1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/MachineRegisterInfo.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/TargetInstrInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Mangler.h" 72 #include "llvm/InitializePasses.h" 73 #include "llvm/Support/Allocator.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <functional> 78 #include <tuple> 79 #include <vector> 80 81 #define DEBUG_TYPE "machine-outliner" 82 83 using namespace llvm; 84 using namespace ore; 85 using namespace outliner; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 // Set to true if the user wants the outliner to run on linkonceodr linkage 91 // functions. This is false by default because the linker can dedupe linkonceodr 92 // functions. Since the outliner is confined to a single module (modulo LTO), 93 // this is off by default. It should, however, be the default behaviour in 94 // LTO. 95 static cl::opt<bool> EnableLinkOnceODROutlining( 96 "enable-linkonceodr-outlining", cl::Hidden, 97 cl::desc("Enable the machine outliner on linkonceodr functions"), 98 cl::init(false)); 99 100 // Set the number of times to repeatedly apply outlining. 101 // Defaults to 1, but more repetitions can save additional size. 102 static cl::opt<unsigned> 103 NumRepeat("machine-outline-runs", cl::Hidden, 104 cl::desc("The number of times to apply machine outlining"), 105 cl::init(1)); 106 107 namespace { 108 109 /// Represents an undefined index in the suffix tree. 110 const unsigned EmptyIdx = -1; 111 112 /// A node in a suffix tree which represents a substring or suffix. 113 /// 114 /// Each node has either no children or at least two children, with the root 115 /// being a exception in the empty tree. 116 /// 117 /// Children are represented as a map between unsigned integers and nodes. If 118 /// a node N has a child M on unsigned integer k, then the mapping represented 119 /// by N is a proper prefix of the mapping represented by M. Note that this, 120 /// although similar to a trie is somewhat different: each node stores a full 121 /// substring of the full mapping rather than a single character state. 122 /// 123 /// Each internal node contains a pointer to the internal node representing 124 /// the same string, but with the first character chopped off. This is stored 125 /// in \p Link. Each leaf node stores the start index of its respective 126 /// suffix in \p SuffixIdx. 127 struct SuffixTreeNode { 128 129 /// The children of this node. 130 /// 131 /// A child existing on an unsigned integer implies that from the mapping 132 /// represented by the current node, there is a way to reach another 133 /// mapping by tacking that character on the end of the current string. 134 DenseMap<unsigned, SuffixTreeNode *> Children; 135 136 /// The start index of this node's substring in the main string. 137 unsigned StartIdx = EmptyIdx; 138 139 /// The end index of this node's substring in the main string. 140 /// 141 /// Every leaf node must have its \p EndIdx incremented at the end of every 142 /// step in the construction algorithm. To avoid having to update O(N) 143 /// nodes individually at the end of every step, the end index is stored 144 /// as a pointer. 145 unsigned *EndIdx = nullptr; 146 147 /// For leaves, the start index of the suffix represented by this node. 148 /// 149 /// For all other nodes, this is ignored. 150 unsigned SuffixIdx = EmptyIdx; 151 152 /// For internal nodes, a pointer to the internal node representing 153 /// the same sequence with the first character chopped off. 154 /// 155 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 156 /// Ukkonen's algorithm does to achieve linear-time construction is 157 /// keep track of which node the next insert should be at. This makes each 158 /// insert O(1), and there are a total of O(N) inserts. The suffix link 159 /// helps with inserting children of internal nodes. 160 /// 161 /// Say we add a child to an internal node with associated mapping S. The 162 /// next insertion must be at the node representing S - its first character. 163 /// This is given by the way that we iteratively build the tree in Ukkonen's 164 /// algorithm. The main idea is to look at the suffixes of each prefix in the 165 /// string, starting with the longest suffix of the prefix, and ending with 166 /// the shortest. Therefore, if we keep pointers between such nodes, we can 167 /// move to the next insertion point in O(1) time. If we don't, then we'd 168 /// have to query from the root, which takes O(N) time. This would make the 169 /// construction algorithm O(N^2) rather than O(N). 170 SuffixTreeNode *Link = nullptr; 171 172 /// The length of the string formed by concatenating the edge labels from the 173 /// root to this node. 174 unsigned ConcatLen = 0; 175 176 /// Returns true if this node is a leaf. 177 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 178 179 /// Returns true if this node is the root of its owning \p SuffixTree. 180 bool isRoot() const { return StartIdx == EmptyIdx; } 181 182 /// Return the number of elements in the substring associated with this node. 183 size_t size() const { 184 185 // Is it the root? If so, it's the empty string so return 0. 186 if (isRoot()) 187 return 0; 188 189 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 190 191 // Size = the number of elements in the string. 192 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 193 return *EndIdx - StartIdx + 1; 194 } 195 196 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 197 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 198 199 SuffixTreeNode() {} 200 }; 201 202 /// A data structure for fast substring queries. 203 /// 204 /// Suffix trees represent the suffixes of their input strings in their leaves. 205 /// A suffix tree is a type of compressed trie structure where each node 206 /// represents an entire substring rather than a single character. Each leaf 207 /// of the tree is a suffix. 208 /// 209 /// A suffix tree can be seen as a type of state machine where each state is a 210 /// substring of the full string. The tree is structured so that, for a string 211 /// of length N, there are exactly N leaves in the tree. This structure allows 212 /// us to quickly find repeated substrings of the input string. 213 /// 214 /// In this implementation, a "string" is a vector of unsigned integers. 215 /// These integers may result from hashing some data type. A suffix tree can 216 /// contain 1 or many strings, which can then be queried as one large string. 217 /// 218 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 219 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 220 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 221 /// paper is available at 222 /// 223 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 224 class SuffixTree { 225 public: 226 /// Each element is an integer representing an instruction in the module. 227 ArrayRef<unsigned> Str; 228 229 /// A repeated substring in the tree. 230 struct RepeatedSubstring { 231 /// The length of the string. 232 unsigned Length; 233 234 /// The start indices of each occurrence. 235 std::vector<unsigned> StartIndices; 236 }; 237 238 private: 239 /// Maintains each node in the tree. 240 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 241 242 /// The root of the suffix tree. 243 /// 244 /// The root represents the empty string. It is maintained by the 245 /// \p NodeAllocator like every other node in the tree. 246 SuffixTreeNode *Root = nullptr; 247 248 /// Maintains the end indices of the internal nodes in the tree. 249 /// 250 /// Each internal node is guaranteed to never have its end index change 251 /// during the construction algorithm; however, leaves must be updated at 252 /// every step. Therefore, we need to store leaf end indices by reference 253 /// to avoid updating O(N) leaves at every step of construction. Thus, 254 /// every internal node must be allocated its own end index. 255 BumpPtrAllocator InternalEndIdxAllocator; 256 257 /// The end index of each leaf in the tree. 258 unsigned LeafEndIdx = -1; 259 260 /// Helper struct which keeps track of the next insertion point in 261 /// Ukkonen's algorithm. 262 struct ActiveState { 263 /// The next node to insert at. 264 SuffixTreeNode *Node = nullptr; 265 266 /// The index of the first character in the substring currently being added. 267 unsigned Idx = EmptyIdx; 268 269 /// The length of the substring we have to add at the current step. 270 unsigned Len = 0; 271 }; 272 273 /// The point the next insertion will take place at in the 274 /// construction algorithm. 275 ActiveState Active; 276 277 /// Allocate a leaf node and add it to the tree. 278 /// 279 /// \param Parent The parent of this node. 280 /// \param StartIdx The start index of this node's associated string. 281 /// \param Edge The label on the edge leaving \p Parent to this node. 282 /// 283 /// \returns A pointer to the allocated leaf node. 284 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 285 unsigned Edge) { 286 287 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 288 289 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 290 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 291 Parent.Children[Edge] = N; 292 293 return N; 294 } 295 296 /// Allocate an internal node and add it to the tree. 297 /// 298 /// \param Parent The parent of this node. Only null when allocating the root. 299 /// \param StartIdx The start index of this node's associated string. 300 /// \param EndIdx The end index of this node's associated string. 301 /// \param Edge The label on the edge leaving \p Parent to this node. 302 /// 303 /// \returns A pointer to the allocated internal node. 304 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 305 unsigned EndIdx, unsigned Edge) { 306 307 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 308 assert(!(!Parent && StartIdx != EmptyIdx) && 309 "Non-root internal nodes must have parents!"); 310 311 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 312 SuffixTreeNode *N = 313 new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root); 314 if (Parent) 315 Parent->Children[Edge] = N; 316 317 return N; 318 } 319 320 /// Set the suffix indices of the leaves to the start indices of their 321 /// respective suffixes. 322 void setSuffixIndices() { 323 // List of nodes we need to visit along with the current length of the 324 // string. 325 std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit; 326 327 // Current node being visited. 328 SuffixTreeNode *CurrNode = Root; 329 330 // Sum of the lengths of the nodes down the path to the current one. 331 unsigned CurrNodeLen = 0; 332 ToVisit.push_back({CurrNode, CurrNodeLen}); 333 while (!ToVisit.empty()) { 334 std::tie(CurrNode, CurrNodeLen) = ToVisit.back(); 335 ToVisit.pop_back(); 336 CurrNode->ConcatLen = CurrNodeLen; 337 for (auto &ChildPair : CurrNode->Children) { 338 assert(ChildPair.second && "Node had a null child!"); 339 ToVisit.push_back( 340 {ChildPair.second, CurrNodeLen + ChildPair.second->size()}); 341 } 342 343 // No children, so we are at the end of the string. 344 if (CurrNode->Children.size() == 0 && !CurrNode->isRoot()) 345 CurrNode->SuffixIdx = Str.size() - CurrNodeLen; 346 } 347 } 348 349 /// Construct the suffix tree for the prefix of the input ending at 350 /// \p EndIdx. 351 /// 352 /// Used to construct the full suffix tree iteratively. At the end of each 353 /// step, the constructed suffix tree is either a valid suffix tree, or a 354 /// suffix tree with implicit suffixes. At the end of the final step, the 355 /// suffix tree is a valid tree. 356 /// 357 /// \param EndIdx The end index of the current prefix in the main string. 358 /// \param SuffixesToAdd The number of suffixes that must be added 359 /// to complete the suffix tree at the current phase. 360 /// 361 /// \returns The number of suffixes that have not been added at the end of 362 /// this step. 363 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 364 SuffixTreeNode *NeedsLink = nullptr; 365 366 while (SuffixesToAdd > 0) { 367 368 // Are we waiting to add anything other than just the last character? 369 if (Active.Len == 0) { 370 // If not, then say the active index is the end index. 371 Active.Idx = EndIdx; 372 } 373 374 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 375 376 // The first character in the current substring we're looking at. 377 unsigned FirstChar = Str[Active.Idx]; 378 379 // Have we inserted anything starting with FirstChar at the current node? 380 if (Active.Node->Children.count(FirstChar) == 0) { 381 // If not, then we can just insert a leaf and move too the next step. 382 insertLeaf(*Active.Node, EndIdx, FirstChar); 383 384 // The active node is an internal node, and we visited it, so it must 385 // need a link if it doesn't have one. 386 if (NeedsLink) { 387 NeedsLink->Link = Active.Node; 388 NeedsLink = nullptr; 389 } 390 } else { 391 // There's a match with FirstChar, so look for the point in the tree to 392 // insert a new node. 393 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 394 395 unsigned SubstringLen = NextNode->size(); 396 397 // Is the current suffix we're trying to insert longer than the size of 398 // the child we want to move to? 399 if (Active.Len >= SubstringLen) { 400 // If yes, then consume the characters we've seen and move to the next 401 // node. 402 Active.Idx += SubstringLen; 403 Active.Len -= SubstringLen; 404 Active.Node = NextNode; 405 continue; 406 } 407 408 // Otherwise, the suffix we're trying to insert must be contained in the 409 // next node we want to move to. 410 unsigned LastChar = Str[EndIdx]; 411 412 // Is the string we're trying to insert a substring of the next node? 413 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 414 // If yes, then we're done for this step. Remember our insertion point 415 // and move to the next end index. At this point, we have an implicit 416 // suffix tree. 417 if (NeedsLink && !Active.Node->isRoot()) { 418 NeedsLink->Link = Active.Node; 419 NeedsLink = nullptr; 420 } 421 422 Active.Len++; 423 break; 424 } 425 426 // The string we're trying to insert isn't a substring of the next node, 427 // but matches up to a point. Split the node. 428 // 429 // For example, say we ended our search at a node n and we're trying to 430 // insert ABD. Then we'll create a new node s for AB, reduce n to just 431 // representing C, and insert a new leaf node l to represent d. This 432 // allows us to ensure that if n was a leaf, it remains a leaf. 433 // 434 // | ABC ---split---> | AB 435 // n s 436 // C / \ D 437 // n l 438 439 // The node s from the diagram 440 SuffixTreeNode *SplitNode = 441 insertInternalNode(Active.Node, NextNode->StartIdx, 442 NextNode->StartIdx + Active.Len - 1, FirstChar); 443 444 // Insert the new node representing the new substring into the tree as 445 // a child of the split node. This is the node l from the diagram. 446 insertLeaf(*SplitNode, EndIdx, LastChar); 447 448 // Make the old node a child of the split node and update its start 449 // index. This is the node n from the diagram. 450 NextNode->StartIdx += Active.Len; 451 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 452 453 // SplitNode is an internal node, update the suffix link. 454 if (NeedsLink) 455 NeedsLink->Link = SplitNode; 456 457 NeedsLink = SplitNode; 458 } 459 460 // We've added something new to the tree, so there's one less suffix to 461 // add. 462 SuffixesToAdd--; 463 464 if (Active.Node->isRoot()) { 465 if (Active.Len > 0) { 466 Active.Len--; 467 Active.Idx = EndIdx - SuffixesToAdd + 1; 468 } 469 } else { 470 // Start the next phase at the next smallest suffix. 471 Active.Node = Active.Node->Link; 472 } 473 } 474 475 return SuffixesToAdd; 476 } 477 478 public: 479 /// Construct a suffix tree from a sequence of unsigned integers. 480 /// 481 /// \param Str The string to construct the suffix tree for. 482 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 483 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 484 Active.Node = Root; 485 486 // Keep track of the number of suffixes we have to add of the current 487 // prefix. 488 unsigned SuffixesToAdd = 0; 489 490 // Construct the suffix tree iteratively on each prefix of the string. 491 // PfxEndIdx is the end index of the current prefix. 492 // End is one past the last element in the string. 493 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 494 PfxEndIdx++) { 495 SuffixesToAdd++; 496 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 497 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 498 } 499 500 // Set the suffix indices of each leaf. 501 assert(Root && "Root node can't be nullptr!"); 502 setSuffixIndices(); 503 } 504 505 /// Iterator for finding all repeated substrings in the suffix tree. 506 struct RepeatedSubstringIterator { 507 private: 508 /// The current node we're visiting. 509 SuffixTreeNode *N = nullptr; 510 511 /// The repeated substring associated with this node. 512 RepeatedSubstring RS; 513 514 /// The nodes left to visit. 515 std::vector<SuffixTreeNode *> ToVisit; 516 517 /// The minimum length of a repeated substring to find. 518 /// Since we're outlining, we want at least two instructions in the range. 519 /// FIXME: This may not be true for targets like X86 which support many 520 /// instruction lengths. 521 const unsigned MinLength = 2; 522 523 /// Move the iterator to the next repeated substring. 524 void advance() { 525 // Clear the current state. If we're at the end of the range, then this 526 // is the state we want to be in. 527 RS = RepeatedSubstring(); 528 N = nullptr; 529 530 // Each leaf node represents a repeat of a string. 531 std::vector<SuffixTreeNode *> LeafChildren; 532 533 // Continue visiting nodes until we find one which repeats more than once. 534 while (!ToVisit.empty()) { 535 SuffixTreeNode *Curr = ToVisit.back(); 536 ToVisit.pop_back(); 537 LeafChildren.clear(); 538 539 // Keep track of the length of the string associated with the node. If 540 // it's too short, we'll quit. 541 unsigned Length = Curr->ConcatLen; 542 543 // Iterate over each child, saving internal nodes for visiting, and 544 // leaf nodes in LeafChildren. Internal nodes represent individual 545 // strings, which may repeat. 546 for (auto &ChildPair : Curr->Children) { 547 // Save all of this node's children for processing. 548 if (!ChildPair.second->isLeaf()) 549 ToVisit.push_back(ChildPair.second); 550 551 // It's not an internal node, so it must be a leaf. If we have a 552 // long enough string, then save the leaf children. 553 else if (Length >= MinLength) 554 LeafChildren.push_back(ChildPair.second); 555 } 556 557 // The root never represents a repeated substring. If we're looking at 558 // that, then skip it. 559 if (Curr->isRoot()) 560 continue; 561 562 // Do we have any repeated substrings? 563 if (LeafChildren.size() >= 2) { 564 // Yes. Update the state to reflect this, and then bail out. 565 N = Curr; 566 RS.Length = Length; 567 for (SuffixTreeNode *Leaf : LeafChildren) 568 RS.StartIndices.push_back(Leaf->SuffixIdx); 569 break; 570 } 571 } 572 573 // At this point, either NewRS is an empty RepeatedSubstring, or it was 574 // set in the above loop. Similarly, N is either nullptr, or the node 575 // associated with NewRS. 576 } 577 578 public: 579 /// Return the current repeated substring. 580 RepeatedSubstring &operator*() { return RS; } 581 582 RepeatedSubstringIterator &operator++() { 583 advance(); 584 return *this; 585 } 586 587 RepeatedSubstringIterator operator++(int I) { 588 RepeatedSubstringIterator It(*this); 589 advance(); 590 return It; 591 } 592 593 bool operator==(const RepeatedSubstringIterator &Other) { 594 return N == Other.N; 595 } 596 bool operator!=(const RepeatedSubstringIterator &Other) { 597 return !(*this == Other); 598 } 599 600 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 601 // Do we have a non-null node? 602 if (N) { 603 // Yes. At the first step, we need to visit all of N's children. 604 // Note: This means that we visit N last. 605 ToVisit.push_back(N); 606 advance(); 607 } 608 } 609 }; 610 611 typedef RepeatedSubstringIterator iterator; 612 iterator begin() { return iterator(Root); } 613 iterator end() { return iterator(nullptr); } 614 }; 615 616 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 617 struct InstructionMapper { 618 619 /// The next available integer to assign to a \p MachineInstr that 620 /// cannot be outlined. 621 /// 622 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 623 unsigned IllegalInstrNumber = -3; 624 625 /// The next available integer to assign to a \p MachineInstr that can 626 /// be outlined. 627 unsigned LegalInstrNumber = 0; 628 629 /// Correspondence from \p MachineInstrs to unsigned integers. 630 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 631 InstructionIntegerMap; 632 633 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 634 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 635 636 /// The vector of unsigned integers that the module is mapped to. 637 std::vector<unsigned> UnsignedVec; 638 639 /// Stores the location of the instruction associated with the integer 640 /// at index i in \p UnsignedVec for each index i. 641 std::vector<MachineBasicBlock::iterator> InstrList; 642 643 // Set if we added an illegal number in the previous step. 644 // Since each illegal number is unique, we only need one of them between 645 // each range of legal numbers. This lets us make sure we don't add more 646 // than one illegal number per range. 647 bool AddedIllegalLastTime = false; 648 649 /// Maps \p *It to a legal integer. 650 /// 651 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 652 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 653 /// 654 /// \returns The integer that \p *It was mapped to. 655 unsigned mapToLegalUnsigned( 656 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 657 bool &HaveLegalRange, unsigned &NumLegalInBlock, 658 std::vector<unsigned> &UnsignedVecForMBB, 659 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 660 // We added something legal, so we should unset the AddedLegalLastTime 661 // flag. 662 AddedIllegalLastTime = false; 663 664 // If we have at least two adjacent legal instructions (which may have 665 // invisible instructions in between), remember that. 666 if (CanOutlineWithPrevInstr) 667 HaveLegalRange = true; 668 CanOutlineWithPrevInstr = true; 669 670 // Keep track of the number of legal instructions we insert. 671 NumLegalInBlock++; 672 673 // Get the integer for this instruction or give it the current 674 // LegalInstrNumber. 675 InstrListForMBB.push_back(It); 676 MachineInstr &MI = *It; 677 bool WasInserted; 678 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 679 ResultIt; 680 std::tie(ResultIt, WasInserted) = 681 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 682 unsigned MINumber = ResultIt->second; 683 684 // There was an insertion. 685 if (WasInserted) 686 LegalInstrNumber++; 687 688 UnsignedVecForMBB.push_back(MINumber); 689 690 // Make sure we don't overflow or use any integers reserved by the DenseMap. 691 if (LegalInstrNumber >= IllegalInstrNumber) 692 report_fatal_error("Instruction mapping overflow!"); 693 694 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 695 "Tried to assign DenseMap tombstone or empty key to instruction."); 696 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 697 "Tried to assign DenseMap tombstone or empty key to instruction."); 698 699 return MINumber; 700 } 701 702 /// Maps \p *It to an illegal integer. 703 /// 704 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 705 /// IllegalInstrNumber. 706 /// 707 /// \returns The integer that \p *It was mapped to. 708 unsigned mapToIllegalUnsigned( 709 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 710 std::vector<unsigned> &UnsignedVecForMBB, 711 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 712 // Can't outline an illegal instruction. Set the flag. 713 CanOutlineWithPrevInstr = false; 714 715 // Only add one illegal number per range of legal numbers. 716 if (AddedIllegalLastTime) 717 return IllegalInstrNumber; 718 719 // Remember that we added an illegal number last time. 720 AddedIllegalLastTime = true; 721 unsigned MINumber = IllegalInstrNumber; 722 723 InstrListForMBB.push_back(It); 724 UnsignedVecForMBB.push_back(IllegalInstrNumber); 725 IllegalInstrNumber--; 726 727 assert(LegalInstrNumber < IllegalInstrNumber && 728 "Instruction mapping overflow!"); 729 730 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 731 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 732 733 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 734 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 735 736 return MINumber; 737 } 738 739 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 740 /// and appends it to \p UnsignedVec and \p InstrList. 741 /// 742 /// Two instructions are assigned the same integer if they are identical. 743 /// If an instruction is deemed unsafe to outline, then it will be assigned an 744 /// unique integer. The resulting mapping is placed into a suffix tree and 745 /// queried for candidates. 746 /// 747 /// \param MBB The \p MachineBasicBlock to be translated into integers. 748 /// \param TII \p TargetInstrInfo for the function. 749 void convertToUnsignedVec(MachineBasicBlock &MBB, 750 const TargetInstrInfo &TII) { 751 unsigned Flags = 0; 752 753 // Don't even map in this case. 754 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 755 return; 756 757 // Store info for the MBB for later outlining. 758 MBBFlagsMap[&MBB] = Flags; 759 760 MachineBasicBlock::iterator It = MBB.begin(); 761 762 // The number of instructions in this block that will be considered for 763 // outlining. 764 unsigned NumLegalInBlock = 0; 765 766 // True if we have at least two legal instructions which aren't separated 767 // by an illegal instruction. 768 bool HaveLegalRange = false; 769 770 // True if we can perform outlining given the last mapped (non-invisible) 771 // instruction. This lets us know if we have a legal range. 772 bool CanOutlineWithPrevInstr = false; 773 774 // FIXME: Should this all just be handled in the target, rather than using 775 // repeated calls to getOutliningType? 776 std::vector<unsigned> UnsignedVecForMBB; 777 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 778 779 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) { 780 // Keep track of where this instruction is in the module. 781 switch (TII.getOutliningType(It, Flags)) { 782 case InstrType::Illegal: 783 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 784 InstrListForMBB); 785 break; 786 787 case InstrType::Legal: 788 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 789 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 790 break; 791 792 case InstrType::LegalTerminator: 793 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 794 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 795 // The instruction also acts as a terminator, so we have to record that 796 // in the string. 797 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 798 InstrListForMBB); 799 break; 800 801 case InstrType::Invisible: 802 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 803 // skip this instruction. So, unset the flag here. 804 AddedIllegalLastTime = false; 805 break; 806 } 807 } 808 809 // Are there enough legal instructions in the block for outlining to be 810 // possible? 811 if (HaveLegalRange) { 812 // After we're done every insertion, uniquely terminate this part of the 813 // "string". This makes sure we won't match across basic block or function 814 // boundaries since the "end" is encoded uniquely and thus appears in no 815 // repeated substring. 816 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 817 InstrListForMBB); 818 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 819 InstrListForMBB.end()); 820 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 821 UnsignedVecForMBB.end()); 822 } 823 } 824 825 InstructionMapper() { 826 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 827 // changed. 828 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 829 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 830 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 831 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 832 } 833 }; 834 835 /// An interprocedural pass which finds repeated sequences of 836 /// instructions and replaces them with calls to functions. 837 /// 838 /// Each instruction is mapped to an unsigned integer and placed in a string. 839 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 840 /// is then repeatedly queried for repeated sequences of instructions. Each 841 /// non-overlapping repeated sequence is then placed in its own 842 /// \p MachineFunction and each instance is then replaced with a call to that 843 /// function. 844 struct MachineOutliner : public ModulePass { 845 846 static char ID; 847 848 /// Set to true if the outliner should consider functions with 849 /// linkonceodr linkage. 850 bool OutlineFromLinkOnceODRs = false; 851 852 /// The current repeat number of machine outlining. 853 unsigned OutlineRepeatedNum = 0; 854 855 /// Set to true if the outliner should run on all functions in the module 856 /// considered safe for outlining. 857 /// Set to true by default for compatibility with llc's -run-pass option. 858 /// Set when the pass is constructed in TargetPassConfig. 859 bool RunOnAllFunctions = true; 860 861 StringRef getPassName() const override { return "Machine Outliner"; } 862 863 void getAnalysisUsage(AnalysisUsage &AU) const override { 864 AU.addRequired<MachineModuleInfoWrapperPass>(); 865 AU.addPreserved<MachineModuleInfoWrapperPass>(); 866 AU.setPreservesAll(); 867 ModulePass::getAnalysisUsage(AU); 868 } 869 870 MachineOutliner() : ModulePass(ID) { 871 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 872 } 873 874 /// Remark output explaining that not outlining a set of candidates would be 875 /// better than outlining that set. 876 void emitNotOutliningCheaperRemark( 877 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 878 OutlinedFunction &OF); 879 880 /// Remark output explaining that a function was outlined. 881 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 882 883 /// Find all repeated substrings that satisfy the outlining cost model by 884 /// constructing a suffix tree. 885 /// 886 /// If a substring appears at least twice, then it must be represented by 887 /// an internal node which appears in at least two suffixes. Each suffix 888 /// is represented by a leaf node. To do this, we visit each internal node 889 /// in the tree, using the leaf children of each internal node. If an 890 /// internal node represents a beneficial substring, then we use each of 891 /// its leaf children to find the locations of its substring. 892 /// 893 /// \param Mapper Contains outlining mapping information. 894 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 895 /// each type of candidate. 896 void findCandidates(InstructionMapper &Mapper, 897 std::vector<OutlinedFunction> &FunctionList); 898 899 /// Replace the sequences of instructions represented by \p OutlinedFunctions 900 /// with calls to functions. 901 /// 902 /// \param M The module we are outlining from. 903 /// \param FunctionList A list of functions to be inserted into the module. 904 /// \param Mapper Contains the instruction mappings for the module. 905 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 906 InstructionMapper &Mapper, unsigned &OutlinedFunctionNum); 907 908 /// Creates a function for \p OF and inserts it into the module. 909 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 910 InstructionMapper &Mapper, 911 unsigned Name); 912 913 /// Calls runOnceOnModule NumRepeat times 914 bool runOnModule(Module &M) override; 915 916 /// Calls 'doOutline()'. 917 bool runOnceOnModule(Module &M, unsigned Iter); 918 919 /// Construct a suffix tree on the instructions in \p M and outline repeated 920 /// strings from that tree. 921 bool doOutline(Module &M, unsigned &OutlinedFunctionNum); 922 923 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 924 /// function for remark emission. 925 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 926 for (const Candidate &C : OF.Candidates) 927 if (MachineFunction *MF = C.getMF()) 928 if (DISubprogram *SP = MF->getFunction().getSubprogram()) 929 return SP; 930 return nullptr; 931 } 932 933 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 934 /// These are used to construct a suffix tree. 935 void populateMapper(InstructionMapper &Mapper, Module &M, 936 MachineModuleInfo &MMI); 937 938 /// Initialize information necessary to output a size remark. 939 /// FIXME: This should be handled by the pass manager, not the outliner. 940 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 941 /// pass manager. 942 void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI, 943 StringMap<unsigned> &FunctionToInstrCount); 944 945 /// Emit the remark. 946 // FIXME: This should be handled by the pass manager, not the outliner. 947 void 948 emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI, 949 const StringMap<unsigned> &FunctionToInstrCount); 950 }; 951 } // Anonymous namespace. 952 953 char MachineOutliner::ID = 0; 954 955 namespace llvm { 956 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 957 MachineOutliner *OL = new MachineOutliner(); 958 OL->RunOnAllFunctions = RunOnAllFunctions; 959 return OL; 960 } 961 962 } // namespace llvm 963 964 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 965 false) 966 967 void MachineOutliner::emitNotOutliningCheaperRemark( 968 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 969 OutlinedFunction &OF) { 970 // FIXME: Right now, we arbitrarily choose some Candidate from the 971 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 972 // We should probably sort these by function name or something to make sure 973 // the remarks are stable. 974 Candidate &C = CandidatesForRepeatedSeq.front(); 975 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 976 MORE.emit([&]() { 977 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 978 C.front()->getDebugLoc(), C.getMBB()); 979 R << "Did not outline " << NV("Length", StringLen) << " instructions" 980 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 981 << " locations." 982 << " Bytes from outlining all occurrences (" 983 << NV("OutliningCost", OF.getOutliningCost()) << ")" 984 << " >= Unoutlined instruction bytes (" 985 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 986 << " (Also found at: "; 987 988 // Tell the user the other places the candidate was found. 989 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 990 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 991 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 992 if (i != e - 1) 993 R << ", "; 994 } 995 996 R << ")"; 997 return R; 998 }); 999 } 1000 1001 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 1002 MachineBasicBlock *MBB = &*OF.MF->begin(); 1003 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1004 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1005 MBB->findDebugLoc(MBB->begin()), MBB); 1006 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 1007 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 1008 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1009 << " locations. " 1010 << "(Found at: "; 1011 1012 // Tell the user the other places the candidate was found. 1013 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1014 1015 R << NV((Twine("StartLoc") + Twine(i)).str(), 1016 OF.Candidates[i].front()->getDebugLoc()); 1017 if (i != e - 1) 1018 R << ", "; 1019 } 1020 1021 R << ")"; 1022 1023 MORE.emit(R); 1024 } 1025 1026 void MachineOutliner::findCandidates( 1027 InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) { 1028 FunctionList.clear(); 1029 SuffixTree ST(Mapper.UnsignedVec); 1030 1031 // First, find all of the repeated substrings in the tree of minimum length 1032 // 2. 1033 std::vector<Candidate> CandidatesForRepeatedSeq; 1034 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1035 CandidatesForRepeatedSeq.clear(); 1036 SuffixTree::RepeatedSubstring RS = *It; 1037 unsigned StringLen = RS.Length; 1038 for (const unsigned &StartIdx : RS.StartIndices) { 1039 unsigned EndIdx = StartIdx + StringLen - 1; 1040 // Trick: Discard some candidates that would be incompatible with the 1041 // ones we've already found for this sequence. This will save us some 1042 // work in candidate selection. 1043 // 1044 // If two candidates overlap, then we can't outline them both. This 1045 // happens when we have candidates that look like, say 1046 // 1047 // AA (where each "A" is an instruction). 1048 // 1049 // We might have some portion of the module that looks like this: 1050 // AAAAAA (6 A's) 1051 // 1052 // In this case, there are 5 different copies of "AA" in this range, but 1053 // at most 3 can be outlined. If only outlining 3 of these is going to 1054 // be unbeneficial, then we ought to not bother. 1055 // 1056 // Note that two things DON'T overlap when they look like this: 1057 // start1...end1 .... start2...end2 1058 // That is, one must either 1059 // * End before the other starts 1060 // * Start after the other ends 1061 if (std::all_of( 1062 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1063 [&StartIdx, &EndIdx](const Candidate &C) { 1064 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1065 })) { 1066 // It doesn't overlap with anything, so we can outline it. 1067 // Each sequence is over [StartIt, EndIt]. 1068 // Save the candidate and its location. 1069 1070 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1071 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1072 MachineBasicBlock *MBB = StartIt->getParent(); 1073 1074 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1075 EndIt, MBB, FunctionList.size(), 1076 Mapper.MBBFlagsMap[MBB]); 1077 } 1078 } 1079 1080 // We've found something we might want to outline. 1081 // Create an OutlinedFunction to store it and check if it'd be beneficial 1082 // to outline. 1083 if (CandidatesForRepeatedSeq.size() < 2) 1084 continue; 1085 1086 // Arbitrarily choose a TII from the first candidate. 1087 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1088 const TargetInstrInfo *TII = 1089 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1090 1091 OutlinedFunction OF = 1092 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1093 1094 // If we deleted too many candidates, then there's nothing worth outlining. 1095 // FIXME: This should take target-specified instruction sizes into account. 1096 if (OF.Candidates.size() < 2) 1097 continue; 1098 1099 // Is it better to outline this candidate than not? 1100 if (OF.getBenefit() < 1) { 1101 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1102 continue; 1103 } 1104 1105 FunctionList.push_back(OF); 1106 } 1107 } 1108 1109 MachineFunction *MachineOutliner::createOutlinedFunction( 1110 Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) { 1111 1112 // Create the function name. This should be unique. 1113 // FIXME: We should have a better naming scheme. This should be stable, 1114 // regardless of changes to the outliner's cost model/traversal order. 1115 std::string FunctionName; 1116 if (OutlineRepeatedNum > 0) 1117 FunctionName = ("OUTLINED_FUNCTION_" + Twine(OutlineRepeatedNum + 1) + "_" + 1118 Twine(Name)) 1119 .str(); 1120 else 1121 FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); 1122 1123 // Create the function using an IR-level function. 1124 LLVMContext &C = M.getContext(); 1125 Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1126 Function::ExternalLinkage, FunctionName, M); 1127 1128 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1129 // which gives us better results when we outline from linkonceodr functions. 1130 F->setLinkage(GlobalValue::InternalLinkage); 1131 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1132 1133 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1134 // necessary. 1135 1136 // Set optsize/minsize, so we don't insert padding between outlined 1137 // functions. 1138 F->addFnAttr(Attribute::OptimizeForSize); 1139 F->addFnAttr(Attribute::MinSize); 1140 1141 // Include target features from an arbitrary candidate for the outlined 1142 // function. This makes sure the outlined function knows what kinds of 1143 // instructions are going into it. This is fine, since all parent functions 1144 // must necessarily support the instructions that are in the outlined region. 1145 Candidate &FirstCand = OF.Candidates.front(); 1146 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1147 if (ParentFn.hasFnAttribute("target-features")) 1148 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1149 1150 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1151 IRBuilder<> Builder(EntryBB); 1152 Builder.CreateRetVoid(); 1153 1154 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1155 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1156 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1157 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1158 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1159 1160 // Insert the new function into the module. 1161 MF.insert(MF.begin(), &MBB); 1162 1163 MachineFunction *OriginalMF = FirstCand.front()->getMF(); 1164 const std::vector<MCCFIInstruction> &Instrs = 1165 OriginalMF->getFrameInstructions(); 1166 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1167 ++I) { 1168 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1169 if (I->isCFIInstruction()) { 1170 unsigned CFIIndex = NewMI->getOperand(0).getCFIIndex(); 1171 MCCFIInstruction CFI = Instrs[CFIIndex]; 1172 (void)MF.addFrameInst(CFI); 1173 } 1174 NewMI->dropMemRefs(MF); 1175 1176 // Don't keep debug information for outlined instructions. 1177 NewMI->setDebugLoc(DebugLoc()); 1178 MBB.insert(MBB.end(), NewMI); 1179 } 1180 1181 // Set normal properties for a late MachineFunction. 1182 MF.getProperties().reset(MachineFunctionProperties::Property::IsSSA); 1183 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 1184 MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs); 1185 MF.getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1186 MF.getRegInfo().freezeReservedRegs(MF); 1187 1188 // Compute live-in set for outlined fn 1189 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1190 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1191 LivePhysRegs LiveIns(TRI); 1192 for (auto &Cand : OF.Candidates) { 1193 // Figure out live-ins at the first instruction. 1194 MachineBasicBlock &OutlineBB = *Cand.front()->getParent(); 1195 LivePhysRegs CandLiveIns(TRI); 1196 CandLiveIns.addLiveOuts(OutlineBB); 1197 for (const MachineInstr &MI : 1198 reverse(make_range(Cand.front(), OutlineBB.end()))) 1199 CandLiveIns.stepBackward(MI); 1200 1201 // The live-in set for the outlined function is the union of the live-ins 1202 // from all the outlining points. 1203 for (MCPhysReg Reg : make_range(CandLiveIns.begin(), CandLiveIns.end())) 1204 LiveIns.addReg(Reg); 1205 } 1206 addLiveIns(MBB, LiveIns); 1207 1208 TII.buildOutlinedFrame(MBB, MF, OF); 1209 1210 // If there's a DISubprogram associated with this outlined function, then 1211 // emit debug info for the outlined function. 1212 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1213 // We have a DISubprogram. Get its DICompileUnit. 1214 DICompileUnit *CU = SP->getUnit(); 1215 DIBuilder DB(M, true, CU); 1216 DIFile *Unit = SP->getFile(); 1217 Mangler Mg; 1218 // Get the mangled name of the function for the linkage name. 1219 std::string Dummy; 1220 llvm::raw_string_ostream MangledNameStream(Dummy); 1221 Mg.getNameWithPrefix(MangledNameStream, F, false); 1222 1223 DISubprogram *OutlinedSP = DB.createFunction( 1224 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1225 Unit /* File */, 1226 0 /* Line 0 is reserved for compiler-generated code. */, 1227 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1228 0, /* Line 0 is reserved for compiler-generated code. */ 1229 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1230 /* Outlined code is optimized code by definition. */ 1231 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1232 1233 // Don't add any new variables to the subprogram. 1234 DB.finalizeSubprogram(OutlinedSP); 1235 1236 // Attach subprogram to the function. 1237 F->setSubprogram(OutlinedSP); 1238 // We're done with the DIBuilder. 1239 DB.finalize(); 1240 } 1241 1242 return &MF; 1243 } 1244 1245 bool MachineOutliner::outline(Module &M, 1246 std::vector<OutlinedFunction> &FunctionList, 1247 InstructionMapper &Mapper, 1248 unsigned &OutlinedFunctionNum) { 1249 1250 bool OutlinedSomething = false; 1251 1252 // Sort by benefit. The most beneficial functions should be outlined first. 1253 llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, 1254 const OutlinedFunction &RHS) { 1255 return LHS.getBenefit() > RHS.getBenefit(); 1256 }); 1257 1258 // Walk over each function, outlining them as we go along. Functions are 1259 // outlined greedily, based off the sort above. 1260 for (OutlinedFunction &OF : FunctionList) { 1261 // If we outlined something that overlapped with a candidate in a previous 1262 // step, then we can't outline from it. 1263 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1264 return std::any_of( 1265 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1266 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1267 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1268 }); 1269 1270 // If we made it unbeneficial to outline this function, skip it. 1271 if (OF.getBenefit() < 1) 1272 continue; 1273 1274 // It's beneficial. Create the function and outline its sequence's 1275 // occurrences. 1276 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1277 emitOutlinedFunctionRemark(OF); 1278 FunctionsCreated++; 1279 OutlinedFunctionNum++; // Created a function, move to the next name. 1280 MachineFunction *MF = OF.MF; 1281 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1282 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1283 1284 // Replace occurrences of the sequence with calls to the new function. 1285 for (Candidate &C : OF.Candidates) { 1286 MachineBasicBlock &MBB = *C.getMBB(); 1287 MachineBasicBlock::iterator StartIt = C.front(); 1288 MachineBasicBlock::iterator EndIt = C.back(); 1289 1290 // Insert the call. 1291 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1292 1293 // If the caller tracks liveness, then we need to make sure that 1294 // anything we outline doesn't break liveness assumptions. The outlined 1295 // functions themselves currently don't track liveness, but we should 1296 // make sure that the ranges we yank things out of aren't wrong. 1297 if (MBB.getParent()->getProperties().hasProperty( 1298 MachineFunctionProperties::Property::TracksLiveness)) { 1299 // The following code is to add implicit def operands to the call 1300 // instruction. It also updates call site information for moved 1301 // code. 1302 SmallSet<Register, 2> UseRegs, DefRegs; 1303 // Copy over the defs in the outlined range. 1304 // First inst in outlined range <-- Anything that's defined in this 1305 // ... .. range has to be added as an 1306 // implicit Last inst in outlined range <-- def to the call 1307 // instruction. Also remove call site information for outlined block 1308 // of code. The exposed uses need to be copied in the outlined range. 1309 for (MachineBasicBlock::reverse_iterator Iter = EndIt.getReverse(), 1310 Last = std::next(CallInst.getReverse()); 1311 Iter != Last; Iter++) { 1312 MachineInstr *MI = &*Iter; 1313 for (MachineOperand &MOP : MI->operands()) { 1314 // Skip over anything that isn't a register. 1315 if (!MOP.isReg()) 1316 continue; 1317 1318 if (MOP.isDef()) { 1319 // Introduce DefRegs set to skip the redundant register. 1320 DefRegs.insert(MOP.getReg()); 1321 if (UseRegs.count(MOP.getReg())) 1322 // Since the regiester is modeled as defined, 1323 // it is not necessary to be put in use register set. 1324 UseRegs.erase(MOP.getReg()); 1325 } else if (!MOP.isUndef()) { 1326 // Any register which is not undefined should 1327 // be put in the use register set. 1328 UseRegs.insert(MOP.getReg()); 1329 } 1330 } 1331 if (MI->isCandidateForCallSiteEntry()) 1332 MI->getMF()->eraseCallSiteInfo(MI); 1333 } 1334 1335 for (const Register &I : DefRegs) 1336 // If it's a def, add it to the call instruction. 1337 CallInst->addOperand(MachineOperand::CreateReg( 1338 I, true, /* isDef = true */ 1339 true /* isImp = true */)); 1340 1341 for (const Register &I : UseRegs) 1342 // If it's a exposed use, add it to the call instruction. 1343 CallInst->addOperand( 1344 MachineOperand::CreateReg(I, false, /* isDef = false */ 1345 true /* isImp = true */)); 1346 } 1347 1348 // Erase from the point after where the call was inserted up to, and 1349 // including, the final instruction in the sequence. 1350 // Erase needs one past the end, so we need std::next there too. 1351 MBB.erase(std::next(StartIt), std::next(EndIt)); 1352 1353 // Keep track of what we removed by marking them all as -1. 1354 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1355 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1356 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1357 OutlinedSomething = true; 1358 1359 // Statistics. 1360 NumOutlined++; 1361 } 1362 } 1363 1364 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1365 return OutlinedSomething; 1366 } 1367 1368 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1369 MachineModuleInfo &MMI) { 1370 // Build instruction mappings for each function in the module. Start by 1371 // iterating over each Function in M. 1372 for (Function &F : M) { 1373 1374 // If there's nothing in F, then there's no reason to try and outline from 1375 // it. 1376 if (F.empty()) 1377 continue; 1378 1379 // There's something in F. Check if it has a MachineFunction associated with 1380 // it. 1381 MachineFunction *MF = MMI.getMachineFunction(F); 1382 1383 // If it doesn't, then there's nothing to outline from. Move to the next 1384 // Function. 1385 if (!MF) 1386 continue; 1387 1388 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1389 1390 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1391 continue; 1392 1393 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1394 // If it isn't, then move on to the next Function in the module. 1395 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1396 continue; 1397 1398 // We have a function suitable for outlining. Iterate over every 1399 // MachineBasicBlock in MF and try to map its instructions to a list of 1400 // unsigned integers. 1401 for (MachineBasicBlock &MBB : *MF) { 1402 // If there isn't anything in MBB, then there's no point in outlining from 1403 // it. 1404 // If there are fewer than 2 instructions in the MBB, then it can't ever 1405 // contain something worth outlining. 1406 // FIXME: This should be based off of the maximum size in B of an outlined 1407 // call versus the size in B of the MBB. 1408 if (MBB.empty() || MBB.size() < 2) 1409 continue; 1410 1411 // Check if MBB could be the target of an indirect branch. If it is, then 1412 // we don't want to outline from it. 1413 if (MBB.hasAddressTaken()) 1414 continue; 1415 1416 // MBB is suitable for outlining. Map it to a list of unsigneds. 1417 Mapper.convertToUnsignedVec(MBB, *TII); 1418 } 1419 } 1420 } 1421 1422 void MachineOutliner::initSizeRemarkInfo( 1423 const Module &M, const MachineModuleInfo &MMI, 1424 StringMap<unsigned> &FunctionToInstrCount) { 1425 // Collect instruction counts for every function. We'll use this to emit 1426 // per-function size remarks later. 1427 for (const Function &F : M) { 1428 MachineFunction *MF = MMI.getMachineFunction(F); 1429 1430 // We only care about MI counts here. If there's no MachineFunction at this 1431 // point, then there won't be after the outliner runs, so let's move on. 1432 if (!MF) 1433 continue; 1434 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1435 } 1436 } 1437 1438 void MachineOutliner::emitInstrCountChangedRemark( 1439 const Module &M, const MachineModuleInfo &MMI, 1440 const StringMap<unsigned> &FunctionToInstrCount) { 1441 // Iterate over each function in the module and emit remarks. 1442 // Note that we won't miss anything by doing this, because the outliner never 1443 // deletes functions. 1444 for (const Function &F : M) { 1445 MachineFunction *MF = MMI.getMachineFunction(F); 1446 1447 // The outliner never deletes functions. If we don't have a MF here, then we 1448 // didn't have one prior to outlining either. 1449 if (!MF) 1450 continue; 1451 1452 std::string Fname = std::string(F.getName()); 1453 unsigned FnCountAfter = MF->getInstructionCount(); 1454 unsigned FnCountBefore = 0; 1455 1456 // Check if the function was recorded before. 1457 auto It = FunctionToInstrCount.find(Fname); 1458 1459 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1460 // to that. 1461 if (It != FunctionToInstrCount.end()) 1462 FnCountBefore = It->second; 1463 1464 // Compute the delta and emit a remark if there was a change. 1465 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1466 static_cast<int64_t>(FnCountBefore); 1467 if (FnDelta == 0) 1468 continue; 1469 1470 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1471 MORE.emit([&]() { 1472 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1473 DiagnosticLocation(), &MF->front()); 1474 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1475 << ": Function: " 1476 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1477 << ": MI instruction count changed from " 1478 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1479 FnCountBefore) 1480 << " to " 1481 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1482 FnCountAfter) 1483 << "; Delta: " 1484 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1485 return R; 1486 }); 1487 } 1488 } 1489 1490 bool MachineOutliner::runOnceOnModule(Module &M, unsigned Iter) { 1491 // Check if there's anything in the module. If it's empty, then there's 1492 // nothing to outline. 1493 if (M.empty()) 1494 return false; 1495 1496 OutlineRepeatedNum = Iter; 1497 1498 // Number to append to the current outlined function. 1499 unsigned OutlinedFunctionNum = 0; 1500 1501 if (!doOutline(M, OutlinedFunctionNum)) 1502 return false; 1503 return true; 1504 } 1505 1506 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) { 1507 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1508 1509 // If the user passed -enable-machine-outliner=always or 1510 // -enable-machine-outliner, the pass will run on all functions in the module. 1511 // Otherwise, if the target supports default outlining, it will run on all 1512 // functions deemed by the target to be worth outlining from by default. Tell 1513 // the user how the outliner is running. 1514 LLVM_DEBUG({ 1515 dbgs() << "Machine Outliner: Running on "; 1516 if (RunOnAllFunctions) 1517 dbgs() << "all functions"; 1518 else 1519 dbgs() << "target-default functions"; 1520 dbgs() << "\n"; 1521 }); 1522 1523 // If the user specifies that they want to outline from linkonceodrs, set 1524 // it here. 1525 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1526 InstructionMapper Mapper; 1527 1528 // Prepare instruction mappings for the suffix tree. 1529 populateMapper(Mapper, M, MMI); 1530 std::vector<OutlinedFunction> FunctionList; 1531 1532 // Find all of the outlining candidates. 1533 findCandidates(Mapper, FunctionList); 1534 1535 // If we've requested size remarks, then collect the MI counts of every 1536 // function before outlining, and the MI counts after outlining. 1537 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1538 // the pass manager's responsibility. 1539 // This could pretty easily be placed in outline instead, but because we 1540 // really ultimately *don't* want this here, it's done like this for now 1541 // instead. 1542 1543 // Check if we want size remarks. 1544 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1545 StringMap<unsigned> FunctionToInstrCount; 1546 if (ShouldEmitSizeRemarks) 1547 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1548 1549 // Outline each of the candidates and return true if something was outlined. 1550 bool OutlinedSomething = 1551 outline(M, FunctionList, Mapper, OutlinedFunctionNum); 1552 1553 // If we outlined something, we definitely changed the MI count of the 1554 // module. If we've asked for size remarks, then output them. 1555 // FIXME: This should be in the pass manager. 1556 if (ShouldEmitSizeRemarks && OutlinedSomething) 1557 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1558 1559 return OutlinedSomething; 1560 } 1561 1562 // Apply machine outlining for NumRepeat times. 1563 bool MachineOutliner::runOnModule(Module &M) { 1564 if (NumRepeat < 1) 1565 report_fatal_error("Expect NumRepeat for machine outlining " 1566 "to be greater than or equal to 1!\n"); 1567 1568 bool Changed = false; 1569 for (unsigned I = 0; I < NumRepeat; I++) { 1570 if (!runOnceOnModule(M, I)) { 1571 LLVM_DEBUG(dbgs() << "Stopped outlining at iteration " << I 1572 << " because no changes were found.\n";); 1573 return Changed; 1574 } 1575 Changed = true; 1576 } 1577 LLVM_DEBUG(dbgs() << "Stopped outlining because iteration is " 1578 "equal to " << NumRepeat << "\n";); 1579 return Changed; 1580 } 1581