pruneOverlaps(
1080     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1081     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1082     unsigned MaxCandidateLen, const TargetInstrInfo &TII) {
1083 
1084   // Return true if this candidate became unbeneficial for outlining in a
1085   // previous step.
1086   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1087 
1088     // Check if the candidate was removed in a previous step.
1089     if (!C.InCandidateList)
1090       return true;
1091 
1092     // C must be alive. Check if we should remove it.
1093     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1094       prune(C, FunctionList);
1095       return true;
1096     }
1097 
1098     // C is in the list, and F is still beneficial.
1099     return false;
1100   };
1101 
1102   // TODO: Experiment with interval trees or other interval-checking structures
1103   // to lower the time complexity of this function.
1104   // TODO: Can we do better than the simple greedy choice?
1105   // Check for overlaps in the range.
1106   // This is O(MaxCandidateLen * CandidateList.size()).
1107   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1108        It++) {
1109     Candidate &C1 = **It;
1110 
1111     // If C1 was already pruned, or its function is no longer beneficial for
1112     // outlining, move to the next candidate.
1113     if (ShouldSkipCandidate(C1))
1114       continue;
1115 
1116     // The minimum start index of any candidate that could overlap with this
1117     // one.
1118     unsigned FarthestPossibleIdx = 0;
1119 
1120     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1121     if (C1.getStartIdx() > MaxCandidateLen)
1122       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1123 
1124     // Compare against the candidates in the list that start at at most
1125     // FarthestPossibleIdx indices away from C1. There are at most
1126     // MaxCandidateLen of these.
1127     for (auto Sit = It + 1; Sit != Et; Sit++) {
1128       Candidate &C2 = **Sit;
1129 
1130       // Is this candidate too far away to overlap?
1131       if (C2.getStartIdx() < FarthestPossibleIdx)
1132         break;
1133 
1134       // If C2 was already pruned, or its function is no longer beneficial for
1135       // outlining, move to the next candidate.
1136       if (ShouldSkipCandidate(C2))
1137         continue;
1138 
1139       // Do C1 and C2 overlap?
1140       //
1141       // Not overlapping:
1142       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1143       //
1144       // We sorted our candidate list so C2Start <= C1Start. We know that
1145       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1146       // have to check is C2End < C2Start to see if we overlap.
1147       if (C2.getEndIdx() < C1.getStartIdx())
1148         continue;
1149 
1150       // C1 and C2 overlap.
1151       // We need to choose the better of the two.
1152       //
1153       // Approximate this by picking the one which would have saved us the
1154       // most instructions before any pruning.
1155 
1156       // Is C2 a better candidate?
1157       if (C2.Benefit > C1.Benefit) {
1158         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1159         // against anything anymore, so break.
1160         prune(C1, FunctionList);
1161         break;
1162       }
1163 
1164       // Prune C2 and move on to the next candidate.
1165       prune(C2, FunctionList);
1166     }
1167   }
1168 }
1169 
1170 unsigned MachineOutliner::buildCandidateList(
1171     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1172     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1173     InstructionMapper &Mapper, const TargetInstrInfo &TII) {
1174 
1175   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1176   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1177 
1178   MaxCandidateLen =
1179       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1180 
1181   // Sort the candidates in decending order. This will simplify the outlining
1182   // process when we have to remove the candidates from the mapping by
1183   // allowing us to cut them out without keeping track of an offset.
1184   std::stable_sort(
1185       CandidateList.begin(), CandidateList.end(),
1186       [](const std::shared_ptr<Candidate> &LHS,
1187          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1188 
1189   return MaxCandidateLen;
1190 }
1191 
1192 MachineFunction *
1193 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1194                                         InstructionMapper &Mapper) {
1195 
1196   // Create the function name. This should be unique. For now, just hash the
1197   // module name and include it in the function name plus the number of this
1198   // function.
1199   std::ostringstream NameStream;
1200   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1201 
1202   // Create the function using an IR-level function.
1203   LLVMContext &C = M.getContext();
1204   Function *F = dyn_cast<Function>(
1205       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1206   assert(F && "Function was null!");
1207 
1208   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1209   // which gives us better results when we outline from linkonceodr functions.
1210   F->setLinkage(GlobalValue::PrivateLinkage);
1211   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1212 
1213   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1214   IRBuilder<> Builder(EntryBB);
1215   Builder.CreateRetVoid();
1216 
1217   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1218   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1219   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1220   const TargetSubtargetInfo &STI = MF.getSubtarget();
1221   const TargetInstrInfo &TII = *STI.getInstrInfo();
1222 
1223   // Insert the new function into the module.
1224   MF.insert(MF.begin(), &MBB);
1225 
1226   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1227 
1228   // Copy over the instructions for the function using the integer mappings in
1229   // its sequence.
1230   for (unsigned Str : OF.Sequence) {
1231     MachineInstr *NewMI =
1232         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1233     NewMI->dropMemRefs();
1234 
1235     // Don't keep debug information for outlined instructions.
1236     // FIXME: This means outlined functions are currently undebuggable.
1237     NewMI->setDebugLoc(DebugLoc());
1238     MBB.insert(MBB.end(), NewMI);
1239   }
1240 
1241   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1242   return &MF;
1243 }
1244 
1245 bool MachineOutliner::outline(
1246     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1247     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1248 
1249   bool OutlinedSomething = false;
1250   // Replace the candidates with calls to their respective outlined functions.
1251   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1252     Candidate &C = *Cptr;
1253     // Was the candidate removed during pruneOverlaps?
1254     if (!C.InCandidateList)
1255       continue;
1256 
1257     // If not, then look at its OutlinedFunction.
1258     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1259 
1260     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1261     if (OF.getBenefit() < 1)
1262       continue;
1263 
1264     // If not, then outline it.
1265     assert(C.getStartIdx() < Mapper.InstrList.size() &&
1266            "Candidate out of bounds!");
1267     MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent();
1268     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()];
1269     unsigned EndIdx = C.getEndIdx();
1270 
1271     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1272     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1273     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1274 
1275     EndIt++; // Erase needs one past the end index.
1276 
1277     // Does this candidate have a function yet?
1278     if (!OF.MF) {
1279       OF.MF = createOutlinedFunction(M, OF, Mapper);
1280       MachineBasicBlock *MBB = &*OF.MF->begin();
1281 
1282       // Output a remark telling the user that an outlined function was created,
1283       // and explaining where it came from.
1284       MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
1285       MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
1286                                   MBB->findDebugLoc(MBB->begin()), MBB);
1287       R << "Saved " << NV("OutliningBenefit", OF.getBenefit())
1288         << " instructions by "
1289         << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
1290         << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
1291         << " locations. "
1292         << "(Found at: ";
1293 
1294       // Tell the user the other places the candidate was found.
1295       for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1296 
1297         // Skip over things that were pruned.
1298         if (!OF.Candidates[i]->InCandidateList)
1299           continue;
1300 
1301         R << NV(
1302             (Twine("StartLoc") + Twine(i)).str(),
1303             Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc());
1304         if (i != e - 1)
1305           R << ", ";
1306       }
1307 
1308       R << ")";
1309 
1310       MORE.emit(R);
1311       FunctionsCreated++;
1312     }
1313 
1314     MachineFunction *MF = OF.MF;
1315     const TargetSubtargetInfo &STI = MF->getSubtarget();
1316     const TargetInstrInfo &TII = *STI.getInstrInfo();
1317 
1318     // Insert a call to the new function and erase the old sequence.
1319     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
1320     StartIt = Mapper.InstrList[C.getStartIdx()];
1321     MBB->erase(StartIt, EndIt);
1322 
1323     OutlinedSomething = true;
1324 
1325     // Statistics.
1326     NumOutlined++;
1327   }
1328 
1329   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1330 
1331   return OutlinedSomething;
1332 }
1333 
1334 bool MachineOutliner::runOnModule(Module &M) {
1335 
1336   // Is there anything in the module at all?
1337   if (M.empty())
1338     return false;
1339 
1340   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1341   const TargetSubtargetInfo &STI =
1342       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1343   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1344   const TargetInstrInfo *TII = STI.getInstrInfo();
1345 
1346   InstructionMapper Mapper;
1347 
1348   // Build instruction mappings for each function in the module.
1349   for (Function &F : M) {
1350     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1351 
1352     // Is the function empty? Safe to outline from?
1353     if (F.empty() ||
1354         !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
1355       continue;
1356 
1357     // If it is, look at each MachineBasicBlock in the function.
1358     for (MachineBasicBlock &MBB : MF) {
1359 
1360       // Is there anything in MBB? And is it the target of an indirect branch?
1361       if (MBB.empty() || MBB.hasAddressTaken())
1362         continue;
1363 
1364       // If yes, map it.
1365       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1366     }
1367   }
1368 
1369   // Construct a suffix tree, use it to find candidates, and then outline them.
1370   SuffixTree ST(Mapper.UnsignedVec);
1371   std::vector<std::shared_ptr<Candidate>> CandidateList;
1372   std::vector<OutlinedFunction> FunctionList;
1373 
1374   // Find all of the outlining candidates.
1375   unsigned MaxCandidateLen =
1376       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1377 
1378   // Remove candidates that overlap with other candidates.
1379   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1380 
1381   // Outline each of the candidates and return true if something was outlined.
1382   return outline(M, CandidateList, FunctionList, Mapper);
1383 }
1384