1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFrameInfo.h" 63 #include "llvm/CodeGen/MachineFunction.h" 64 #include "llvm/CodeGen/MachineInstrBuilder.h" 65 #include "llvm/CodeGen/MachineModuleInfo.h" 66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/IR/IRBuilder.h" 69 #include "llvm/Support/Allocator.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetInstrInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <functional> 77 #include <map> 78 #include <sstream> 79 #include <tuple> 80 #include <vector> 81 82 #define DEBUG_TYPE "machine-outliner" 83 84 using namespace llvm; 85 using namespace ore; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 namespace { 91 92 /// \brief An individual sequence of instructions to be replaced with a call to 93 /// an outlined function. 94 struct Candidate { 95 96 /// Set to false if the candidate overlapped with another candidate. 97 bool InCandidateList = true; 98 99 /// The start index of this \p Candidate. 100 unsigned StartIdx; 101 102 /// The number of instructions in this \p Candidate. 103 unsigned Len; 104 105 /// The index of this \p Candidate's \p OutlinedFunction in the list of 106 /// \p OutlinedFunctions. 107 unsigned FunctionIdx; 108 109 /// Contains all target-specific information for this \p Candidate. 110 TargetInstrInfo::MachineOutlinerInfo MInfo; 111 112 /// \brief The number of instructions that would be saved by outlining every 113 /// candidate of this type. 114 /// 115 /// This is a fixed value which is not updated during the candidate pruning 116 /// process. It is only used for deciding which candidate to keep if two 117 /// candidates overlap. The true benefit is stored in the OutlinedFunction 118 /// for some given candidate. 119 unsigned Benefit = 0; 120 121 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 122 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 123 124 Candidate() {} 125 126 /// \brief Used to ensure that \p Candidates are outlined in an order that 127 /// preserves the start and end indices of other \p Candidates. 128 bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 129 }; 130 131 /// \brief The information necessary to create an outlined function for some 132 /// class of candidate. 133 struct OutlinedFunction { 134 135 /// The actual outlined function created. 136 /// This is initialized after we go through and create the actual function. 137 MachineFunction *MF = nullptr; 138 139 /// A number assigned to this function which appears at the end of its name. 140 unsigned Name; 141 142 /// The number of candidates for this OutlinedFunction. 143 unsigned OccurrenceCount = 0; 144 145 /// \brief The sequence of integers corresponding to the instructions in this 146 /// function. 147 std::vector<unsigned> Sequence; 148 149 /// The number of instructions this function would save. 150 unsigned Benefit = 0; 151 152 /// Contains all target-specific information for this \p OutlinedFunction. 153 TargetInstrInfo::MachineOutlinerInfo MInfo; 154 155 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 156 const std::vector<unsigned> &Sequence, unsigned Benefit, 157 TargetInstrInfo::MachineOutlinerInfo &MInfo) 158 : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 159 Benefit(Benefit), MInfo(MInfo) {} 160 }; 161 162 /// Represents an undefined index in the suffix tree. 163 const unsigned EmptyIdx = -1; 164 165 /// A node in a suffix tree which represents a substring or suffix. 166 /// 167 /// Each node has either no children or at least two children, with the root 168 /// being a exception in the empty tree. 169 /// 170 /// Children are represented as a map between unsigned integers and nodes. If 171 /// a node N has a child M on unsigned integer k, then the mapping represented 172 /// by N is a proper prefix of the mapping represented by M. Note that this, 173 /// although similar to a trie is somewhat different: each node stores a full 174 /// substring of the full mapping rather than a single character state. 175 /// 176 /// Each internal node contains a pointer to the internal node representing 177 /// the same string, but with the first character chopped off. This is stored 178 /// in \p Link. Each leaf node stores the start index of its respective 179 /// suffix in \p SuffixIdx. 180 struct SuffixTreeNode { 181 182 /// The children of this node. 183 /// 184 /// A child existing on an unsigned integer implies that from the mapping 185 /// represented by the current node, there is a way to reach another 186 /// mapping by tacking that character on the end of the current string. 187 DenseMap<unsigned, SuffixTreeNode *> Children; 188 189 /// A flag set to false if the node has been pruned from the tree. 190 bool IsInTree = true; 191 192 /// The start index of this node's substring in the main string. 193 unsigned StartIdx = EmptyIdx; 194 195 /// The end index of this node's substring in the main string. 196 /// 197 /// Every leaf node must have its \p EndIdx incremented at the end of every 198 /// step in the construction algorithm. To avoid having to update O(N) 199 /// nodes individually at the end of every step, the end index is stored 200 /// as a pointer. 201 unsigned *EndIdx = nullptr; 202 203 /// For leaves, the start index of the suffix represented by this node. 204 /// 205 /// For all other nodes, this is ignored. 206 unsigned SuffixIdx = EmptyIdx; 207 208 /// \brief For internal nodes, a pointer to the internal node representing 209 /// the same sequence with the first character chopped off. 210 /// 211 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 212 /// Ukkonen's algorithm does to achieve linear-time construction is 213 /// keep track of which node the next insert should be at. This makes each 214 /// insert O(1), and there are a total of O(N) inserts. The suffix link 215 /// helps with inserting children of internal nodes. 216 /// 217 /// Say we add a child to an internal node with associated mapping S. The 218 /// next insertion must be at the node representing S - its first character. 219 /// This is given by the way that we iteratively build the tree in Ukkonen's 220 /// algorithm. The main idea is to look at the suffixes of each prefix in the 221 /// string, starting with the longest suffix of the prefix, and ending with 222 /// the shortest. Therefore, if we keep pointers between such nodes, we can 223 /// move to the next insertion point in O(1) time. If we don't, then we'd 224 /// have to query from the root, which takes O(N) time. This would make the 225 /// construction algorithm O(N^2) rather than O(N). 226 SuffixTreeNode *Link = nullptr; 227 228 /// The parent of this node. Every node except for the root has a parent. 229 SuffixTreeNode *Parent = nullptr; 230 231 /// The number of times this node's string appears in the tree. 232 /// 233 /// This is equal to the number of leaf children of the string. It represents 234 /// the number of suffixes that the node's string is a prefix of. 235 unsigned OccurrenceCount = 0; 236 237 /// The length of the string formed by concatenating the edge labels from the 238 /// root to this node. 239 unsigned ConcatLen = 0; 240 241 /// Returns true if this node is a leaf. 242 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 243 244 /// Returns true if this node is the root of its owning \p SuffixTree. 245 bool isRoot() const { return StartIdx == EmptyIdx; } 246 247 /// Return the number of elements in the substring associated with this node. 248 size_t size() const { 249 250 // Is it the root? If so, it's the empty string so return 0. 251 if (isRoot()) 252 return 0; 253 254 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 255 256 // Size = the number of elements in the string. 257 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 258 return *EndIdx - StartIdx + 1; 259 } 260 261 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 262 SuffixTreeNode *Parent) 263 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 264 265 SuffixTreeNode() {} 266 }; 267 268 /// A data structure for fast substring queries. 269 /// 270 /// Suffix trees represent the suffixes of their input strings in their leaves. 271 /// A suffix tree is a type of compressed trie structure where each node 272 /// represents an entire substring rather than a single character. Each leaf 273 /// of the tree is a suffix. 274 /// 275 /// A suffix tree can be seen as a type of state machine where each state is a 276 /// substring of the full string. The tree is structured so that, for a string 277 /// of length N, there are exactly N leaves in the tree. This structure allows 278 /// us to quickly find repeated substrings of the input string. 279 /// 280 /// In this implementation, a "string" is a vector of unsigned integers. 281 /// These integers may result from hashing some data type. A suffix tree can 282 /// contain 1 or many strings, which can then be queried as one large string. 283 /// 284 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 285 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 286 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 287 /// paper is available at 288 /// 289 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 290 class SuffixTree { 291 public: 292 /// Stores each leaf node in the tree. 293 /// 294 /// This is used for finding outlining candidates. 295 std::vector<SuffixTreeNode *> LeafVector; 296 297 /// Each element is an integer representing an instruction in the module. 298 ArrayRef<unsigned> Str; 299 300 private: 301 /// Maintains each node in the tree. 302 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 303 304 /// The root of the suffix tree. 305 /// 306 /// The root represents the empty string. It is maintained by the 307 /// \p NodeAllocator like every other node in the tree. 308 SuffixTreeNode *Root = nullptr; 309 310 /// Maintains the end indices of the internal nodes in the tree. 311 /// 312 /// Each internal node is guaranteed to never have its end index change 313 /// during the construction algorithm; however, leaves must be updated at 314 /// every step. Therefore, we need to store leaf end indices by reference 315 /// to avoid updating O(N) leaves at every step of construction. Thus, 316 /// every internal node must be allocated its own end index. 317 BumpPtrAllocator InternalEndIdxAllocator; 318 319 /// The end index of each leaf in the tree. 320 unsigned LeafEndIdx = -1; 321 322 /// \brief Helper struct which keeps track of the next insertion point in 323 /// Ukkonen's algorithm. 324 struct ActiveState { 325 /// The next node to insert at. 326 SuffixTreeNode *Node; 327 328 /// The index of the first character in the substring currently being added. 329 unsigned Idx = EmptyIdx; 330 331 /// The length of the substring we have to add at the current step. 332 unsigned Len = 0; 333 }; 334 335 /// \brief The point the next insertion will take place at in the 336 /// construction algorithm. 337 ActiveState Active; 338 339 /// Allocate a leaf node and add it to the tree. 340 /// 341 /// \param Parent The parent of this node. 342 /// \param StartIdx The start index of this node's associated string. 343 /// \param Edge The label on the edge leaving \p Parent to this node. 344 /// 345 /// \returns A pointer to the allocated leaf node. 346 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 347 unsigned Edge) { 348 349 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 350 351 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 352 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 353 Parent.Children[Edge] = N; 354 355 return N; 356 } 357 358 /// Allocate an internal node and add it to the tree. 359 /// 360 /// \param Parent The parent of this node. Only null when allocating the root. 361 /// \param StartIdx The start index of this node's associated string. 362 /// \param EndIdx The end index of this node's associated string. 363 /// \param Edge The label on the edge leaving \p Parent to this node. 364 /// 365 /// \returns A pointer to the allocated internal node. 366 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 367 unsigned EndIdx, unsigned Edge) { 368 369 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 370 assert(!(!Parent && StartIdx != EmptyIdx) && 371 "Non-root internal nodes must have parents!"); 372 373 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 374 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 375 SuffixTreeNode(StartIdx, E, Root, Parent); 376 if (Parent) 377 Parent->Children[Edge] = N; 378 379 return N; 380 } 381 382 /// \brief Set the suffix indices of the leaves to the start indices of their 383 /// respective suffixes. Also stores each leaf in \p LeafVector at its 384 /// respective suffix index. 385 /// 386 /// \param[in] CurrNode The node currently being visited. 387 /// \param CurrIdx The current index of the string being visited. 388 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 389 390 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 391 392 // Store the length of the concatenation of all strings from the root to 393 // this node. 394 if (!CurrNode.isRoot()) { 395 if (CurrNode.ConcatLen == 0) 396 CurrNode.ConcatLen = CurrNode.size(); 397 398 if (CurrNode.Parent) 399 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 400 } 401 402 // Traverse the tree depth-first. 403 for (auto &ChildPair : CurrNode.Children) { 404 assert(ChildPair.second && "Node had a null child!"); 405 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 406 } 407 408 // Is this node a leaf? 409 if (IsLeaf) { 410 // If yes, give it a suffix index and bump its parent's occurrence count. 411 CurrNode.SuffixIdx = Str.size() - CurrIdx; 412 assert(CurrNode.Parent && "CurrNode had no parent!"); 413 CurrNode.Parent->OccurrenceCount++; 414 415 // Store the leaf in the leaf vector for pruning later. 416 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 417 } 418 } 419 420 /// \brief Construct the suffix tree for the prefix of the input ending at 421 /// \p EndIdx. 422 /// 423 /// Used to construct the full suffix tree iteratively. At the end of each 424 /// step, the constructed suffix tree is either a valid suffix tree, or a 425 /// suffix tree with implicit suffixes. At the end of the final step, the 426 /// suffix tree is a valid tree. 427 /// 428 /// \param EndIdx The end index of the current prefix in the main string. 429 /// \param SuffixesToAdd The number of suffixes that must be added 430 /// to complete the suffix tree at the current phase. 431 /// 432 /// \returns The number of suffixes that have not been added at the end of 433 /// this step. 434 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 435 SuffixTreeNode *NeedsLink = nullptr; 436 437 while (SuffixesToAdd > 0) { 438 439 // Are we waiting to add anything other than just the last character? 440 if (Active.Len == 0) { 441 // If not, then say the active index is the end index. 442 Active.Idx = EndIdx; 443 } 444 445 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 446 447 // The first character in the current substring we're looking at. 448 unsigned FirstChar = Str[Active.Idx]; 449 450 // Have we inserted anything starting with FirstChar at the current node? 451 if (Active.Node->Children.count(FirstChar) == 0) { 452 // If not, then we can just insert a leaf and move too the next step. 453 insertLeaf(*Active.Node, EndIdx, FirstChar); 454 455 // The active node is an internal node, and we visited it, so it must 456 // need a link if it doesn't have one. 457 if (NeedsLink) { 458 NeedsLink->Link = Active.Node; 459 NeedsLink = nullptr; 460 } 461 } else { 462 // There's a match with FirstChar, so look for the point in the tree to 463 // insert a new node. 464 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 465 466 unsigned SubstringLen = NextNode->size(); 467 468 // Is the current suffix we're trying to insert longer than the size of 469 // the child we want to move to? 470 if (Active.Len >= SubstringLen) { 471 // If yes, then consume the characters we've seen and move to the next 472 // node. 473 Active.Idx += SubstringLen; 474 Active.Len -= SubstringLen; 475 Active.Node = NextNode; 476 continue; 477 } 478 479 // Otherwise, the suffix we're trying to insert must be contained in the 480 // next node we want to move to. 481 unsigned LastChar = Str[EndIdx]; 482 483 // Is the string we're trying to insert a substring of the next node? 484 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 485 // If yes, then we're done for this step. Remember our insertion point 486 // and move to the next end index. At this point, we have an implicit 487 // suffix tree. 488 if (NeedsLink && !Active.Node->isRoot()) { 489 NeedsLink->Link = Active.Node; 490 NeedsLink = nullptr; 491 } 492 493 Active.Len++; 494 break; 495 } 496 497 // The string we're trying to insert isn't a substring of the next node, 498 // but matches up to a point. Split the node. 499 // 500 // For example, say we ended our search at a node n and we're trying to 501 // insert ABD. Then we'll create a new node s for AB, reduce n to just 502 // representing C, and insert a new leaf node l to represent d. This 503 // allows us to ensure that if n was a leaf, it remains a leaf. 504 // 505 // | ABC ---split---> | AB 506 // n s 507 // C / \ D 508 // n l 509 510 // The node s from the diagram 511 SuffixTreeNode *SplitNode = 512 insertInternalNode(Active.Node, NextNode->StartIdx, 513 NextNode->StartIdx + Active.Len - 1, FirstChar); 514 515 // Insert the new node representing the new substring into the tree as 516 // a child of the split node. This is the node l from the diagram. 517 insertLeaf(*SplitNode, EndIdx, LastChar); 518 519 // Make the old node a child of the split node and update its start 520 // index. This is the node n from the diagram. 521 NextNode->StartIdx += Active.Len; 522 NextNode->Parent = SplitNode; 523 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 524 525 // SplitNode is an internal node, update the suffix link. 526 if (NeedsLink) 527 NeedsLink->Link = SplitNode; 528 529 NeedsLink = SplitNode; 530 } 531 532 // We've added something new to the tree, so there's one less suffix to 533 // add. 534 SuffixesToAdd--; 535 536 if (Active.Node->isRoot()) { 537 if (Active.Len > 0) { 538 Active.Len--; 539 Active.Idx = EndIdx - SuffixesToAdd + 1; 540 } 541 } else { 542 // Start the next phase at the next smallest suffix. 543 Active.Node = Active.Node->Link; 544 } 545 } 546 547 return SuffixesToAdd; 548 } 549 550 public: 551 /// Construct a suffix tree from a sequence of unsigned integers. 552 /// 553 /// \param Str The string to construct the suffix tree for. 554 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 555 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 556 Root->IsInTree = true; 557 Active.Node = Root; 558 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 559 560 // Keep track of the number of suffixes we have to add of the current 561 // prefix. 562 unsigned SuffixesToAdd = 0; 563 Active.Node = Root; 564 565 // Construct the suffix tree iteratively on each prefix of the string. 566 // PfxEndIdx is the end index of the current prefix. 567 // End is one past the last element in the string. 568 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 569 PfxEndIdx++) { 570 SuffixesToAdd++; 571 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 572 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 573 } 574 575 // Set the suffix indices of each leaf. 576 assert(Root && "Root node can't be nullptr!"); 577 setSuffixIndices(*Root, 0); 578 } 579 }; 580 581 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 582 struct InstructionMapper { 583 584 /// \brief The next available integer to assign to a \p MachineInstr that 585 /// cannot be outlined. 586 /// 587 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 588 unsigned IllegalInstrNumber = -3; 589 590 /// \brief The next available integer to assign to a \p MachineInstr that can 591 /// be outlined. 592 unsigned LegalInstrNumber = 0; 593 594 /// Correspondence from \p MachineInstrs to unsigned integers. 595 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 596 InstructionIntegerMap; 597 598 /// Corresponcence from unsigned integers to \p MachineInstrs. 599 /// Inverse of \p InstructionIntegerMap. 600 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 601 602 /// The vector of unsigned integers that the module is mapped to. 603 std::vector<unsigned> UnsignedVec; 604 605 /// \brief Stores the location of the instruction associated with the integer 606 /// at index i in \p UnsignedVec for each index i. 607 std::vector<MachineBasicBlock::iterator> InstrList; 608 609 /// \brief Maps \p *It to a legal integer. 610 /// 611 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 612 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 613 /// 614 /// \returns The integer that \p *It was mapped to. 615 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 616 617 // Get the integer for this instruction or give it the current 618 // LegalInstrNumber. 619 InstrList.push_back(It); 620 MachineInstr &MI = *It; 621 bool WasInserted; 622 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 623 ResultIt; 624 std::tie(ResultIt, WasInserted) = 625 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 626 unsigned MINumber = ResultIt->second; 627 628 // There was an insertion. 629 if (WasInserted) { 630 LegalInstrNumber++; 631 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 632 } 633 634 UnsignedVec.push_back(MINumber); 635 636 // Make sure we don't overflow or use any integers reserved by the DenseMap. 637 if (LegalInstrNumber >= IllegalInstrNumber) 638 report_fatal_error("Instruction mapping overflow!"); 639 640 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 641 "Tried to assign DenseMap tombstone or empty key to instruction."); 642 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 643 "Tried to assign DenseMap tombstone or empty key to instruction."); 644 645 return MINumber; 646 } 647 648 /// Maps \p *It to an illegal integer. 649 /// 650 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 651 /// 652 /// \returns The integer that \p *It was mapped to. 653 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 654 unsigned MINumber = IllegalInstrNumber; 655 656 InstrList.push_back(It); 657 UnsignedVec.push_back(IllegalInstrNumber); 658 IllegalInstrNumber--; 659 660 assert(LegalInstrNumber < IllegalInstrNumber && 661 "Instruction mapping overflow!"); 662 663 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 664 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 665 666 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 667 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 668 669 return MINumber; 670 } 671 672 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 673 /// and appends it to \p UnsignedVec and \p InstrList. 674 /// 675 /// Two instructions are assigned the same integer if they are identical. 676 /// If an instruction is deemed unsafe to outline, then it will be assigned an 677 /// unique integer. The resulting mapping is placed into a suffix tree and 678 /// queried for candidates. 679 /// 680 /// \param MBB The \p MachineBasicBlock to be translated into integers. 681 /// \param TRI \p TargetRegisterInfo for the module. 682 /// \param TII \p TargetInstrInfo for the module. 683 void convertToUnsignedVec(MachineBasicBlock &MBB, 684 const TargetRegisterInfo &TRI, 685 const TargetInstrInfo &TII) { 686 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 687 It++) { 688 689 // Keep track of where this instruction is in the module. 690 switch (TII.getOutliningType(*It)) { 691 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 692 mapToIllegalUnsigned(It); 693 break; 694 695 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 696 mapToLegalUnsigned(It); 697 break; 698 699 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 700 break; 701 } 702 } 703 704 // After we're done every insertion, uniquely terminate this part of the 705 // "string". This makes sure we won't match across basic block or function 706 // boundaries since the "end" is encoded uniquely and thus appears in no 707 // repeated substring. 708 InstrList.push_back(MBB.end()); 709 UnsignedVec.push_back(IllegalInstrNumber); 710 IllegalInstrNumber--; 711 } 712 713 InstructionMapper() { 714 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 715 // changed. 716 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 717 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 718 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 719 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 720 } 721 }; 722 723 /// \brief An interprocedural pass which finds repeated sequences of 724 /// instructions and replaces them with calls to functions. 725 /// 726 /// Each instruction is mapped to an unsigned integer and placed in a string. 727 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 728 /// is then repeatedly queried for repeated sequences of instructions. Each 729 /// non-overlapping repeated sequence is then placed in its own 730 /// \p MachineFunction and each instance is then replaced with a call to that 731 /// function. 732 struct MachineOutliner : public ModulePass { 733 734 static char ID; 735 736 StringRef getPassName() const override { return "Machine Outliner"; } 737 738 void getAnalysisUsage(AnalysisUsage &AU) const override { 739 AU.addRequired<MachineModuleInfo>(); 740 AU.addPreserved<MachineModuleInfo>(); 741 AU.setPreservesAll(); 742 ModulePass::getAnalysisUsage(AU); 743 } 744 745 MachineOutliner() : ModulePass(ID) { 746 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 747 } 748 749 /// Find all repeated substrings that satisfy the outlining cost model. 750 /// 751 /// If a substring appears at least twice, then it must be represented by 752 /// an internal node which appears in at least two suffixes. Each suffix is 753 /// represented by a leaf node. To do this, we visit each internal node in 754 /// the tree, using the leaf children of each internal node. If an internal 755 /// node represents a beneficial substring, then we use each of its leaf 756 /// children to find the locations of its substring. 757 /// 758 /// \param ST A suffix tree to query. 759 /// \param TII TargetInstrInfo for the target. 760 /// \param Mapper Contains outlining mapping information. 761 /// \param[out] CandidateList Filled with candidates representing each 762 /// beneficial substring. 763 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 764 /// type of candidate. 765 /// 766 /// \returns The length of the longest candidate found. 767 unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 768 InstructionMapper &Mapper, 769 std::vector<Candidate> &CandidateList, 770 std::vector<OutlinedFunction> &FunctionList); 771 772 /// \brief Replace the sequences of instructions represented by the 773 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 774 /// described in \p FunctionList. 775 /// 776 /// \param M The module we are outlining from. 777 /// \param CandidateList A list of candidates to be outlined. 778 /// \param FunctionList A list of functions to be inserted into the module. 779 /// \param Mapper Contains the instruction mappings for the module. 780 bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 781 std::vector<OutlinedFunction> &FunctionList, 782 InstructionMapper &Mapper); 783 784 /// Creates a function for \p OF and inserts it into the module. 785 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 786 InstructionMapper &Mapper); 787 788 /// Find potential outlining candidates and store them in \p CandidateList. 789 /// 790 /// For each type of potential candidate, also build an \p OutlinedFunction 791 /// struct containing the information to build the function for that 792 /// candidate. 793 /// 794 /// \param[out] CandidateList Filled with outlining candidates for the module. 795 /// \param[out] FunctionList Filled with functions corresponding to each type 796 /// of \p Candidate. 797 /// \param ST The suffix tree for the module. 798 /// \param TII TargetInstrInfo for the module. 799 /// 800 /// \returns The length of the longest candidate found. 0 if there are none. 801 unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 802 std::vector<OutlinedFunction> &FunctionList, 803 SuffixTree &ST, InstructionMapper &Mapper, 804 const TargetInstrInfo &TII); 805 806 /// \brief Remove any overlapping candidates that weren't handled by the 807 /// suffix tree's pruning method. 808 /// 809 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 810 /// If a short candidate is chosen for outlining, then a longer candidate 811 /// which has that short candidate as a suffix is chosen, the tree's pruning 812 /// method will not find it. Thus, we need to prune before outlining as well. 813 /// 814 /// \param[in,out] CandidateList A list of outlining candidates. 815 /// \param[in,out] FunctionList A list of functions to be outlined. 816 /// \param Mapper Contains instruction mapping info for outlining. 817 /// \param MaxCandidateLen The length of the longest candidate. 818 /// \param TII TargetInstrInfo for the module. 819 void pruneOverlaps(std::vector<Candidate> &CandidateList, 820 std::vector<OutlinedFunction> &FunctionList, 821 InstructionMapper &Mapper, unsigned MaxCandidateLen, 822 const TargetInstrInfo &TII); 823 824 /// Construct a suffix tree on the instructions in \p M and outline repeated 825 /// strings from that tree. 826 bool runOnModule(Module &M) override; 827 }; 828 829 } // Anonymous namespace. 830 831 char MachineOutliner::ID = 0; 832 833 namespace llvm { 834 ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 835 } // namespace llvm 836 837 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 838 false) 839 840 unsigned 841 MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 842 InstructionMapper &Mapper, 843 std::vector<Candidate> &CandidateList, 844 std::vector<OutlinedFunction> &FunctionList) { 845 CandidateList.clear(); 846 FunctionList.clear(); 847 unsigned FnIdx = 0; 848 unsigned MaxLen = 0; 849 850 // FIXME: Visit internal nodes instead of leaves. 851 for (SuffixTreeNode *Leaf : ST.LeafVector) { 852 assert(Leaf && "Leaves in LeafVector cannot be null!"); 853 if (!Leaf->IsInTree) 854 continue; 855 856 assert(Leaf->Parent && "All leaves must have parents!"); 857 SuffixTreeNode &Parent = *(Leaf->Parent); 858 859 // If it doesn't appear enough, or we already outlined from it, skip it. 860 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 861 continue; 862 863 // Figure out if this candidate is beneficial. 864 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 865 866 // Too short to be beneficial; skip it. 867 // FIXME: This isn't necessarily true for, say, X86. If we factor in 868 // instruction lengths we need more information than this. 869 if (StringLen < 2) 870 continue; 871 872 // If this is a beneficial class of candidate, then every one is stored in 873 // this vector. 874 std::vector<Candidate> CandidatesForRepeatedSeq; 875 876 // Describes the start and end point of each candidate. This allows the 877 // target to infer some information about each occurrence of each repeated 878 // sequence. 879 // FIXME: CandidatesForRepeatedSeq and this should be combined. 880 std::vector< 881 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 882 RepeatedSequenceLocs; 883 884 // Figure out the call overhead for each instance of the sequence. 885 for (auto &ChildPair : Parent.Children) { 886 SuffixTreeNode *M = ChildPair.second; 887 888 if (M && M->IsInTree && M->isLeaf()) { 889 // Each sequence is over [StartIt, EndIt]. 890 MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 891 MachineBasicBlock::iterator EndIt = 892 Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 893 894 CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, FnIdx); 895 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 896 897 // Never visit this leaf again. 898 M->IsInTree = false; 899 } 900 } 901 902 unsigned SequenceOverhead = StringLen; 903 TargetInstrInfo::MachineOutlinerInfo MInfo = 904 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 905 906 unsigned OutliningCost = 907 (MInfo.CallOverhead * Parent.OccurrenceCount) + MInfo.FrameOverhead; 908 unsigned NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount; 909 910 // Is it better to outline this candidate than not? 911 if (NotOutliningCost <= OutliningCost) { 912 // Outlining this candidate would take more instructions than not 913 // outlining. 914 // Emit a remark explaining why we didn't outline this candidate. 915 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 916 RepeatedSequenceLocs[0]; 917 MachineOptimizationRemarkEmitter MORE( 918 *(C.first->getParent()->getParent()), nullptr); 919 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 920 C.first->getDebugLoc(), 921 C.first->getParent()); 922 R << "Did not outline " << NV("Length", StringLen) << " instructions" 923 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 924 << " locations." 925 << " Instructions from outlining all occurrences (" 926 << NV("OutliningCost", OutliningCost) << ")" 927 << " >= Unoutlined instruction count (" 928 << NV("NotOutliningCost", NotOutliningCost) << ")" 929 << " (Also found at: "; 930 931 // Tell the user the other places the candidate was found. 932 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 933 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 934 RepeatedSequenceLocs[i].first->getDebugLoc()); 935 if (i != e - 1) 936 R << ", "; 937 } 938 939 R << ")"; 940 MORE.emit(R); 941 942 // Move to the next candidate. 943 continue; 944 } 945 946 unsigned Benefit = NotOutliningCost - OutliningCost; 947 948 if (StringLen > MaxLen) 949 MaxLen = StringLen; 950 951 // At this point, the candidate class is seen as beneficial. Set their 952 // benefit values and save them in the candidate list. 953 for (Candidate &C : CandidatesForRepeatedSeq) { 954 C.Benefit = Benefit; 955 C.MInfo = MInfo; 956 CandidateList.push_back(C); 957 } 958 959 // Save the function for the new candidate sequence. 960 std::vector<unsigned> CandidateSequence; 961 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 962 CandidateSequence.push_back(ST.Str[i]); 963 964 FunctionList.emplace_back(FnIdx, CandidatesForRepeatedSeq.size(), 965 CandidateSequence, Benefit, MInfo); 966 967 // Move to the next function. 968 FnIdx++; 969 Parent.IsInTree = false; 970 } 971 972 return MaxLen; 973 } 974 975 void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 976 std::vector<OutlinedFunction> &FunctionList, 977 InstructionMapper &Mapper, 978 unsigned MaxCandidateLen, 979 const TargetInstrInfo &TII) { 980 981 // Return true if this candidate became unbeneficial for outlining in a 982 // previous step. 983 auto ShouldSkipCandidate = [&FunctionList](Candidate &C) { 984 985 // Check if the candidate was removed in a previous step. 986 if (!C.InCandidateList) 987 return true; 988 989 // Check if C's associated function is still beneficial after previous 990 // pruning steps. 991 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 992 993 if (F.OccurrenceCount < 2 || F.Benefit < 1) { 994 assert(F.OccurrenceCount > 0 && 995 "Can't remove OutlinedFunction with no occurrences!"); 996 F.OccurrenceCount--; 997 C.InCandidateList = false; 998 return true; 999 } 1000 1001 // C is in the list, and F is still beneficial. 1002 return false; 1003 }; 1004 1005 // Remove C from the candidate space, and update its OutlinedFunction. 1006 auto Prune = [&FunctionList](Candidate &C) { 1007 1008 // Get the OutlinedFunction associated with this Candidate. 1009 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1010 1011 // Update C's associated function's occurrence count. 1012 assert(F.OccurrenceCount > 0 && 1013 "Can't remove OutlinedFunction with no occurrences!"); 1014 F.OccurrenceCount--; 1015 1016 // Remove the call overhead from the removed sequence. 1017 F.Benefit += C.MInfo.CallOverhead; 1018 1019 // Add back one instance of the sequence. 1020 F.Benefit = 1021 (F.Sequence.size() > F.Benefit) ? 0 : F.Benefit - F.Sequence.size(); 1022 1023 // Remove C from the CandidateList. 1024 C.InCandidateList = false; 1025 1026 DEBUG(dbgs() << "- Removed a Candidate \n"; 1027 dbgs() << "--- Num fns left for candidate: " << F.OccurrenceCount 1028 << "\n"; 1029 dbgs() << "--- Candidate's functions's benefit: " << F.Benefit 1030 << "\n";); 1031 }; 1032 1033 // TODO: Experiment with interval trees or other interval-checking structures 1034 // to lower the time complexity of this function. 1035 // TODO: Can we do better than the simple greedy choice? 1036 // Check for overlaps in the range. 1037 // This is O(MaxCandidateLen * CandidateList.size()). 1038 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1039 It++) { 1040 Candidate &C1 = *It; 1041 1042 // If C1 was already pruned, or its function is no longer beneficial for 1043 // outlining, move to the next candidate. 1044 if (ShouldSkipCandidate(C1)) 1045 continue; 1046 1047 // The minimum start index of any candidate that could overlap with this 1048 // one. 1049 unsigned FarthestPossibleIdx = 0; 1050 1051 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1052 if (C1.StartIdx > MaxCandidateLen) 1053 FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 1054 1055 // Compare against the candidates in the list that start at at most 1056 // FarthestPossibleIdx indices away from C1. There are at most 1057 // MaxCandidateLen of these. 1058 for (auto Sit = It + 1; Sit != Et; Sit++) { 1059 Candidate &C2 = *Sit; 1060 1061 // Is this candidate too far away to overlap? 1062 if (C2.StartIdx < FarthestPossibleIdx) 1063 break; 1064 1065 // If C2 was already pruned, or its function is no longer beneficial for 1066 // outlining, move to the next candidate. 1067 if (ShouldSkipCandidate(C2)) 1068 continue; 1069 1070 unsigned C2End = C2.StartIdx + C2.Len - 1; 1071 1072 // Do C1 and C2 overlap? 1073 // 1074 // Not overlapping: 1075 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1076 // 1077 // We sorted our candidate list so C2Start <= C1Start. We know that 1078 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1079 // have to check is C2End < C2Start to see if we overlap. 1080 if (C2End < C1.StartIdx) 1081 continue; 1082 1083 // C1 and C2 overlap. 1084 // We need to choose the better of the two. 1085 // 1086 // Approximate this by picking the one which would have saved us the 1087 // most instructions before any pruning. 1088 if (C1.Benefit >= C2.Benefit) { 1089 Prune(C2); 1090 } else { 1091 Prune(C1); 1092 // C1 is out, so we don't have to compare it against anyone else. 1093 break; 1094 } 1095 } 1096 } 1097 } 1098 1099 unsigned 1100 MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1101 std::vector<OutlinedFunction> &FunctionList, 1102 SuffixTree &ST, InstructionMapper &Mapper, 1103 const TargetInstrInfo &TII) { 1104 1105 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1106 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1107 1108 MaxCandidateLen = 1109 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1110 1111 // Sort the candidates in decending order. This will simplify the outlining 1112 // process when we have to remove the candidates from the mapping by 1113 // allowing us to cut them out without keeping track of an offset. 1114 std::stable_sort(CandidateList.begin(), CandidateList.end()); 1115 1116 return MaxCandidateLen; 1117 } 1118 1119 MachineFunction * 1120 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1121 InstructionMapper &Mapper) { 1122 1123 // Create the function name. This should be unique. For now, just hash the 1124 // module name and include it in the function name plus the number of this 1125 // function. 1126 std::ostringstream NameStream; 1127 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1128 1129 // Create the function using an IR-level function. 1130 LLVMContext &C = M.getContext(); 1131 Function *F = dyn_cast<Function>( 1132 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1133 assert(F && "Function was null!"); 1134 1135 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1136 // which gives us better results when we outline from linkonceodr functions. 1137 F->setLinkage(GlobalValue::PrivateLinkage); 1138 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1139 1140 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1141 IRBuilder<> Builder(EntryBB); 1142 Builder.CreateRetVoid(); 1143 1144 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1145 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1146 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1147 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1148 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1149 1150 // Insert the new function into the module. 1151 MF.insert(MF.begin(), &MBB); 1152 1153 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1154 1155 // Copy over the instructions for the function using the integer mappings in 1156 // its sequence. 1157 for (unsigned Str : OF.Sequence) { 1158 MachineInstr *NewMI = 1159 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1160 NewMI->dropMemRefs(); 1161 1162 // Don't keep debug information for outlined instructions. 1163 // FIXME: This means outlined functions are currently undebuggable. 1164 NewMI->setDebugLoc(DebugLoc()); 1165 MBB.insert(MBB.end(), NewMI); 1166 } 1167 1168 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1169 1170 return &MF; 1171 } 1172 1173 bool MachineOutliner::outline(Module &M, 1174 const ArrayRef<Candidate> &CandidateList, 1175 std::vector<OutlinedFunction> &FunctionList, 1176 InstructionMapper &Mapper) { 1177 1178 bool OutlinedSomething = false; 1179 // Replace the candidates with calls to their respective outlined functions. 1180 for (const Candidate &C : CandidateList) { 1181 1182 // Was the candidate removed during pruneOverlaps? 1183 if (!C.InCandidateList) 1184 continue; 1185 1186 // If not, then look at its OutlinedFunction. 1187 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1188 1189 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1190 if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1191 continue; 1192 1193 // If not, then outline it. 1194 assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1195 MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1196 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1197 unsigned EndIdx = C.StartIdx + C.Len - 1; 1198 1199 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1200 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1201 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1202 1203 EndIt++; // Erase needs one past the end index. 1204 1205 // Does this candidate have a function yet? 1206 if (!OF.MF) { 1207 OF.MF = createOutlinedFunction(M, OF, Mapper); 1208 FunctionsCreated++; 1209 } 1210 1211 MachineFunction *MF = OF.MF; 1212 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1213 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1214 1215 // Insert a call to the new function and erase the old sequence. 1216 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1217 StartIt = Mapper.InstrList[C.StartIdx]; 1218 MBB->erase(StartIt, EndIt); 1219 1220 OutlinedSomething = true; 1221 1222 // Statistics. 1223 NumOutlined++; 1224 } 1225 1226 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1227 1228 return OutlinedSomething; 1229 } 1230 1231 bool MachineOutliner::runOnModule(Module &M) { 1232 1233 // Is there anything in the module at all? 1234 if (M.empty()) 1235 return false; 1236 1237 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1238 const TargetSubtargetInfo &STI = 1239 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1240 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1241 const TargetInstrInfo *TII = STI.getInstrInfo(); 1242 1243 InstructionMapper Mapper; 1244 1245 // Build instruction mappings for each function in the module. 1246 for (Function &F : M) { 1247 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1248 1249 // Is the function empty? Safe to outline from? 1250 if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1251 continue; 1252 1253 // If it is, look at each MachineBasicBlock in the function. 1254 for (MachineBasicBlock &MBB : MF) { 1255 1256 // Is there anything in MBB? 1257 if (MBB.empty()) 1258 continue; 1259 1260 // If yes, map it. 1261 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1262 } 1263 } 1264 1265 // Construct a suffix tree, use it to find candidates, and then outline them. 1266 SuffixTree ST(Mapper.UnsignedVec); 1267 std::vector<Candidate> CandidateList; 1268 std::vector<OutlinedFunction> FunctionList; 1269 1270 // Find all of the outlining candidates. 1271 unsigned MaxCandidateLen = 1272 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1273 1274 // Remove candidates that overlap with other candidates. 1275 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1276 1277 // Outline each of the candidates and return true if something was outlined. 1278 return outline(M, CandidateList, FunctionList, Mapper); 1279 } 1280