1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 19 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 20 /// how this pass works, the talk is available on YouTube at 21 /// 22 /// https://www.youtube.com/watch?v=yorld-WSOeU 23 /// 24 /// The slides for the talk are available at 25 /// 26 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 27 /// 28 /// The talk provides an overview of how the outliner finds candidates and 29 /// ultimately outlines them. It describes how the main data structure for this 30 /// pass, the suffix tree, is queried and purged for candidates. It also gives 31 /// a simplified suffix tree construction algorithm for suffix trees based off 32 /// of the algorithm actually used here, Ukkonen's algorithm. 33 /// 34 /// For the original RFC for this pass, please see 35 /// 36 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 37 /// 38 /// For more information on the suffix tree data structure, please see 39 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 40 /// 41 //===----------------------------------------------------------------------===// 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/ADT/Twine.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineModuleInfo.h" 49 #include "llvm/CodeGen/Passes.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/Support/Allocator.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <functional> 59 #include <map> 60 #include <sstream> 61 #include <tuple> 62 #include <vector> 63 64 #define DEBUG_TYPE "machine-outliner" 65 66 using namespace llvm; 67 68 STATISTIC(NumOutlined, "Number of candidates outlined"); 69 STATISTIC(FunctionsCreated, "Number of functions created"); 70 71 namespace { 72 73 /// \brief An individual sequence of instructions to be replaced with a call to 74 /// an outlined function. 75 struct Candidate { 76 77 /// Set to false if the candidate overlapped with another candidate. 78 bool InCandidateList = true; 79 80 /// The start index of this \p Candidate. 81 size_t StartIdx; 82 83 /// The number of instructions in this \p Candidate. 84 size_t Len; 85 86 /// The index of this \p Candidate's \p OutlinedFunction in the list of 87 /// \p OutlinedFunctions. 88 size_t FunctionIdx; 89 90 /// \brief The number of instructions that would be saved by outlining every 91 /// candidate of this type. 92 /// 93 /// This is a fixed value which is not updated during the candidate pruning 94 /// process. It is only used for deciding which candidate to keep if two 95 /// candidates overlap. The true benefit is stored in the OutlinedFunction 96 /// for some given candidate. 97 unsigned Benefit = 0; 98 99 Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx) 100 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 101 102 Candidate() {} 103 104 /// \brief Used to ensure that \p Candidates are outlined in an order that 105 /// preserves the start and end indices of other \p Candidates. 106 bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 107 }; 108 109 /// \brief The information necessary to create an outlined function for some 110 /// class of candidate. 111 struct OutlinedFunction { 112 113 /// The actual outlined function created. 114 /// This is initialized after we go through and create the actual function. 115 MachineFunction *MF = nullptr; 116 117 /// A numbefr assigned to this function which appears at the end of its name. 118 size_t Name; 119 120 /// The number of candidates for this OutlinedFunction. 121 size_t OccurrenceCount = 0; 122 123 /// \brief The sequence of integers corresponding to the instructions in this 124 /// function. 125 std::vector<unsigned> Sequence; 126 127 /// The number of instructions this function would save. 128 unsigned Benefit = 0; 129 130 /// \brief Set to true if candidates for this outlined function should be 131 /// replaced with tail calls to this OutlinedFunction. 132 bool IsTailCall = false; 133 134 OutlinedFunction(size_t Name, size_t OccurrenceCount, 135 const std::vector<unsigned> &Sequence, unsigned Benefit, 136 bool IsTailCall) 137 : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 138 Benefit(Benefit), IsTailCall(IsTailCall) {} 139 }; 140 141 /// Represents an undefined index in the suffix tree. 142 const size_t EmptyIdx = -1; 143 144 /// A node in a suffix tree which represents a substring or suffix. 145 /// 146 /// Each node has either no children or at least two children, with the root 147 /// being a exception in the empty tree. 148 /// 149 /// Children are represented as a map between unsigned integers and nodes. If 150 /// a node N has a child M on unsigned integer k, then the mapping represented 151 /// by N is a proper prefix of the mapping represented by M. Note that this, 152 /// although similar to a trie is somewhat different: each node stores a full 153 /// substring of the full mapping rather than a single character state. 154 /// 155 /// Each internal node contains a pointer to the internal node representing 156 /// the same string, but with the first character chopped off. This is stored 157 /// in \p Link. Each leaf node stores the start index of its respective 158 /// suffix in \p SuffixIdx. 159 struct SuffixTreeNode { 160 161 /// The children of this node. 162 /// 163 /// A child existing on an unsigned integer implies that from the mapping 164 /// represented by the current node, there is a way to reach another 165 /// mapping by tacking that character on the end of the current string. 166 DenseMap<unsigned, SuffixTreeNode *> Children; 167 168 /// A flag set to false if the node has been pruned from the tree. 169 bool IsInTree = true; 170 171 /// The start index of this node's substring in the main string. 172 size_t StartIdx = EmptyIdx; 173 174 /// The end index of this node's substring in the main string. 175 /// 176 /// Every leaf node must have its \p EndIdx incremented at the end of every 177 /// step in the construction algorithm. To avoid having to update O(N) 178 /// nodes individually at the end of every step, the end index is stored 179 /// as a pointer. 180 size_t *EndIdx = nullptr; 181 182 /// For leaves, the start index of the suffix represented by this node. 183 /// 184 /// For all other nodes, this is ignored. 185 size_t SuffixIdx = EmptyIdx; 186 187 /// \brief For internal nodes, a pointer to the internal node representing 188 /// the same sequence with the first character chopped off. 189 /// 190 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 191 /// Ukkonen's algorithm does to achieve linear-time construction is 192 /// keep track of which node the next insert should be at. This makes each 193 /// insert O(1), and there are a total of O(N) inserts. The suffix link 194 /// helps with inserting children of internal nodes. 195 /// 196 /// Say we add a child to an internal node with associated mapping S. The 197 /// next insertion must be at the node representing S - its first character. 198 /// This is given by the way that we iteratively build the tree in Ukkonen's 199 /// algorithm. The main idea is to look at the suffixes of each prefix in the 200 /// string, starting with the longest suffix of the prefix, and ending with 201 /// the shortest. Therefore, if we keep pointers between such nodes, we can 202 /// move to the next insertion point in O(1) time. If we don't, then we'd 203 /// have to query from the root, which takes O(N) time. This would make the 204 /// construction algorithm O(N^2) rather than O(N). 205 SuffixTreeNode *Link = nullptr; 206 207 /// The parent of this node. Every node except for the root has a parent. 208 SuffixTreeNode *Parent = nullptr; 209 210 /// The number of times this node's string appears in the tree. 211 /// 212 /// This is equal to the number of leaf children of the string. It represents 213 /// the number of suffixes that the node's string is a prefix of. 214 size_t OccurrenceCount = 0; 215 216 /// The length of the string formed by concatenating the edge labels from the 217 /// root to this node. 218 size_t ConcatLen = 0; 219 220 /// Returns true if this node is a leaf. 221 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 222 223 /// Returns true if this node is the root of its owning \p SuffixTree. 224 bool isRoot() const { return StartIdx == EmptyIdx; } 225 226 /// Return the number of elements in the substring associated with this node. 227 size_t size() const { 228 229 // Is it the root? If so, it's the empty string so return 0. 230 if (isRoot()) 231 return 0; 232 233 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 234 235 // Size = the number of elements in the string. 236 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 237 return *EndIdx - StartIdx + 1; 238 } 239 240 SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, 241 SuffixTreeNode *Parent) 242 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 243 244 SuffixTreeNode() {} 245 }; 246 247 /// A data structure for fast substring queries. 248 /// 249 /// Suffix trees represent the suffixes of their input strings in their leaves. 250 /// A suffix tree is a type of compressed trie structure where each node 251 /// represents an entire substring rather than a single character. Each leaf 252 /// of the tree is a suffix. 253 /// 254 /// A suffix tree can be seen as a type of state machine where each state is a 255 /// substring of the full string. The tree is structured so that, for a string 256 /// of length N, there are exactly N leaves in the tree. This structure allows 257 /// us to quickly find repeated substrings of the input string. 258 /// 259 /// In this implementation, a "string" is a vector of unsigned integers. 260 /// These integers may result from hashing some data type. A suffix tree can 261 /// contain 1 or many strings, which can then be queried as one large string. 262 /// 263 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 264 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 265 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 266 /// paper is available at 267 /// 268 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 269 class SuffixTree { 270 public: 271 /// Stores each leaf node in the tree. 272 /// 273 /// This is used for finding outlining candidates. 274 std::vector<SuffixTreeNode *> LeafVector; 275 276 /// Each element is an integer representing an instruction in the module. 277 ArrayRef<unsigned> Str; 278 279 private: 280 /// Maintains each node in the tree. 281 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 282 283 /// The root of the suffix tree. 284 /// 285 /// The root represents the empty string. It is maintained by the 286 /// \p NodeAllocator like every other node in the tree. 287 SuffixTreeNode *Root = nullptr; 288 289 /// Maintains the end indices of the internal nodes in the tree. 290 /// 291 /// Each internal node is guaranteed to never have its end index change 292 /// during the construction algorithm; however, leaves must be updated at 293 /// every step. Therefore, we need to store leaf end indices by reference 294 /// to avoid updating O(N) leaves at every step of construction. Thus, 295 /// every internal node must be allocated its own end index. 296 BumpPtrAllocator InternalEndIdxAllocator; 297 298 /// The end index of each leaf in the tree. 299 size_t LeafEndIdx = -1; 300 301 /// \brief Helper struct which keeps track of the next insertion point in 302 /// Ukkonen's algorithm. 303 struct ActiveState { 304 /// The next node to insert at. 305 SuffixTreeNode *Node; 306 307 /// The index of the first character in the substring currently being added. 308 size_t Idx = EmptyIdx; 309 310 /// The length of the substring we have to add at the current step. 311 size_t Len = 0; 312 }; 313 314 /// \brief The point the next insertion will take place at in the 315 /// construction algorithm. 316 ActiveState Active; 317 318 /// Allocate a leaf node and add it to the tree. 319 /// 320 /// \param Parent The parent of this node. 321 /// \param StartIdx The start index of this node's associated string. 322 /// \param Edge The label on the edge leaving \p Parent to this node. 323 /// 324 /// \returns A pointer to the allocated leaf node. 325 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, 326 unsigned Edge) { 327 328 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 329 330 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 331 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 332 Parent.Children[Edge] = N; 333 334 return N; 335 } 336 337 /// Allocate an internal node and add it to the tree. 338 /// 339 /// \param Parent The parent of this node. Only null when allocating the root. 340 /// \param StartIdx The start index of this node's associated string. 341 /// \param EndIdx The end index of this node's associated string. 342 /// \param Edge The label on the edge leaving \p Parent to this node. 343 /// 344 /// \returns A pointer to the allocated internal node. 345 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, 346 size_t EndIdx, unsigned Edge) { 347 348 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 349 assert(!(!Parent && StartIdx != EmptyIdx) && 350 "Non-root internal nodes must have parents!"); 351 352 size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); 353 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 354 SuffixTreeNode(StartIdx, E, Root, Parent); 355 if (Parent) 356 Parent->Children[Edge] = N; 357 358 return N; 359 } 360 361 /// \brief Set the suffix indices of the leaves to the start indices of their 362 /// respective suffixes. Also stores each leaf in \p LeafVector at its 363 /// respective suffix index. 364 /// 365 /// \param[in] CurrNode The node currently being visited. 366 /// \param CurrIdx The current index of the string being visited. 367 void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { 368 369 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 370 371 // Store the length of the concatenation of all strings from the root to 372 // this node. 373 if (!CurrNode.isRoot()) { 374 if (CurrNode.ConcatLen == 0) 375 CurrNode.ConcatLen = CurrNode.size(); 376 377 if (CurrNode.Parent) 378 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 379 } 380 381 // Traverse the tree depth-first. 382 for (auto &ChildPair : CurrNode.Children) { 383 assert(ChildPair.second && "Node had a null child!"); 384 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 385 } 386 387 // Is this node a leaf? 388 if (IsLeaf) { 389 // If yes, give it a suffix index and bump its parent's occurrence count. 390 CurrNode.SuffixIdx = Str.size() - CurrIdx; 391 assert(CurrNode.Parent && "CurrNode had no parent!"); 392 CurrNode.Parent->OccurrenceCount++; 393 394 // Store the leaf in the leaf vector for pruning later. 395 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 396 } 397 } 398 399 /// \brief Construct the suffix tree for the prefix of the input ending at 400 /// \p EndIdx. 401 /// 402 /// Used to construct the full suffix tree iteratively. At the end of each 403 /// step, the constructed suffix tree is either a valid suffix tree, or a 404 /// suffix tree with implicit suffixes. At the end of the final step, the 405 /// suffix tree is a valid tree. 406 /// 407 /// \param EndIdx The end index of the current prefix in the main string. 408 /// \param SuffixesToAdd The number of suffixes that must be added 409 /// to complete the suffix tree at the current phase. 410 /// 411 /// \returns The number of suffixes that have not been added at the end of 412 /// this step. 413 unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { 414 SuffixTreeNode *NeedsLink = nullptr; 415 416 while (SuffixesToAdd > 0) { 417 418 // Are we waiting to add anything other than just the last character? 419 if (Active.Len == 0) { 420 // If not, then say the active index is the end index. 421 Active.Idx = EndIdx; 422 } 423 424 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 425 426 // The first character in the current substring we're looking at. 427 unsigned FirstChar = Str[Active.Idx]; 428 429 // Have we inserted anything starting with FirstChar at the current node? 430 if (Active.Node->Children.count(FirstChar) == 0) { 431 // If not, then we can just insert a leaf and move too the next step. 432 insertLeaf(*Active.Node, EndIdx, FirstChar); 433 434 // The active node is an internal node, and we visited it, so it must 435 // need a link if it doesn't have one. 436 if (NeedsLink) { 437 NeedsLink->Link = Active.Node; 438 NeedsLink = nullptr; 439 } 440 } else { 441 // There's a match with FirstChar, so look for the point in the tree to 442 // insert a new node. 443 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 444 445 size_t SubstringLen = NextNode->size(); 446 447 // Is the current suffix we're trying to insert longer than the size of 448 // the child we want to move to? 449 if (Active.Len >= SubstringLen) { 450 // If yes, then consume the characters we've seen and move to the next 451 // node. 452 Active.Idx += SubstringLen; 453 Active.Len -= SubstringLen; 454 Active.Node = NextNode; 455 continue; 456 } 457 458 // Otherwise, the suffix we're trying to insert must be contained in the 459 // next node we want to move to. 460 unsigned LastChar = Str[EndIdx]; 461 462 // Is the string we're trying to insert a substring of the next node? 463 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 464 // If yes, then we're done for this step. Remember our insertion point 465 // and move to the next end index. At this point, we have an implicit 466 // suffix tree. 467 if (NeedsLink && !Active.Node->isRoot()) { 468 NeedsLink->Link = Active.Node; 469 NeedsLink = nullptr; 470 } 471 472 Active.Len++; 473 break; 474 } 475 476 // The string we're trying to insert isn't a substring of the next node, 477 // but matches up to a point. Split the node. 478 // 479 // For example, say we ended our search at a node n and we're trying to 480 // insert ABD. Then we'll create a new node s for AB, reduce n to just 481 // representing C, and insert a new leaf node l to represent d. This 482 // allows us to ensure that if n was a leaf, it remains a leaf. 483 // 484 // | ABC ---split---> | AB 485 // n s 486 // C / \ D 487 // n l 488 489 // The node s from the diagram 490 SuffixTreeNode *SplitNode = 491 insertInternalNode(Active.Node, NextNode->StartIdx, 492 NextNode->StartIdx + Active.Len - 1, FirstChar); 493 494 // Insert the new node representing the new substring into the tree as 495 // a child of the split node. This is the node l from the diagram. 496 insertLeaf(*SplitNode, EndIdx, LastChar); 497 498 // Make the old node a child of the split node and update its start 499 // index. This is the node n from the diagram. 500 NextNode->StartIdx += Active.Len; 501 NextNode->Parent = SplitNode; 502 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 503 504 // SplitNode is an internal node, update the suffix link. 505 if (NeedsLink) 506 NeedsLink->Link = SplitNode; 507 508 NeedsLink = SplitNode; 509 } 510 511 // We've added something new to the tree, so there's one less suffix to 512 // add. 513 SuffixesToAdd--; 514 515 if (Active.Node->isRoot()) { 516 if (Active.Len > 0) { 517 Active.Len--; 518 Active.Idx = EndIdx - SuffixesToAdd + 1; 519 } 520 } else { 521 // Start the next phase at the next smallest suffix. 522 Active.Node = Active.Node->Link; 523 } 524 } 525 526 return SuffixesToAdd; 527 } 528 529 public: 530 /// Construct a suffix tree from a sequence of unsigned integers. 531 /// 532 /// \param Str The string to construct the suffix tree for. 533 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 534 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 535 Root->IsInTree = true; 536 Active.Node = Root; 537 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 538 539 // Keep track of the number of suffixes we have to add of the current 540 // prefix. 541 size_t SuffixesToAdd = 0; 542 Active.Node = Root; 543 544 // Construct the suffix tree iteratively on each prefix of the string. 545 // PfxEndIdx is the end index of the current prefix. 546 // End is one past the last element in the string. 547 for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { 548 SuffixesToAdd++; 549 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 550 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 551 } 552 553 // Set the suffix indices of each leaf. 554 assert(Root && "Root node can't be nullptr!"); 555 setSuffixIndices(*Root, 0); 556 } 557 }; 558 559 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 560 struct InstructionMapper { 561 562 /// \brief The next available integer to assign to a \p MachineInstr that 563 /// cannot be outlined. 564 /// 565 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 566 unsigned IllegalInstrNumber = -3; 567 568 /// \brief The next available integer to assign to a \p MachineInstr that can 569 /// be outlined. 570 unsigned LegalInstrNumber = 0; 571 572 /// Correspondence from \p MachineInstrs to unsigned integers. 573 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 574 InstructionIntegerMap; 575 576 /// Corresponcence from unsigned integers to \p MachineInstrs. 577 /// Inverse of \p InstructionIntegerMap. 578 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 579 580 /// The vector of unsigned integers that the module is mapped to. 581 std::vector<unsigned> UnsignedVec; 582 583 /// \brief Stores the location of the instruction associated with the integer 584 /// at index i in \p UnsignedVec for each index i. 585 std::vector<MachineBasicBlock::iterator> InstrList; 586 587 /// \brief Maps \p *It to a legal integer. 588 /// 589 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 590 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 591 /// 592 /// \returns The integer that \p *It was mapped to. 593 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 594 595 // Get the integer for this instruction or give it the current 596 // LegalInstrNumber. 597 InstrList.push_back(It); 598 MachineInstr &MI = *It; 599 bool WasInserted; 600 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 601 ResultIt; 602 std::tie(ResultIt, WasInserted) = 603 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 604 unsigned MINumber = ResultIt->second; 605 606 // There was an insertion. 607 if (WasInserted) { 608 LegalInstrNumber++; 609 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 610 } 611 612 UnsignedVec.push_back(MINumber); 613 614 // Make sure we don't overflow or use any integers reserved by the DenseMap. 615 if (LegalInstrNumber >= IllegalInstrNumber) 616 report_fatal_error("Instruction mapping overflow!"); 617 618 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 619 "Tried to assign DenseMap tombstone or empty key to instruction."); 620 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 621 "Tried to assign DenseMap tombstone or empty key to instruction."); 622 623 return MINumber; 624 } 625 626 /// Maps \p *It to an illegal integer. 627 /// 628 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 629 /// 630 /// \returns The integer that \p *It was mapped to. 631 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 632 unsigned MINumber = IllegalInstrNumber; 633 634 InstrList.push_back(It); 635 UnsignedVec.push_back(IllegalInstrNumber); 636 IllegalInstrNumber--; 637 638 assert(LegalInstrNumber < IllegalInstrNumber && 639 "Instruction mapping overflow!"); 640 641 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 642 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 643 644 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 645 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 646 647 return MINumber; 648 } 649 650 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 651 /// and appends it to \p UnsignedVec and \p InstrList. 652 /// 653 /// Two instructions are assigned the same integer if they are identical. 654 /// If an instruction is deemed unsafe to outline, then it will be assigned an 655 /// unique integer. The resulting mapping is placed into a suffix tree and 656 /// queried for candidates. 657 /// 658 /// \param MBB The \p MachineBasicBlock to be translated into integers. 659 /// \param TRI \p TargetRegisterInfo for the module. 660 /// \param TII \p TargetInstrInfo for the module. 661 void convertToUnsignedVec(MachineBasicBlock &MBB, 662 const TargetRegisterInfo &TRI, 663 const TargetInstrInfo &TII) { 664 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 665 It++) { 666 667 // Keep track of where this instruction is in the module. 668 switch (TII.getOutliningType(*It)) { 669 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 670 mapToIllegalUnsigned(It); 671 break; 672 673 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 674 mapToLegalUnsigned(It); 675 break; 676 677 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 678 break; 679 } 680 } 681 682 // After we're done every insertion, uniquely terminate this part of the 683 // "string". This makes sure we won't match across basic block or function 684 // boundaries since the "end" is encoded uniquely and thus appears in no 685 // repeated substring. 686 InstrList.push_back(MBB.end()); 687 UnsignedVec.push_back(IllegalInstrNumber); 688 IllegalInstrNumber--; 689 } 690 691 InstructionMapper() { 692 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 693 // changed. 694 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 695 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 696 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 697 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 698 } 699 }; 700 701 /// \brief An interprocedural pass which finds repeated sequences of 702 /// instructions and replaces them with calls to functions. 703 /// 704 /// Each instruction is mapped to an unsigned integer and placed in a string. 705 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 706 /// is then repeatedly queried for repeated sequences of instructions. Each 707 /// non-overlapping repeated sequence is then placed in its own 708 /// \p MachineFunction and each instance is then replaced with a call to that 709 /// function. 710 struct MachineOutliner : public ModulePass { 711 712 static char ID; 713 714 StringRef getPassName() const override { return "Machine Outliner"; } 715 716 void getAnalysisUsage(AnalysisUsage &AU) const override { 717 AU.addRequired<MachineModuleInfo>(); 718 AU.addPreserved<MachineModuleInfo>(); 719 AU.setPreservesAll(); 720 ModulePass::getAnalysisUsage(AU); 721 } 722 723 MachineOutliner() : ModulePass(ID) { 724 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 725 } 726 727 /// Find all repeated substrings that satisfy the outlining cost model. 728 /// 729 /// If a substring appears at least twice, then it must be represented by 730 /// an internal node which appears in at least two suffixes. Each suffix is 731 /// represented by a leaf node. To do this, we visit each internal node in 732 /// the tree, using the leaf children of each internal node. If an internal 733 /// node represents a beneficial substring, then we use each of its leaf 734 /// children to find the locations of its substring. 735 /// 736 /// \param ST A suffix tree to query. 737 /// \param TII TargetInstrInfo for the target. 738 /// \param Mapper Contains outlining mapping information. 739 /// \param[out] CandidateList Filled with candidates representing each 740 /// beneficial substring. 741 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 742 /// type of candidate. 743 /// 744 /// \returns The length of the longest candidate found. 745 size_t findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 746 InstructionMapper &Mapper, 747 std::vector<Candidate> &CandidateList, 748 std::vector<OutlinedFunction> &FunctionList); 749 750 /// \brief Replace the sequences of instructions represented by the 751 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 752 /// described in \p FunctionList. 753 /// 754 /// \param M The module we are outlining from. 755 /// \param CandidateList A list of candidates to be outlined. 756 /// \param FunctionList A list of functions to be inserted into the module. 757 /// \param Mapper Contains the instruction mappings for the module. 758 bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 759 std::vector<OutlinedFunction> &FunctionList, 760 InstructionMapper &Mapper); 761 762 /// Creates a function for \p OF and inserts it into the module. 763 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 764 InstructionMapper &Mapper); 765 766 /// Find potential outlining candidates and store them in \p CandidateList. 767 /// 768 /// For each type of potential candidate, also build an \p OutlinedFunction 769 /// struct containing the information to build the function for that 770 /// candidate. 771 /// 772 /// \param[out] CandidateList Filled with outlining candidates for the module. 773 /// \param[out] FunctionList Filled with functions corresponding to each type 774 /// of \p Candidate. 775 /// \param ST The suffix tree for the module. 776 /// \param TII TargetInstrInfo for the module. 777 /// 778 /// \returns The length of the longest candidate found. 0 if there are none. 779 unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 780 std::vector<OutlinedFunction> &FunctionList, 781 SuffixTree &ST, InstructionMapper &Mapper, 782 const TargetInstrInfo &TII); 783 784 /// \brief Remove any overlapping candidates that weren't handled by the 785 /// suffix tree's pruning method. 786 /// 787 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 788 /// If a short candidate is chosen for outlining, then a longer candidate 789 /// which has that short candidate as a suffix is chosen, the tree's pruning 790 /// method will not find it. Thus, we need to prune before outlining as well. 791 /// 792 /// \param[in,out] CandidateList A list of outlining candidates. 793 /// \param[in,out] FunctionList A list of functions to be outlined. 794 /// \param Mapper Contains instruction mapping info for outlining. 795 /// \param MaxCandidateLen The length of the longest candidate. 796 /// \param TII TargetInstrInfo for the module. 797 void pruneOverlaps(std::vector<Candidate> &CandidateList, 798 std::vector<OutlinedFunction> &FunctionList, 799 InstructionMapper &Mapper, unsigned MaxCandidateLen, 800 const TargetInstrInfo &TII); 801 802 /// Construct a suffix tree on the instructions in \p M and outline repeated 803 /// strings from that tree. 804 bool runOnModule(Module &M) override; 805 }; 806 807 } // Anonymous namespace. 808 809 char MachineOutliner::ID = 0; 810 811 namespace llvm { 812 ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 813 } // namespace llvm 814 815 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 816 false) 817 818 size_t 819 MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 820 InstructionMapper &Mapper, 821 std::vector<Candidate> &CandidateList, 822 std::vector<OutlinedFunction> &FunctionList) { 823 824 CandidateList.clear(); 825 FunctionList.clear(); 826 size_t FnIdx = 0; 827 size_t MaxLen = 0; 828 829 // FIXME: Visit internal nodes instead of leaves. 830 for (SuffixTreeNode *Leaf : ST.LeafVector) { 831 assert(Leaf && "Leaves in LeafVector cannot be null!"); 832 if (!Leaf->IsInTree) 833 continue; 834 835 assert(Leaf->Parent && "All leaves must have parents!"); 836 SuffixTreeNode &Parent = *(Leaf->Parent); 837 838 // If it doesn't appear enough, or we already outlined from it, skip it. 839 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 840 continue; 841 842 // Figure out if this candidate is beneficial. 843 size_t StringLen = Leaf->ConcatLen - Leaf->size(); 844 size_t CallOverhead = 0; 845 size_t FrameOverhead = 0; 846 size_t SequenceOverhead = StringLen; 847 848 // Figure out the call overhead for each instance of the sequence. 849 for (auto &ChildPair : Parent.Children) { 850 SuffixTreeNode *M = ChildPair.second; 851 852 if (M && M->IsInTree && M->isLeaf()) { 853 // Each sequence is over [StartIt, EndIt]. 854 MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 855 MachineBasicBlock::iterator EndIt = 856 Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 857 CallOverhead += TII.getOutliningCallOverhead(StartIt, EndIt); 858 } 859 } 860 861 // Figure out how many instructions it'll take to construct an outlined 862 // function frame for this sequence. 863 MachineBasicBlock::iterator StartIt = Mapper.InstrList[Leaf->SuffixIdx]; 864 MachineBasicBlock::iterator EndIt = 865 Mapper.InstrList[Leaf->SuffixIdx + StringLen - 1]; 866 FrameOverhead = TII.getOutliningFrameOverhead(StartIt, EndIt); 867 868 size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead; 869 size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount; 870 871 if (NotOutliningCost <= OutliningCost) 872 continue; 873 874 size_t Benefit = NotOutliningCost - OutliningCost; 875 876 if (StringLen > MaxLen) 877 MaxLen = StringLen; 878 879 unsigned OccurrenceCount = 0; 880 for (auto &ChildPair : Parent.Children) { 881 SuffixTreeNode *M = ChildPair.second; 882 883 // Is it a leaf? If so, we have an occurrence of this candidate. 884 if (M && M->IsInTree && M->isLeaf()) { 885 OccurrenceCount++; 886 CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx); 887 CandidateList.back().Benefit = Benefit; 888 M->IsInTree = false; 889 } 890 } 891 892 // Save the function for the new candidate sequence. 893 std::vector<unsigned> CandidateSequence; 894 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 895 CandidateSequence.push_back(ST.Str[i]); 896 897 FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence, 898 Benefit, false); 899 900 // Move to the next function. 901 FnIdx++; 902 Parent.IsInTree = false; 903 } 904 905 return MaxLen; 906 } 907 908 void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 909 std::vector<OutlinedFunction> &FunctionList, 910 InstructionMapper &Mapper, 911 unsigned MaxCandidateLen, 912 const TargetInstrInfo &TII) { 913 // TODO: Experiment with interval trees or other interval-checking structures 914 // to lower the time complexity of this function. 915 // TODO: Can we do better than the simple greedy choice? 916 // Check for overlaps in the range. 917 // This is O(MaxCandidateLen * CandidateList.size()). 918 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 919 It++) { 920 Candidate &C1 = *It; 921 OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; 922 923 // If we removed this candidate, skip it. 924 if (!C1.InCandidateList) 925 continue; 926 927 // Is it still worth it to outline C1? 928 if (F1.Benefit < 1 || F1.OccurrenceCount < 2) { 929 assert(F1.OccurrenceCount > 0 && 930 "Can't remove OutlinedFunction with no occurrences!"); 931 F1.OccurrenceCount--; 932 C1.InCandidateList = false; 933 continue; 934 } 935 936 // The minimum start index of any candidate that could overlap with this 937 // one. 938 unsigned FarthestPossibleIdx = 0; 939 940 // Either the index is 0, or it's at most MaxCandidateLen indices away. 941 if (C1.StartIdx > MaxCandidateLen) 942 FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 943 944 // Compare against the candidates in the list that start at at most 945 // FarthestPossibleIdx indices away from C1. There are at most 946 // MaxCandidateLen of these. 947 for (auto Sit = It + 1; Sit != Et; Sit++) { 948 Candidate &C2 = *Sit; 949 OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; 950 951 // Is this candidate too far away to overlap? 952 if (C2.StartIdx < FarthestPossibleIdx) 953 break; 954 955 // Did we already remove this candidate in a previous step? 956 if (!C2.InCandidateList) 957 continue; 958 959 // Is the function beneficial to outline? 960 if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { 961 // If not, remove this candidate and move to the next one. 962 assert(F2.OccurrenceCount > 0 && 963 "Can't remove OutlinedFunction with no occurrences!"); 964 F2.OccurrenceCount--; 965 C2.InCandidateList = false; 966 continue; 967 } 968 969 size_t C2End = C2.StartIdx + C2.Len - 1; 970 971 // Do C1 and C2 overlap? 972 // 973 // Not overlapping: 974 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 975 // 976 // We sorted our candidate list so C2Start <= C1Start. We know that 977 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 978 // have to check is C2End < C2Start to see if we overlap. 979 if (C2End < C1.StartIdx) 980 continue; 981 982 // C1 and C2 overlap. 983 // We need to choose the better of the two. 984 // 985 // Approximate this by picking the one which would have saved us the 986 // most instructions before any pruning. 987 if (C1.Benefit >= C2.Benefit) { 988 989 // C1 is better, so remove C2 and update C2's OutlinedFunction to 990 // reflect the removal. 991 assert(F2.OccurrenceCount > 0 && 992 "Can't remove OutlinedFunction with no occurrences!"); 993 F2.OccurrenceCount--; 994 995 // Remove the call overhead from the removed sequence. 996 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx]; 997 MachineBasicBlock::iterator EndIt = 998 Mapper.InstrList[C2.StartIdx + C2.Len - 1]; 999 F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt); 1000 // Add back one instance of the sequence. 1001 1002 if (F2.Sequence.size() > F2.Benefit) 1003 F2.Benefit = 0; 1004 else 1005 F2.Benefit -= F2.Sequence.size(); 1006 1007 C2.InCandidateList = false; 1008 1009 DEBUG(dbgs() << "- Removed C2. \n"; 1010 dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount 1011 << "\n"; 1012 dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";); 1013 1014 } else { 1015 // C2 is better, so remove C1 and update C1's OutlinedFunction to 1016 // reflect the removal. 1017 assert(F1.OccurrenceCount > 0 && 1018 "Can't remove OutlinedFunction with no occurrences!"); 1019 F1.OccurrenceCount--; 1020 1021 // Remove the call overhead from the removed sequence. 1022 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx]; 1023 MachineBasicBlock::iterator EndIt = 1024 Mapper.InstrList[C1.StartIdx + C1.Len - 1]; 1025 F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt); 1026 1027 // Add back one instance of the sequence. 1028 if (F1.Sequence.size() > F1.Benefit) 1029 F1.Benefit = 0; 1030 else 1031 F1.Benefit -= F1.Sequence.size(); 1032 1033 C1.InCandidateList = false; 1034 1035 DEBUG(dbgs() << "- Removed C1. \n"; 1036 dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount 1037 << "\n"; 1038 dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";); 1039 1040 // C1 is out, so we don't have to compare it against anyone else. 1041 break; 1042 } 1043 } 1044 } 1045 } 1046 1047 unsigned 1048 MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1049 std::vector<OutlinedFunction> &FunctionList, 1050 SuffixTree &ST, InstructionMapper &Mapper, 1051 const TargetInstrInfo &TII) { 1052 1053 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1054 size_t MaxCandidateLen = 0; // Length of the longest candidate. 1055 1056 MaxCandidateLen = 1057 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1058 1059 for (auto &OF : FunctionList) 1060 OF.IsTailCall = 1061 Mapper.IntegerInstructionMap[OF.Sequence.back()]->isTerminator(); 1062 1063 // Sort the candidates in decending order. This will simplify the outlining 1064 // process when we have to remove the candidates from the mapping by 1065 // allowing us to cut them out without keeping track of an offset. 1066 std::stable_sort(CandidateList.begin(), CandidateList.end()); 1067 1068 return MaxCandidateLen; 1069 } 1070 1071 MachineFunction * 1072 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1073 InstructionMapper &Mapper) { 1074 1075 // Create the function name. This should be unique. For now, just hash the 1076 // module name and include it in the function name plus the number of this 1077 // function. 1078 std::ostringstream NameStream; 1079 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1080 1081 // Create the function using an IR-level function. 1082 LLVMContext &C = M.getContext(); 1083 Function *F = dyn_cast<Function>( 1084 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1085 assert(F && "Function was null!"); 1086 1087 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1088 // which gives us better results when we outline from linkonceodr functions. 1089 F->setLinkage(GlobalValue::PrivateLinkage); 1090 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1091 1092 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1093 IRBuilder<> Builder(EntryBB); 1094 Builder.CreateRetVoid(); 1095 1096 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1097 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1098 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1099 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1100 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1101 1102 // Insert the new function into the module. 1103 MF.insert(MF.begin(), &MBB); 1104 1105 TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall); 1106 1107 // Copy over the instructions for the function using the integer mappings in 1108 // its sequence. 1109 for (unsigned Str : OF.Sequence) { 1110 MachineInstr *NewMI = 1111 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1112 NewMI->dropMemRefs(); 1113 1114 // Don't keep debug information for outlined instructions. 1115 // FIXME: This means outlined functions are currently undebuggable. 1116 NewMI->setDebugLoc(DebugLoc()); 1117 MBB.insert(MBB.end(), NewMI); 1118 } 1119 1120 TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall); 1121 1122 return &MF; 1123 } 1124 1125 bool MachineOutliner::outline(Module &M, 1126 const ArrayRef<Candidate> &CandidateList, 1127 std::vector<OutlinedFunction> &FunctionList, 1128 InstructionMapper &Mapper) { 1129 1130 bool OutlinedSomething = false; 1131 1132 // Replace the candidates with calls to their respective outlined functions. 1133 for (const Candidate &C : CandidateList) { 1134 1135 // Was the candidate removed during pruneOverlaps? 1136 if (!C.InCandidateList) 1137 continue; 1138 1139 // If not, then look at its OutlinedFunction. 1140 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1141 1142 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1143 if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1144 continue; 1145 1146 // If not, then outline it. 1147 assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1148 MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1149 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1150 unsigned EndIdx = C.StartIdx + C.Len - 1; 1151 1152 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1153 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1154 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1155 1156 EndIt++; // Erase needs one past the end index. 1157 1158 // Does this candidate have a function yet? 1159 if (!OF.MF) { 1160 OF.MF = createOutlinedFunction(M, OF, Mapper); 1161 FunctionsCreated++; 1162 } 1163 1164 MachineFunction *MF = OF.MF; 1165 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1166 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1167 1168 // Insert a call to the new function and erase the old sequence. 1169 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall); 1170 StartIt = Mapper.InstrList[C.StartIdx]; 1171 MBB->erase(StartIt, EndIt); 1172 1173 OutlinedSomething = true; 1174 1175 // Statistics. 1176 NumOutlined++; 1177 } 1178 1179 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1180 1181 return OutlinedSomething; 1182 } 1183 1184 bool MachineOutliner::runOnModule(Module &M) { 1185 1186 // Is there anything in the module at all? 1187 if (M.empty()) 1188 return false; 1189 1190 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1191 const TargetSubtargetInfo &STI = 1192 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1193 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1194 const TargetInstrInfo *TII = STI.getInstrInfo(); 1195 1196 InstructionMapper Mapper; 1197 1198 // Build instruction mappings for each function in the module. 1199 for (Function &F : M) { 1200 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1201 1202 // Is the function empty? Safe to outline from? 1203 if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1204 continue; 1205 1206 // If it is, look at each MachineBasicBlock in the function. 1207 for (MachineBasicBlock &MBB : MF) { 1208 1209 // Is there anything in MBB? 1210 if (MBB.empty()) 1211 continue; 1212 1213 // If yes, map it. 1214 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1215 } 1216 } 1217 1218 // Construct a suffix tree, use it to find candidates, and then outline them. 1219 SuffixTree ST(Mapper.UnsignedVec); 1220 std::vector<Candidate> CandidateList; 1221 std::vector<OutlinedFunction> FunctionList; 1222 1223 // Find all of the outlining candidates. 1224 unsigned MaxCandidateLen = 1225 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1226 1227 // Remove candidates that overlap with other candidates. 1228 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1229 1230 // Outline each of the candidates and return true if something was outlined. 1231 return outline(M, CandidateList, FunctionList, Mapper); 1232 } 1233