1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 19 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 20 /// how this pass works, the talk is available on YouTube at 21 /// 22 /// https://www.youtube.com/watch?v=yorld-WSOeU 23 /// 24 /// The slides for the talk are available at 25 /// 26 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 27 /// 28 /// The talk provides an overview of how the outliner finds candidates and 29 /// ultimately outlines them. It describes how the main data structure for this 30 /// pass, the suffix tree, is queried and purged for candidates. It also gives 31 /// a simplified suffix tree construction algorithm for suffix trees based off 32 /// of the algorithm actually used here, Ukkonen's algorithm. 33 /// 34 /// For the original RFC for this pass, please see 35 /// 36 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 37 /// 38 /// For more information on the suffix tree data structure, please see 39 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 40 /// 41 //===----------------------------------------------------------------------===// 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/ADT/Twine.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineModuleInfo.h" 49 #include "llvm/CodeGen/Passes.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/Support/Allocator.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <functional> 59 #include <map> 60 #include <sstream> 61 #include <tuple> 62 #include <vector> 63 64 #define DEBUG_TYPE "machine-outliner" 65 66 using namespace llvm; 67 68 STATISTIC(NumOutlined, "Number of candidates outlined"); 69 STATISTIC(FunctionsCreated, "Number of functions created"); 70 71 namespace { 72 73 /// \brief An individual sequence of instructions to be replaced with a call to 74 /// an outlined function. 75 struct Candidate { 76 77 /// Set to false if the candidate overlapped with another candidate. 78 bool InCandidateList = true; 79 80 /// The start index of this \p Candidate. 81 size_t StartIdx; 82 83 /// The number of instructions in this \p Candidate. 84 size_t Len; 85 86 /// The index of this \p Candidate's \p OutlinedFunction in the list of 87 /// \p OutlinedFunctions. 88 size_t FunctionIdx; 89 90 /// Target-defined unsigned defining how to emit a call for this candidate. 91 unsigned CallClass = 0; 92 93 /// \brief The number of instructions that would be saved by outlining every 94 /// candidate of this type. 95 /// 96 /// This is a fixed value which is not updated during the candidate pruning 97 /// process. It is only used for deciding which candidate to keep if two 98 /// candidates overlap. The true benefit is stored in the OutlinedFunction 99 /// for some given candidate. 100 unsigned Benefit = 0; 101 102 Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx, unsigned CallClass) 103 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx), 104 CallClass(CallClass) {} 105 106 Candidate() {} 107 108 /// \brief Used to ensure that \p Candidates are outlined in an order that 109 /// preserves the start and end indices of other \p Candidates. 110 bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 111 }; 112 113 /// \brief The information necessary to create an outlined function for some 114 /// class of candidate. 115 struct OutlinedFunction { 116 117 /// The actual outlined function created. 118 /// This is initialized after we go through and create the actual function. 119 MachineFunction *MF = nullptr; 120 121 /// A numbefr assigned to this function which appears at the end of its name. 122 size_t Name; 123 124 /// The number of candidates for this OutlinedFunction. 125 size_t OccurrenceCount = 0; 126 127 /// \brief The sequence of integers corresponding to the instructions in this 128 /// function. 129 std::vector<unsigned> Sequence; 130 131 /// The number of instructions this function would save. 132 unsigned Benefit = 0; 133 134 /// Target-defined unsigned defining how to emit the frame for this function. 135 unsigned FrameClass = 0; 136 137 OutlinedFunction(size_t Name, size_t OccurrenceCount, 138 const std::vector<unsigned> &Sequence, unsigned Benefit, 139 unsigned FrameClass) 140 : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 141 Benefit(Benefit), FrameClass(FrameClass) {} 142 }; 143 144 /// Represents an undefined index in the suffix tree. 145 const size_t EmptyIdx = -1; 146 147 /// A node in a suffix tree which represents a substring or suffix. 148 /// 149 /// Each node has either no children or at least two children, with the root 150 /// being a exception in the empty tree. 151 /// 152 /// Children are represented as a map between unsigned integers and nodes. If 153 /// a node N has a child M on unsigned integer k, then the mapping represented 154 /// by N is a proper prefix of the mapping represented by M. Note that this, 155 /// although similar to a trie is somewhat different: each node stores a full 156 /// substring of the full mapping rather than a single character state. 157 /// 158 /// Each internal node contains a pointer to the internal node representing 159 /// the same string, but with the first character chopped off. This is stored 160 /// in \p Link. Each leaf node stores the start index of its respective 161 /// suffix in \p SuffixIdx. 162 struct SuffixTreeNode { 163 164 /// The children of this node. 165 /// 166 /// A child existing on an unsigned integer implies that from the mapping 167 /// represented by the current node, there is a way to reach another 168 /// mapping by tacking that character on the end of the current string. 169 DenseMap<unsigned, SuffixTreeNode *> Children; 170 171 /// A flag set to false if the node has been pruned from the tree. 172 bool IsInTree = true; 173 174 /// The start index of this node's substring in the main string. 175 size_t StartIdx = EmptyIdx; 176 177 /// The end index of this node's substring in the main string. 178 /// 179 /// Every leaf node must have its \p EndIdx incremented at the end of every 180 /// step in the construction algorithm. To avoid having to update O(N) 181 /// nodes individually at the end of every step, the end index is stored 182 /// as a pointer. 183 size_t *EndIdx = nullptr; 184 185 /// For leaves, the start index of the suffix represented by this node. 186 /// 187 /// For all other nodes, this is ignored. 188 size_t SuffixIdx = EmptyIdx; 189 190 /// \brief For internal nodes, a pointer to the internal node representing 191 /// the same sequence with the first character chopped off. 192 /// 193 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 194 /// Ukkonen's algorithm does to achieve linear-time construction is 195 /// keep track of which node the next insert should be at. This makes each 196 /// insert O(1), and there are a total of O(N) inserts. The suffix link 197 /// helps with inserting children of internal nodes. 198 /// 199 /// Say we add a child to an internal node with associated mapping S. The 200 /// next insertion must be at the node representing S - its first character. 201 /// This is given by the way that we iteratively build the tree in Ukkonen's 202 /// algorithm. The main idea is to look at the suffixes of each prefix in the 203 /// string, starting with the longest suffix of the prefix, and ending with 204 /// the shortest. Therefore, if we keep pointers between such nodes, we can 205 /// move to the next insertion point in O(1) time. If we don't, then we'd 206 /// have to query from the root, which takes O(N) time. This would make the 207 /// construction algorithm O(N^2) rather than O(N). 208 SuffixTreeNode *Link = nullptr; 209 210 /// The parent of this node. Every node except for the root has a parent. 211 SuffixTreeNode *Parent = nullptr; 212 213 /// The number of times this node's string appears in the tree. 214 /// 215 /// This is equal to the number of leaf children of the string. It represents 216 /// the number of suffixes that the node's string is a prefix of. 217 size_t OccurrenceCount = 0; 218 219 /// The length of the string formed by concatenating the edge labels from the 220 /// root to this node. 221 size_t ConcatLen = 0; 222 223 /// Returns true if this node is a leaf. 224 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 225 226 /// Returns true if this node is the root of its owning \p SuffixTree. 227 bool isRoot() const { return StartIdx == EmptyIdx; } 228 229 /// Return the number of elements in the substring associated with this node. 230 size_t size() const { 231 232 // Is it the root? If so, it's the empty string so return 0. 233 if (isRoot()) 234 return 0; 235 236 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 237 238 // Size = the number of elements in the string. 239 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 240 return *EndIdx - StartIdx + 1; 241 } 242 243 SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link, 244 SuffixTreeNode *Parent) 245 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 246 247 SuffixTreeNode() {} 248 }; 249 250 /// A data structure for fast substring queries. 251 /// 252 /// Suffix trees represent the suffixes of their input strings in their leaves. 253 /// A suffix tree is a type of compressed trie structure where each node 254 /// represents an entire substring rather than a single character. Each leaf 255 /// of the tree is a suffix. 256 /// 257 /// A suffix tree can be seen as a type of state machine where each state is a 258 /// substring of the full string. The tree is structured so that, for a string 259 /// of length N, there are exactly N leaves in the tree. This structure allows 260 /// us to quickly find repeated substrings of the input string. 261 /// 262 /// In this implementation, a "string" is a vector of unsigned integers. 263 /// These integers may result from hashing some data type. A suffix tree can 264 /// contain 1 or many strings, which can then be queried as one large string. 265 /// 266 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 267 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 268 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 269 /// paper is available at 270 /// 271 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 272 class SuffixTree { 273 public: 274 /// Stores each leaf node in the tree. 275 /// 276 /// This is used for finding outlining candidates. 277 std::vector<SuffixTreeNode *> LeafVector; 278 279 /// Each element is an integer representing an instruction in the module. 280 ArrayRef<unsigned> Str; 281 282 private: 283 /// Maintains each node in the tree. 284 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 285 286 /// The root of the suffix tree. 287 /// 288 /// The root represents the empty string. It is maintained by the 289 /// \p NodeAllocator like every other node in the tree. 290 SuffixTreeNode *Root = nullptr; 291 292 /// Maintains the end indices of the internal nodes in the tree. 293 /// 294 /// Each internal node is guaranteed to never have its end index change 295 /// during the construction algorithm; however, leaves must be updated at 296 /// every step. Therefore, we need to store leaf end indices by reference 297 /// to avoid updating O(N) leaves at every step of construction. Thus, 298 /// every internal node must be allocated its own end index. 299 BumpPtrAllocator InternalEndIdxAllocator; 300 301 /// The end index of each leaf in the tree. 302 size_t LeafEndIdx = -1; 303 304 /// \brief Helper struct which keeps track of the next insertion point in 305 /// Ukkonen's algorithm. 306 struct ActiveState { 307 /// The next node to insert at. 308 SuffixTreeNode *Node; 309 310 /// The index of the first character in the substring currently being added. 311 size_t Idx = EmptyIdx; 312 313 /// The length of the substring we have to add at the current step. 314 size_t Len = 0; 315 }; 316 317 /// \brief The point the next insertion will take place at in the 318 /// construction algorithm. 319 ActiveState Active; 320 321 /// Allocate a leaf node and add it to the tree. 322 /// 323 /// \param Parent The parent of this node. 324 /// \param StartIdx The start index of this node's associated string. 325 /// \param Edge The label on the edge leaving \p Parent to this node. 326 /// 327 /// \returns A pointer to the allocated leaf node. 328 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx, 329 unsigned Edge) { 330 331 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 332 333 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 334 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 335 Parent.Children[Edge] = N; 336 337 return N; 338 } 339 340 /// Allocate an internal node and add it to the tree. 341 /// 342 /// \param Parent The parent of this node. Only null when allocating the root. 343 /// \param StartIdx The start index of this node's associated string. 344 /// \param EndIdx The end index of this node's associated string. 345 /// \param Edge The label on the edge leaving \p Parent to this node. 346 /// 347 /// \returns A pointer to the allocated internal node. 348 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx, 349 size_t EndIdx, unsigned Edge) { 350 351 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 352 assert(!(!Parent && StartIdx != EmptyIdx) && 353 "Non-root internal nodes must have parents!"); 354 355 size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx); 356 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 357 SuffixTreeNode(StartIdx, E, Root, Parent); 358 if (Parent) 359 Parent->Children[Edge] = N; 360 361 return N; 362 } 363 364 /// \brief Set the suffix indices of the leaves to the start indices of their 365 /// respective suffixes. Also stores each leaf in \p LeafVector at its 366 /// respective suffix index. 367 /// 368 /// \param[in] CurrNode The node currently being visited. 369 /// \param CurrIdx The current index of the string being visited. 370 void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) { 371 372 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 373 374 // Store the length of the concatenation of all strings from the root to 375 // this node. 376 if (!CurrNode.isRoot()) { 377 if (CurrNode.ConcatLen == 0) 378 CurrNode.ConcatLen = CurrNode.size(); 379 380 if (CurrNode.Parent) 381 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 382 } 383 384 // Traverse the tree depth-first. 385 for (auto &ChildPair : CurrNode.Children) { 386 assert(ChildPair.second && "Node had a null child!"); 387 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 388 } 389 390 // Is this node a leaf? 391 if (IsLeaf) { 392 // If yes, give it a suffix index and bump its parent's occurrence count. 393 CurrNode.SuffixIdx = Str.size() - CurrIdx; 394 assert(CurrNode.Parent && "CurrNode had no parent!"); 395 CurrNode.Parent->OccurrenceCount++; 396 397 // Store the leaf in the leaf vector for pruning later. 398 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 399 } 400 } 401 402 /// \brief Construct the suffix tree for the prefix of the input ending at 403 /// \p EndIdx. 404 /// 405 /// Used to construct the full suffix tree iteratively. At the end of each 406 /// step, the constructed suffix tree is either a valid suffix tree, or a 407 /// suffix tree with implicit suffixes. At the end of the final step, the 408 /// suffix tree is a valid tree. 409 /// 410 /// \param EndIdx The end index of the current prefix in the main string. 411 /// \param SuffixesToAdd The number of suffixes that must be added 412 /// to complete the suffix tree at the current phase. 413 /// 414 /// \returns The number of suffixes that have not been added at the end of 415 /// this step. 416 unsigned extend(size_t EndIdx, size_t SuffixesToAdd) { 417 SuffixTreeNode *NeedsLink = nullptr; 418 419 while (SuffixesToAdd > 0) { 420 421 // Are we waiting to add anything other than just the last character? 422 if (Active.Len == 0) { 423 // If not, then say the active index is the end index. 424 Active.Idx = EndIdx; 425 } 426 427 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 428 429 // The first character in the current substring we're looking at. 430 unsigned FirstChar = Str[Active.Idx]; 431 432 // Have we inserted anything starting with FirstChar at the current node? 433 if (Active.Node->Children.count(FirstChar) == 0) { 434 // If not, then we can just insert a leaf and move too the next step. 435 insertLeaf(*Active.Node, EndIdx, FirstChar); 436 437 // The active node is an internal node, and we visited it, so it must 438 // need a link if it doesn't have one. 439 if (NeedsLink) { 440 NeedsLink->Link = Active.Node; 441 NeedsLink = nullptr; 442 } 443 } else { 444 // There's a match with FirstChar, so look for the point in the tree to 445 // insert a new node. 446 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 447 448 size_t SubstringLen = NextNode->size(); 449 450 // Is the current suffix we're trying to insert longer than the size of 451 // the child we want to move to? 452 if (Active.Len >= SubstringLen) { 453 // If yes, then consume the characters we've seen and move to the next 454 // node. 455 Active.Idx += SubstringLen; 456 Active.Len -= SubstringLen; 457 Active.Node = NextNode; 458 continue; 459 } 460 461 // Otherwise, the suffix we're trying to insert must be contained in the 462 // next node we want to move to. 463 unsigned LastChar = Str[EndIdx]; 464 465 // Is the string we're trying to insert a substring of the next node? 466 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 467 // If yes, then we're done for this step. Remember our insertion point 468 // and move to the next end index. At this point, we have an implicit 469 // suffix tree. 470 if (NeedsLink && !Active.Node->isRoot()) { 471 NeedsLink->Link = Active.Node; 472 NeedsLink = nullptr; 473 } 474 475 Active.Len++; 476 break; 477 } 478 479 // The string we're trying to insert isn't a substring of the next node, 480 // but matches up to a point. Split the node. 481 // 482 // For example, say we ended our search at a node n and we're trying to 483 // insert ABD. Then we'll create a new node s for AB, reduce n to just 484 // representing C, and insert a new leaf node l to represent d. This 485 // allows us to ensure that if n was a leaf, it remains a leaf. 486 // 487 // | ABC ---split---> | AB 488 // n s 489 // C / \ D 490 // n l 491 492 // The node s from the diagram 493 SuffixTreeNode *SplitNode = 494 insertInternalNode(Active.Node, NextNode->StartIdx, 495 NextNode->StartIdx + Active.Len - 1, FirstChar); 496 497 // Insert the new node representing the new substring into the tree as 498 // a child of the split node. This is the node l from the diagram. 499 insertLeaf(*SplitNode, EndIdx, LastChar); 500 501 // Make the old node a child of the split node and update its start 502 // index. This is the node n from the diagram. 503 NextNode->StartIdx += Active.Len; 504 NextNode->Parent = SplitNode; 505 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 506 507 // SplitNode is an internal node, update the suffix link. 508 if (NeedsLink) 509 NeedsLink->Link = SplitNode; 510 511 NeedsLink = SplitNode; 512 } 513 514 // We've added something new to the tree, so there's one less suffix to 515 // add. 516 SuffixesToAdd--; 517 518 if (Active.Node->isRoot()) { 519 if (Active.Len > 0) { 520 Active.Len--; 521 Active.Idx = EndIdx - SuffixesToAdd + 1; 522 } 523 } else { 524 // Start the next phase at the next smallest suffix. 525 Active.Node = Active.Node->Link; 526 } 527 } 528 529 return SuffixesToAdd; 530 } 531 532 public: 533 /// Construct a suffix tree from a sequence of unsigned integers. 534 /// 535 /// \param Str The string to construct the suffix tree for. 536 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 537 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 538 Root->IsInTree = true; 539 Active.Node = Root; 540 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 541 542 // Keep track of the number of suffixes we have to add of the current 543 // prefix. 544 size_t SuffixesToAdd = 0; 545 Active.Node = Root; 546 547 // Construct the suffix tree iteratively on each prefix of the string. 548 // PfxEndIdx is the end index of the current prefix. 549 // End is one past the last element in the string. 550 for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { 551 SuffixesToAdd++; 552 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 553 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 554 } 555 556 // Set the suffix indices of each leaf. 557 assert(Root && "Root node can't be nullptr!"); 558 setSuffixIndices(*Root, 0); 559 } 560 }; 561 562 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 563 struct InstructionMapper { 564 565 /// \brief The next available integer to assign to a \p MachineInstr that 566 /// cannot be outlined. 567 /// 568 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 569 unsigned IllegalInstrNumber = -3; 570 571 /// \brief The next available integer to assign to a \p MachineInstr that can 572 /// be outlined. 573 unsigned LegalInstrNumber = 0; 574 575 /// Correspondence from \p MachineInstrs to unsigned integers. 576 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 577 InstructionIntegerMap; 578 579 /// Corresponcence from unsigned integers to \p MachineInstrs. 580 /// Inverse of \p InstructionIntegerMap. 581 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 582 583 /// The vector of unsigned integers that the module is mapped to. 584 std::vector<unsigned> UnsignedVec; 585 586 /// \brief Stores the location of the instruction associated with the integer 587 /// at index i in \p UnsignedVec for each index i. 588 std::vector<MachineBasicBlock::iterator> InstrList; 589 590 /// \brief Maps \p *It to a legal integer. 591 /// 592 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 593 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 594 /// 595 /// \returns The integer that \p *It was mapped to. 596 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 597 598 // Get the integer for this instruction or give it the current 599 // LegalInstrNumber. 600 InstrList.push_back(It); 601 MachineInstr &MI = *It; 602 bool WasInserted; 603 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 604 ResultIt; 605 std::tie(ResultIt, WasInserted) = 606 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 607 unsigned MINumber = ResultIt->second; 608 609 // There was an insertion. 610 if (WasInserted) { 611 LegalInstrNumber++; 612 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 613 } 614 615 UnsignedVec.push_back(MINumber); 616 617 // Make sure we don't overflow or use any integers reserved by the DenseMap. 618 if (LegalInstrNumber >= IllegalInstrNumber) 619 report_fatal_error("Instruction mapping overflow!"); 620 621 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 622 "Tried to assign DenseMap tombstone or empty key to instruction."); 623 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 624 "Tried to assign DenseMap tombstone or empty key to instruction."); 625 626 return MINumber; 627 } 628 629 /// Maps \p *It to an illegal integer. 630 /// 631 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 632 /// 633 /// \returns The integer that \p *It was mapped to. 634 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 635 unsigned MINumber = IllegalInstrNumber; 636 637 InstrList.push_back(It); 638 UnsignedVec.push_back(IllegalInstrNumber); 639 IllegalInstrNumber--; 640 641 assert(LegalInstrNumber < IllegalInstrNumber && 642 "Instruction mapping overflow!"); 643 644 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 645 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 646 647 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 648 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 649 650 return MINumber; 651 } 652 653 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 654 /// and appends it to \p UnsignedVec and \p InstrList. 655 /// 656 /// Two instructions are assigned the same integer if they are identical. 657 /// If an instruction is deemed unsafe to outline, then it will be assigned an 658 /// unique integer. The resulting mapping is placed into a suffix tree and 659 /// queried for candidates. 660 /// 661 /// \param MBB The \p MachineBasicBlock to be translated into integers. 662 /// \param TRI \p TargetRegisterInfo for the module. 663 /// \param TII \p TargetInstrInfo for the module. 664 void convertToUnsignedVec(MachineBasicBlock &MBB, 665 const TargetRegisterInfo &TRI, 666 const TargetInstrInfo &TII) { 667 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 668 It++) { 669 670 // Keep track of where this instruction is in the module. 671 switch (TII.getOutliningType(*It)) { 672 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 673 mapToIllegalUnsigned(It); 674 break; 675 676 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 677 mapToLegalUnsigned(It); 678 break; 679 680 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 681 break; 682 } 683 } 684 685 // After we're done every insertion, uniquely terminate this part of the 686 // "string". This makes sure we won't match across basic block or function 687 // boundaries since the "end" is encoded uniquely and thus appears in no 688 // repeated substring. 689 InstrList.push_back(MBB.end()); 690 UnsignedVec.push_back(IllegalInstrNumber); 691 IllegalInstrNumber--; 692 } 693 694 InstructionMapper() { 695 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 696 // changed. 697 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 698 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 699 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 700 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 701 } 702 }; 703 704 /// \brief An interprocedural pass which finds repeated sequences of 705 /// instructions and replaces them with calls to functions. 706 /// 707 /// Each instruction is mapped to an unsigned integer and placed in a string. 708 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 709 /// is then repeatedly queried for repeated sequences of instructions. Each 710 /// non-overlapping repeated sequence is then placed in its own 711 /// \p MachineFunction and each instance is then replaced with a call to that 712 /// function. 713 struct MachineOutliner : public ModulePass { 714 715 static char ID; 716 717 StringRef getPassName() const override { return "Machine Outliner"; } 718 719 void getAnalysisUsage(AnalysisUsage &AU) const override { 720 AU.addRequired<MachineModuleInfo>(); 721 AU.addPreserved<MachineModuleInfo>(); 722 AU.setPreservesAll(); 723 ModulePass::getAnalysisUsage(AU); 724 } 725 726 MachineOutliner() : ModulePass(ID) { 727 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 728 } 729 730 /// Find all repeated substrings that satisfy the outlining cost model. 731 /// 732 /// If a substring appears at least twice, then it must be represented by 733 /// an internal node which appears in at least two suffixes. Each suffix is 734 /// represented by a leaf node. To do this, we visit each internal node in 735 /// the tree, using the leaf children of each internal node. If an internal 736 /// node represents a beneficial substring, then we use each of its leaf 737 /// children to find the locations of its substring. 738 /// 739 /// \param ST A suffix tree to query. 740 /// \param TII TargetInstrInfo for the target. 741 /// \param Mapper Contains outlining mapping information. 742 /// \param[out] CandidateList Filled with candidates representing each 743 /// beneficial substring. 744 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 745 /// type of candidate. 746 /// 747 /// \returns The length of the longest candidate found. 748 size_t findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 749 InstructionMapper &Mapper, 750 std::vector<Candidate> &CandidateList, 751 std::vector<OutlinedFunction> &FunctionList); 752 753 /// \brief Replace the sequences of instructions represented by the 754 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 755 /// described in \p FunctionList. 756 /// 757 /// \param M The module we are outlining from. 758 /// \param CandidateList A list of candidates to be outlined. 759 /// \param FunctionList A list of functions to be inserted into the module. 760 /// \param Mapper Contains the instruction mappings for the module. 761 bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 762 std::vector<OutlinedFunction> &FunctionList, 763 InstructionMapper &Mapper); 764 765 /// Creates a function for \p OF and inserts it into the module. 766 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 767 InstructionMapper &Mapper); 768 769 /// Find potential outlining candidates and store them in \p CandidateList. 770 /// 771 /// For each type of potential candidate, also build an \p OutlinedFunction 772 /// struct containing the information to build the function for that 773 /// candidate. 774 /// 775 /// \param[out] CandidateList Filled with outlining candidates for the module. 776 /// \param[out] FunctionList Filled with functions corresponding to each type 777 /// of \p Candidate. 778 /// \param ST The suffix tree for the module. 779 /// \param TII TargetInstrInfo for the module. 780 /// 781 /// \returns The length of the longest candidate found. 0 if there are none. 782 unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 783 std::vector<OutlinedFunction> &FunctionList, 784 SuffixTree &ST, InstructionMapper &Mapper, 785 const TargetInstrInfo &TII); 786 787 /// \brief Remove any overlapping candidates that weren't handled by the 788 /// suffix tree's pruning method. 789 /// 790 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 791 /// If a short candidate is chosen for outlining, then a longer candidate 792 /// which has that short candidate as a suffix is chosen, the tree's pruning 793 /// method will not find it. Thus, we need to prune before outlining as well. 794 /// 795 /// \param[in,out] CandidateList A list of outlining candidates. 796 /// \param[in,out] FunctionList A list of functions to be outlined. 797 /// \param Mapper Contains instruction mapping info for outlining. 798 /// \param MaxCandidateLen The length of the longest candidate. 799 /// \param TII TargetInstrInfo for the module. 800 void pruneOverlaps(std::vector<Candidate> &CandidateList, 801 std::vector<OutlinedFunction> &FunctionList, 802 InstructionMapper &Mapper, unsigned MaxCandidateLen, 803 const TargetInstrInfo &TII); 804 805 /// Construct a suffix tree on the instructions in \p M and outline repeated 806 /// strings from that tree. 807 bool runOnModule(Module &M) override; 808 }; 809 810 } // Anonymous namespace. 811 812 char MachineOutliner::ID = 0; 813 814 namespace llvm { 815 ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); } 816 } // namespace llvm 817 818 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 819 false) 820 821 size_t 822 MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 823 InstructionMapper &Mapper, 824 std::vector<Candidate> &CandidateList, 825 std::vector<OutlinedFunction> &FunctionList) { 826 827 CandidateList.clear(); 828 FunctionList.clear(); 829 size_t FnIdx = 0; 830 size_t MaxLen = 0; 831 832 // FIXME: Visit internal nodes instead of leaves. 833 for (SuffixTreeNode *Leaf : ST.LeafVector) { 834 assert(Leaf && "Leaves in LeafVector cannot be null!"); 835 if (!Leaf->IsInTree) 836 continue; 837 838 assert(Leaf->Parent && "All leaves must have parents!"); 839 SuffixTreeNode &Parent = *(Leaf->Parent); 840 841 // If it doesn't appear enough, or we already outlined from it, skip it. 842 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 843 continue; 844 845 // Figure out if this candidate is beneficial. 846 size_t StringLen = Leaf->ConcatLen - Leaf->size(); 847 848 // Too short to be beneficial; skip it. 849 // FIXME: This isn't necessarily true for, say, X86. If we factor in 850 // instruction lengths we need more information than this. 851 if (StringLen < 2) 852 continue; 853 854 size_t CallOverhead = 0; 855 size_t SequenceOverhead = StringLen; 856 857 // If this is a beneficial class of candidate, then every one is stored in 858 // this vector. 859 std::vector<Candidate> CandidatesForRepeatedSeq; 860 861 // Used for getOutliningFrameOverhead. 862 // FIXME: CandidatesForRepeatedSeq and this should be combined. 863 std::vector< 864 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 865 CandidateClass; 866 867 // Figure out the call overhead for each instance of the sequence. 868 for (auto &ChildPair : Parent.Children) { 869 SuffixTreeNode *M = ChildPair.second; 870 871 if (M && M->IsInTree && M->isLeaf()) { 872 // Each sequence is over [StartIt, EndIt]. 873 MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 874 MachineBasicBlock::iterator EndIt = 875 Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 876 877 // Get the overhead for calling a function for this sequence and any 878 // target-specified data for how to construct the call. 879 std::pair<size_t, unsigned> CallOverheadPair = 880 TII.getOutliningCallOverhead(StartIt, EndIt); 881 CallOverhead += CallOverheadPair.first; 882 CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, FnIdx, 883 CallOverheadPair.second); 884 CandidateClass.emplace_back(std::make_pair(StartIt, EndIt)); 885 886 // Never visit this leaf again. 887 M->IsInTree = false; 888 } 889 } 890 891 std::pair<size_t, unsigned> FrameOverheadPair = 892 TII.getOutliningFrameOverhead(CandidateClass); 893 size_t FrameOverhead = FrameOverheadPair.first; 894 895 size_t OutliningCost = CallOverhead + FrameOverhead + SequenceOverhead; 896 size_t NotOutliningCost = SequenceOverhead * Parent.OccurrenceCount; 897 898 if (NotOutliningCost <= OutliningCost) 899 continue; 900 901 size_t Benefit = NotOutliningCost - OutliningCost; 902 903 if (StringLen > MaxLen) 904 MaxLen = StringLen; 905 906 // At this point, the candidate class is seen as beneficial. Set their 907 // benefit values and save them in the candidate list. 908 for (Candidate &C : CandidatesForRepeatedSeq) { 909 C.Benefit = Benefit; 910 CandidateList.push_back(C); 911 } 912 913 // Save the function for the new candidate sequence. 914 std::vector<unsigned> CandidateSequence; 915 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 916 CandidateSequence.push_back(ST.Str[i]); 917 918 FunctionList.emplace_back(FnIdx, CandidatesForRepeatedSeq.size(), 919 CandidateSequence, Benefit, 920 FrameOverheadPair.second); 921 922 // Move to the next function. 923 FnIdx++; 924 Parent.IsInTree = false; 925 } 926 927 return MaxLen; 928 } 929 930 void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 931 std::vector<OutlinedFunction> &FunctionList, 932 InstructionMapper &Mapper, 933 unsigned MaxCandidateLen, 934 const TargetInstrInfo &TII) { 935 // TODO: Experiment with interval trees or other interval-checking structures 936 // to lower the time complexity of this function. 937 // TODO: Can we do better than the simple greedy choice? 938 // Check for overlaps in the range. 939 // This is O(MaxCandidateLen * CandidateList.size()). 940 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 941 It++) { 942 Candidate &C1 = *It; 943 OutlinedFunction &F1 = FunctionList[C1.FunctionIdx]; 944 945 // If we removed this candidate, skip it. 946 if (!C1.InCandidateList) 947 continue; 948 949 // Is it still worth it to outline C1? 950 if (F1.Benefit < 1 || F1.OccurrenceCount < 2) { 951 assert(F1.OccurrenceCount > 0 && 952 "Can't remove OutlinedFunction with no occurrences!"); 953 F1.OccurrenceCount--; 954 C1.InCandidateList = false; 955 continue; 956 } 957 958 // The minimum start index of any candidate that could overlap with this 959 // one. 960 unsigned FarthestPossibleIdx = 0; 961 962 // Either the index is 0, or it's at most MaxCandidateLen indices away. 963 if (C1.StartIdx > MaxCandidateLen) 964 FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 965 966 // Compare against the candidates in the list that start at at most 967 // FarthestPossibleIdx indices away from C1. There are at most 968 // MaxCandidateLen of these. 969 for (auto Sit = It + 1; Sit != Et; Sit++) { 970 Candidate &C2 = *Sit; 971 OutlinedFunction &F2 = FunctionList[C2.FunctionIdx]; 972 973 // Is this candidate too far away to overlap? 974 if (C2.StartIdx < FarthestPossibleIdx) 975 break; 976 977 // Did we already remove this candidate in a previous step? 978 if (!C2.InCandidateList) 979 continue; 980 981 // Is the function beneficial to outline? 982 if (F2.OccurrenceCount < 2 || F2.Benefit < 1) { 983 // If not, remove this candidate and move to the next one. 984 assert(F2.OccurrenceCount > 0 && 985 "Can't remove OutlinedFunction with no occurrences!"); 986 F2.OccurrenceCount--; 987 C2.InCandidateList = false; 988 continue; 989 } 990 991 size_t C2End = C2.StartIdx + C2.Len - 1; 992 993 // Do C1 and C2 overlap? 994 // 995 // Not overlapping: 996 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 997 // 998 // We sorted our candidate list so C2Start <= C1Start. We know that 999 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1000 // have to check is C2End < C2Start to see if we overlap. 1001 if (C2End < C1.StartIdx) 1002 continue; 1003 1004 // C1 and C2 overlap. 1005 // We need to choose the better of the two. 1006 // 1007 // Approximate this by picking the one which would have saved us the 1008 // most instructions before any pruning. 1009 if (C1.Benefit >= C2.Benefit) { 1010 1011 // C1 is better, so remove C2 and update C2's OutlinedFunction to 1012 // reflect the removal. 1013 assert(F2.OccurrenceCount > 0 && 1014 "Can't remove OutlinedFunction with no occurrences!"); 1015 F2.OccurrenceCount--; 1016 1017 // Remove the call overhead from the removed sequence. 1018 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C2.StartIdx]; 1019 MachineBasicBlock::iterator EndIt = 1020 Mapper.InstrList[C2.StartIdx + C2.Len - 1]; 1021 1022 F2.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first; 1023 // Add back one instance of the sequence. 1024 1025 if (F2.Sequence.size() > F2.Benefit) 1026 F2.Benefit = 0; 1027 else 1028 F2.Benefit -= F2.Sequence.size(); 1029 1030 C2.InCandidateList = false; 1031 1032 DEBUG(dbgs() << "- Removed C2. \n"; 1033 dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount 1034 << "\n"; 1035 dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";); 1036 1037 } else { 1038 // C2 is better, so remove C1 and update C1's OutlinedFunction to 1039 // reflect the removal. 1040 assert(F1.OccurrenceCount > 0 && 1041 "Can't remove OutlinedFunction with no occurrences!"); 1042 F1.OccurrenceCount--; 1043 1044 // Remove the call overhead from the removed sequence. 1045 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C1.StartIdx]; 1046 MachineBasicBlock::iterator EndIt = 1047 Mapper.InstrList[C1.StartIdx + C1.Len - 1]; 1048 1049 F1.Benefit += TII.getOutliningCallOverhead(StartIt, EndIt).first; 1050 1051 // Add back one instance of the sequence. 1052 if (F1.Sequence.size() > F1.Benefit) 1053 F1.Benefit = 0; 1054 else 1055 F1.Benefit -= F1.Sequence.size(); 1056 1057 C1.InCandidateList = false; 1058 1059 DEBUG(dbgs() << "- Removed C1. \n"; 1060 dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount 1061 << "\n"; 1062 dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";); 1063 1064 // C1 is out, so we don't have to compare it against anyone else. 1065 break; 1066 } 1067 } 1068 } 1069 } 1070 1071 unsigned 1072 MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1073 std::vector<OutlinedFunction> &FunctionList, 1074 SuffixTree &ST, InstructionMapper &Mapper, 1075 const TargetInstrInfo &TII) { 1076 1077 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1078 size_t MaxCandidateLen = 0; // Length of the longest candidate. 1079 1080 MaxCandidateLen = 1081 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1082 1083 // Sort the candidates in decending order. This will simplify the outlining 1084 // process when we have to remove the candidates from the mapping by 1085 // allowing us to cut them out without keeping track of an offset. 1086 std::stable_sort(CandidateList.begin(), CandidateList.end()); 1087 1088 return MaxCandidateLen; 1089 } 1090 1091 MachineFunction * 1092 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1093 InstructionMapper &Mapper) { 1094 1095 // Create the function name. This should be unique. For now, just hash the 1096 // module name and include it in the function name plus the number of this 1097 // function. 1098 std::ostringstream NameStream; 1099 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1100 1101 // Create the function using an IR-level function. 1102 LLVMContext &C = M.getContext(); 1103 Function *F = dyn_cast<Function>( 1104 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1105 assert(F && "Function was null!"); 1106 1107 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1108 // which gives us better results when we outline from linkonceodr functions. 1109 F->setLinkage(GlobalValue::PrivateLinkage); 1110 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1111 1112 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1113 IRBuilder<> Builder(EntryBB); 1114 Builder.CreateRetVoid(); 1115 1116 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1117 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1118 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1119 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1120 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1121 1122 // Insert the new function into the module. 1123 MF.insert(MF.begin(), &MBB); 1124 1125 TII.insertOutlinerPrologue(MBB, MF, OF.FrameClass); 1126 1127 // Copy over the instructions for the function using the integer mappings in 1128 // its sequence. 1129 for (unsigned Str : OF.Sequence) { 1130 MachineInstr *NewMI = 1131 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1132 NewMI->dropMemRefs(); 1133 1134 // Don't keep debug information for outlined instructions. 1135 // FIXME: This means outlined functions are currently undebuggable. 1136 NewMI->setDebugLoc(DebugLoc()); 1137 MBB.insert(MBB.end(), NewMI); 1138 } 1139 1140 TII.insertOutlinerEpilogue(MBB, MF, OF.FrameClass); 1141 1142 return &MF; 1143 } 1144 1145 bool MachineOutliner::outline(Module &M, 1146 const ArrayRef<Candidate> &CandidateList, 1147 std::vector<OutlinedFunction> &FunctionList, 1148 InstructionMapper &Mapper) { 1149 1150 bool OutlinedSomething = false; 1151 1152 // Replace the candidates with calls to their respective outlined functions. 1153 for (const Candidate &C : CandidateList) { 1154 1155 // Was the candidate removed during pruneOverlaps? 1156 if (!C.InCandidateList) 1157 continue; 1158 1159 // If not, then look at its OutlinedFunction. 1160 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1161 1162 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1163 if (OF.OccurrenceCount < 2 || OF.Benefit < 1) 1164 continue; 1165 1166 // If not, then outline it. 1167 assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1168 MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1169 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1170 unsigned EndIdx = C.StartIdx + C.Len - 1; 1171 1172 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1173 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1174 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1175 1176 EndIt++; // Erase needs one past the end index. 1177 1178 // Does this candidate have a function yet? 1179 if (!OF.MF) { 1180 OF.MF = createOutlinedFunction(M, OF, Mapper); 1181 FunctionsCreated++; 1182 } 1183 1184 MachineFunction *MF = OF.MF; 1185 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1186 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1187 1188 // Insert a call to the new function and erase the old sequence. 1189 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.CallClass); 1190 StartIt = Mapper.InstrList[C.StartIdx]; 1191 MBB->erase(StartIt, EndIt); 1192 1193 OutlinedSomething = true; 1194 1195 // Statistics. 1196 NumOutlined++; 1197 } 1198 1199 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1200 1201 return OutlinedSomething; 1202 } 1203 1204 bool MachineOutliner::runOnModule(Module &M) { 1205 1206 // Is there anything in the module at all? 1207 if (M.empty()) 1208 return false; 1209 1210 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1211 const TargetSubtargetInfo &STI = 1212 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1213 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1214 const TargetInstrInfo *TII = STI.getInstrInfo(); 1215 1216 InstructionMapper Mapper; 1217 1218 // Build instruction mappings for each function in the module. 1219 for (Function &F : M) { 1220 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1221 1222 // Is the function empty? Safe to outline from? 1223 if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF)) 1224 continue; 1225 1226 // If it is, look at each MachineBasicBlock in the function. 1227 for (MachineBasicBlock &MBB : MF) { 1228 1229 // Is there anything in MBB? 1230 if (MBB.empty()) 1231 continue; 1232 1233 // If yes, map it. 1234 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1235 } 1236 } 1237 1238 // Construct a suffix tree, use it to find candidates, and then outline them. 1239 SuffixTree ST(Mapper.UnsignedVec); 1240 std::vector<Candidate> CandidateList; 1241 std::vector<OutlinedFunction> FunctionList; 1242 1243 // Find all of the outlining candidates. 1244 unsigned MaxCandidateLen = 1245 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1246 1247 // Remove candidates that overlap with other candidates. 1248 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1249 1250 // Outline each of the candidates and return true if something was outlined. 1251 return outline(M, CandidateList, FunctionList, Mapper); 1252 } 1253