1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * buildOutlinedFrame 29 /// * insertOutlinedCall 30 /// * isFunctionSafeToOutlineFrom 31 /// 32 /// in order to make use of the MachineOutliner. 33 /// 34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 36 /// how this pass works, the talk is available on YouTube at 37 /// 38 /// https://www.youtube.com/watch?v=yorld-WSOeU 39 /// 40 /// The slides for the talk are available at 41 /// 42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 43 /// 44 /// The talk provides an overview of how the outliner finds candidates and 45 /// ultimately outlines them. It describes how the main data structure for this 46 /// pass, the suffix tree, is queried and purged for candidates. It also gives 47 /// a simplified suffix tree construction algorithm for suffix trees based off 48 /// of the algorithm actually used here, Ukkonen's algorithm. 49 /// 50 /// For the original RFC for this pass, please see 51 /// 52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 53 /// 54 /// For more information on the suffix tree data structure, please see 55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 56 /// 57 //===----------------------------------------------------------------------===// 58 #include "llvm/CodeGen/MachineOutliner.h" 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/MachineRegisterInfo.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/TargetInstrInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Mangler.h" 72 #include "llvm/Support/Allocator.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <functional> 77 #include <map> 78 #include <sstream> 79 #include <tuple> 80 #include <vector> 81 82 #define DEBUG_TYPE "machine-outliner" 83 84 using namespace llvm; 85 using namespace ore; 86 using namespace outliner; 87 88 STATISTIC(NumOutlined, "Number of candidates outlined"); 89 STATISTIC(FunctionsCreated, "Number of functions created"); 90 91 // Set to true if the user wants the outliner to run on linkonceodr linkage 92 // functions. This is false by default because the linker can dedupe linkonceodr 93 // functions. Since the outliner is confined to a single module (modulo LTO), 94 // this is off by default. It should, however, be the default behaviour in 95 // LTO. 96 static cl::opt<bool> EnableLinkOnceODROutlining( 97 "enable-linkonceodr-outlining", 98 cl::Hidden, 99 cl::desc("Enable the machine outliner on linkonceodr functions"), 100 cl::init(false)); 101 102 namespace { 103 104 /// Represents an undefined index in the suffix tree. 105 const unsigned EmptyIdx = -1; 106 107 /// A node in a suffix tree which represents a substring or suffix. 108 /// 109 /// Each node has either no children or at least two children, with the root 110 /// being a exception in the empty tree. 111 /// 112 /// Children are represented as a map between unsigned integers and nodes. If 113 /// a node N has a child M on unsigned integer k, then the mapping represented 114 /// by N is a proper prefix of the mapping represented by M. Note that this, 115 /// although similar to a trie is somewhat different: each node stores a full 116 /// substring of the full mapping rather than a single character state. 117 /// 118 /// Each internal node contains a pointer to the internal node representing 119 /// the same string, but with the first character chopped off. This is stored 120 /// in \p Link. Each leaf node stores the start index of its respective 121 /// suffix in \p SuffixIdx. 122 struct SuffixTreeNode { 123 124 /// The children of this node. 125 /// 126 /// A child existing on an unsigned integer implies that from the mapping 127 /// represented by the current node, there is a way to reach another 128 /// mapping by tacking that character on the end of the current string. 129 DenseMap<unsigned, SuffixTreeNode *> Children; 130 131 /// A flag set to false if the node has been pruned from the tree. 132 bool IsInTree = true; 133 134 /// The start index of this node's substring in the main string. 135 unsigned StartIdx = EmptyIdx; 136 137 /// The end index of this node's substring in the main string. 138 /// 139 /// Every leaf node must have its \p EndIdx incremented at the end of every 140 /// step in the construction algorithm. To avoid having to update O(N) 141 /// nodes individually at the end of every step, the end index is stored 142 /// as a pointer. 143 unsigned *EndIdx = nullptr; 144 145 /// For leaves, the start index of the suffix represented by this node. 146 /// 147 /// For all other nodes, this is ignored. 148 unsigned SuffixIdx = EmptyIdx; 149 150 /// For internal nodes, a pointer to the internal node representing 151 /// the same sequence with the first character chopped off. 152 /// 153 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 154 /// Ukkonen's algorithm does to achieve linear-time construction is 155 /// keep track of which node the next insert should be at. This makes each 156 /// insert O(1), and there are a total of O(N) inserts. The suffix link 157 /// helps with inserting children of internal nodes. 158 /// 159 /// Say we add a child to an internal node with associated mapping S. The 160 /// next insertion must be at the node representing S - its first character. 161 /// This is given by the way that we iteratively build the tree in Ukkonen's 162 /// algorithm. The main idea is to look at the suffixes of each prefix in the 163 /// string, starting with the longest suffix of the prefix, and ending with 164 /// the shortest. Therefore, if we keep pointers between such nodes, we can 165 /// move to the next insertion point in O(1) time. If we don't, then we'd 166 /// have to query from the root, which takes O(N) time. This would make the 167 /// construction algorithm O(N^2) rather than O(N). 168 SuffixTreeNode *Link = nullptr; 169 170 /// The parent of this node. Every node except for the root has a parent. 171 SuffixTreeNode *Parent = nullptr; 172 173 /// The number of times this node's string appears in the tree. 174 /// 175 /// This is equal to the number of leaf children of the string. It represents 176 /// the number of suffixes that the node's string is a prefix of. 177 unsigned OccurrenceCount = 0; 178 179 /// The length of the string formed by concatenating the edge labels from the 180 /// root to this node. 181 unsigned ConcatLen = 0; 182 183 /// Returns true if this node is a leaf. 184 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 185 186 /// Returns true if this node is the root of its owning \p SuffixTree. 187 bool isRoot() const { return StartIdx == EmptyIdx; } 188 189 /// Return the number of elements in the substring associated with this node. 190 size_t size() const { 191 192 // Is it the root? If so, it's the empty string so return 0. 193 if (isRoot()) 194 return 0; 195 196 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 197 198 // Size = the number of elements in the string. 199 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 200 return *EndIdx - StartIdx + 1; 201 } 202 203 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 204 SuffixTreeNode *Parent) 205 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 206 207 SuffixTreeNode() {} 208 }; 209 210 /// A data structure for fast substring queries. 211 /// 212 /// Suffix trees represent the suffixes of their input strings in their leaves. 213 /// A suffix tree is a type of compressed trie structure where each node 214 /// represents an entire substring rather than a single character. Each leaf 215 /// of the tree is a suffix. 216 /// 217 /// A suffix tree can be seen as a type of state machine where each state is a 218 /// substring of the full string. The tree is structured so that, for a string 219 /// of length N, there are exactly N leaves in the tree. This structure allows 220 /// us to quickly find repeated substrings of the input string. 221 /// 222 /// In this implementation, a "string" is a vector of unsigned integers. 223 /// These integers may result from hashing some data type. A suffix tree can 224 /// contain 1 or many strings, which can then be queried as one large string. 225 /// 226 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 227 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 228 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 229 /// paper is available at 230 /// 231 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 232 class SuffixTree { 233 public: 234 /// Stores each leaf node in the tree. 235 /// 236 /// This is used for finding outlining candidates. 237 std::vector<SuffixTreeNode *> LeafVector; 238 239 /// Each element is an integer representing an instruction in the module. 240 ArrayRef<unsigned> Str; 241 242 private: 243 /// Maintains each node in the tree. 244 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 245 246 /// The root of the suffix tree. 247 /// 248 /// The root represents the empty string. It is maintained by the 249 /// \p NodeAllocator like every other node in the tree. 250 SuffixTreeNode *Root = nullptr; 251 252 /// Maintains the end indices of the internal nodes in the tree. 253 /// 254 /// Each internal node is guaranteed to never have its end index change 255 /// during the construction algorithm; however, leaves must be updated at 256 /// every step. Therefore, we need to store leaf end indices by reference 257 /// to avoid updating O(N) leaves at every step of construction. Thus, 258 /// every internal node must be allocated its own end index. 259 BumpPtrAllocator InternalEndIdxAllocator; 260 261 /// The end index of each leaf in the tree. 262 unsigned LeafEndIdx = -1; 263 264 /// Helper struct which keeps track of the next insertion point in 265 /// Ukkonen's algorithm. 266 struct ActiveState { 267 /// The next node to insert at. 268 SuffixTreeNode *Node; 269 270 /// The index of the first character in the substring currently being added. 271 unsigned Idx = EmptyIdx; 272 273 /// The length of the substring we have to add at the current step. 274 unsigned Len = 0; 275 }; 276 277 /// The point the next insertion will take place at in the 278 /// construction algorithm. 279 ActiveState Active; 280 281 /// Allocate a leaf node and add it to the tree. 282 /// 283 /// \param Parent The parent of this node. 284 /// \param StartIdx The start index of this node's associated string. 285 /// \param Edge The label on the edge leaving \p Parent to this node. 286 /// 287 /// \returns A pointer to the allocated leaf node. 288 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 289 unsigned Edge) { 290 291 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 292 293 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 294 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 295 Parent.Children[Edge] = N; 296 297 return N; 298 } 299 300 /// Allocate an internal node and add it to the tree. 301 /// 302 /// \param Parent The parent of this node. Only null when allocating the root. 303 /// \param StartIdx The start index of this node's associated string. 304 /// \param EndIdx The end index of this node's associated string. 305 /// \param Edge The label on the edge leaving \p Parent to this node. 306 /// 307 /// \returns A pointer to the allocated internal node. 308 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 309 unsigned EndIdx, unsigned Edge) { 310 311 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 312 assert(!(!Parent && StartIdx != EmptyIdx) && 313 "Non-root internal nodes must have parents!"); 314 315 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 316 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 317 SuffixTreeNode(StartIdx, E, Root, Parent); 318 if (Parent) 319 Parent->Children[Edge] = N; 320 321 return N; 322 } 323 324 /// Set the suffix indices of the leaves to the start indices of their 325 /// respective suffixes. Also stores each leaf in \p LeafVector at its 326 /// respective suffix index. 327 /// 328 /// \param[in] CurrNode The node currently being visited. 329 /// \param CurrIdx The current index of the string being visited. 330 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 331 332 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 333 334 // Store the length of the concatenation of all strings from the root to 335 // this node. 336 if (!CurrNode.isRoot()) { 337 if (CurrNode.ConcatLen == 0) 338 CurrNode.ConcatLen = CurrNode.size(); 339 340 if (CurrNode.Parent) 341 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 342 } 343 344 // Traverse the tree depth-first. 345 for (auto &ChildPair : CurrNode.Children) { 346 assert(ChildPair.second && "Node had a null child!"); 347 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 348 } 349 350 // Is this node a leaf? 351 if (IsLeaf) { 352 // If yes, give it a suffix index and bump its parent's occurrence count. 353 CurrNode.SuffixIdx = Str.size() - CurrIdx; 354 assert(CurrNode.Parent && "CurrNode had no parent!"); 355 CurrNode.Parent->OccurrenceCount++; 356 357 // Store the leaf in the leaf vector for pruning later. 358 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 359 } 360 } 361 362 /// Construct the suffix tree for the prefix of the input ending at 363 /// \p EndIdx. 364 /// 365 /// Used to construct the full suffix tree iteratively. At the end of each 366 /// step, the constructed suffix tree is either a valid suffix tree, or a 367 /// suffix tree with implicit suffixes. At the end of the final step, the 368 /// suffix tree is a valid tree. 369 /// 370 /// \param EndIdx The end index of the current prefix in the main string. 371 /// \param SuffixesToAdd The number of suffixes that must be added 372 /// to complete the suffix tree at the current phase. 373 /// 374 /// \returns The number of suffixes that have not been added at the end of 375 /// this step. 376 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 377 SuffixTreeNode *NeedsLink = nullptr; 378 379 while (SuffixesToAdd > 0) { 380 381 // Are we waiting to add anything other than just the last character? 382 if (Active.Len == 0) { 383 // If not, then say the active index is the end index. 384 Active.Idx = EndIdx; 385 } 386 387 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 388 389 // The first character in the current substring we're looking at. 390 unsigned FirstChar = Str[Active.Idx]; 391 392 // Have we inserted anything starting with FirstChar at the current node? 393 if (Active.Node->Children.count(FirstChar) == 0) { 394 // If not, then we can just insert a leaf and move too the next step. 395 insertLeaf(*Active.Node, EndIdx, FirstChar); 396 397 // The active node is an internal node, and we visited it, so it must 398 // need a link if it doesn't have one. 399 if (NeedsLink) { 400 NeedsLink->Link = Active.Node; 401 NeedsLink = nullptr; 402 } 403 } else { 404 // There's a match with FirstChar, so look for the point in the tree to 405 // insert a new node. 406 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 407 408 unsigned SubstringLen = NextNode->size(); 409 410 // Is the current suffix we're trying to insert longer than the size of 411 // the child we want to move to? 412 if (Active.Len >= SubstringLen) { 413 // If yes, then consume the characters we've seen and move to the next 414 // node. 415 Active.Idx += SubstringLen; 416 Active.Len -= SubstringLen; 417 Active.Node = NextNode; 418 continue; 419 } 420 421 // Otherwise, the suffix we're trying to insert must be contained in the 422 // next node we want to move to. 423 unsigned LastChar = Str[EndIdx]; 424 425 // Is the string we're trying to insert a substring of the next node? 426 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 427 // If yes, then we're done for this step. Remember our insertion point 428 // and move to the next end index. At this point, we have an implicit 429 // suffix tree. 430 if (NeedsLink && !Active.Node->isRoot()) { 431 NeedsLink->Link = Active.Node; 432 NeedsLink = nullptr; 433 } 434 435 Active.Len++; 436 break; 437 } 438 439 // The string we're trying to insert isn't a substring of the next node, 440 // but matches up to a point. Split the node. 441 // 442 // For example, say we ended our search at a node n and we're trying to 443 // insert ABD. Then we'll create a new node s for AB, reduce n to just 444 // representing C, and insert a new leaf node l to represent d. This 445 // allows us to ensure that if n was a leaf, it remains a leaf. 446 // 447 // | ABC ---split---> | AB 448 // n s 449 // C / \ D 450 // n l 451 452 // The node s from the diagram 453 SuffixTreeNode *SplitNode = 454 insertInternalNode(Active.Node, NextNode->StartIdx, 455 NextNode->StartIdx + Active.Len - 1, FirstChar); 456 457 // Insert the new node representing the new substring into the tree as 458 // a child of the split node. This is the node l from the diagram. 459 insertLeaf(*SplitNode, EndIdx, LastChar); 460 461 // Make the old node a child of the split node and update its start 462 // index. This is the node n from the diagram. 463 NextNode->StartIdx += Active.Len; 464 NextNode->Parent = SplitNode; 465 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 466 467 // SplitNode is an internal node, update the suffix link. 468 if (NeedsLink) 469 NeedsLink->Link = SplitNode; 470 471 NeedsLink = SplitNode; 472 } 473 474 // We've added something new to the tree, so there's one less suffix to 475 // add. 476 SuffixesToAdd--; 477 478 if (Active.Node->isRoot()) { 479 if (Active.Len > 0) { 480 Active.Len--; 481 Active.Idx = EndIdx - SuffixesToAdd + 1; 482 } 483 } else { 484 // Start the next phase at the next smallest suffix. 485 Active.Node = Active.Node->Link; 486 } 487 } 488 489 return SuffixesToAdd; 490 } 491 492 public: 493 /// Construct a suffix tree from a sequence of unsigned integers. 494 /// 495 /// \param Str The string to construct the suffix tree for. 496 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 497 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 498 Root->IsInTree = true; 499 Active.Node = Root; 500 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 501 502 // Keep track of the number of suffixes we have to add of the current 503 // prefix. 504 unsigned SuffixesToAdd = 0; 505 Active.Node = Root; 506 507 // Construct the suffix tree iteratively on each prefix of the string. 508 // PfxEndIdx is the end index of the current prefix. 509 // End is one past the last element in the string. 510 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 511 PfxEndIdx++) { 512 SuffixesToAdd++; 513 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 514 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 515 } 516 517 // Set the suffix indices of each leaf. 518 assert(Root && "Root node can't be nullptr!"); 519 setSuffixIndices(*Root, 0); 520 } 521 }; 522 523 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 524 struct InstructionMapper { 525 526 /// The next available integer to assign to a \p MachineInstr that 527 /// cannot be outlined. 528 /// 529 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 530 unsigned IllegalInstrNumber = -3; 531 532 /// The next available integer to assign to a \p MachineInstr that can 533 /// be outlined. 534 unsigned LegalInstrNumber = 0; 535 536 /// Correspondence from \p MachineInstrs to unsigned integers. 537 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 538 InstructionIntegerMap; 539 540 /// Corresponcence from unsigned integers to \p MachineInstrs. 541 /// Inverse of \p InstructionIntegerMap. 542 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 543 544 /// The vector of unsigned integers that the module is mapped to. 545 std::vector<unsigned> UnsignedVec; 546 547 /// Stores the location of the instruction associated with the integer 548 /// at index i in \p UnsignedVec for each index i. 549 std::vector<MachineBasicBlock::iterator> InstrList; 550 551 /// Maps \p *It to a legal integer. 552 /// 553 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 554 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 555 /// 556 /// \returns The integer that \p *It was mapped to. 557 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 558 559 // Get the integer for this instruction or give it the current 560 // LegalInstrNumber. 561 InstrList.push_back(It); 562 MachineInstr &MI = *It; 563 bool WasInserted; 564 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 565 ResultIt; 566 std::tie(ResultIt, WasInserted) = 567 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 568 unsigned MINumber = ResultIt->second; 569 570 // There was an insertion. 571 if (WasInserted) { 572 LegalInstrNumber++; 573 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 574 } 575 576 UnsignedVec.push_back(MINumber); 577 578 // Make sure we don't overflow or use any integers reserved by the DenseMap. 579 if (LegalInstrNumber >= IllegalInstrNumber) 580 report_fatal_error("Instruction mapping overflow!"); 581 582 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 583 "Tried to assign DenseMap tombstone or empty key to instruction."); 584 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 585 "Tried to assign DenseMap tombstone or empty key to instruction."); 586 587 return MINumber; 588 } 589 590 /// Maps \p *It to an illegal integer. 591 /// 592 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 593 /// 594 /// \returns The integer that \p *It was mapped to. 595 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 596 unsigned MINumber = IllegalInstrNumber; 597 598 InstrList.push_back(It); 599 UnsignedVec.push_back(IllegalInstrNumber); 600 IllegalInstrNumber--; 601 602 assert(LegalInstrNumber < IllegalInstrNumber && 603 "Instruction mapping overflow!"); 604 605 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 606 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 607 608 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 609 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 610 611 return MINumber; 612 } 613 614 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 615 /// and appends it to \p UnsignedVec and \p InstrList. 616 /// 617 /// Two instructions are assigned the same integer if they are identical. 618 /// If an instruction is deemed unsafe to outline, then it will be assigned an 619 /// unique integer. The resulting mapping is placed into a suffix tree and 620 /// queried for candidates. 621 /// 622 /// \param MBB The \p MachineBasicBlock to be translated into integers. 623 /// \param TRI \p TargetRegisterInfo for the module. 624 /// \param TII \p TargetInstrInfo for the module. 625 void convertToUnsignedVec(MachineBasicBlock &MBB, 626 const TargetRegisterInfo &TRI, 627 const TargetInstrInfo &TII) { 628 unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB); 629 630 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 631 It++) { 632 633 // Keep track of where this instruction is in the module. 634 switch (TII.getOutliningType(It, Flags)) { 635 case InstrType::Illegal: 636 mapToIllegalUnsigned(It); 637 break; 638 639 case InstrType::Legal: 640 mapToLegalUnsigned(It); 641 break; 642 643 case InstrType::LegalTerminator: 644 mapToLegalUnsigned(It); 645 InstrList.push_back(It); 646 UnsignedVec.push_back(IllegalInstrNumber); 647 IllegalInstrNumber--; 648 break; 649 650 case InstrType::Invisible: 651 break; 652 } 653 } 654 655 // After we're done every insertion, uniquely terminate this part of the 656 // "string". This makes sure we won't match across basic block or function 657 // boundaries since the "end" is encoded uniquely and thus appears in no 658 // repeated substring. 659 InstrList.push_back(MBB.end()); 660 UnsignedVec.push_back(IllegalInstrNumber); 661 IllegalInstrNumber--; 662 } 663 664 InstructionMapper() { 665 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 666 // changed. 667 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 668 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 669 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 670 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 671 } 672 }; 673 674 /// An interprocedural pass which finds repeated sequences of 675 /// instructions and replaces them with calls to functions. 676 /// 677 /// Each instruction is mapped to an unsigned integer and placed in a string. 678 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 679 /// is then repeatedly queried for repeated sequences of instructions. Each 680 /// non-overlapping repeated sequence is then placed in its own 681 /// \p MachineFunction and each instance is then replaced with a call to that 682 /// function. 683 struct MachineOutliner : public ModulePass { 684 685 static char ID; 686 687 /// Set to true if the outliner should consider functions with 688 /// linkonceodr linkage. 689 bool OutlineFromLinkOnceODRs = false; 690 691 // Collection of IR functions created by the outliner. 692 std::vector<Function *> CreatedIRFunctions; 693 694 StringRef getPassName() const override { return "Machine Outliner"; } 695 696 void getAnalysisUsage(AnalysisUsage &AU) const override { 697 AU.addRequired<MachineModuleInfo>(); 698 AU.addPreserved<MachineModuleInfo>(); 699 AU.setPreservesAll(); 700 ModulePass::getAnalysisUsage(AU); 701 } 702 703 MachineOutliner() : ModulePass(ID) { 704 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 705 } 706 707 /// Find all repeated substrings that satisfy the outlining cost model. 708 /// 709 /// If a substring appears at least twice, then it must be represented by 710 /// an internal node which appears in at least two suffixes. Each suffix is 711 /// represented by a leaf node. To do this, we visit each internal node in 712 /// the tree, using the leaf children of each internal node. If an internal 713 /// node represents a beneficial substring, then we use each of its leaf 714 /// children to find the locations of its substring. 715 /// 716 /// \param ST A suffix tree to query. 717 /// \param TII TargetInstrInfo for the target. 718 /// \param Mapper Contains outlining mapping information. 719 /// \param[out] CandidateList Filled with candidates representing each 720 /// beneficial substring. 721 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 722 /// type of candidate. 723 /// 724 /// \returns The length of the longest candidate found. 725 unsigned 726 findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 727 InstructionMapper &Mapper, 728 std::vector<std::shared_ptr<Candidate>> &CandidateList, 729 std::vector<OutlinedFunction> &FunctionList); 730 731 /// Replace the sequences of instructions represented by the 732 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 733 /// described in \p FunctionList. 734 /// 735 /// \param M The module we are outlining from. 736 /// \param CandidateList A list of candidates to be outlined. 737 /// \param FunctionList A list of functions to be inserted into the module. 738 /// \param Mapper Contains the instruction mappings for the module. 739 bool outline(Module &M, 740 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 741 std::vector<OutlinedFunction> &FunctionList, 742 InstructionMapper &Mapper); 743 744 /// Creates a function for \p OF and inserts it into the module. 745 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 746 InstructionMapper &Mapper); 747 748 /// Find potential outlining candidates and store them in \p CandidateList. 749 /// 750 /// For each type of potential candidate, also build an \p OutlinedFunction 751 /// struct containing the information to build the function for that 752 /// candidate. 753 /// 754 /// \param[out] CandidateList Filled with outlining candidates for the module. 755 /// \param[out] FunctionList Filled with functions corresponding to each type 756 /// of \p Candidate. 757 /// \param ST The suffix tree for the module. 758 /// \param TII TargetInstrInfo for the module. 759 /// 760 /// \returns The length of the longest candidate found. 0 if there are none. 761 unsigned 762 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 763 std::vector<OutlinedFunction> &FunctionList, 764 SuffixTree &ST, InstructionMapper &Mapper, 765 const TargetInstrInfo &TII); 766 767 /// Helper function for pruneOverlaps. 768 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 769 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 770 771 /// Remove any overlapping candidates that weren't handled by the 772 /// suffix tree's pruning method. 773 /// 774 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 775 /// If a short candidate is chosen for outlining, then a longer candidate 776 /// which has that short candidate as a suffix is chosen, the tree's pruning 777 /// method will not find it. Thus, we need to prune before outlining as well. 778 /// 779 /// \param[in,out] CandidateList A list of outlining candidates. 780 /// \param[in,out] FunctionList A list of functions to be outlined. 781 /// \param Mapper Contains instruction mapping info for outlining. 782 /// \param MaxCandidateLen The length of the longest candidate. 783 /// \param TII TargetInstrInfo for the module. 784 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 785 std::vector<OutlinedFunction> &FunctionList, 786 InstructionMapper &Mapper, unsigned MaxCandidateLen, 787 const TargetInstrInfo &TII); 788 789 /// Construct a suffix tree on the instructions in \p M and outline repeated 790 /// strings from that tree. 791 bool runOnModule(Module &M) override; 792 793 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 794 /// function for remark emission. 795 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 796 DISubprogram *SP; 797 for (const std::shared_ptr<Candidate> &C : OF.Candidates) 798 if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram())) 799 return SP; 800 return nullptr; 801 } 802 }; 803 804 } // Anonymous namespace. 805 806 char MachineOutliner::ID = 0; 807 808 namespace llvm { 809 ModulePass *createMachineOutlinerPass() { 810 return new MachineOutliner(); 811 } 812 813 } // namespace llvm 814 815 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 816 false) 817 818 unsigned MachineOutliner::findCandidates( 819 SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, 820 std::vector<std::shared_ptr<Candidate>> &CandidateList, 821 std::vector<OutlinedFunction> &FunctionList) { 822 CandidateList.clear(); 823 FunctionList.clear(); 824 unsigned MaxLen = 0; 825 826 // FIXME: Visit internal nodes instead of leaves. 827 for (SuffixTreeNode *Leaf : ST.LeafVector) { 828 assert(Leaf && "Leaves in LeafVector cannot be null!"); 829 if (!Leaf->IsInTree) 830 continue; 831 832 assert(Leaf->Parent && "All leaves must have parents!"); 833 SuffixTreeNode &Parent = *(Leaf->Parent); 834 835 // If it doesn't appear enough, or we already outlined from it, skip it. 836 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 837 continue; 838 839 // Figure out if this candidate is beneficial. 840 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 841 842 // Too short to be beneficial; skip it. 843 // FIXME: This isn't necessarily true for, say, X86. If we factor in 844 // instruction lengths we need more information than this. 845 if (StringLen < 2) 846 continue; 847 848 // If this is a beneficial class of candidate, then every one is stored in 849 // this vector. 850 std::vector<Candidate> CandidatesForRepeatedSeq; 851 852 // Figure out the call overhead for each instance of the sequence. 853 for (auto &ChildPair : Parent.Children) { 854 SuffixTreeNode *M = ChildPair.second; 855 856 if (M && M->IsInTree && M->isLeaf()) { 857 // Never visit this leaf again. 858 M->IsInTree = false; 859 unsigned StartIdx = M->SuffixIdx; 860 unsigned EndIdx = StartIdx + StringLen - 1; 861 862 // Trick: Discard some candidates that would be incompatible with the 863 // ones we've already found for this sequence. This will save us some 864 // work in candidate selection. 865 // 866 // If two candidates overlap, then we can't outline them both. This 867 // happens when we have candidates that look like, say 868 // 869 // AA (where each "A" is an instruction). 870 // 871 // We might have some portion of the module that looks like this: 872 // AAAAAA (6 A's) 873 // 874 // In this case, there are 5 different copies of "AA" in this range, but 875 // at most 3 can be outlined. If only outlining 3 of these is going to 876 // be unbeneficial, then we ought to not bother. 877 // 878 // Note that two things DON'T overlap when they look like this: 879 // start1...end1 .... start2...end2 880 // That is, one must either 881 // * End before the other starts 882 // * Start after the other ends 883 if (std::all_of(CandidatesForRepeatedSeq.begin(), 884 CandidatesForRepeatedSeq.end(), 885 [&StartIdx, &EndIdx](const Candidate &C) { 886 return (EndIdx < C.getStartIdx() || 887 StartIdx > C.getEndIdx()); 888 })) { 889 // It doesn't overlap with anything, so we can outline it. 890 // Each sequence is over [StartIt, EndIt]. 891 // Save the candidate and its location. 892 893 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 894 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 895 896 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 897 EndIt, StartIt->getParent(), 898 FunctionList.size()); 899 } 900 } 901 } 902 903 // We've found something we might want to outline. 904 // Create an OutlinedFunction to store it and check if it'd be beneficial 905 // to outline. 906 TargetCostInfo TCI = 907 TII.getOutlininingCandidateInfo(CandidatesForRepeatedSeq); 908 std::vector<unsigned> Seq; 909 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 910 Seq.push_back(ST.Str[i]); 911 OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(), 912 Seq, TCI); 913 unsigned Benefit = OF.getBenefit(); 914 915 // Is it better to outline this candidate than not? 916 if (Benefit < 1) { 917 // Outlining this candidate would take more instructions than not 918 // outlining. 919 // Emit a remark explaining why we didn't outline this candidate. 920 Candidate &C = CandidatesForRepeatedSeq.front(); 921 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 922 MORE.emit([&]() { 923 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 924 C.front()->getDebugLoc(), C.getMBB()); 925 R << "Did not outline " << NV("Length", StringLen) << " instructions" 926 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 927 << " locations." 928 << " Bytes from outlining all occurrences (" 929 << NV("OutliningCost", OF.getOutliningCost()) << ")" 930 << " >= Unoutlined instruction bytes (" 931 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 932 << " (Also found at: "; 933 934 // Tell the user the other places the candidate was found. 935 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 936 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 937 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 938 if (i != e - 1) 939 R << ", "; 940 } 941 942 R << ")"; 943 return R; 944 }); 945 946 // Move to the next candidate. 947 continue; 948 } 949 950 if (StringLen > MaxLen) 951 MaxLen = StringLen; 952 953 // At this point, the candidate class is seen as beneficial. Set their 954 // benefit values and save them in the candidate list. 955 std::vector<std::shared_ptr<Candidate>> CandidatesForFn; 956 for (Candidate &C : CandidatesForRepeatedSeq) { 957 C.Benefit = Benefit; 958 C.TCI = TCI; 959 std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); 960 CandidateList.push_back(Cptr); 961 CandidatesForFn.push_back(Cptr); 962 } 963 964 FunctionList.push_back(OF); 965 FunctionList.back().Candidates = CandidatesForFn; 966 967 // Move to the next function. 968 Parent.IsInTree = false; 969 } 970 971 return MaxLen; 972 } 973 974 // Remove C from the candidate space, and update its OutlinedFunction. 975 void MachineOutliner::prune(Candidate &C, 976 std::vector<OutlinedFunction> &FunctionList) { 977 // Get the OutlinedFunction associated with this Candidate. 978 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 979 980 // Update C's associated function's occurrence count. 981 F.decrement(); 982 983 // Remove C from the CandidateList. 984 C.InCandidateList = false; 985 986 LLVM_DEBUG(dbgs() << "- Removed a Candidate \n"; 987 dbgs() << "--- Num fns left for candidate: " 988 << F.getOccurrenceCount() << "\n"; 989 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 990 << "\n";); 991 } 992 993 void MachineOutliner::pruneOverlaps( 994 std::vector<std::shared_ptr<Candidate>> &CandidateList, 995 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 996 unsigned MaxCandidateLen, const TargetInstrInfo &TII) { 997 998 // Return true if this candidate became unbeneficial for outlining in a 999 // previous step. 1000 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1001 1002 // Check if the candidate was removed in a previous step. 1003 if (!C.InCandidateList) 1004 return true; 1005 1006 // C must be alive. Check if we should remove it. 1007 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1008 prune(C, FunctionList); 1009 return true; 1010 } 1011 1012 // C is in the list, and F is still beneficial. 1013 return false; 1014 }; 1015 1016 // TODO: Experiment with interval trees or other interval-checking structures 1017 // to lower the time complexity of this function. 1018 // TODO: Can we do better than the simple greedy choice? 1019 // Check for overlaps in the range. 1020 // This is O(MaxCandidateLen * CandidateList.size()). 1021 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1022 It++) { 1023 Candidate &C1 = **It; 1024 1025 // If C1 was already pruned, or its function is no longer beneficial for 1026 // outlining, move to the next candidate. 1027 if (ShouldSkipCandidate(C1)) 1028 continue; 1029 1030 // The minimum start index of any candidate that could overlap with this 1031 // one. 1032 unsigned FarthestPossibleIdx = 0; 1033 1034 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1035 if (C1.getStartIdx() > MaxCandidateLen) 1036 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1037 1038 // Compare against the candidates in the list that start at most 1039 // FarthestPossibleIdx indices away from C1. There are at most 1040 // MaxCandidateLen of these. 1041 for (auto Sit = It + 1; Sit != Et; Sit++) { 1042 Candidate &C2 = **Sit; 1043 1044 // Is this candidate too far away to overlap? 1045 if (C2.getStartIdx() < FarthestPossibleIdx) 1046 break; 1047 1048 // If C2 was already pruned, or its function is no longer beneficial for 1049 // outlining, move to the next candidate. 1050 if (ShouldSkipCandidate(C2)) 1051 continue; 1052 1053 // Do C1 and C2 overlap? 1054 // 1055 // Not overlapping: 1056 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1057 // 1058 // We sorted our candidate list so C2Start <= C1Start. We know that 1059 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1060 // have to check is C2End < C2Start to see if we overlap. 1061 if (C2.getEndIdx() < C1.getStartIdx()) 1062 continue; 1063 1064 // C1 and C2 overlap. 1065 // We need to choose the better of the two. 1066 // 1067 // Approximate this by picking the one which would have saved us the 1068 // most instructions before any pruning. 1069 1070 // Is C2 a better candidate? 1071 if (C2.Benefit > C1.Benefit) { 1072 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1073 // against anything anymore, so break. 1074 prune(C1, FunctionList); 1075 break; 1076 } 1077 1078 // Prune C2 and move on to the next candidate. 1079 prune(C2, FunctionList); 1080 } 1081 } 1082 } 1083 1084 unsigned MachineOutliner::buildCandidateList( 1085 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1086 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 1087 InstructionMapper &Mapper, const TargetInstrInfo &TII) { 1088 1089 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1090 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1091 1092 MaxCandidateLen = 1093 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1094 1095 // Sort the candidates in decending order. This will simplify the outlining 1096 // process when we have to remove the candidates from the mapping by 1097 // allowing us to cut them out without keeping track of an offset. 1098 std::stable_sort( 1099 CandidateList.begin(), CandidateList.end(), 1100 [](const std::shared_ptr<Candidate> &LHS, 1101 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1102 1103 return MaxCandidateLen; 1104 } 1105 1106 MachineFunction * 1107 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1108 InstructionMapper &Mapper) { 1109 1110 // Create the function name. This should be unique. For now, just hash the 1111 // module name and include it in the function name plus the number of this 1112 // function. 1113 std::ostringstream NameStream; 1114 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1115 1116 // Create the function using an IR-level function. 1117 LLVMContext &C = M.getContext(); 1118 Function *F = dyn_cast<Function>( 1119 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1120 assert(F && "Function was null!"); 1121 1122 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1123 // which gives us better results when we outline from linkonceodr functions. 1124 F->setLinkage(GlobalValue::InternalLinkage); 1125 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1126 1127 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1128 // necessary. 1129 1130 // Set optsize/minsize, so we don't insert padding between outlined 1131 // functions. 1132 F->addFnAttr(Attribute::OptimizeForSize); 1133 F->addFnAttr(Attribute::MinSize); 1134 1135 // Save F so that we can add debug info later if we need to. 1136 CreatedIRFunctions.push_back(F); 1137 1138 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1139 IRBuilder<> Builder(EntryBB); 1140 Builder.CreateRetVoid(); 1141 1142 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1143 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1144 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1145 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1146 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1147 1148 // Insert the new function into the module. 1149 MF.insert(MF.begin(), &MBB); 1150 1151 // Copy over the instructions for the function using the integer mappings in 1152 // its sequence. 1153 for (unsigned Str : OF.Sequence) { 1154 MachineInstr *NewMI = 1155 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1156 NewMI->dropMemRefs(); 1157 1158 // Don't keep debug information for outlined instructions. 1159 NewMI->setDebugLoc(DebugLoc()); 1160 MBB.insert(MBB.end(), NewMI); 1161 } 1162 1163 TII.buildOutlinedFrame(MBB, MF, OF.TCI); 1164 1165 // If there's a DISubprogram associated with this outlined function, then 1166 // emit debug info for the outlined function. 1167 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1168 // We have a DISubprogram. Get its DICompileUnit. 1169 DICompileUnit *CU = SP->getUnit(); 1170 DIBuilder DB(M, true, CU); 1171 DIFile *Unit = SP->getFile(); 1172 Mangler Mg; 1173 1174 // Walk over each IR function we created in the outliner and create 1175 // DISubprograms for each function. 1176 for (Function *F : CreatedIRFunctions) { 1177 // Get the mangled name of the function for the linkage name. 1178 std::string Dummy; 1179 llvm::raw_string_ostream MangledNameStream(Dummy); 1180 Mg.getNameWithPrefix(MangledNameStream, F, false); 1181 1182 DISubprogram *SP = DB.createFunction( 1183 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1184 Unit /* File */, 1185 0 /* Line 0 is reserved for compiler-generated code. */, 1186 DB.createSubroutineType( 1187 DB.getOrCreateTypeArray(None)), /* void type */ 1188 false, true, 0, /* Line 0 is reserved for compiler-generated code. */ 1189 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1190 true /* Outlined code is optimized code by definition. */); 1191 1192 // Don't add any new variables to the subprogram. 1193 DB.finalizeSubprogram(SP); 1194 1195 // Attach subprogram to the function. 1196 F->setSubprogram(SP); 1197 } 1198 1199 // We're done with the DIBuilder. 1200 DB.finalize(); 1201 } 1202 1203 // Outlined functions shouldn't preserve liveness. 1204 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1205 MF.getRegInfo().freezeReservedRegs(MF); 1206 return &MF; 1207 } 1208 1209 bool MachineOutliner::outline( 1210 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 1211 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1212 1213 bool OutlinedSomething = false; 1214 // Replace the candidates with calls to their respective outlined functions. 1215 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 1216 Candidate &C = *Cptr; 1217 // Was the candidate removed during pruneOverlaps? 1218 if (!C.InCandidateList) 1219 continue; 1220 1221 // If not, then look at its OutlinedFunction. 1222 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1223 1224 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1225 if (OF.getBenefit() < 1) 1226 continue; 1227 1228 // Does this candidate have a function yet? 1229 if (!OF.MF) { 1230 OF.MF = createOutlinedFunction(M, OF, Mapper); 1231 MachineBasicBlock *MBB = &*OF.MF->begin(); 1232 1233 // Output a remark telling the user that an outlined function was created, 1234 // and explaining where it came from. 1235 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1236 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1237 MBB->findDebugLoc(MBB->begin()), MBB); 1238 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) 1239 << " bytes by " 1240 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 1241 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1242 << " locations. " 1243 << "(Found at: "; 1244 1245 // Tell the user the other places the candidate was found. 1246 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1247 1248 // Skip over things that were pruned. 1249 if (!OF.Candidates[i]->InCandidateList) 1250 continue; 1251 1252 R << NV( 1253 (Twine("StartLoc") + Twine(i)).str(), 1254 OF.Candidates[i]->front()->getDebugLoc()); 1255 if (i != e - 1) 1256 R << ", "; 1257 } 1258 1259 R << ")"; 1260 1261 MORE.emit(R); 1262 FunctionsCreated++; 1263 } 1264 1265 MachineFunction *MF = OF.MF; 1266 MachineBasicBlock &MBB = *C.getMBB(); 1267 MachineBasicBlock::iterator StartIt = C.front(); 1268 MachineBasicBlock::iterator EndIt = C.back(); 1269 assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!"); 1270 assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!"); 1271 1272 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1273 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1274 1275 // Insert a call to the new function and erase the old sequence. 1276 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C.TCI); 1277 1278 // If the caller tracks liveness, then we need to make sure that anything 1279 // we outline doesn't break liveness assumptions. 1280 // The outlined functions themselves currently don't track liveness, but 1281 // we should make sure that the ranges we yank things out of aren't 1282 // wrong. 1283 if (MBB.getParent()->getProperties().hasProperty( 1284 MachineFunctionProperties::Property::TracksLiveness)) { 1285 // Helper lambda for adding implicit def operands to the call instruction. 1286 auto CopyDefs = [&CallInst](MachineInstr &MI) { 1287 for (MachineOperand &MOP : MI.operands()) { 1288 // Skip over anything that isn't a register. 1289 if (!MOP.isReg()) 1290 continue; 1291 1292 // If it's a def, add it to the call instruction. 1293 if (MOP.isDef()) 1294 CallInst->addOperand( 1295 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */ 1296 true /* isImp = true */)); 1297 } 1298 }; 1299 1300 // Copy over the defs in the outlined range. 1301 // First inst in outlined range <-- Anything that's defined in this 1302 // ... .. range has to be added as an implicit 1303 // Last inst in outlined range <-- def to the call instruction. 1304 std::for_each(CallInst, EndIt, CopyDefs); 1305 } 1306 1307 // Erase from the point after where the call was inserted up to, and 1308 // including, the final instruction in the sequence. 1309 // Erase needs one past the end, so we need std::next there too. 1310 MBB.erase(std::next(StartIt), std::next(EndIt)); 1311 OutlinedSomething = true; 1312 1313 // Statistics. 1314 NumOutlined++; 1315 } 1316 1317 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1318 1319 return OutlinedSomething; 1320 } 1321 1322 bool MachineOutliner::runOnModule(Module &M) { 1323 // Check if there's anything in the module. If it's empty, then there's 1324 // nothing to outline. 1325 if (M.empty()) 1326 return false; 1327 1328 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1329 const TargetSubtargetInfo &STI = 1330 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1331 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1332 const TargetInstrInfo *TII = STI.getInstrInfo(); 1333 1334 // If the user specifies that they want to outline from linkonceodrs, set 1335 // it here. 1336 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1337 1338 InstructionMapper Mapper; 1339 1340 // Build instruction mappings for each function in the module. Start by 1341 // iterating over each Function in M. 1342 for (Function &F : M) { 1343 1344 // If there's nothing in F, then there's no reason to try and outline from 1345 // it. 1346 if (F.empty()) 1347 continue; 1348 1349 // There's something in F. Check if it has a MachineFunction associated with 1350 // it. 1351 MachineFunction *MF = MMI.getMachineFunction(F); 1352 1353 // If it doesn't, then there's nothing to outline from. Move to the next 1354 // Function. 1355 if (!MF) 1356 continue; 1357 1358 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1359 // If it isn't, then move on to the next Function in the module. 1360 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1361 continue; 1362 1363 // We have a function suitable for outlining. Iterate over every 1364 // MachineBasicBlock in MF and try to map its instructions to a list of 1365 // unsigned integers. 1366 for (MachineBasicBlock &MBB : *MF) { 1367 // If there isn't anything in MBB, then there's no point in outlining from 1368 // it. 1369 if (MBB.empty()) 1370 continue; 1371 1372 // Check if MBB could be the target of an indirect branch. If it is, then 1373 // we don't want to outline from it. 1374 if (MBB.hasAddressTaken()) 1375 continue; 1376 1377 // MBB is suitable for outlining. Map it to a list of unsigneds. 1378 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1379 } 1380 } 1381 1382 // Construct a suffix tree, use it to find candidates, and then outline them. 1383 SuffixTree ST(Mapper.UnsignedVec); 1384 std::vector<std::shared_ptr<Candidate>> CandidateList; 1385 std::vector<OutlinedFunction> FunctionList; 1386 1387 // Find all of the outlining candidates. 1388 unsigned MaxCandidateLen = 1389 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1390 1391 // Remove candidates that overlap with other candidates. 1392 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1393 1394 // Outline each of the candidates and return true if something was outlined. 1395 bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper); 1396 1397 return OutlinedSomething; 1398 } 1399