1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineModuleInfo.h" 63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 64 #include "llvm/CodeGen/MachineRegisterInfo.h" 65 #include "llvm/CodeGen/Passes.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/IR/DIBuilder.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/Mangler.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Support/Allocator.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <functional> 77 #include <tuple> 78 #include <vector> 79 80 #define DEBUG_TYPE "machine-outliner" 81 82 using namespace llvm; 83 using namespace ore; 84 using namespace outliner; 85 86 STATISTIC(NumOutlined, "Number of candidates outlined"); 87 STATISTIC(FunctionsCreated, "Number of functions created"); 88 89 // Set to true if the user wants the outliner to run on linkonceodr linkage 90 // functions. This is false by default because the linker can dedupe linkonceodr 91 // functions. Since the outliner is confined to a single module (modulo LTO), 92 // this is off by default. It should, however, be the default behaviour in 93 // LTO. 94 static cl::opt<bool> EnableLinkOnceODROutlining( 95 "enable-linkonceodr-outlining", cl::Hidden, 96 cl::desc("Enable the machine outliner on linkonceodr functions"), 97 cl::init(false)); 98 99 namespace { 100 101 /// Represents an undefined index in the suffix tree. 102 const unsigned EmptyIdx = -1; 103 104 /// A node in a suffix tree which represents a substring or suffix. 105 /// 106 /// Each node has either no children or at least two children, with the root 107 /// being a exception in the empty tree. 108 /// 109 /// Children are represented as a map between unsigned integers and nodes. If 110 /// a node N has a child M on unsigned integer k, then the mapping represented 111 /// by N is a proper prefix of the mapping represented by M. Note that this, 112 /// although similar to a trie is somewhat different: each node stores a full 113 /// substring of the full mapping rather than a single character state. 114 /// 115 /// Each internal node contains a pointer to the internal node representing 116 /// the same string, but with the first character chopped off. This is stored 117 /// in \p Link. Each leaf node stores the start index of its respective 118 /// suffix in \p SuffixIdx. 119 struct SuffixTreeNode { 120 121 /// The children of this node. 122 /// 123 /// A child existing on an unsigned integer implies that from the mapping 124 /// represented by the current node, there is a way to reach another 125 /// mapping by tacking that character on the end of the current string. 126 DenseMap<unsigned, SuffixTreeNode *> Children; 127 128 /// The start index of this node's substring in the main string. 129 unsigned StartIdx = EmptyIdx; 130 131 /// The end index of this node's substring in the main string. 132 /// 133 /// Every leaf node must have its \p EndIdx incremented at the end of every 134 /// step in the construction algorithm. To avoid having to update O(N) 135 /// nodes individually at the end of every step, the end index is stored 136 /// as a pointer. 137 unsigned *EndIdx = nullptr; 138 139 /// For leaves, the start index of the suffix represented by this node. 140 /// 141 /// For all other nodes, this is ignored. 142 unsigned SuffixIdx = EmptyIdx; 143 144 /// For internal nodes, a pointer to the internal node representing 145 /// the same sequence with the first character chopped off. 146 /// 147 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 148 /// Ukkonen's algorithm does to achieve linear-time construction is 149 /// keep track of which node the next insert should be at. This makes each 150 /// insert O(1), and there are a total of O(N) inserts. The suffix link 151 /// helps with inserting children of internal nodes. 152 /// 153 /// Say we add a child to an internal node with associated mapping S. The 154 /// next insertion must be at the node representing S - its first character. 155 /// This is given by the way that we iteratively build the tree in Ukkonen's 156 /// algorithm. The main idea is to look at the suffixes of each prefix in the 157 /// string, starting with the longest suffix of the prefix, and ending with 158 /// the shortest. Therefore, if we keep pointers between such nodes, we can 159 /// move to the next insertion point in O(1) time. If we don't, then we'd 160 /// have to query from the root, which takes O(N) time. This would make the 161 /// construction algorithm O(N^2) rather than O(N). 162 SuffixTreeNode *Link = nullptr; 163 164 /// The length of the string formed by concatenating the edge labels from the 165 /// root to this node. 166 unsigned ConcatLen = 0; 167 168 /// Returns true if this node is a leaf. 169 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 170 171 /// Returns true if this node is the root of its owning \p SuffixTree. 172 bool isRoot() const { return StartIdx == EmptyIdx; } 173 174 /// Return the number of elements in the substring associated with this node. 175 size_t size() const { 176 177 // Is it the root? If so, it's the empty string so return 0. 178 if (isRoot()) 179 return 0; 180 181 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 182 183 // Size = the number of elements in the string. 184 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 185 return *EndIdx - StartIdx + 1; 186 } 187 188 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 189 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 190 191 SuffixTreeNode() {} 192 }; 193 194 /// A data structure for fast substring queries. 195 /// 196 /// Suffix trees represent the suffixes of their input strings in their leaves. 197 /// A suffix tree is a type of compressed trie structure where each node 198 /// represents an entire substring rather than a single character. Each leaf 199 /// of the tree is a suffix. 200 /// 201 /// A suffix tree can be seen as a type of state machine where each state is a 202 /// substring of the full string. The tree is structured so that, for a string 203 /// of length N, there are exactly N leaves in the tree. This structure allows 204 /// us to quickly find repeated substrings of the input string. 205 /// 206 /// In this implementation, a "string" is a vector of unsigned integers. 207 /// These integers may result from hashing some data type. A suffix tree can 208 /// contain 1 or many strings, which can then be queried as one large string. 209 /// 210 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 211 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 212 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 213 /// paper is available at 214 /// 215 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 216 class SuffixTree { 217 public: 218 /// Each element is an integer representing an instruction in the module. 219 ArrayRef<unsigned> Str; 220 221 /// A repeated substring in the tree. 222 struct RepeatedSubstring { 223 /// The length of the string. 224 unsigned Length; 225 226 /// The start indices of each occurrence. 227 std::vector<unsigned> StartIndices; 228 }; 229 230 private: 231 /// Maintains each node in the tree. 232 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 233 234 /// The root of the suffix tree. 235 /// 236 /// The root represents the empty string. It is maintained by the 237 /// \p NodeAllocator like every other node in the tree. 238 SuffixTreeNode *Root = nullptr; 239 240 /// Maintains the end indices of the internal nodes in the tree. 241 /// 242 /// Each internal node is guaranteed to never have its end index change 243 /// during the construction algorithm; however, leaves must be updated at 244 /// every step. Therefore, we need to store leaf end indices by reference 245 /// to avoid updating O(N) leaves at every step of construction. Thus, 246 /// every internal node must be allocated its own end index. 247 BumpPtrAllocator InternalEndIdxAllocator; 248 249 /// The end index of each leaf in the tree. 250 unsigned LeafEndIdx = -1; 251 252 /// Helper struct which keeps track of the next insertion point in 253 /// Ukkonen's algorithm. 254 struct ActiveState { 255 /// The next node to insert at. 256 SuffixTreeNode *Node = nullptr; 257 258 /// The index of the first character in the substring currently being added. 259 unsigned Idx = EmptyIdx; 260 261 /// The length of the substring we have to add at the current step. 262 unsigned Len = 0; 263 }; 264 265 /// The point the next insertion will take place at in the 266 /// construction algorithm. 267 ActiveState Active; 268 269 /// Allocate a leaf node and add it to the tree. 270 /// 271 /// \param Parent The parent of this node. 272 /// \param StartIdx The start index of this node's associated string. 273 /// \param Edge The label on the edge leaving \p Parent to this node. 274 /// 275 /// \returns A pointer to the allocated leaf node. 276 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 277 unsigned Edge) { 278 279 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 280 281 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 282 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 283 Parent.Children[Edge] = N; 284 285 return N; 286 } 287 288 /// Allocate an internal node and add it to the tree. 289 /// 290 /// \param Parent The parent of this node. Only null when allocating the root. 291 /// \param StartIdx The start index of this node's associated string. 292 /// \param EndIdx The end index of this node's associated string. 293 /// \param Edge The label on the edge leaving \p Parent to this node. 294 /// 295 /// \returns A pointer to the allocated internal node. 296 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 297 unsigned EndIdx, unsigned Edge) { 298 299 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 300 assert(!(!Parent && StartIdx != EmptyIdx) && 301 "Non-root internal nodes must have parents!"); 302 303 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 304 SuffixTreeNode *N = 305 new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root); 306 if (Parent) 307 Parent->Children[Edge] = N; 308 309 return N; 310 } 311 312 /// Set the suffix indices of the leaves to the start indices of their 313 /// respective suffixes. 314 /// 315 /// \param[in] CurrNode The node currently being visited. 316 void setSuffixIndices() { 317 // List of nodes we need to visit along with the current length of the 318 // string. 319 std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit; 320 321 // Current node being visited. 322 SuffixTreeNode *CurrNode = Root; 323 324 // Sum of the lengths of the nodes down the path to the current one. 325 unsigned CurrNodeLen = 0; 326 ToVisit.push_back({CurrNode, CurrNodeLen}); 327 while (!ToVisit.empty()) { 328 std::tie(CurrNode, CurrNodeLen) = ToVisit.back(); 329 ToVisit.pop_back(); 330 CurrNode->ConcatLen = CurrNodeLen; 331 for (auto &ChildPair : CurrNode->Children) { 332 assert(ChildPair.second && "Node had a null child!"); 333 ToVisit.push_back( 334 {ChildPair.second, CurrNodeLen + ChildPair.second->size()}); 335 } 336 337 // No children, so we are at the end of the string. 338 if (CurrNode->Children.size() == 0 && !CurrNode->isRoot()) 339 CurrNode->SuffixIdx = Str.size() - CurrNodeLen; 340 } 341 } 342 343 /// Construct the suffix tree for the prefix of the input ending at 344 /// \p EndIdx. 345 /// 346 /// Used to construct the full suffix tree iteratively. At the end of each 347 /// step, the constructed suffix tree is either a valid suffix tree, or a 348 /// suffix tree with implicit suffixes. At the end of the final step, the 349 /// suffix tree is a valid tree. 350 /// 351 /// \param EndIdx The end index of the current prefix in the main string. 352 /// \param SuffixesToAdd The number of suffixes that must be added 353 /// to complete the suffix tree at the current phase. 354 /// 355 /// \returns The number of suffixes that have not been added at the end of 356 /// this step. 357 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 358 SuffixTreeNode *NeedsLink = nullptr; 359 360 while (SuffixesToAdd > 0) { 361 362 // Are we waiting to add anything other than just the last character? 363 if (Active.Len == 0) { 364 // If not, then say the active index is the end index. 365 Active.Idx = EndIdx; 366 } 367 368 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 369 370 // The first character in the current substring we're looking at. 371 unsigned FirstChar = Str[Active.Idx]; 372 373 // Have we inserted anything starting with FirstChar at the current node? 374 if (Active.Node->Children.count(FirstChar) == 0) { 375 // If not, then we can just insert a leaf and move too the next step. 376 insertLeaf(*Active.Node, EndIdx, FirstChar); 377 378 // The active node is an internal node, and we visited it, so it must 379 // need a link if it doesn't have one. 380 if (NeedsLink) { 381 NeedsLink->Link = Active.Node; 382 NeedsLink = nullptr; 383 } 384 } else { 385 // There's a match with FirstChar, so look for the point in the tree to 386 // insert a new node. 387 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 388 389 unsigned SubstringLen = NextNode->size(); 390 391 // Is the current suffix we're trying to insert longer than the size of 392 // the child we want to move to? 393 if (Active.Len >= SubstringLen) { 394 // If yes, then consume the characters we've seen and move to the next 395 // node. 396 Active.Idx += SubstringLen; 397 Active.Len -= SubstringLen; 398 Active.Node = NextNode; 399 continue; 400 } 401 402 // Otherwise, the suffix we're trying to insert must be contained in the 403 // next node we want to move to. 404 unsigned LastChar = Str[EndIdx]; 405 406 // Is the string we're trying to insert a substring of the next node? 407 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 408 // If yes, then we're done for this step. Remember our insertion point 409 // and move to the next end index. At this point, we have an implicit 410 // suffix tree. 411 if (NeedsLink && !Active.Node->isRoot()) { 412 NeedsLink->Link = Active.Node; 413 NeedsLink = nullptr; 414 } 415 416 Active.Len++; 417 break; 418 } 419 420 // The string we're trying to insert isn't a substring of the next node, 421 // but matches up to a point. Split the node. 422 // 423 // For example, say we ended our search at a node n and we're trying to 424 // insert ABD. Then we'll create a new node s for AB, reduce n to just 425 // representing C, and insert a new leaf node l to represent d. This 426 // allows us to ensure that if n was a leaf, it remains a leaf. 427 // 428 // | ABC ---split---> | AB 429 // n s 430 // C / \ D 431 // n l 432 433 // The node s from the diagram 434 SuffixTreeNode *SplitNode = 435 insertInternalNode(Active.Node, NextNode->StartIdx, 436 NextNode->StartIdx + Active.Len - 1, FirstChar); 437 438 // Insert the new node representing the new substring into the tree as 439 // a child of the split node. This is the node l from the diagram. 440 insertLeaf(*SplitNode, EndIdx, LastChar); 441 442 // Make the old node a child of the split node and update its start 443 // index. This is the node n from the diagram. 444 NextNode->StartIdx += Active.Len; 445 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 446 447 // SplitNode is an internal node, update the suffix link. 448 if (NeedsLink) 449 NeedsLink->Link = SplitNode; 450 451 NeedsLink = SplitNode; 452 } 453 454 // We've added something new to the tree, so there's one less suffix to 455 // add. 456 SuffixesToAdd--; 457 458 if (Active.Node->isRoot()) { 459 if (Active.Len > 0) { 460 Active.Len--; 461 Active.Idx = EndIdx - SuffixesToAdd + 1; 462 } 463 } else { 464 // Start the next phase at the next smallest suffix. 465 Active.Node = Active.Node->Link; 466 } 467 } 468 469 return SuffixesToAdd; 470 } 471 472 public: 473 /// Construct a suffix tree from a sequence of unsigned integers. 474 /// 475 /// \param Str The string to construct the suffix tree for. 476 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 477 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 478 Active.Node = Root; 479 480 // Keep track of the number of suffixes we have to add of the current 481 // prefix. 482 unsigned SuffixesToAdd = 0; 483 484 // Construct the suffix tree iteratively on each prefix of the string. 485 // PfxEndIdx is the end index of the current prefix. 486 // End is one past the last element in the string. 487 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 488 PfxEndIdx++) { 489 SuffixesToAdd++; 490 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 491 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 492 } 493 494 // Set the suffix indices of each leaf. 495 assert(Root && "Root node can't be nullptr!"); 496 setSuffixIndices(); 497 } 498 499 /// Iterator for finding all repeated substrings in the suffix tree. 500 struct RepeatedSubstringIterator { 501 private: 502 /// The current node we're visiting. 503 SuffixTreeNode *N = nullptr; 504 505 /// The repeated substring associated with this node. 506 RepeatedSubstring RS; 507 508 /// The nodes left to visit. 509 std::vector<SuffixTreeNode *> ToVisit; 510 511 /// The minimum length of a repeated substring to find. 512 /// Since we're outlining, we want at least two instructions in the range. 513 /// FIXME: This may not be true for targets like X86 which support many 514 /// instruction lengths. 515 const unsigned MinLength = 2; 516 517 /// Move the iterator to the next repeated substring. 518 void advance() { 519 // Clear the current state. If we're at the end of the range, then this 520 // is the state we want to be in. 521 RS = RepeatedSubstring(); 522 N = nullptr; 523 524 // Each leaf node represents a repeat of a string. 525 std::vector<SuffixTreeNode *> LeafChildren; 526 527 // Continue visiting nodes until we find one which repeats more than once. 528 while (!ToVisit.empty()) { 529 SuffixTreeNode *Curr = ToVisit.back(); 530 ToVisit.pop_back(); 531 LeafChildren.clear(); 532 533 // Keep track of the length of the string associated with the node. If 534 // it's too short, we'll quit. 535 unsigned Length = Curr->ConcatLen; 536 537 // Iterate over each child, saving internal nodes for visiting, and 538 // leaf nodes in LeafChildren. Internal nodes represent individual 539 // strings, which may repeat. 540 for (auto &ChildPair : Curr->Children) { 541 // Save all of this node's children for processing. 542 if (!ChildPair.second->isLeaf()) 543 ToVisit.push_back(ChildPair.second); 544 545 // It's not an internal node, so it must be a leaf. If we have a 546 // long enough string, then save the leaf children. 547 else if (Length >= MinLength) 548 LeafChildren.push_back(ChildPair.second); 549 } 550 551 // The root never represents a repeated substring. If we're looking at 552 // that, then skip it. 553 if (Curr->isRoot()) 554 continue; 555 556 // Do we have any repeated substrings? 557 if (LeafChildren.size() >= 2) { 558 // Yes. Update the state to reflect this, and then bail out. 559 N = Curr; 560 RS.Length = Length; 561 for (SuffixTreeNode *Leaf : LeafChildren) 562 RS.StartIndices.push_back(Leaf->SuffixIdx); 563 break; 564 } 565 } 566 567 // At this point, either NewRS is an empty RepeatedSubstring, or it was 568 // set in the above loop. Similarly, N is either nullptr, or the node 569 // associated with NewRS. 570 } 571 572 public: 573 /// Return the current repeated substring. 574 RepeatedSubstring &operator*() { return RS; } 575 576 RepeatedSubstringIterator &operator++() { 577 advance(); 578 return *this; 579 } 580 581 RepeatedSubstringIterator operator++(int I) { 582 RepeatedSubstringIterator It(*this); 583 advance(); 584 return It; 585 } 586 587 bool operator==(const RepeatedSubstringIterator &Other) { 588 return N == Other.N; 589 } 590 bool operator!=(const RepeatedSubstringIterator &Other) { 591 return !(*this == Other); 592 } 593 594 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 595 // Do we have a non-null node? 596 if (N) { 597 // Yes. At the first step, we need to visit all of N's children. 598 // Note: This means that we visit N last. 599 ToVisit.push_back(N); 600 advance(); 601 } 602 } 603 }; 604 605 typedef RepeatedSubstringIterator iterator; 606 iterator begin() { return iterator(Root); } 607 iterator end() { return iterator(nullptr); } 608 }; 609 610 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 611 struct InstructionMapper { 612 613 /// The next available integer to assign to a \p MachineInstr that 614 /// cannot be outlined. 615 /// 616 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 617 unsigned IllegalInstrNumber = -3; 618 619 /// The next available integer to assign to a \p MachineInstr that can 620 /// be outlined. 621 unsigned LegalInstrNumber = 0; 622 623 /// Correspondence from \p MachineInstrs to unsigned integers. 624 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 625 InstructionIntegerMap; 626 627 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 628 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 629 630 /// The vector of unsigned integers that the module is mapped to. 631 std::vector<unsigned> UnsignedVec; 632 633 /// Stores the location of the instruction associated with the integer 634 /// at index i in \p UnsignedVec for each index i. 635 std::vector<MachineBasicBlock::iterator> InstrList; 636 637 // Set if we added an illegal number in the previous step. 638 // Since each illegal number is unique, we only need one of them between 639 // each range of legal numbers. This lets us make sure we don't add more 640 // than one illegal number per range. 641 bool AddedIllegalLastTime = false; 642 643 /// Maps \p *It to a legal integer. 644 /// 645 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 646 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 647 /// 648 /// \returns The integer that \p *It was mapped to. 649 unsigned mapToLegalUnsigned( 650 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 651 bool &HaveLegalRange, unsigned &NumLegalInBlock, 652 std::vector<unsigned> &UnsignedVecForMBB, 653 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 654 // We added something legal, so we should unset the AddedLegalLastTime 655 // flag. 656 AddedIllegalLastTime = false; 657 658 // If we have at least two adjacent legal instructions (which may have 659 // invisible instructions in between), remember that. 660 if (CanOutlineWithPrevInstr) 661 HaveLegalRange = true; 662 CanOutlineWithPrevInstr = true; 663 664 // Keep track of the number of legal instructions we insert. 665 NumLegalInBlock++; 666 667 // Get the integer for this instruction or give it the current 668 // LegalInstrNumber. 669 InstrListForMBB.push_back(It); 670 MachineInstr &MI = *It; 671 bool WasInserted; 672 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 673 ResultIt; 674 std::tie(ResultIt, WasInserted) = 675 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 676 unsigned MINumber = ResultIt->second; 677 678 // There was an insertion. 679 if (WasInserted) 680 LegalInstrNumber++; 681 682 UnsignedVecForMBB.push_back(MINumber); 683 684 // Make sure we don't overflow or use any integers reserved by the DenseMap. 685 if (LegalInstrNumber >= IllegalInstrNumber) 686 report_fatal_error("Instruction mapping overflow!"); 687 688 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 689 "Tried to assign DenseMap tombstone or empty key to instruction."); 690 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 691 "Tried to assign DenseMap tombstone or empty key to instruction."); 692 693 return MINumber; 694 } 695 696 /// Maps \p *It to an illegal integer. 697 /// 698 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 699 /// IllegalInstrNumber. 700 /// 701 /// \returns The integer that \p *It was mapped to. 702 unsigned mapToIllegalUnsigned( 703 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 704 std::vector<unsigned> &UnsignedVecForMBB, 705 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 706 // Can't outline an illegal instruction. Set the flag. 707 CanOutlineWithPrevInstr = false; 708 709 // Only add one illegal number per range of legal numbers. 710 if (AddedIllegalLastTime) 711 return IllegalInstrNumber; 712 713 // Remember that we added an illegal number last time. 714 AddedIllegalLastTime = true; 715 unsigned MINumber = IllegalInstrNumber; 716 717 InstrListForMBB.push_back(It); 718 UnsignedVecForMBB.push_back(IllegalInstrNumber); 719 IllegalInstrNumber--; 720 721 assert(LegalInstrNumber < IllegalInstrNumber && 722 "Instruction mapping overflow!"); 723 724 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 725 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 726 727 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 728 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 729 730 return MINumber; 731 } 732 733 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 734 /// and appends it to \p UnsignedVec and \p InstrList. 735 /// 736 /// Two instructions are assigned the same integer if they are identical. 737 /// If an instruction is deemed unsafe to outline, then it will be assigned an 738 /// unique integer. The resulting mapping is placed into a suffix tree and 739 /// queried for candidates. 740 /// 741 /// \param MBB The \p MachineBasicBlock to be translated into integers. 742 /// \param TII \p TargetInstrInfo for the function. 743 void convertToUnsignedVec(MachineBasicBlock &MBB, 744 const TargetInstrInfo &TII) { 745 unsigned Flags = 0; 746 747 // Don't even map in this case. 748 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 749 return; 750 751 // Store info for the MBB for later outlining. 752 MBBFlagsMap[&MBB] = Flags; 753 754 MachineBasicBlock::iterator It = MBB.begin(); 755 756 // The number of instructions in this block that will be considered for 757 // outlining. 758 unsigned NumLegalInBlock = 0; 759 760 // True if we have at least two legal instructions which aren't separated 761 // by an illegal instruction. 762 bool HaveLegalRange = false; 763 764 // True if we can perform outlining given the last mapped (non-invisible) 765 // instruction. This lets us know if we have a legal range. 766 bool CanOutlineWithPrevInstr = false; 767 768 // FIXME: Should this all just be handled in the target, rather than using 769 // repeated calls to getOutliningType? 770 std::vector<unsigned> UnsignedVecForMBB; 771 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 772 773 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) { 774 // Keep track of where this instruction is in the module. 775 switch (TII.getOutliningType(It, Flags)) { 776 case InstrType::Illegal: 777 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 778 InstrListForMBB); 779 break; 780 781 case InstrType::Legal: 782 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 783 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 784 break; 785 786 case InstrType::LegalTerminator: 787 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 788 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 789 // The instruction also acts as a terminator, so we have to record that 790 // in the string. 791 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 792 InstrListForMBB); 793 break; 794 795 case InstrType::Invisible: 796 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 797 // skip this instruction. So, unset the flag here. 798 AddedIllegalLastTime = false; 799 break; 800 } 801 } 802 803 // Are there enough legal instructions in the block for outlining to be 804 // possible? 805 if (HaveLegalRange) { 806 // After we're done every insertion, uniquely terminate this part of the 807 // "string". This makes sure we won't match across basic block or function 808 // boundaries since the "end" is encoded uniquely and thus appears in no 809 // repeated substring. 810 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 811 InstrListForMBB); 812 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 813 InstrListForMBB.end()); 814 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 815 UnsignedVecForMBB.end()); 816 } 817 } 818 819 InstructionMapper() { 820 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 821 // changed. 822 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 823 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 824 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 825 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 826 } 827 }; 828 829 /// An interprocedural pass which finds repeated sequences of 830 /// instructions and replaces them with calls to functions. 831 /// 832 /// Each instruction is mapped to an unsigned integer and placed in a string. 833 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 834 /// is then repeatedly queried for repeated sequences of instructions. Each 835 /// non-overlapping repeated sequence is then placed in its own 836 /// \p MachineFunction and each instance is then replaced with a call to that 837 /// function. 838 struct MachineOutliner : public ModulePass { 839 840 static char ID; 841 842 /// Set to true if the outliner should consider functions with 843 /// linkonceodr linkage. 844 bool OutlineFromLinkOnceODRs = false; 845 846 /// Set to true if the outliner should run on all functions in the module 847 /// considered safe for outlining. 848 /// Set to true by default for compatibility with llc's -run-pass option. 849 /// Set when the pass is constructed in TargetPassConfig. 850 bool RunOnAllFunctions = true; 851 852 StringRef getPassName() const override { return "Machine Outliner"; } 853 854 void getAnalysisUsage(AnalysisUsage &AU) const override { 855 AU.addRequired<MachineModuleInfoWrapperPass>(); 856 AU.addPreserved<MachineModuleInfoWrapperPass>(); 857 AU.setPreservesAll(); 858 ModulePass::getAnalysisUsage(AU); 859 } 860 861 MachineOutliner() : ModulePass(ID) { 862 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 863 } 864 865 /// Remark output explaining that not outlining a set of candidates would be 866 /// better than outlining that set. 867 void emitNotOutliningCheaperRemark( 868 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 869 OutlinedFunction &OF); 870 871 /// Remark output explaining that a function was outlined. 872 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 873 874 /// Find all repeated substrings that satisfy the outlining cost model by 875 /// constructing a suffix tree. 876 /// 877 /// If a substring appears at least twice, then it must be represented by 878 /// an internal node which appears in at least two suffixes. Each suffix 879 /// is represented by a leaf node. To do this, we visit each internal node 880 /// in the tree, using the leaf children of each internal node. If an 881 /// internal node represents a beneficial substring, then we use each of 882 /// its leaf children to find the locations of its substring. 883 /// 884 /// \param Mapper Contains outlining mapping information. 885 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 886 /// each type of candidate. 887 void findCandidates(InstructionMapper &Mapper, 888 std::vector<OutlinedFunction> &FunctionList); 889 890 /// Replace the sequences of instructions represented by \p OutlinedFunctions 891 /// with calls to functions. 892 /// 893 /// \param M The module we are outlining from. 894 /// \param FunctionList A list of functions to be inserted into the module. 895 /// \param Mapper Contains the instruction mappings for the module. 896 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 897 InstructionMapper &Mapper, unsigned &OutlinedFunctionNum); 898 899 /// Creates a function for \p OF and inserts it into the module. 900 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 901 InstructionMapper &Mapper, 902 unsigned Name); 903 904 /// Calls 'doOutline()'. 905 bool runOnModule(Module &M) override; 906 907 /// Construct a suffix tree on the instructions in \p M and outline repeated 908 /// strings from that tree. 909 bool doOutline(Module &M, unsigned &OutlinedFunctionNum); 910 911 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 912 /// function for remark emission. 913 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 914 for (const Candidate &C : OF.Candidates) 915 if (MachineFunction *MF = C.getMF()) 916 if (DISubprogram *SP = MF->getFunction().getSubprogram()) 917 return SP; 918 return nullptr; 919 } 920 921 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 922 /// These are used to construct a suffix tree. 923 void populateMapper(InstructionMapper &Mapper, Module &M, 924 MachineModuleInfo &MMI); 925 926 /// Initialize information necessary to output a size remark. 927 /// FIXME: This should be handled by the pass manager, not the outliner. 928 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 929 /// pass manager. 930 void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI, 931 StringMap<unsigned> &FunctionToInstrCount); 932 933 /// Emit the remark. 934 // FIXME: This should be handled by the pass manager, not the outliner. 935 void 936 emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI, 937 const StringMap<unsigned> &FunctionToInstrCount); 938 }; 939 } // Anonymous namespace. 940 941 char MachineOutliner::ID = 0; 942 943 namespace llvm { 944 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 945 MachineOutliner *OL = new MachineOutliner(); 946 OL->RunOnAllFunctions = RunOnAllFunctions; 947 return OL; 948 } 949 950 } // namespace llvm 951 952 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 953 false) 954 955 void MachineOutliner::emitNotOutliningCheaperRemark( 956 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 957 OutlinedFunction &OF) { 958 // FIXME: Right now, we arbitrarily choose some Candidate from the 959 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 960 // We should probably sort these by function name or something to make sure 961 // the remarks are stable. 962 Candidate &C = CandidatesForRepeatedSeq.front(); 963 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 964 MORE.emit([&]() { 965 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 966 C.front()->getDebugLoc(), C.getMBB()); 967 R << "Did not outline " << NV("Length", StringLen) << " instructions" 968 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 969 << " locations." 970 << " Bytes from outlining all occurrences (" 971 << NV("OutliningCost", OF.getOutliningCost()) << ")" 972 << " >= Unoutlined instruction bytes (" 973 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 974 << " (Also found at: "; 975 976 // Tell the user the other places the candidate was found. 977 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 978 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 979 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 980 if (i != e - 1) 981 R << ", "; 982 } 983 984 R << ")"; 985 return R; 986 }); 987 } 988 989 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 990 MachineBasicBlock *MBB = &*OF.MF->begin(); 991 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 992 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 993 MBB->findDebugLoc(MBB->begin()), MBB); 994 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 995 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 996 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 997 << " locations. " 998 << "(Found at: "; 999 1000 // Tell the user the other places the candidate was found. 1001 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1002 1003 R << NV((Twine("StartLoc") + Twine(i)).str(), 1004 OF.Candidates[i].front()->getDebugLoc()); 1005 if (i != e - 1) 1006 R << ", "; 1007 } 1008 1009 R << ")"; 1010 1011 MORE.emit(R); 1012 } 1013 1014 void MachineOutliner::findCandidates( 1015 InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) { 1016 FunctionList.clear(); 1017 SuffixTree ST(Mapper.UnsignedVec); 1018 1019 // First, find all of the repeated substrings in the tree of minimum length 1020 // 2. 1021 std::vector<Candidate> CandidatesForRepeatedSeq; 1022 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1023 CandidatesForRepeatedSeq.clear(); 1024 SuffixTree::RepeatedSubstring RS = *It; 1025 unsigned StringLen = RS.Length; 1026 for (const unsigned &StartIdx : RS.StartIndices) { 1027 unsigned EndIdx = StartIdx + StringLen - 1; 1028 // Trick: Discard some candidates that would be incompatible with the 1029 // ones we've already found for this sequence. This will save us some 1030 // work in candidate selection. 1031 // 1032 // If two candidates overlap, then we can't outline them both. This 1033 // happens when we have candidates that look like, say 1034 // 1035 // AA (where each "A" is an instruction). 1036 // 1037 // We might have some portion of the module that looks like this: 1038 // AAAAAA (6 A's) 1039 // 1040 // In this case, there are 5 different copies of "AA" in this range, but 1041 // at most 3 can be outlined. If only outlining 3 of these is going to 1042 // be unbeneficial, then we ought to not bother. 1043 // 1044 // Note that two things DON'T overlap when they look like this: 1045 // start1...end1 .... start2...end2 1046 // That is, one must either 1047 // * End before the other starts 1048 // * Start after the other ends 1049 if (std::all_of( 1050 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1051 [&StartIdx, &EndIdx](const Candidate &C) { 1052 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1053 })) { 1054 // It doesn't overlap with anything, so we can outline it. 1055 // Each sequence is over [StartIt, EndIt]. 1056 // Save the candidate and its location. 1057 1058 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1059 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1060 MachineBasicBlock *MBB = StartIt->getParent(); 1061 1062 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1063 EndIt, MBB, FunctionList.size(), 1064 Mapper.MBBFlagsMap[MBB]); 1065 } 1066 } 1067 1068 // We've found something we might want to outline. 1069 // Create an OutlinedFunction to store it and check if it'd be beneficial 1070 // to outline. 1071 if (CandidatesForRepeatedSeq.size() < 2) 1072 continue; 1073 1074 // Arbitrarily choose a TII from the first candidate. 1075 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1076 const TargetInstrInfo *TII = 1077 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1078 1079 OutlinedFunction OF = 1080 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1081 1082 // If we deleted too many candidates, then there's nothing worth outlining. 1083 // FIXME: This should take target-specified instruction sizes into account. 1084 if (OF.Candidates.size() < 2) 1085 continue; 1086 1087 // Is it better to outline this candidate than not? 1088 if (OF.getBenefit() < 1) { 1089 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1090 continue; 1091 } 1092 1093 FunctionList.push_back(OF); 1094 } 1095 } 1096 1097 MachineFunction *MachineOutliner::createOutlinedFunction( 1098 Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) { 1099 1100 // Create the function name. This should be unique. 1101 // FIXME: We should have a better naming scheme. This should be stable, 1102 // regardless of changes to the outliner's cost model/traversal order. 1103 std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); 1104 1105 // Create the function using an IR-level function. 1106 LLVMContext &C = M.getContext(); 1107 Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1108 Function::ExternalLinkage, FunctionName, M); 1109 1110 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1111 // which gives us better results when we outline from linkonceodr functions. 1112 F->setLinkage(GlobalValue::InternalLinkage); 1113 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1114 1115 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1116 // necessary. 1117 1118 // Set optsize/minsize, so we don't insert padding between outlined 1119 // functions. 1120 F->addFnAttr(Attribute::OptimizeForSize); 1121 F->addFnAttr(Attribute::MinSize); 1122 1123 // Include target features from an arbitrary candidate for the outlined 1124 // function. This makes sure the outlined function knows what kinds of 1125 // instructions are going into it. This is fine, since all parent functions 1126 // must necessarily support the instructions that are in the outlined region. 1127 Candidate &FirstCand = OF.Candidates.front(); 1128 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1129 if (ParentFn.hasFnAttribute("target-features")) 1130 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1131 1132 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1133 IRBuilder<> Builder(EntryBB); 1134 Builder.CreateRetVoid(); 1135 1136 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1137 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1138 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1139 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1140 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1141 1142 // Insert the new function into the module. 1143 MF.insert(MF.begin(), &MBB); 1144 1145 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1146 ++I) { 1147 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1148 NewMI->dropMemRefs(MF); 1149 1150 // Don't keep debug information for outlined instructions. 1151 NewMI->setDebugLoc(DebugLoc()); 1152 MBB.insert(MBB.end(), NewMI); 1153 } 1154 1155 TII.buildOutlinedFrame(MBB, MF, OF); 1156 1157 // Outlined functions shouldn't preserve liveness. 1158 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1159 MF.getRegInfo().freezeReservedRegs(MF); 1160 1161 // If there's a DISubprogram associated with this outlined function, then 1162 // emit debug info for the outlined function. 1163 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1164 // We have a DISubprogram. Get its DICompileUnit. 1165 DICompileUnit *CU = SP->getUnit(); 1166 DIBuilder DB(M, true, CU); 1167 DIFile *Unit = SP->getFile(); 1168 Mangler Mg; 1169 // Get the mangled name of the function for the linkage name. 1170 std::string Dummy; 1171 llvm::raw_string_ostream MangledNameStream(Dummy); 1172 Mg.getNameWithPrefix(MangledNameStream, F, false); 1173 1174 DISubprogram *OutlinedSP = DB.createFunction( 1175 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1176 Unit /* File */, 1177 0 /* Line 0 is reserved for compiler-generated code. */, 1178 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1179 0, /* Line 0 is reserved for compiler-generated code. */ 1180 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1181 /* Outlined code is optimized code by definition. */ 1182 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1183 1184 // Don't add any new variables to the subprogram. 1185 DB.finalizeSubprogram(OutlinedSP); 1186 1187 // Attach subprogram to the function. 1188 F->setSubprogram(OutlinedSP); 1189 // We're done with the DIBuilder. 1190 DB.finalize(); 1191 } 1192 1193 return &MF; 1194 } 1195 1196 bool MachineOutliner::outline(Module &M, 1197 std::vector<OutlinedFunction> &FunctionList, 1198 InstructionMapper &Mapper, 1199 unsigned &OutlinedFunctionNum) { 1200 1201 bool OutlinedSomething = false; 1202 1203 // Sort by benefit. The most beneficial functions should be outlined first. 1204 llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, 1205 const OutlinedFunction &RHS) { 1206 return LHS.getBenefit() > RHS.getBenefit(); 1207 }); 1208 1209 // Walk over each function, outlining them as we go along. Functions are 1210 // outlined greedily, based off the sort above. 1211 for (OutlinedFunction &OF : FunctionList) { 1212 // If we outlined something that overlapped with a candidate in a previous 1213 // step, then we can't outline from it. 1214 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1215 return std::any_of( 1216 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1217 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1218 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1219 }); 1220 1221 // If we made it unbeneficial to outline this function, skip it. 1222 if (OF.getBenefit() < 1) 1223 continue; 1224 1225 // It's beneficial. Create the function and outline its sequence's 1226 // occurrences. 1227 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1228 emitOutlinedFunctionRemark(OF); 1229 FunctionsCreated++; 1230 OutlinedFunctionNum++; // Created a function, move to the next name. 1231 MachineFunction *MF = OF.MF; 1232 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1233 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1234 1235 // Replace occurrences of the sequence with calls to the new function. 1236 for (Candidate &C : OF.Candidates) { 1237 MachineBasicBlock &MBB = *C.getMBB(); 1238 MachineBasicBlock::iterator StartIt = C.front(); 1239 MachineBasicBlock::iterator EndIt = C.back(); 1240 1241 // Insert the call. 1242 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1243 1244 // If the caller tracks liveness, then we need to make sure that 1245 // anything we outline doesn't break liveness assumptions. The outlined 1246 // functions themselves currently don't track liveness, but we should 1247 // make sure that the ranges we yank things out of aren't wrong. 1248 if (MBB.getParent()->getProperties().hasProperty( 1249 MachineFunctionProperties::Property::TracksLiveness)) { 1250 // Helper lambda for adding implicit def operands to the call 1251 // instruction. It also updates call site information for moved 1252 // code. 1253 auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) { 1254 for (MachineOperand &MOP : MI.operands()) { 1255 // Skip over anything that isn't a register. 1256 if (!MOP.isReg()) 1257 continue; 1258 1259 // If it's a def, add it to the call instruction. 1260 if (MOP.isDef()) 1261 CallInst->addOperand(MachineOperand::CreateReg( 1262 MOP.getReg(), true, /* isDef = true */ 1263 true /* isImp = true */)); 1264 } 1265 if (MI.isCall()) 1266 MI.getMF()->eraseCallSiteInfo(&MI); 1267 }; 1268 // Copy over the defs in the outlined range. 1269 // First inst in outlined range <-- Anything that's defined in this 1270 // ... .. range has to be added as an 1271 // implicit Last inst in outlined range <-- def to the call 1272 // instruction. Also remove call site information for outlined block 1273 // of code. 1274 std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls); 1275 } 1276 1277 // Erase from the point after where the call was inserted up to, and 1278 // including, the final instruction in the sequence. 1279 // Erase needs one past the end, so we need std::next there too. 1280 MBB.erase(std::next(StartIt), std::next(EndIt)); 1281 1282 // Keep track of what we removed by marking them all as -1. 1283 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1284 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1285 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1286 OutlinedSomething = true; 1287 1288 // Statistics. 1289 NumOutlined++; 1290 } 1291 } 1292 1293 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1294 1295 return OutlinedSomething; 1296 } 1297 1298 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1299 MachineModuleInfo &MMI) { 1300 // Build instruction mappings for each function in the module. Start by 1301 // iterating over each Function in M. 1302 for (Function &F : M) { 1303 1304 // If there's nothing in F, then there's no reason to try and outline from 1305 // it. 1306 if (F.empty()) 1307 continue; 1308 1309 // Disable outlining from noreturn functions right now. Noreturn requires 1310 // special handling for the case where what we are outlining could be a 1311 // tail call. 1312 if (F.hasFnAttribute(Attribute::NoReturn)) 1313 continue; 1314 1315 // There's something in F. Check if it has a MachineFunction associated with 1316 // it. 1317 MachineFunction *MF = MMI.getMachineFunction(F); 1318 1319 // If it doesn't, then there's nothing to outline from. Move to the next 1320 // Function. 1321 if (!MF) 1322 continue; 1323 1324 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1325 1326 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1327 continue; 1328 1329 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1330 // If it isn't, then move on to the next Function in the module. 1331 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1332 continue; 1333 1334 // We have a function suitable for outlining. Iterate over every 1335 // MachineBasicBlock in MF and try to map its instructions to a list of 1336 // unsigned integers. 1337 for (MachineBasicBlock &MBB : *MF) { 1338 // If there isn't anything in MBB, then there's no point in outlining from 1339 // it. 1340 // If there are fewer than 2 instructions in the MBB, then it can't ever 1341 // contain something worth outlining. 1342 // FIXME: This should be based off of the maximum size in B of an outlined 1343 // call versus the size in B of the MBB. 1344 if (MBB.empty() || MBB.size() < 2) 1345 continue; 1346 1347 // Check if MBB could be the target of an indirect branch. If it is, then 1348 // we don't want to outline from it. 1349 if (MBB.hasAddressTaken()) 1350 continue; 1351 1352 // MBB is suitable for outlining. Map it to a list of unsigneds. 1353 Mapper.convertToUnsignedVec(MBB, *TII); 1354 } 1355 } 1356 } 1357 1358 void MachineOutliner::initSizeRemarkInfo( 1359 const Module &M, const MachineModuleInfo &MMI, 1360 StringMap<unsigned> &FunctionToInstrCount) { 1361 // Collect instruction counts for every function. We'll use this to emit 1362 // per-function size remarks later. 1363 for (const Function &F : M) { 1364 MachineFunction *MF = MMI.getMachineFunction(F); 1365 1366 // We only care about MI counts here. If there's no MachineFunction at this 1367 // point, then there won't be after the outliner runs, so let's move on. 1368 if (!MF) 1369 continue; 1370 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1371 } 1372 } 1373 1374 void MachineOutliner::emitInstrCountChangedRemark( 1375 const Module &M, const MachineModuleInfo &MMI, 1376 const StringMap<unsigned> &FunctionToInstrCount) { 1377 // Iterate over each function in the module and emit remarks. 1378 // Note that we won't miss anything by doing this, because the outliner never 1379 // deletes functions. 1380 for (const Function &F : M) { 1381 MachineFunction *MF = MMI.getMachineFunction(F); 1382 1383 // The outliner never deletes functions. If we don't have a MF here, then we 1384 // didn't have one prior to outlining either. 1385 if (!MF) 1386 continue; 1387 1388 std::string Fname = F.getName(); 1389 unsigned FnCountAfter = MF->getInstructionCount(); 1390 unsigned FnCountBefore = 0; 1391 1392 // Check if the function was recorded before. 1393 auto It = FunctionToInstrCount.find(Fname); 1394 1395 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1396 // to that. 1397 if (It != FunctionToInstrCount.end()) 1398 FnCountBefore = It->second; 1399 1400 // Compute the delta and emit a remark if there was a change. 1401 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1402 static_cast<int64_t>(FnCountBefore); 1403 if (FnDelta == 0) 1404 continue; 1405 1406 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1407 MORE.emit([&]() { 1408 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1409 DiagnosticLocation(), &MF->front()); 1410 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1411 << ": Function: " 1412 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1413 << ": MI instruction count changed from " 1414 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1415 FnCountBefore) 1416 << " to " 1417 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1418 FnCountAfter) 1419 << "; Delta: " 1420 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1421 return R; 1422 }); 1423 } 1424 } 1425 1426 bool MachineOutliner::runOnModule(Module &M) { 1427 // Check if there's anything in the module. If it's empty, then there's 1428 // nothing to outline. 1429 if (M.empty()) 1430 return false; 1431 1432 // Number to append to the current outlined function. 1433 unsigned OutlinedFunctionNum = 0; 1434 1435 if (!doOutline(M, OutlinedFunctionNum)) 1436 return false; 1437 return true; 1438 } 1439 1440 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) { 1441 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1442 1443 // If the user passed -enable-machine-outliner=always or 1444 // -enable-machine-outliner, the pass will run on all functions in the module. 1445 // Otherwise, if the target supports default outlining, it will run on all 1446 // functions deemed by the target to be worth outlining from by default. Tell 1447 // the user how the outliner is running. 1448 LLVM_DEBUG({ 1449 dbgs() << "Machine Outliner: Running on "; 1450 if (RunOnAllFunctions) 1451 dbgs() << "all functions"; 1452 else 1453 dbgs() << "target-default functions"; 1454 dbgs() << "\n"; 1455 }); 1456 1457 // If the user specifies that they want to outline from linkonceodrs, set 1458 // it here. 1459 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1460 InstructionMapper Mapper; 1461 1462 // Prepare instruction mappings for the suffix tree. 1463 populateMapper(Mapper, M, MMI); 1464 std::vector<OutlinedFunction> FunctionList; 1465 1466 // Find all of the outlining candidates. 1467 findCandidates(Mapper, FunctionList); 1468 1469 // If we've requested size remarks, then collect the MI counts of every 1470 // function before outlining, and the MI counts after outlining. 1471 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1472 // the pass manager's responsibility. 1473 // This could pretty easily be placed in outline instead, but because we 1474 // really ultimately *don't* want this here, it's done like this for now 1475 // instead. 1476 1477 // Check if we want size remarks. 1478 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1479 StringMap<unsigned> FunctionToInstrCount; 1480 if (ShouldEmitSizeRemarks) 1481 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1482 1483 // Outline each of the candidates and return true if something was outlined. 1484 bool OutlinedSomething = 1485 outline(M, FunctionList, Mapper, OutlinedFunctionNum); 1486 1487 // If we outlined something, we definitely changed the MI count of the 1488 // module. If we've asked for size remarks, then output them. 1489 // FIXME: This should be in the pass manager. 1490 if (ShouldEmitSizeRemarks && OutlinedSomething) 1491 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1492 1493 return OutlinedSomething; 1494 } 1495