1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/MachineRegisterInfo.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/TargetInstrInfo.h" 68 #include "llvm/CodeGen/TargetRegisterInfo.h" 69 #include "llvm/CodeGen/TargetSubtargetInfo.h" 70 #include "llvm/IR/DIBuilder.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/Mangler.h" 73 #include "llvm/Support/Allocator.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <functional> 78 #include <map> 79 #include <sstream> 80 #include <tuple> 81 #include <vector> 82 83 #define DEBUG_TYPE "machine-outliner" 84 85 using namespace llvm; 86 using namespace ore; 87 88 STATISTIC(NumOutlined, "Number of candidates outlined"); 89 STATISTIC(FunctionsCreated, "Number of functions created"); 90 91 // Set to true if the user wants the outliner to run on linkonceodr linkage 92 // functions. This is false by default because the linker can dedupe linkonceodr 93 // functions. Since the outliner is confined to a single module (modulo LTO), 94 // this is off by default. It should, however, be the default behaviour in 95 // LTO. 96 static cl::opt<bool> EnableLinkOnceODROutlining( 97 "enable-linkonceodr-outlining", 98 cl::Hidden, 99 cl::desc("Enable the machine outliner on linkonceodr functions"), 100 cl::init(false)); 101 102 namespace { 103 104 /// An individual sequence of instructions to be replaced with a call to 105 /// an outlined function. 106 struct Candidate { 107 private: 108 /// The start index of this \p Candidate in the instruction list. 109 unsigned StartIdx; 110 111 /// The number of instructions in this \p Candidate. 112 unsigned Len; 113 114 /// The MachineFunction containing this \p Candidate. 115 MachineFunction *MF = nullptr; 116 117 public: 118 /// Set to false if the candidate overlapped with another candidate. 119 bool InCandidateList = true; 120 121 /// The index of this \p Candidate's \p OutlinedFunction in the list of 122 /// \p OutlinedFunctions. 123 unsigned FunctionIdx; 124 125 /// Contains all target-specific information for this \p Candidate. 126 TargetInstrInfo::MachineOutlinerInfo MInfo; 127 128 /// If there is a DISubprogram associated with the function that this 129 /// Candidate lives in, return it. 130 DISubprogram *getSubprogramOrNull() const { 131 assert(MF && "Candidate has no MF!"); 132 if (DISubprogram *SP = MF->getFunction().getSubprogram()) 133 return SP; 134 return nullptr; 135 } 136 137 /// Return the number of instructions in this Candidate. 138 unsigned getLength() const { return Len; } 139 140 /// Return the start index of this candidate. 141 unsigned getStartIdx() const { return StartIdx; } 142 143 // Return the end index of this candidate. 144 unsigned getEndIdx() const { return StartIdx + Len - 1; } 145 146 /// The number of instructions that would be saved by outlining every 147 /// candidate of this type. 148 /// 149 /// This is a fixed value which is not updated during the candidate pruning 150 /// process. It is only used for deciding which candidate to keep if two 151 /// candidates overlap. The true benefit is stored in the OutlinedFunction 152 /// for some given candidate. 153 unsigned Benefit = 0; 154 155 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx, 156 MachineFunction *MF) 157 : StartIdx(StartIdx), Len(Len), MF(MF), FunctionIdx(FunctionIdx) {} 158 159 Candidate() {} 160 161 /// Used to ensure that \p Candidates are outlined in an order that 162 /// preserves the start and end indices of other \p Candidates. 163 bool operator<(const Candidate &RHS) const { 164 return getStartIdx() > RHS.getStartIdx(); 165 } 166 }; 167 168 /// The information necessary to create an outlined function for some 169 /// class of candidate. 170 struct OutlinedFunction { 171 172 private: 173 /// The number of candidates for this \p OutlinedFunction. 174 unsigned OccurrenceCount = 0; 175 176 public: 177 std::vector<std::shared_ptr<Candidate>> Candidates; 178 179 /// The actual outlined function created. 180 /// This is initialized after we go through and create the actual function. 181 MachineFunction *MF = nullptr; 182 183 /// A number assigned to this function which appears at the end of its name. 184 unsigned Name; 185 186 /// The sequence of integers corresponding to the instructions in this 187 /// function. 188 std::vector<unsigned> Sequence; 189 190 /// Contains all target-specific information for this \p OutlinedFunction. 191 TargetInstrInfo::MachineOutlinerInfo MInfo; 192 193 /// If there is a DISubprogram for any Candidate for this outlined function, 194 /// then return it. Otherwise, return nullptr. 195 DISubprogram *getSubprogramOrNull() const { 196 for (const auto &C : Candidates) 197 if (DISubprogram *SP = C->getSubprogramOrNull()) 198 return SP; 199 return nullptr; 200 } 201 202 /// Return the number of candidates for this \p OutlinedFunction. 203 unsigned getOccurrenceCount() { return OccurrenceCount; } 204 205 /// Decrement the occurrence count of this OutlinedFunction and return the 206 /// new count. 207 unsigned decrement() { 208 assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); 209 OccurrenceCount--; 210 return getOccurrenceCount(); 211 } 212 213 /// Return the number of bytes it would take to outline this 214 /// function. 215 unsigned getOutliningCost() { 216 return (OccurrenceCount * MInfo.CallOverhead) + MInfo.SequenceSize + 217 MInfo.FrameOverhead; 218 } 219 220 /// Return the size in bytes of the unoutlined sequences. 221 unsigned getNotOutlinedCost() { 222 return OccurrenceCount * MInfo.SequenceSize; 223 } 224 225 /// Return the number of instructions that would be saved by outlining 226 /// this function. 227 unsigned getBenefit() { 228 unsigned NotOutlinedCost = getNotOutlinedCost(); 229 unsigned OutlinedCost = getOutliningCost(); 230 return (NotOutlinedCost < OutlinedCost) ? 0 231 : NotOutlinedCost - OutlinedCost; 232 } 233 234 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 235 const std::vector<unsigned> &Sequence, 236 TargetInstrInfo::MachineOutlinerInfo &MInfo) 237 : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), 238 MInfo(MInfo) {} 239 }; 240 241 /// Represents an undefined index in the suffix tree. 242 const unsigned EmptyIdx = -1; 243 244 /// A node in a suffix tree which represents a substring or suffix. 245 /// 246 /// Each node has either no children or at least two children, with the root 247 /// being a exception in the empty tree. 248 /// 249 /// Children are represented as a map between unsigned integers and nodes. If 250 /// a node N has a child M on unsigned integer k, then the mapping represented 251 /// by N is a proper prefix of the mapping represented by M. Note that this, 252 /// although similar to a trie is somewhat different: each node stores a full 253 /// substring of the full mapping rather than a single character state. 254 /// 255 /// Each internal node contains a pointer to the internal node representing 256 /// the same string, but with the first character chopped off. This is stored 257 /// in \p Link. Each leaf node stores the start index of its respective 258 /// suffix in \p SuffixIdx. 259 struct SuffixTreeNode { 260 261 /// The children of this node. 262 /// 263 /// A child existing on an unsigned integer implies that from the mapping 264 /// represented by the current node, there is a way to reach another 265 /// mapping by tacking that character on the end of the current string. 266 DenseMap<unsigned, SuffixTreeNode *> Children; 267 268 /// A flag set to false if the node has been pruned from the tree. 269 bool IsInTree = true; 270 271 /// The start index of this node's substring in the main string. 272 unsigned StartIdx = EmptyIdx; 273 274 /// The end index of this node's substring in the main string. 275 /// 276 /// Every leaf node must have its \p EndIdx incremented at the end of every 277 /// step in the construction algorithm. To avoid having to update O(N) 278 /// nodes individually at the end of every step, the end index is stored 279 /// as a pointer. 280 unsigned *EndIdx = nullptr; 281 282 /// For leaves, the start index of the suffix represented by this node. 283 /// 284 /// For all other nodes, this is ignored. 285 unsigned SuffixIdx = EmptyIdx; 286 287 /// For internal nodes, a pointer to the internal node representing 288 /// the same sequence with the first character chopped off. 289 /// 290 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 291 /// Ukkonen's algorithm does to achieve linear-time construction is 292 /// keep track of which node the next insert should be at. This makes each 293 /// insert O(1), and there are a total of O(N) inserts. The suffix link 294 /// helps with inserting children of internal nodes. 295 /// 296 /// Say we add a child to an internal node with associated mapping S. The 297 /// next insertion must be at the node representing S - its first character. 298 /// This is given by the way that we iteratively build the tree in Ukkonen's 299 /// algorithm. The main idea is to look at the suffixes of each prefix in the 300 /// string, starting with the longest suffix of the prefix, and ending with 301 /// the shortest. Therefore, if we keep pointers between such nodes, we can 302 /// move to the next insertion point in O(1) time. If we don't, then we'd 303 /// have to query from the root, which takes O(N) time. This would make the 304 /// construction algorithm O(N^2) rather than O(N). 305 SuffixTreeNode *Link = nullptr; 306 307 /// The parent of this node. Every node except for the root has a parent. 308 SuffixTreeNode *Parent = nullptr; 309 310 /// The number of times this node's string appears in the tree. 311 /// 312 /// This is equal to the number of leaf children of the string. It represents 313 /// the number of suffixes that the node's string is a prefix of. 314 unsigned OccurrenceCount = 0; 315 316 /// The length of the string formed by concatenating the edge labels from the 317 /// root to this node. 318 unsigned ConcatLen = 0; 319 320 /// Returns true if this node is a leaf. 321 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 322 323 /// Returns true if this node is the root of its owning \p SuffixTree. 324 bool isRoot() const { return StartIdx == EmptyIdx; } 325 326 /// Return the number of elements in the substring associated with this node. 327 size_t size() const { 328 329 // Is it the root? If so, it's the empty string so return 0. 330 if (isRoot()) 331 return 0; 332 333 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 334 335 // Size = the number of elements in the string. 336 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 337 return *EndIdx - StartIdx + 1; 338 } 339 340 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 341 SuffixTreeNode *Parent) 342 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 343 344 SuffixTreeNode() {} 345 }; 346 347 /// A data structure for fast substring queries. 348 /// 349 /// Suffix trees represent the suffixes of their input strings in their leaves. 350 /// A suffix tree is a type of compressed trie structure where each node 351 /// represents an entire substring rather than a single character. Each leaf 352 /// of the tree is a suffix. 353 /// 354 /// A suffix tree can be seen as a type of state machine where each state is a 355 /// substring of the full string. The tree is structured so that, for a string 356 /// of length N, there are exactly N leaves in the tree. This structure allows 357 /// us to quickly find repeated substrings of the input string. 358 /// 359 /// In this implementation, a "string" is a vector of unsigned integers. 360 /// These integers may result from hashing some data type. A suffix tree can 361 /// contain 1 or many strings, which can then be queried as one large string. 362 /// 363 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 364 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 365 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 366 /// paper is available at 367 /// 368 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 369 class SuffixTree { 370 public: 371 /// Stores each leaf node in the tree. 372 /// 373 /// This is used for finding outlining candidates. 374 std::vector<SuffixTreeNode *> LeafVector; 375 376 /// Each element is an integer representing an instruction in the module. 377 ArrayRef<unsigned> Str; 378 379 private: 380 /// Maintains each node in the tree. 381 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 382 383 /// The root of the suffix tree. 384 /// 385 /// The root represents the empty string. It is maintained by the 386 /// \p NodeAllocator like every other node in the tree. 387 SuffixTreeNode *Root = nullptr; 388 389 /// Maintains the end indices of the internal nodes in the tree. 390 /// 391 /// Each internal node is guaranteed to never have its end index change 392 /// during the construction algorithm; however, leaves must be updated at 393 /// every step. Therefore, we need to store leaf end indices by reference 394 /// to avoid updating O(N) leaves at every step of construction. Thus, 395 /// every internal node must be allocated its own end index. 396 BumpPtrAllocator InternalEndIdxAllocator; 397 398 /// The end index of each leaf in the tree. 399 unsigned LeafEndIdx = -1; 400 401 /// Helper struct which keeps track of the next insertion point in 402 /// Ukkonen's algorithm. 403 struct ActiveState { 404 /// The next node to insert at. 405 SuffixTreeNode *Node; 406 407 /// The index of the first character in the substring currently being added. 408 unsigned Idx = EmptyIdx; 409 410 /// The length of the substring we have to add at the current step. 411 unsigned Len = 0; 412 }; 413 414 /// The point the next insertion will take place at in the 415 /// construction algorithm. 416 ActiveState Active; 417 418 /// Allocate a leaf node and add it to the tree. 419 /// 420 /// \param Parent The parent of this node. 421 /// \param StartIdx The start index of this node's associated string. 422 /// \param Edge The label on the edge leaving \p Parent to this node. 423 /// 424 /// \returns A pointer to the allocated leaf node. 425 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 426 unsigned Edge) { 427 428 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 429 430 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 431 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 432 Parent.Children[Edge] = N; 433 434 return N; 435 } 436 437 /// Allocate an internal node and add it to the tree. 438 /// 439 /// \param Parent The parent of this node. Only null when allocating the root. 440 /// \param StartIdx The start index of this node's associated string. 441 /// \param EndIdx The end index of this node's associated string. 442 /// \param Edge The label on the edge leaving \p Parent to this node. 443 /// 444 /// \returns A pointer to the allocated internal node. 445 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 446 unsigned EndIdx, unsigned Edge) { 447 448 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 449 assert(!(!Parent && StartIdx != EmptyIdx) && 450 "Non-root internal nodes must have parents!"); 451 452 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 453 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 454 SuffixTreeNode(StartIdx, E, Root, Parent); 455 if (Parent) 456 Parent->Children[Edge] = N; 457 458 return N; 459 } 460 461 /// Set the suffix indices of the leaves to the start indices of their 462 /// respective suffixes. Also stores each leaf in \p LeafVector at its 463 /// respective suffix index. 464 /// 465 /// \param[in] CurrNode The node currently being visited. 466 /// \param CurrIdx The current index of the string being visited. 467 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 468 469 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 470 471 // Store the length of the concatenation of all strings from the root to 472 // this node. 473 if (!CurrNode.isRoot()) { 474 if (CurrNode.ConcatLen == 0) 475 CurrNode.ConcatLen = CurrNode.size(); 476 477 if (CurrNode.Parent) 478 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 479 } 480 481 // Traverse the tree depth-first. 482 for (auto &ChildPair : CurrNode.Children) { 483 assert(ChildPair.second && "Node had a null child!"); 484 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 485 } 486 487 // Is this node a leaf? 488 if (IsLeaf) { 489 // If yes, give it a suffix index and bump its parent's occurrence count. 490 CurrNode.SuffixIdx = Str.size() - CurrIdx; 491 assert(CurrNode.Parent && "CurrNode had no parent!"); 492 CurrNode.Parent->OccurrenceCount++; 493 494 // Store the leaf in the leaf vector for pruning later. 495 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 496 } 497 } 498 499 /// Construct the suffix tree for the prefix of the input ending at 500 /// \p EndIdx. 501 /// 502 /// Used to construct the full suffix tree iteratively. At the end of each 503 /// step, the constructed suffix tree is either a valid suffix tree, or a 504 /// suffix tree with implicit suffixes. At the end of the final step, the 505 /// suffix tree is a valid tree. 506 /// 507 /// \param EndIdx The end index of the current prefix in the main string. 508 /// \param SuffixesToAdd The number of suffixes that must be added 509 /// to complete the suffix tree at the current phase. 510 /// 511 /// \returns The number of suffixes that have not been added at the end of 512 /// this step. 513 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 514 SuffixTreeNode *NeedsLink = nullptr; 515 516 while (SuffixesToAdd > 0) { 517 518 // Are we waiting to add anything other than just the last character? 519 if (Active.Len == 0) { 520 // If not, then say the active index is the end index. 521 Active.Idx = EndIdx; 522 } 523 524 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 525 526 // The first character in the current substring we're looking at. 527 unsigned FirstChar = Str[Active.Idx]; 528 529 // Have we inserted anything starting with FirstChar at the current node? 530 if (Active.Node->Children.count(FirstChar) == 0) { 531 // If not, then we can just insert a leaf and move too the next step. 532 insertLeaf(*Active.Node, EndIdx, FirstChar); 533 534 // The active node is an internal node, and we visited it, so it must 535 // need a link if it doesn't have one. 536 if (NeedsLink) { 537 NeedsLink->Link = Active.Node; 538 NeedsLink = nullptr; 539 } 540 } else { 541 // There's a match with FirstChar, so look for the point in the tree to 542 // insert a new node. 543 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 544 545 unsigned SubstringLen = NextNode->size(); 546 547 // Is the current suffix we're trying to insert longer than the size of 548 // the child we want to move to? 549 if (Active.Len >= SubstringLen) { 550 // If yes, then consume the characters we've seen and move to the next 551 // node. 552 Active.Idx += SubstringLen; 553 Active.Len -= SubstringLen; 554 Active.Node = NextNode; 555 continue; 556 } 557 558 // Otherwise, the suffix we're trying to insert must be contained in the 559 // next node we want to move to. 560 unsigned LastChar = Str[EndIdx]; 561 562 // Is the string we're trying to insert a substring of the next node? 563 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 564 // If yes, then we're done for this step. Remember our insertion point 565 // and move to the next end index. At this point, we have an implicit 566 // suffix tree. 567 if (NeedsLink && !Active.Node->isRoot()) { 568 NeedsLink->Link = Active.Node; 569 NeedsLink = nullptr; 570 } 571 572 Active.Len++; 573 break; 574 } 575 576 // The string we're trying to insert isn't a substring of the next node, 577 // but matches up to a point. Split the node. 578 // 579 // For example, say we ended our search at a node n and we're trying to 580 // insert ABD. Then we'll create a new node s for AB, reduce n to just 581 // representing C, and insert a new leaf node l to represent d. This 582 // allows us to ensure that if n was a leaf, it remains a leaf. 583 // 584 // | ABC ---split---> | AB 585 // n s 586 // C / \ D 587 // n l 588 589 // The node s from the diagram 590 SuffixTreeNode *SplitNode = 591 insertInternalNode(Active.Node, NextNode->StartIdx, 592 NextNode->StartIdx + Active.Len - 1, FirstChar); 593 594 // Insert the new node representing the new substring into the tree as 595 // a child of the split node. This is the node l from the diagram. 596 insertLeaf(*SplitNode, EndIdx, LastChar); 597 598 // Make the old node a child of the split node and update its start 599 // index. This is the node n from the diagram. 600 NextNode->StartIdx += Active.Len; 601 NextNode->Parent = SplitNode; 602 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 603 604 // SplitNode is an internal node, update the suffix link. 605 if (NeedsLink) 606 NeedsLink->Link = SplitNode; 607 608 NeedsLink = SplitNode; 609 } 610 611 // We've added something new to the tree, so there's one less suffix to 612 // add. 613 SuffixesToAdd--; 614 615 if (Active.Node->isRoot()) { 616 if (Active.Len > 0) { 617 Active.Len--; 618 Active.Idx = EndIdx - SuffixesToAdd + 1; 619 } 620 } else { 621 // Start the next phase at the next smallest suffix. 622 Active.Node = Active.Node->Link; 623 } 624 } 625 626 return SuffixesToAdd; 627 } 628 629 public: 630 /// Construct a suffix tree from a sequence of unsigned integers. 631 /// 632 /// \param Str The string to construct the suffix tree for. 633 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 634 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 635 Root->IsInTree = true; 636 Active.Node = Root; 637 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 638 639 // Keep track of the number of suffixes we have to add of the current 640 // prefix. 641 unsigned SuffixesToAdd = 0; 642 Active.Node = Root; 643 644 // Construct the suffix tree iteratively on each prefix of the string. 645 // PfxEndIdx is the end index of the current prefix. 646 // End is one past the last element in the string. 647 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 648 PfxEndIdx++) { 649 SuffixesToAdd++; 650 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 651 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 652 } 653 654 // Set the suffix indices of each leaf. 655 assert(Root && "Root node can't be nullptr!"); 656 setSuffixIndices(*Root, 0); 657 } 658 }; 659 660 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 661 struct InstructionMapper { 662 663 /// The next available integer to assign to a \p MachineInstr that 664 /// cannot be outlined. 665 /// 666 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 667 unsigned IllegalInstrNumber = -3; 668 669 /// The next available integer to assign to a \p MachineInstr that can 670 /// be outlined. 671 unsigned LegalInstrNumber = 0; 672 673 /// Correspondence from \p MachineInstrs to unsigned integers. 674 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 675 InstructionIntegerMap; 676 677 /// Corresponcence from unsigned integers to \p MachineInstrs. 678 /// Inverse of \p InstructionIntegerMap. 679 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 680 681 /// The vector of unsigned integers that the module is mapped to. 682 std::vector<unsigned> UnsignedVec; 683 684 /// Stores the location of the instruction associated with the integer 685 /// at index i in \p UnsignedVec for each index i. 686 std::vector<MachineBasicBlock::iterator> InstrList; 687 688 /// Maps \p *It to a legal integer. 689 /// 690 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 691 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 692 /// 693 /// \returns The integer that \p *It was mapped to. 694 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 695 696 // Get the integer for this instruction or give it the current 697 // LegalInstrNumber. 698 InstrList.push_back(It); 699 MachineInstr &MI = *It; 700 bool WasInserted; 701 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 702 ResultIt; 703 std::tie(ResultIt, WasInserted) = 704 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 705 unsigned MINumber = ResultIt->second; 706 707 // There was an insertion. 708 if (WasInserted) { 709 LegalInstrNumber++; 710 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 711 } 712 713 UnsignedVec.push_back(MINumber); 714 715 // Make sure we don't overflow or use any integers reserved by the DenseMap. 716 if (LegalInstrNumber >= IllegalInstrNumber) 717 report_fatal_error("Instruction mapping overflow!"); 718 719 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 720 "Tried to assign DenseMap tombstone or empty key to instruction."); 721 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 722 "Tried to assign DenseMap tombstone or empty key to instruction."); 723 724 return MINumber; 725 } 726 727 /// Maps \p *It to an illegal integer. 728 /// 729 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 730 /// 731 /// \returns The integer that \p *It was mapped to. 732 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 733 unsigned MINumber = IllegalInstrNumber; 734 735 InstrList.push_back(It); 736 UnsignedVec.push_back(IllegalInstrNumber); 737 IllegalInstrNumber--; 738 739 assert(LegalInstrNumber < IllegalInstrNumber && 740 "Instruction mapping overflow!"); 741 742 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 743 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 744 745 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 746 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 747 748 return MINumber; 749 } 750 751 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 752 /// and appends it to \p UnsignedVec and \p InstrList. 753 /// 754 /// Two instructions are assigned the same integer if they are identical. 755 /// If an instruction is deemed unsafe to outline, then it will be assigned an 756 /// unique integer. The resulting mapping is placed into a suffix tree and 757 /// queried for candidates. 758 /// 759 /// \param MBB The \p MachineBasicBlock to be translated into integers. 760 /// \param TRI \p TargetRegisterInfo for the module. 761 /// \param TII \p TargetInstrInfo for the module. 762 void convertToUnsignedVec(MachineBasicBlock &MBB, 763 const TargetRegisterInfo &TRI, 764 const TargetInstrInfo &TII) { 765 unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB); 766 767 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 768 It++) { 769 770 // Keep track of where this instruction is in the module. 771 switch (TII.getOutliningType(It, Flags)) { 772 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 773 mapToIllegalUnsigned(It); 774 break; 775 776 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 777 mapToLegalUnsigned(It); 778 break; 779 780 case TargetInstrInfo::MachineOutlinerInstrType::LegalTerminator: 781 mapToLegalUnsigned(It); 782 InstrList.push_back(It); 783 UnsignedVec.push_back(IllegalInstrNumber); 784 IllegalInstrNumber--; 785 break; 786 787 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 788 break; 789 } 790 } 791 792 // After we're done every insertion, uniquely terminate this part of the 793 // "string". This makes sure we won't match across basic block or function 794 // boundaries since the "end" is encoded uniquely and thus appears in no 795 // repeated substring. 796 InstrList.push_back(MBB.end()); 797 UnsignedVec.push_back(IllegalInstrNumber); 798 IllegalInstrNumber--; 799 } 800 801 InstructionMapper() { 802 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 803 // changed. 804 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 805 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 806 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 807 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 808 } 809 }; 810 811 /// An interprocedural pass which finds repeated sequences of 812 /// instructions and replaces them with calls to functions. 813 /// 814 /// Each instruction is mapped to an unsigned integer and placed in a string. 815 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 816 /// is then repeatedly queried for repeated sequences of instructions. Each 817 /// non-overlapping repeated sequence is then placed in its own 818 /// \p MachineFunction and each instance is then replaced with a call to that 819 /// function. 820 struct MachineOutliner : public ModulePass { 821 822 static char ID; 823 824 /// Set to true if the outliner should consider functions with 825 /// linkonceodr linkage. 826 bool OutlineFromLinkOnceODRs = false; 827 828 // Collection of IR functions created by the outliner. 829 std::vector<Function *> CreatedIRFunctions; 830 831 StringRef getPassName() const override { return "Machine Outliner"; } 832 833 void getAnalysisUsage(AnalysisUsage &AU) const override { 834 AU.addRequired<MachineModuleInfo>(); 835 AU.addPreserved<MachineModuleInfo>(); 836 AU.setPreservesAll(); 837 ModulePass::getAnalysisUsage(AU); 838 } 839 840 MachineOutliner() : ModulePass(ID) { 841 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 842 } 843 844 /// Find all repeated substrings that satisfy the outlining cost model. 845 /// 846 /// If a substring appears at least twice, then it must be represented by 847 /// an internal node which appears in at least two suffixes. Each suffix is 848 /// represented by a leaf node. To do this, we visit each internal node in 849 /// the tree, using the leaf children of each internal node. If an internal 850 /// node represents a beneficial substring, then we use each of its leaf 851 /// children to find the locations of its substring. 852 /// 853 /// \param ST A suffix tree to query. 854 /// \param TII TargetInstrInfo for the target. 855 /// \param Mapper Contains outlining mapping information. 856 /// \param[out] CandidateList Filled with candidates representing each 857 /// beneficial substring. 858 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 859 /// type of candidate. 860 /// 861 /// \returns The length of the longest candidate found. 862 unsigned 863 findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 864 InstructionMapper &Mapper, 865 std::vector<std::shared_ptr<Candidate>> &CandidateList, 866 std::vector<OutlinedFunction> &FunctionList); 867 868 /// Replace the sequences of instructions represented by the 869 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 870 /// described in \p FunctionList. 871 /// 872 /// \param M The module we are outlining from. 873 /// \param CandidateList A list of candidates to be outlined. 874 /// \param FunctionList A list of functions to be inserted into the module. 875 /// \param Mapper Contains the instruction mappings for the module. 876 bool outline(Module &M, 877 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 878 std::vector<OutlinedFunction> &FunctionList, 879 InstructionMapper &Mapper); 880 881 /// Creates a function for \p OF and inserts it into the module. 882 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 883 InstructionMapper &Mapper); 884 885 /// Find potential outlining candidates and store them in \p CandidateList. 886 /// 887 /// For each type of potential candidate, also build an \p OutlinedFunction 888 /// struct containing the information to build the function for that 889 /// candidate. 890 /// 891 /// \param[out] CandidateList Filled with outlining candidates for the module. 892 /// \param[out] FunctionList Filled with functions corresponding to each type 893 /// of \p Candidate. 894 /// \param ST The suffix tree for the module. 895 /// \param TII TargetInstrInfo for the module. 896 /// 897 /// \returns The length of the longest candidate found. 0 if there are none. 898 unsigned 899 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 900 std::vector<OutlinedFunction> &FunctionList, 901 SuffixTree &ST, InstructionMapper &Mapper, 902 const TargetInstrInfo &TII); 903 904 /// Helper function for pruneOverlaps. 905 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 906 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 907 908 /// Remove any overlapping candidates that weren't handled by the 909 /// suffix tree's pruning method. 910 /// 911 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 912 /// If a short candidate is chosen for outlining, then a longer candidate 913 /// which has that short candidate as a suffix is chosen, the tree's pruning 914 /// method will not find it. Thus, we need to prune before outlining as well. 915 /// 916 /// \param[in,out] CandidateList A list of outlining candidates. 917 /// \param[in,out] FunctionList A list of functions to be outlined. 918 /// \param Mapper Contains instruction mapping info for outlining. 919 /// \param MaxCandidateLen The length of the longest candidate. 920 /// \param TII TargetInstrInfo for the module. 921 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 922 std::vector<OutlinedFunction> &FunctionList, 923 InstructionMapper &Mapper, unsigned MaxCandidateLen, 924 const TargetInstrInfo &TII); 925 926 /// Construct a suffix tree on the instructions in \p M and outline repeated 927 /// strings from that tree. 928 bool runOnModule(Module &M) override; 929 }; 930 931 } // Anonymous namespace. 932 933 char MachineOutliner::ID = 0; 934 935 namespace llvm { 936 ModulePass *createMachineOutlinerPass() { 937 return new MachineOutliner(); 938 } 939 940 } // namespace llvm 941 942 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 943 false) 944 945 unsigned MachineOutliner::findCandidates( 946 SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, 947 std::vector<std::shared_ptr<Candidate>> &CandidateList, 948 std::vector<OutlinedFunction> &FunctionList) { 949 CandidateList.clear(); 950 FunctionList.clear(); 951 unsigned MaxLen = 0; 952 953 // FIXME: Visit internal nodes instead of leaves. 954 for (SuffixTreeNode *Leaf : ST.LeafVector) { 955 assert(Leaf && "Leaves in LeafVector cannot be null!"); 956 if (!Leaf->IsInTree) 957 continue; 958 959 assert(Leaf->Parent && "All leaves must have parents!"); 960 SuffixTreeNode &Parent = *(Leaf->Parent); 961 962 // If it doesn't appear enough, or we already outlined from it, skip it. 963 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 964 continue; 965 966 // Figure out if this candidate is beneficial. 967 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 968 969 // Too short to be beneficial; skip it. 970 // FIXME: This isn't necessarily true for, say, X86. If we factor in 971 // instruction lengths we need more information than this. 972 if (StringLen < 2) 973 continue; 974 975 // If this is a beneficial class of candidate, then every one is stored in 976 // this vector. 977 std::vector<Candidate> CandidatesForRepeatedSeq; 978 979 // Describes the start and end point of each candidate. This allows the 980 // target to infer some information about each occurrence of each repeated 981 // sequence. 982 // FIXME: CandidatesForRepeatedSeq and this should be combined. 983 std::vector< 984 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 985 RepeatedSequenceLocs; 986 987 // Figure out the call overhead for each instance of the sequence. 988 for (auto &ChildPair : Parent.Children) { 989 SuffixTreeNode *M = ChildPair.second; 990 991 if (M && M->IsInTree && M->isLeaf()) { 992 // Never visit this leaf again. 993 M->IsInTree = false; 994 unsigned StartIdx = M->SuffixIdx; 995 unsigned EndIdx = StartIdx + StringLen - 1; 996 997 // Trick: Discard some candidates that would be incompatible with the 998 // ones we've already found for this sequence. This will save us some 999 // work in candidate selection. 1000 // 1001 // If two candidates overlap, then we can't outline them both. This 1002 // happens when we have candidates that look like, say 1003 // 1004 // AA (where each "A" is an instruction). 1005 // 1006 // We might have some portion of the module that looks like this: 1007 // AAAAAA (6 A's) 1008 // 1009 // In this case, there are 5 different copies of "AA" in this range, but 1010 // at most 3 can be outlined. If only outlining 3 of these is going to 1011 // be unbeneficial, then we ought to not bother. 1012 // 1013 // Note that two things DON'T overlap when they look like this: 1014 // start1...end1 .... start2...end2 1015 // That is, one must either 1016 // * End before the other starts 1017 // * Start after the other ends 1018 if (std::all_of(CandidatesForRepeatedSeq.begin(), 1019 CandidatesForRepeatedSeq.end(), 1020 [&StartIdx, &EndIdx](const Candidate &C) { 1021 return (EndIdx < C.getStartIdx() || 1022 StartIdx > C.getEndIdx()); 1023 })) { 1024 // It doesn't overlap with anything, so we can outline it. 1025 // Each sequence is over [StartIt, EndIt]. 1026 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1027 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1028 1029 // Save the MachineFunction containing the Candidate. 1030 MachineFunction *MF = StartIt->getParent()->getParent(); 1031 assert(MF && "Candidate doesn't have a MF?"); 1032 1033 // Save the candidate and its location. 1034 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, 1035 FunctionList.size(), MF); 1036 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 1037 } 1038 } 1039 } 1040 1041 // We've found something we might want to outline. 1042 // Create an OutlinedFunction to store it and check if it'd be beneficial 1043 // to outline. 1044 TargetInstrInfo::MachineOutlinerInfo MInfo = 1045 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 1046 std::vector<unsigned> Seq; 1047 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 1048 Seq.push_back(ST.Str[i]); 1049 OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(), 1050 Seq, MInfo); 1051 unsigned Benefit = OF.getBenefit(); 1052 1053 // Is it better to outline this candidate than not? 1054 if (Benefit < 1) { 1055 // Outlining this candidate would take more instructions than not 1056 // outlining. 1057 // Emit a remark explaining why we didn't outline this candidate. 1058 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 1059 RepeatedSequenceLocs[0]; 1060 MachineOptimizationRemarkEmitter MORE( 1061 *(C.first->getParent()->getParent()), nullptr); 1062 MORE.emit([&]() { 1063 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 1064 C.first->getDebugLoc(), 1065 C.first->getParent()); 1066 R << "Did not outline " << NV("Length", StringLen) << " instructions" 1067 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 1068 << " locations." 1069 << " Bytes from outlining all occurrences (" 1070 << NV("OutliningCost", OF.getOutliningCost()) << ")" 1071 << " >= Unoutlined instruction bytes (" 1072 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 1073 << " (Also found at: "; 1074 1075 // Tell the user the other places the candidate was found. 1076 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 1077 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 1078 RepeatedSequenceLocs[i].first->getDebugLoc()); 1079 if (i != e - 1) 1080 R << ", "; 1081 } 1082 1083 R << ")"; 1084 return R; 1085 }); 1086 1087 // Move to the next candidate. 1088 continue; 1089 } 1090 1091 if (StringLen > MaxLen) 1092 MaxLen = StringLen; 1093 1094 // At this point, the candidate class is seen as beneficial. Set their 1095 // benefit values and save them in the candidate list. 1096 std::vector<std::shared_ptr<Candidate>> CandidatesForFn; 1097 for (Candidate &C : CandidatesForRepeatedSeq) { 1098 C.Benefit = Benefit; 1099 C.MInfo = MInfo; 1100 std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); 1101 CandidateList.push_back(Cptr); 1102 CandidatesForFn.push_back(Cptr); 1103 } 1104 1105 FunctionList.push_back(OF); 1106 FunctionList.back().Candidates = CandidatesForFn; 1107 1108 // Move to the next function. 1109 Parent.IsInTree = false; 1110 } 1111 1112 return MaxLen; 1113 } 1114 1115 // Remove C from the candidate space, and update its OutlinedFunction. 1116 void MachineOutliner::prune(Candidate &C, 1117 std::vector<OutlinedFunction> &FunctionList) { 1118 // Get the OutlinedFunction associated with this Candidate. 1119 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1120 1121 // Update C's associated function's occurrence count. 1122 F.decrement(); 1123 1124 // Remove C from the CandidateList. 1125 C.InCandidateList = false; 1126 1127 LLVM_DEBUG(dbgs() << "- Removed a Candidate \n"; 1128 dbgs() << "--- Num fns left for candidate: " 1129 << F.getOccurrenceCount() << "\n"; 1130 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 1131 << "\n";); 1132 } 1133 1134 void MachineOutliner::pruneOverlaps( 1135 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1136 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 1137 unsigned MaxCandidateLen, const TargetInstrInfo &TII) { 1138 1139 // Return true if this candidate became unbeneficial for outlining in a 1140 // previous step. 1141 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1142 1143 // Check if the candidate was removed in a previous step. 1144 if (!C.InCandidateList) 1145 return true; 1146 1147 // C must be alive. Check if we should remove it. 1148 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1149 prune(C, FunctionList); 1150 return true; 1151 } 1152 1153 // C is in the list, and F is still beneficial. 1154 return false; 1155 }; 1156 1157 // TODO: Experiment with interval trees or other interval-checking structures 1158 // to lower the time complexity of this function. 1159 // TODO: Can we do better than the simple greedy choice? 1160 // Check for overlaps in the range. 1161 // This is O(MaxCandidateLen * CandidateList.size()). 1162 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1163 It++) { 1164 Candidate &C1 = **It; 1165 1166 // If C1 was already pruned, or its function is no longer beneficial for 1167 // outlining, move to the next candidate. 1168 if (ShouldSkipCandidate(C1)) 1169 continue; 1170 1171 // The minimum start index of any candidate that could overlap with this 1172 // one. 1173 unsigned FarthestPossibleIdx = 0; 1174 1175 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1176 if (C1.getStartIdx() > MaxCandidateLen) 1177 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1178 1179 // Compare against the candidates in the list that start at most 1180 // FarthestPossibleIdx indices away from C1. There are at most 1181 // MaxCandidateLen of these. 1182 for (auto Sit = It + 1; Sit != Et; Sit++) { 1183 Candidate &C2 = **Sit; 1184 1185 // Is this candidate too far away to overlap? 1186 if (C2.getStartIdx() < FarthestPossibleIdx) 1187 break; 1188 1189 // If C2 was already pruned, or its function is no longer beneficial for 1190 // outlining, move to the next candidate. 1191 if (ShouldSkipCandidate(C2)) 1192 continue; 1193 1194 // Do C1 and C2 overlap? 1195 // 1196 // Not overlapping: 1197 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1198 // 1199 // We sorted our candidate list so C2Start <= C1Start. We know that 1200 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1201 // have to check is C2End < C2Start to see if we overlap. 1202 if (C2.getEndIdx() < C1.getStartIdx()) 1203 continue; 1204 1205 // C1 and C2 overlap. 1206 // We need to choose the better of the two. 1207 // 1208 // Approximate this by picking the one which would have saved us the 1209 // most instructions before any pruning. 1210 1211 // Is C2 a better candidate? 1212 if (C2.Benefit > C1.Benefit) { 1213 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1214 // against anything anymore, so break. 1215 prune(C1, FunctionList); 1216 break; 1217 } 1218 1219 // Prune C2 and move on to the next candidate. 1220 prune(C2, FunctionList); 1221 } 1222 } 1223 } 1224 1225 unsigned MachineOutliner::buildCandidateList( 1226 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1227 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 1228 InstructionMapper &Mapper, const TargetInstrInfo &TII) { 1229 1230 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1231 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1232 1233 MaxCandidateLen = 1234 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1235 1236 // Sort the candidates in decending order. This will simplify the outlining 1237 // process when we have to remove the candidates from the mapping by 1238 // allowing us to cut them out without keeping track of an offset. 1239 std::stable_sort( 1240 CandidateList.begin(), CandidateList.end(), 1241 [](const std::shared_ptr<Candidate> &LHS, 1242 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1243 1244 return MaxCandidateLen; 1245 } 1246 1247 MachineFunction * 1248 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1249 InstructionMapper &Mapper) { 1250 1251 // Create the function name. This should be unique. For now, just hash the 1252 // module name and include it in the function name plus the number of this 1253 // function. 1254 std::ostringstream NameStream; 1255 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1256 1257 // Create the function using an IR-level function. 1258 LLVMContext &C = M.getContext(); 1259 Function *F = dyn_cast<Function>( 1260 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1261 assert(F && "Function was null!"); 1262 1263 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1264 // which gives us better results when we outline from linkonceodr functions. 1265 F->setLinkage(GlobalValue::InternalLinkage); 1266 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1267 1268 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1269 // necessary. 1270 1271 // Set optsize/minsize, so we don't insert padding between outlined 1272 // functions. 1273 F->addFnAttr(Attribute::OptimizeForSize); 1274 F->addFnAttr(Attribute::MinSize); 1275 1276 // Save F so that we can add debug info later if we need to. 1277 CreatedIRFunctions.push_back(F); 1278 1279 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1280 IRBuilder<> Builder(EntryBB); 1281 Builder.CreateRetVoid(); 1282 1283 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1284 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1285 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1286 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1287 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1288 1289 // Insert the new function into the module. 1290 MF.insert(MF.begin(), &MBB); 1291 1292 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1293 1294 // Copy over the instructions for the function using the integer mappings in 1295 // its sequence. 1296 for (unsigned Str : OF.Sequence) { 1297 MachineInstr *NewMI = 1298 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1299 NewMI->dropMemRefs(); 1300 1301 // Don't keep debug information for outlined instructions. 1302 NewMI->setDebugLoc(DebugLoc()); 1303 MBB.insert(MBB.end(), NewMI); 1304 } 1305 1306 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1307 1308 // If there's a DISubprogram associated with this outlined function, then 1309 // emit debug info for the outlined function. 1310 if (DISubprogram *SP = OF.getSubprogramOrNull()) { 1311 // We have a DISubprogram. Get its DICompileUnit. 1312 DICompileUnit *CU = SP->getUnit(); 1313 DIBuilder DB(M, true, CU); 1314 DIFile *Unit = SP->getFile(); 1315 Mangler Mg; 1316 1317 // Walk over each IR function we created in the outliner and create 1318 // DISubprograms for each function. 1319 for (Function *F : CreatedIRFunctions) { 1320 // Get the mangled name of the function for the linkage name. 1321 std::string Dummy; 1322 llvm::raw_string_ostream MangledNameStream(Dummy); 1323 Mg.getNameWithPrefix(MangledNameStream, F, false); 1324 1325 DISubprogram *SP = DB.createFunction( 1326 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1327 Unit /* File */, 1328 0 /* Line 0 is reserved for compiler-generated code. */, 1329 DB.createSubroutineType( 1330 DB.getOrCreateTypeArray(None)), /* void type */ 1331 false, true, 0, /* Line 0 is reserved for compiler-generated code. */ 1332 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1333 true /* Outlined code is optimized code by definition. */); 1334 1335 // Don't add any new variables to the subprogram. 1336 DB.finalizeSubprogram(SP); 1337 1338 // Attach subprogram to the function. 1339 F->setSubprogram(SP); 1340 } 1341 1342 // We're done with the DIBuilder. 1343 DB.finalize(); 1344 } 1345 1346 // Outlined functions shouldn't preserve liveness. 1347 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1348 MF.getRegInfo().freezeReservedRegs(MF); 1349 return &MF; 1350 } 1351 1352 bool MachineOutliner::outline( 1353 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 1354 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1355 1356 bool OutlinedSomething = false; 1357 // Replace the candidates with calls to their respective outlined functions. 1358 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 1359 Candidate &C = *Cptr; 1360 // Was the candidate removed during pruneOverlaps? 1361 if (!C.InCandidateList) 1362 continue; 1363 1364 // If not, then look at its OutlinedFunction. 1365 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1366 1367 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1368 if (OF.getBenefit() < 1) 1369 continue; 1370 1371 // If not, then outline it. 1372 assert(C.getStartIdx() < Mapper.InstrList.size() && 1373 "Candidate out of bounds!"); 1374 MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent(); 1375 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()]; 1376 unsigned EndIdx = C.getEndIdx(); 1377 1378 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1379 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1380 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1381 1382 // Does this candidate have a function yet? 1383 if (!OF.MF) { 1384 OF.MF = createOutlinedFunction(M, OF, Mapper); 1385 MachineBasicBlock *MBB = &*OF.MF->begin(); 1386 1387 // Output a remark telling the user that an outlined function was created, 1388 // and explaining where it came from. 1389 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1390 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1391 MBB->findDebugLoc(MBB->begin()), MBB); 1392 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) 1393 << " bytes by " 1394 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 1395 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1396 << " locations. " 1397 << "(Found at: "; 1398 1399 // Tell the user the other places the candidate was found. 1400 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1401 1402 // Skip over things that were pruned. 1403 if (!OF.Candidates[i]->InCandidateList) 1404 continue; 1405 1406 R << NV( 1407 (Twine("StartLoc") + Twine(i)).str(), 1408 Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc()); 1409 if (i != e - 1) 1410 R << ", "; 1411 } 1412 1413 R << ")"; 1414 1415 MORE.emit(R); 1416 FunctionsCreated++; 1417 } 1418 1419 MachineFunction *MF = OF.MF; 1420 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1421 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1422 1423 // Insert a call to the new function and erase the old sequence. 1424 auto CallInst = TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1425 StartIt = Mapper.InstrList[C.getStartIdx()]; 1426 1427 // If the caller tracks liveness, then we need to make sure that anything 1428 // we outline doesn't break liveness assumptions. 1429 // The outlined functions themselves currently don't track liveness, but 1430 // we should make sure that the ranges we yank things out of aren't 1431 // wrong. 1432 if (MBB->getParent()->getProperties().hasProperty( 1433 MachineFunctionProperties::Property::TracksLiveness)) { 1434 // Helper lambda for adding implicit def operands to the call instruction. 1435 auto CopyDefs = [&CallInst](MachineInstr &MI) { 1436 for (MachineOperand &MOP : MI.operands()) { 1437 // Skip over anything that isn't a register. 1438 if (!MOP.isReg()) 1439 continue; 1440 1441 // If it's a def, add it to the call instruction. 1442 if (MOP.isDef()) 1443 CallInst->addOperand( 1444 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */ 1445 true /* isImp = true */)); 1446 } 1447 }; 1448 1449 // Copy over the defs in the outlined range. 1450 // First inst in outlined range <-- Anything that's defined in this 1451 // ... .. range has to be added as an implicit 1452 // Last inst in outlined range <-- def to the call instruction. 1453 std::for_each(CallInst, EndIt, CopyDefs); 1454 } 1455 1456 EndIt++; // Erase needs one past the end index. 1457 MBB->erase(StartIt, EndIt); 1458 OutlinedSomething = true; 1459 1460 // Statistics. 1461 NumOutlined++; 1462 } 1463 1464 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1465 1466 return OutlinedSomething; 1467 } 1468 1469 bool MachineOutliner::runOnModule(Module &M) { 1470 // Check if there's anything in the module. If it's empty, then there's 1471 // nothing to outline. 1472 if (M.empty()) 1473 return false; 1474 1475 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1476 const TargetSubtargetInfo &STI = 1477 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1478 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1479 const TargetInstrInfo *TII = STI.getInstrInfo(); 1480 1481 // Does the target implement the MachineOutliner? If it doesn't, quit here. 1482 if (!TII->useMachineOutliner()) { 1483 // No. So we're done. 1484 LLVM_DEBUG( 1485 dbgs() 1486 << "Skipping pass: Target does not support the MachineOutliner.\n"); 1487 return false; 1488 } 1489 1490 // If the user specifies that they want to outline from linkonceodrs, set 1491 // it here. 1492 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1493 1494 InstructionMapper Mapper; 1495 1496 // Build instruction mappings for each function in the module. Start by 1497 // iterating over each Function in M. 1498 for (Function &F : M) { 1499 1500 // If there's nothing in F, then there's no reason to try and outline from 1501 // it. 1502 if (F.empty()) 1503 continue; 1504 1505 // There's something in F. Check if it has a MachineFunction associated with 1506 // it. 1507 MachineFunction *MF = MMI.getMachineFunction(F); 1508 1509 // If it doesn't, then there's nothing to outline from. Move to the next 1510 // Function. 1511 if (!MF) 1512 continue; 1513 1514 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1515 // If it isn't, then move on to the next Function in the module. 1516 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1517 continue; 1518 1519 // We have a function suitable for outlining. Iterate over every 1520 // MachineBasicBlock in MF and try to map its instructions to a list of 1521 // unsigned integers. 1522 for (MachineBasicBlock &MBB : *MF) { 1523 // If there isn't anything in MBB, then there's no point in outlining from 1524 // it. 1525 if (MBB.empty()) 1526 continue; 1527 1528 // Check if MBB could be the target of an indirect branch. If it is, then 1529 // we don't want to outline from it. 1530 if (MBB.hasAddressTaken()) 1531 continue; 1532 1533 // MBB is suitable for outlining. Map it to a list of unsigneds. 1534 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1535 } 1536 } 1537 1538 // Construct a suffix tree, use it to find candidates, and then outline them. 1539 SuffixTree ST(Mapper.UnsignedVec); 1540 std::vector<std::shared_ptr<Candidate>> CandidateList; 1541 std::vector<OutlinedFunction> FunctionList; 1542 1543 // Find all of the outlining candidates. 1544 unsigned MaxCandidateLen = 1545 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1546 1547 // Remove candidates that overlap with other candidates. 1548 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1549 1550 // Outline each of the candidates and return true if something was outlined. 1551 bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper); 1552 1553 return OutlinedSomething; 1554 } 1555