1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * insertOutlinerEpilogue
29 ///   * insertOutlinedCall
30 ///   * insertOutlinerPrologue
31 ///   * isFunctionSafeToOutlineFrom
32 ///
33 /// in order to make use of the MachineOutliner.
34 ///
35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37 /// how this pass works, the talk is available on YouTube at
38 ///
39 /// https://www.youtube.com/watch?v=yorld-WSOeU
40 ///
41 /// The slides for the talk are available at
42 ///
43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44 ///
45 /// The talk provides an overview of how the outliner finds candidates and
46 /// ultimately outlines them. It describes how the main data structure for this
47 /// pass, the suffix tree, is queried and purged for candidates. It also gives
48 /// a simplified suffix tree construction algorithm for suffix trees based off
49 /// of the algorithm actually used here, Ukkonen's algorithm.
50 ///
51 /// For the original RFC for this pass, please see
52 ///
53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54 ///
55 /// For more information on the suffix tree data structure, please see
56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57 ///
58 //===----------------------------------------------------------------------===//
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/Passes.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetRegisterInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/Mangler.h"
72 #include "llvm/Support/Allocator.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <functional>
76 #include <map>
77 #include <sstream>
78 #include <tuple>
79 #include <vector>
80 
81 #define DEBUG_TYPE "machine-outliner"
82 
83 using namespace llvm;
84 using namespace ore;
85 
86 STATISTIC(NumOutlined, "Number of candidates outlined");
87 STATISTIC(FunctionsCreated, "Number of functions created");
88 
89 namespace {
90 
91 /// \brief An individual sequence of instructions to be replaced with a call to
92 /// an outlined function.
93 struct Candidate {
94 private:
95   /// The start index of this \p Candidate in the instruction list.
96   unsigned StartIdx;
97 
98   /// The number of instructions in this \p Candidate.
99   unsigned Len;
100 
101   /// The MachineFunction containing this \p Candidate.
102   MachineFunction *MF = nullptr;
103 
104 public:
105   /// Set to false if the candidate overlapped with another candidate.
106   bool InCandidateList = true;
107 
108   /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of
109   /// \p OutlinedFunctions.
110   unsigned FunctionIdx;
111 
112   /// Contains all target-specific information for this \p Candidate.
113   TargetInstrInfo::MachineOutlinerInfo MInfo;
114 
115   /// If there is a DISubprogram associated with the function that this
116   /// Candidate lives in, return it.
117   DISubprogram *getSubprogramOrNull() const {
118     assert(MF && "Candidate has no MF!");
119     if (DISubprogram *SP = MF->getFunction().getSubprogram())
120       return SP;
121     return nullptr;
122   }
123 
124   /// Return the number of instructions in this Candidate.
125   unsigned getLength() const { return Len; }
126 
127   /// Return the start index of this candidate.
128   unsigned getStartIdx() const { return StartIdx; }
129 
130   // Return the end index of this candidate.
131   unsigned getEndIdx() const { return StartIdx + Len - 1; }
132 
133   /// \brief The number of instructions that would be saved by outlining every
134   /// candidate of this type.
135   ///
136   /// This is a fixed value which is not updated during the candidate pruning
137   /// process. It is only used for deciding which candidate to keep if two
138   /// candidates overlap. The true benefit is stored in the OutlinedFunction
139   /// for some given candidate.
140   unsigned Benefit = 0;
141 
142   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx,
143             MachineFunction *MF)
144       : StartIdx(StartIdx), Len(Len), MF(MF), FunctionIdx(FunctionIdx) {}
145 
146   Candidate() {}
147 
148   /// \brief Used to ensure that \p Candidates are outlined in an order that
149   /// preserves the start and end indices of other \p Candidates.
150   bool operator<(const Candidate &RHS) const {
151     return getStartIdx() > RHS.getStartIdx();
152   }
153 };
154 
155 /// \brief The information necessary to create an outlined function for some
156 /// class of candidate.
157 struct OutlinedFunction {
158 
159 private:
160   /// The number of candidates for this \p OutlinedFunction.
161   unsigned OccurrenceCount = 0;
162 
163 public:
164   std::vector<std::shared_ptr<Candidate>> Candidates;
165 
166   /// The actual outlined function created.
167   /// This is initialized after we go through and create the actual function.
168   MachineFunction *MF = nullptr;
169 
170   /// A number assigned to this function which appears at the end of its name.
171   unsigned Name;
172 
173   /// \brief The sequence of integers corresponding to the instructions in this
174   /// function.
175   std::vector<unsigned> Sequence;
176 
177   /// Contains all target-specific information for this \p OutlinedFunction.
178   TargetInstrInfo::MachineOutlinerInfo MInfo;
179 
180   /// If there is a DISubprogram for any Candidate for this outlined function,
181   /// then return it. Otherwise, return nullptr.
182   DISubprogram *getSubprogramOrNull() const {
183     for (const auto &C : Candidates)
184       if (DISubprogram *SP = C->getSubprogramOrNull())
185         return SP;
186     return nullptr;
187   }
188 
189   /// Return the number of candidates for this \p OutlinedFunction.
190   unsigned getOccurrenceCount() { return OccurrenceCount; }
191 
192   /// Decrement the occurrence count of this OutlinedFunction and return the
193   /// new count.
194   unsigned decrement() {
195     assert(OccurrenceCount > 0 && "Can't decrement an empty function!");
196     OccurrenceCount--;
197     return getOccurrenceCount();
198   }
199 
200   /// \brief Return the number of instructions it would take to outline this
201   /// function.
202   unsigned getOutliningCost() {
203     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
204            MInfo.FrameOverhead;
205   }
206 
207   /// \brief Return the number of instructions that would be saved by outlining
208   /// this function.
209   unsigned getBenefit() {
210     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
211     unsigned OutlinedCost = getOutliningCost();
212     return (NotOutlinedCost < OutlinedCost) ? 0
213                                             : NotOutlinedCost - OutlinedCost;
214   }
215 
216   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
217                    const std::vector<unsigned> &Sequence,
218                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
219       : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence),
220         MInfo(MInfo) {}
221 };
222 
223 /// Represents an undefined index in the suffix tree.
224 const unsigned EmptyIdx = -1;
225 
226 /// A node in a suffix tree which represents a substring or suffix.
227 ///
228 /// Each node has either no children or at least two children, with the root
229 /// being a exception in the empty tree.
230 ///
231 /// Children are represented as a map between unsigned integers and nodes. If
232 /// a node N has a child M on unsigned integer k, then the mapping represented
233 /// by N is a proper prefix of the mapping represented by M. Note that this,
234 /// although similar to a trie is somewhat different: each node stores a full
235 /// substring of the full mapping rather than a single character state.
236 ///
237 /// Each internal node contains a pointer to the internal node representing
238 /// the same string, but with the first character chopped off. This is stored
239 /// in \p Link. Each leaf node stores the start index of its respective
240 /// suffix in \p SuffixIdx.
241 struct SuffixTreeNode {
242 
243   /// The children of this node.
244   ///
245   /// A child existing on an unsigned integer implies that from the mapping
246   /// represented by the current node, there is a way to reach another
247   /// mapping by tacking that character on the end of the current string.
248   DenseMap<unsigned, SuffixTreeNode *> Children;
249 
250   /// A flag set to false if the node has been pruned from the tree.
251   bool IsInTree = true;
252 
253   /// The start index of this node's substring in the main string.
254   unsigned StartIdx = EmptyIdx;
255 
256   /// The end index of this node's substring in the main string.
257   ///
258   /// Every leaf node must have its \p EndIdx incremented at the end of every
259   /// step in the construction algorithm. To avoid having to update O(N)
260   /// nodes individually at the end of every step, the end index is stored
261   /// as a pointer.
262   unsigned *EndIdx = nullptr;
263 
264   /// For leaves, the start index of the suffix represented by this node.
265   ///
266   /// For all other nodes, this is ignored.
267   unsigned SuffixIdx = EmptyIdx;
268 
269   /// \brief For internal nodes, a pointer to the internal node representing
270   /// the same sequence with the first character chopped off.
271   ///
272   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
273   /// Ukkonen's algorithm does to achieve linear-time construction is
274   /// keep track of which node the next insert should be at. This makes each
275   /// insert O(1), and there are a total of O(N) inserts. The suffix link
276   /// helps with inserting children of internal nodes.
277   ///
278   /// Say we add a child to an internal node with associated mapping S. The
279   /// next insertion must be at the node representing S - its first character.
280   /// This is given by the way that we iteratively build the tree in Ukkonen's
281   /// algorithm. The main idea is to look at the suffixes of each prefix in the
282   /// string, starting with the longest suffix of the prefix, and ending with
283   /// the shortest. Therefore, if we keep pointers between such nodes, we can
284   /// move to the next insertion point in O(1) time. If we don't, then we'd
285   /// have to query from the root, which takes O(N) time. This would make the
286   /// construction algorithm O(N^2) rather than O(N).
287   SuffixTreeNode *Link = nullptr;
288 
289   /// The parent of this node. Every node except for the root has a parent.
290   SuffixTreeNode *Parent = nullptr;
291 
292   /// The number of times this node's string appears in the tree.
293   ///
294   /// This is equal to the number of leaf children of the string. It represents
295   /// the number of suffixes that the node's string is a prefix of.
296   unsigned OccurrenceCount = 0;
297 
298   /// The length of the string formed by concatenating the edge labels from the
299   /// root to this node.
300   unsigned ConcatLen = 0;
301 
302   /// Returns true if this node is a leaf.
303   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
304 
305   /// Returns true if this node is the root of its owning \p SuffixTree.
306   bool isRoot() const { return StartIdx == EmptyIdx; }
307 
308   /// Return the number of elements in the substring associated with this node.
309   size_t size() const {
310 
311     // Is it the root? If so, it's the empty string so return 0.
312     if (isRoot())
313       return 0;
314 
315     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
316 
317     // Size = the number of elements in the string.
318     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
319     return *EndIdx - StartIdx + 1;
320   }
321 
322   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
323                  SuffixTreeNode *Parent)
324       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
325 
326   SuffixTreeNode() {}
327 };
328 
329 /// A data structure for fast substring queries.
330 ///
331 /// Suffix trees represent the suffixes of their input strings in their leaves.
332 /// A suffix tree is a type of compressed trie structure where each node
333 /// represents an entire substring rather than a single character. Each leaf
334 /// of the tree is a suffix.
335 ///
336 /// A suffix tree can be seen as a type of state machine where each state is a
337 /// substring of the full string. The tree is structured so that, for a string
338 /// of length N, there are exactly N leaves in the tree. This structure allows
339 /// us to quickly find repeated substrings of the input string.
340 ///
341 /// In this implementation, a "string" is a vector of unsigned integers.
342 /// These integers may result from hashing some data type. A suffix tree can
343 /// contain 1 or many strings, which can then be queried as one large string.
344 ///
345 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
346 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
347 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
348 /// paper is available at
349 ///
350 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
351 class SuffixTree {
352 public:
353   /// Stores each leaf node in the tree.
354   ///
355   /// This is used for finding outlining candidates.
356   std::vector<SuffixTreeNode *> LeafVector;
357 
358   /// Each element is an integer representing an instruction in the module.
359   ArrayRef<unsigned> Str;
360 
361 private:
362   /// Maintains each node in the tree.
363   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
364 
365   /// The root of the suffix tree.
366   ///
367   /// The root represents the empty string. It is maintained by the
368   /// \p NodeAllocator like every other node in the tree.
369   SuffixTreeNode *Root = nullptr;
370 
371   /// Maintains the end indices of the internal nodes in the tree.
372   ///
373   /// Each internal node is guaranteed to never have its end index change
374   /// during the construction algorithm; however, leaves must be updated at
375   /// every step. Therefore, we need to store leaf end indices by reference
376   /// to avoid updating O(N) leaves at every step of construction. Thus,
377   /// every internal node must be allocated its own end index.
378   BumpPtrAllocator InternalEndIdxAllocator;
379 
380   /// The end index of each leaf in the tree.
381   unsigned LeafEndIdx = -1;
382 
383   /// \brief Helper struct which keeps track of the next insertion point in
384   /// Ukkonen's algorithm.
385   struct ActiveState {
386     /// The next node to insert at.
387     SuffixTreeNode *Node;
388 
389     /// The index of the first character in the substring currently being added.
390     unsigned Idx = EmptyIdx;
391 
392     /// The length of the substring we have to add at the current step.
393     unsigned Len = 0;
394   };
395 
396   /// \brief The point the next insertion will take place at in the
397   /// construction algorithm.
398   ActiveState Active;
399 
400   /// Allocate a leaf node and add it to the tree.
401   ///
402   /// \param Parent The parent of this node.
403   /// \param StartIdx The start index of this node's associated string.
404   /// \param Edge The label on the edge leaving \p Parent to this node.
405   ///
406   /// \returns A pointer to the allocated leaf node.
407   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
408                              unsigned Edge) {
409 
410     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
411 
412     SuffixTreeNode *N = new (NodeAllocator.Allocate())
413         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
414     Parent.Children[Edge] = N;
415 
416     return N;
417   }
418 
419   /// Allocate an internal node and add it to the tree.
420   ///
421   /// \param Parent The parent of this node. Only null when allocating the root.
422   /// \param StartIdx The start index of this node's associated string.
423   /// \param EndIdx The end index of this node's associated string.
424   /// \param Edge The label on the edge leaving \p Parent to this node.
425   ///
426   /// \returns A pointer to the allocated internal node.
427   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
428                                      unsigned EndIdx, unsigned Edge) {
429 
430     assert(StartIdx <= EndIdx && "String can't start after it ends!");
431     assert(!(!Parent && StartIdx != EmptyIdx) &&
432            "Non-root internal nodes must have parents!");
433 
434     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
435     SuffixTreeNode *N = new (NodeAllocator.Allocate())
436         SuffixTreeNode(StartIdx, E, Root, Parent);
437     if (Parent)
438       Parent->Children[Edge] = N;
439 
440     return N;
441   }
442 
443   /// \brief Set the suffix indices of the leaves to the start indices of their
444   /// respective suffixes. Also stores each leaf in \p LeafVector at its
445   /// respective suffix index.
446   ///
447   /// \param[in] CurrNode The node currently being visited.
448   /// \param CurrIdx The current index of the string being visited.
449   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
450 
451     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
452 
453     // Store the length of the concatenation of all strings from the root to
454     // this node.
455     if (!CurrNode.isRoot()) {
456       if (CurrNode.ConcatLen == 0)
457         CurrNode.ConcatLen = CurrNode.size();
458 
459       if (CurrNode.Parent)
460         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
461     }
462 
463     // Traverse the tree depth-first.
464     for (auto &ChildPair : CurrNode.Children) {
465       assert(ChildPair.second && "Node had a null child!");
466       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
467     }
468 
469     // Is this node a leaf?
470     if (IsLeaf) {
471       // If yes, give it a suffix index and bump its parent's occurrence count.
472       CurrNode.SuffixIdx = Str.size() - CurrIdx;
473       assert(CurrNode.Parent && "CurrNode had no parent!");
474       CurrNode.Parent->OccurrenceCount++;
475 
476       // Store the leaf in the leaf vector for pruning later.
477       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
478     }
479   }
480 
481   /// \brief Construct the suffix tree for the prefix of the input ending at
482   /// \p EndIdx.
483   ///
484   /// Used to construct the full suffix tree iteratively. At the end of each
485   /// step, the constructed suffix tree is either a valid suffix tree, or a
486   /// suffix tree with implicit suffixes. At the end of the final step, the
487   /// suffix tree is a valid tree.
488   ///
489   /// \param EndIdx The end index of the current prefix in the main string.
490   /// \param SuffixesToAdd The number of suffixes that must be added
491   /// to complete the suffix tree at the current phase.
492   ///
493   /// \returns The number of suffixes that have not been added at the end of
494   /// this step.
495   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
496     SuffixTreeNode *NeedsLink = nullptr;
497 
498     while (SuffixesToAdd > 0) {
499 
500       // Are we waiting to add anything other than just the last character?
501       if (Active.Len == 0) {
502         // If not, then say the active index is the end index.
503         Active.Idx = EndIdx;
504       }
505 
506       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
507 
508       // The first character in the current substring we're looking at.
509       unsigned FirstChar = Str[Active.Idx];
510 
511       // Have we inserted anything starting with FirstChar at the current node?
512       if (Active.Node->Children.count(FirstChar) == 0) {
513         // If not, then we can just insert a leaf and move too the next step.
514         insertLeaf(*Active.Node, EndIdx, FirstChar);
515 
516         // The active node is an internal node, and we visited it, so it must
517         // need a link if it doesn't have one.
518         if (NeedsLink) {
519           NeedsLink->Link = Active.Node;
520           NeedsLink = nullptr;
521         }
522       } else {
523         // There's a match with FirstChar, so look for the point in the tree to
524         // insert a new node.
525         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
526 
527         unsigned SubstringLen = NextNode->size();
528 
529         // Is the current suffix we're trying to insert longer than the size of
530         // the child we want to move to?
531         if (Active.Len >= SubstringLen) {
532           // If yes, then consume the characters we've seen and move to the next
533           // node.
534           Active.Idx += SubstringLen;
535           Active.Len -= SubstringLen;
536           Active.Node = NextNode;
537           continue;
538         }
539 
540         // Otherwise, the suffix we're trying to insert must be contained in the
541         // next node we want to move to.
542         unsigned LastChar = Str[EndIdx];
543 
544         // Is the string we're trying to insert a substring of the next node?
545         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
546           // If yes, then we're done for this step. Remember our insertion point
547           // and move to the next end index. At this point, we have an implicit
548           // suffix tree.
549           if (NeedsLink && !Active.Node->isRoot()) {
550             NeedsLink->Link = Active.Node;
551             NeedsLink = nullptr;
552           }
553 
554           Active.Len++;
555           break;
556         }
557 
558         // The string we're trying to insert isn't a substring of the next node,
559         // but matches up to a point. Split the node.
560         //
561         // For example, say we ended our search at a node n and we're trying to
562         // insert ABD. Then we'll create a new node s for AB, reduce n to just
563         // representing C, and insert a new leaf node l to represent d. This
564         // allows us to ensure that if n was a leaf, it remains a leaf.
565         //
566         //   | ABC  ---split--->  | AB
567         //   n                    s
568         //                     C / \ D
569         //                      n   l
570 
571         // The node s from the diagram
572         SuffixTreeNode *SplitNode =
573             insertInternalNode(Active.Node, NextNode->StartIdx,
574                                NextNode->StartIdx + Active.Len - 1, FirstChar);
575 
576         // Insert the new node representing the new substring into the tree as
577         // a child of the split node. This is the node l from the diagram.
578         insertLeaf(*SplitNode, EndIdx, LastChar);
579 
580         // Make the old node a child of the split node and update its start
581         // index. This is the node n from the diagram.
582         NextNode->StartIdx += Active.Len;
583         NextNode->Parent = SplitNode;
584         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
585 
586         // SplitNode is an internal node, update the suffix link.
587         if (NeedsLink)
588           NeedsLink->Link = SplitNode;
589 
590         NeedsLink = SplitNode;
591       }
592 
593       // We've added something new to the tree, so there's one less suffix to
594       // add.
595       SuffixesToAdd--;
596 
597       if (Active.Node->isRoot()) {
598         if (Active.Len > 0) {
599           Active.Len--;
600           Active.Idx = EndIdx - SuffixesToAdd + 1;
601         }
602       } else {
603         // Start the next phase at the next smallest suffix.
604         Active.Node = Active.Node->Link;
605       }
606     }
607 
608     return SuffixesToAdd;
609   }
610 
611 public:
612   /// Construct a suffix tree from a sequence of unsigned integers.
613   ///
614   /// \param Str The string to construct the suffix tree for.
615   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
616     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
617     Root->IsInTree = true;
618     Active.Node = Root;
619     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
620 
621     // Keep track of the number of suffixes we have to add of the current
622     // prefix.
623     unsigned SuffixesToAdd = 0;
624     Active.Node = Root;
625 
626     // Construct the suffix tree iteratively on each prefix of the string.
627     // PfxEndIdx is the end index of the current prefix.
628     // End is one past the last element in the string.
629     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
630          PfxEndIdx++) {
631       SuffixesToAdd++;
632       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
633       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
634     }
635 
636     // Set the suffix indices of each leaf.
637     assert(Root && "Root node can't be nullptr!");
638     setSuffixIndices(*Root, 0);
639   }
640 };
641 
642 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
643 struct InstructionMapper {
644 
645   /// \brief The next available integer to assign to a \p MachineInstr that
646   /// cannot be outlined.
647   ///
648   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
649   unsigned IllegalInstrNumber = -3;
650 
651   /// \brief The next available integer to assign to a \p MachineInstr that can
652   /// be outlined.
653   unsigned LegalInstrNumber = 0;
654 
655   /// Correspondence from \p MachineInstrs to unsigned integers.
656   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
657       InstructionIntegerMap;
658 
659   /// Corresponcence from unsigned integers to \p MachineInstrs.
660   /// Inverse of \p InstructionIntegerMap.
661   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
662 
663   /// The vector of unsigned integers that the module is mapped to.
664   std::vector<unsigned> UnsignedVec;
665 
666   /// \brief Stores the location of the instruction associated with the integer
667   /// at index i in \p UnsignedVec for each index i.
668   std::vector<MachineBasicBlock::iterator> InstrList;
669 
670   /// \brief Maps \p *It to a legal integer.
671   ///
672   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
673   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
674   ///
675   /// \returns The integer that \p *It was mapped to.
676   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
677 
678     // Get the integer for this instruction or give it the current
679     // LegalInstrNumber.
680     InstrList.push_back(It);
681     MachineInstr &MI = *It;
682     bool WasInserted;
683     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
684         ResultIt;
685     std::tie(ResultIt, WasInserted) =
686         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
687     unsigned MINumber = ResultIt->second;
688 
689     // There was an insertion.
690     if (WasInserted) {
691       LegalInstrNumber++;
692       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
693     }
694 
695     UnsignedVec.push_back(MINumber);
696 
697     // Make sure we don't overflow or use any integers reserved by the DenseMap.
698     if (LegalInstrNumber >= IllegalInstrNumber)
699       report_fatal_error("Instruction mapping overflow!");
700 
701     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
702            "Tried to assign DenseMap tombstone or empty key to instruction.");
703     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
704            "Tried to assign DenseMap tombstone or empty key to instruction.");
705 
706     return MINumber;
707   }
708 
709   /// Maps \p *It to an illegal integer.
710   ///
711   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
712   ///
713   /// \returns The integer that \p *It was mapped to.
714   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
715     unsigned MINumber = IllegalInstrNumber;
716 
717     InstrList.push_back(It);
718     UnsignedVec.push_back(IllegalInstrNumber);
719     IllegalInstrNumber--;
720 
721     assert(LegalInstrNumber < IllegalInstrNumber &&
722            "Instruction mapping overflow!");
723 
724     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
725            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
726 
727     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
728            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
729 
730     return MINumber;
731   }
732 
733   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
734   /// and appends it to \p UnsignedVec and \p InstrList.
735   ///
736   /// Two instructions are assigned the same integer if they are identical.
737   /// If an instruction is deemed unsafe to outline, then it will be assigned an
738   /// unique integer. The resulting mapping is placed into a suffix tree and
739   /// queried for candidates.
740   ///
741   /// \param MBB The \p MachineBasicBlock to be translated into integers.
742   /// \param TRI \p TargetRegisterInfo for the module.
743   /// \param TII \p TargetInstrInfo for the module.
744   void convertToUnsignedVec(MachineBasicBlock &MBB,
745                             const TargetRegisterInfo &TRI,
746                             const TargetInstrInfo &TII) {
747     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
748 
749     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
750          It++) {
751 
752       // Keep track of where this instruction is in the module.
753       switch (TII.getOutliningType(It, Flags)) {
754       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
755         mapToIllegalUnsigned(It);
756         break;
757 
758       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
759         mapToLegalUnsigned(It);
760         break;
761 
762       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
763         break;
764       }
765     }
766 
767     // After we're done every insertion, uniquely terminate this part of the
768     // "string". This makes sure we won't match across basic block or function
769     // boundaries since the "end" is encoded uniquely and thus appears in no
770     // repeated substring.
771     InstrList.push_back(MBB.end());
772     UnsignedVec.push_back(IllegalInstrNumber);
773     IllegalInstrNumber--;
774   }
775 
776   InstructionMapper() {
777     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
778     // changed.
779     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
780            "DenseMapInfo<unsigned>'s empty key isn't -1!");
781     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
782            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
783   }
784 };
785 
786 /// \brief An interprocedural pass which finds repeated sequences of
787 /// instructions and replaces them with calls to functions.
788 ///
789 /// Each instruction is mapped to an unsigned integer and placed in a string.
790 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
791 /// is then repeatedly queried for repeated sequences of instructions. Each
792 /// non-overlapping repeated sequence is then placed in its own
793 /// \p MachineFunction and each instance is then replaced with a call to that
794 /// function.
795 struct MachineOutliner : public ModulePass {
796 
797   static char ID;
798 
799   /// \brief Set to true if the outliner should consider functions with
800   /// linkonceodr linkage.
801   bool OutlineFromLinkOnceODRs = false;
802 
803   // Collection of IR functions created by the outliner.
804   std::vector<Function *> CreatedIRFunctions;
805 
806   StringRef getPassName() const override { return "Machine Outliner"; }
807 
808   void getAnalysisUsage(AnalysisUsage &AU) const override {
809     AU.addRequired<MachineModuleInfo>();
810     AU.addPreserved<MachineModuleInfo>();
811     AU.setPreservesAll();
812     ModulePass::getAnalysisUsage(AU);
813   }
814 
815   MachineOutliner(bool OutlineFromLinkOnceODRs = false)
816       : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
817     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
818   }
819 
820   /// Find all repeated substrings that satisfy the outlining cost model.
821   ///
822   /// If a substring appears at least twice, then it must be represented by
823   /// an internal node which appears in at least two suffixes. Each suffix is
824   /// represented by a leaf node. To do this, we visit each internal node in
825   /// the tree, using the leaf children of each internal node. If an internal
826   /// node represents a beneficial substring, then we use each of its leaf
827   /// children to find the locations of its substring.
828   ///
829   /// \param ST A suffix tree to query.
830   /// \param TII TargetInstrInfo for the target.
831   /// \param Mapper Contains outlining mapping information.
832   /// \param[out] CandidateList Filled with candidates representing each
833   /// beneficial substring.
834   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
835   /// type of candidate.
836   ///
837   /// \returns The length of the longest candidate found.
838   unsigned
839   findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
840                  InstructionMapper &Mapper,
841                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
842                  std::vector<OutlinedFunction> &FunctionList);
843 
844   /// \brief Replace the sequences of instructions represented by the
845   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
846   /// described in \p FunctionList.
847   ///
848   /// \param M The module we are outlining from.
849   /// \param CandidateList A list of candidates to be outlined.
850   /// \param FunctionList A list of functions to be inserted into the module.
851   /// \param Mapper Contains the instruction mappings for the module.
852   bool outline(Module &M,
853                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
854                std::vector<OutlinedFunction> &FunctionList,
855                InstructionMapper &Mapper);
856 
857   /// Creates a function for \p OF and inserts it into the module.
858   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
859                                           InstructionMapper &Mapper);
860 
861   /// Find potential outlining candidates and store them in \p CandidateList.
862   ///
863   /// For each type of potential candidate, also build an \p OutlinedFunction
864   /// struct containing the information to build the function for that
865   /// candidate.
866   ///
867   /// \param[out] CandidateList Filled with outlining candidates for the module.
868   /// \param[out] FunctionList Filled with functions corresponding to each type
869   /// of \p Candidate.
870   /// \param ST The suffix tree for the module.
871   /// \param TII TargetInstrInfo for the module.
872   ///
873   /// \returns The length of the longest candidate found. 0 if there are none.
874   unsigned
875   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
876                      std::vector<OutlinedFunction> &FunctionList,
877                      SuffixTree &ST, InstructionMapper &Mapper,
878                      const TargetInstrInfo &TII);
879 
880   /// Helper function for pruneOverlaps.
881   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
882   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
883 
884   /// \brief Remove any overlapping candidates that weren't handled by the
885   /// suffix tree's pruning method.
886   ///
887   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
888   /// If a short candidate is chosen for outlining, then a longer candidate
889   /// which has that short candidate as a suffix is chosen, the tree's pruning
890   /// method will not find it. Thus, we need to prune before outlining as well.
891   ///
892   /// \param[in,out] CandidateList A list of outlining candidates.
893   /// \param[in,out] FunctionList A list of functions to be outlined.
894   /// \param Mapper Contains instruction mapping info for outlining.
895   /// \param MaxCandidateLen The length of the longest candidate.
896   /// \param TII TargetInstrInfo for the module.
897   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
898                      std::vector<OutlinedFunction> &FunctionList,
899                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
900                      const TargetInstrInfo &TII);
901 
902   /// Construct a suffix tree on the instructions in \p M and outline repeated
903   /// strings from that tree.
904   bool runOnModule(Module &M) override;
905 };
906 
907 } // Anonymous namespace.
908 
909 char MachineOutliner::ID = 0;
910 
911 namespace llvm {
912 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
913   return new MachineOutliner(OutlineFromLinkOnceODRs);
914 }
915 
916 } // namespace llvm
917 
918 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
919                 false)
920 
921 unsigned MachineOutliner::findCandidates(
922     SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper,
923     std::vector<std::shared_ptr<Candidate>> &CandidateList,
924     std::vector<OutlinedFunction> &FunctionList) {
925   CandidateList.clear();
926   FunctionList.clear();
927   unsigned MaxLen = 0;
928 
929   // FIXME: Visit internal nodes instead of leaves.
930   for (SuffixTreeNode *Leaf : ST.LeafVector) {
931     assert(Leaf && "Leaves in LeafVector cannot be null!");
932     if (!Leaf->IsInTree)
933       continue;
934 
935     assert(Leaf->Parent && "All leaves must have parents!");
936     SuffixTreeNode &Parent = *(Leaf->Parent);
937 
938     // If it doesn't appear enough, or we already outlined from it, skip it.
939     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
940       continue;
941 
942     // Figure out if this candidate is beneficial.
943     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
944 
945     // Too short to be beneficial; skip it.
946     // FIXME: This isn't necessarily true for, say, X86. If we factor in
947     // instruction lengths we need more information than this.
948     if (StringLen < 2)
949       continue;
950 
951     // If this is a beneficial class of candidate, then every one is stored in
952     // this vector.
953     std::vector<Candidate> CandidatesForRepeatedSeq;
954 
955     // Describes the start and end point of each candidate. This allows the
956     // target to infer some information about each occurrence of each repeated
957     // sequence.
958     // FIXME: CandidatesForRepeatedSeq and this should be combined.
959     std::vector<
960         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
961         RepeatedSequenceLocs;
962 
963     // Figure out the call overhead for each instance of the sequence.
964     for (auto &ChildPair : Parent.Children) {
965       SuffixTreeNode *M = ChildPair.second;
966 
967       if (M && M->IsInTree && M->isLeaf()) {
968         // Never visit this leaf again.
969         M->IsInTree = false;
970         unsigned StartIdx = M->SuffixIdx;
971         unsigned EndIdx = StartIdx + StringLen - 1;
972 
973         // Trick: Discard some candidates that would be incompatible with the
974         // ones we've already found for this sequence. This will save us some
975         // work in candidate selection.
976         //
977         // If two candidates overlap, then we can't outline them both. This
978         // happens when we have candidates that look like, say
979         //
980         // AA (where each "A" is an instruction).
981         //
982         // We might have some portion of the module that looks like this:
983         // AAAAAA (6 A's)
984         //
985         // In this case, there are 5 different copies of "AA" in this range, but
986         // at most 3 can be outlined. If only outlining 3 of these is going to
987         // be unbeneficial, then we ought to not bother.
988         //
989         // Note that two things DON'T overlap when they look like this:
990         // start1...end1 .... start2...end2
991         // That is, one must either
992         // * End before the other starts
993         // * Start after the other ends
994         if (std::all_of(CandidatesForRepeatedSeq.begin(),
995                         CandidatesForRepeatedSeq.end(),
996                         [&StartIdx, &EndIdx](const Candidate &C) {
997                           return (EndIdx < C.getStartIdx() ||
998                                   StartIdx > C.getEndIdx());
999                         })) {
1000           // It doesn't overlap with anything, so we can outline it.
1001           // Each sequence is over [StartIt, EndIt].
1002           MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1003           MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1004 
1005           // Save the MachineFunction containing the Candidate.
1006           MachineFunction *MF = StartIt->getParent()->getParent();
1007           assert(MF && "Candidate doesn't have a MF?");
1008 
1009           // Save the candidate and its location.
1010           CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen,
1011                                                 FunctionList.size(), MF);
1012           RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
1013         }
1014       }
1015     }
1016 
1017     // We've found something we might want to outline.
1018     // Create an OutlinedFunction to store it and check if it'd be beneficial
1019     // to outline.
1020     TargetInstrInfo::MachineOutlinerInfo MInfo =
1021         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
1022     std::vector<unsigned> Seq;
1023     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
1024       Seq.push_back(ST.Str[i]);
1025     OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(),
1026                         Seq, MInfo);
1027     unsigned Benefit = OF.getBenefit();
1028 
1029     // Is it better to outline this candidate than not?
1030     if (Benefit < 1) {
1031       // Outlining this candidate would take more instructions than not
1032       // outlining.
1033       // Emit a remark explaining why we didn't outline this candidate.
1034       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
1035           RepeatedSequenceLocs[0];
1036       MachineOptimizationRemarkEmitter MORE(
1037           *(C.first->getParent()->getParent()), nullptr);
1038       MORE.emit([&]() {
1039         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
1040                                           C.first->getDebugLoc(),
1041                                           C.first->getParent());
1042         R << "Did not outline " << NV("Length", StringLen) << " instructions"
1043           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
1044           << " locations."
1045           << " Instructions from outlining all occurrences ("
1046           << NV("OutliningCost", OF.getOutliningCost()) << ")"
1047           << " >= Unoutlined instruction count ("
1048           << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")"
1049           << " (Also found at: ";
1050 
1051         // Tell the user the other places the candidate was found.
1052         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
1053           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
1054                   RepeatedSequenceLocs[i].first->getDebugLoc());
1055           if (i != e - 1)
1056             R << ", ";
1057         }
1058 
1059         R << ")";
1060         return R;
1061       });
1062 
1063       // Move to the next candidate.
1064       continue;
1065     }
1066 
1067     if (StringLen > MaxLen)
1068       MaxLen = StringLen;
1069 
1070     // At this point, the candidate class is seen as beneficial. Set their
1071     // benefit values and save them in the candidate list.
1072     std::vector<std::shared_ptr<Candidate>> CandidatesForFn;
1073     for (Candidate &C : CandidatesForRepeatedSeq) {
1074       C.Benefit = Benefit;
1075       C.MInfo = MInfo;
1076       std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C);
1077       CandidateList.push_back(Cptr);
1078       CandidatesForFn.push_back(Cptr);
1079     }
1080 
1081     FunctionList.push_back(OF);
1082     FunctionList.back().Candidates = CandidatesForFn;
1083 
1084     // Move to the next function.
1085     Parent.IsInTree = false;
1086   }
1087 
1088   return MaxLen;
1089 }
1090 
1091 // Remove C from the candidate space, and update its OutlinedFunction.
1092 void MachineOutliner::prune(Candidate &C,
1093                             std::vector<OutlinedFunction> &FunctionList) {
1094   // Get the OutlinedFunction associated with this Candidate.
1095   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1096 
1097   // Update C's associated function's occurrence count.
1098   F.decrement();
1099 
1100   // Remove C from the CandidateList.
1101   C.InCandidateList = false;
1102 
1103   DEBUG(dbgs() << "- Removed a Candidate \n";
1104         dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount()
1105                << "\n";
1106         dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1107                << "\n";);
1108 }
1109 
1110 void MachineOutliner::pruneOverlaps(
1111     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1112     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1113     unsigned MaxCandidateLen, const TargetInstrInfo &TII) {
1114 
1115   // Return true if this candidate became unbeneficial for outlining in a
1116   // previous step.
1117   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1118 
1119     // Check if the candidate was removed in a previous step.
1120     if (!C.InCandidateList)
1121       return true;
1122 
1123     // C must be alive. Check if we should remove it.
1124     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1125       prune(C, FunctionList);
1126       return true;
1127     }
1128 
1129     // C is in the list, and F is still beneficial.
1130     return false;
1131   };
1132 
1133   // TODO: Experiment with interval trees or other interval-checking structures
1134   // to lower the time complexity of this function.
1135   // TODO: Can we do better than the simple greedy choice?
1136   // Check for overlaps in the range.
1137   // This is O(MaxCandidateLen * CandidateList.size()).
1138   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1139        It++) {
1140     Candidate &C1 = **It;
1141 
1142     // If C1 was already pruned, or its function is no longer beneficial for
1143     // outlining, move to the next candidate.
1144     if (ShouldSkipCandidate(C1))
1145       continue;
1146 
1147     // The minimum start index of any candidate that could overlap with this
1148     // one.
1149     unsigned FarthestPossibleIdx = 0;
1150 
1151     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1152     if (C1.getStartIdx() > MaxCandidateLen)
1153       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1154 
1155     // Compare against the candidates in the list that start at most
1156     // FarthestPossibleIdx indices away from C1. There are at most
1157     // MaxCandidateLen of these.
1158     for (auto Sit = It + 1; Sit != Et; Sit++) {
1159       Candidate &C2 = **Sit;
1160 
1161       // Is this candidate too far away to overlap?
1162       if (C2.getStartIdx() < FarthestPossibleIdx)
1163         break;
1164 
1165       // If C2 was already pruned, or its function is no longer beneficial for
1166       // outlining, move to the next candidate.
1167       if (ShouldSkipCandidate(C2))
1168         continue;
1169 
1170       // Do C1 and C2 overlap?
1171       //
1172       // Not overlapping:
1173       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1174       //
1175       // We sorted our candidate list so C2Start <= C1Start. We know that
1176       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1177       // have to check is C2End < C2Start to see if we overlap.
1178       if (C2.getEndIdx() < C1.getStartIdx())
1179         continue;
1180 
1181       // C1 and C2 overlap.
1182       // We need to choose the better of the two.
1183       //
1184       // Approximate this by picking the one which would have saved us the
1185       // most instructions before any pruning.
1186 
1187       // Is C2 a better candidate?
1188       if (C2.Benefit > C1.Benefit) {
1189         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1190         // against anything anymore, so break.
1191         prune(C1, FunctionList);
1192         break;
1193       }
1194 
1195       // Prune C2 and move on to the next candidate.
1196       prune(C2, FunctionList);
1197     }
1198   }
1199 }
1200 
1201 unsigned MachineOutliner::buildCandidateList(
1202     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1203     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1204     InstructionMapper &Mapper, const TargetInstrInfo &TII) {
1205 
1206   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1207   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1208 
1209   MaxCandidateLen =
1210       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1211 
1212   // Sort the candidates in decending order. This will simplify the outlining
1213   // process when we have to remove the candidates from the mapping by
1214   // allowing us to cut them out without keeping track of an offset.
1215   std::stable_sort(
1216       CandidateList.begin(), CandidateList.end(),
1217       [](const std::shared_ptr<Candidate> &LHS,
1218          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1219 
1220   return MaxCandidateLen;
1221 }
1222 
1223 MachineFunction *
1224 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1225                                         InstructionMapper &Mapper) {
1226 
1227   // Create the function name. This should be unique. For now, just hash the
1228   // module name and include it in the function name plus the number of this
1229   // function.
1230   std::ostringstream NameStream;
1231   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1232 
1233   // Create the function using an IR-level function.
1234   LLVMContext &C = M.getContext();
1235   Function *F = dyn_cast<Function>(
1236       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1237   assert(F && "Function was null!");
1238 
1239   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1240   // which gives us better results when we outline from linkonceodr functions.
1241   F->setLinkage(GlobalValue::PrivateLinkage);
1242   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1243 
1244   // Save F so that we can add debug info later if we need to.
1245   CreatedIRFunctions.push_back(F);
1246 
1247   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1248   IRBuilder<> Builder(EntryBB);
1249   Builder.CreateRetVoid();
1250 
1251   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1252   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1253   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1254   const TargetSubtargetInfo &STI = MF.getSubtarget();
1255   const TargetInstrInfo &TII = *STI.getInstrInfo();
1256 
1257   // Insert the new function into the module.
1258   MF.insert(MF.begin(), &MBB);
1259 
1260   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1261 
1262   // Copy over the instructions for the function using the integer mappings in
1263   // its sequence.
1264   for (unsigned Str : OF.Sequence) {
1265     MachineInstr *NewMI =
1266         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1267     NewMI->dropMemRefs();
1268 
1269     // Don't keep debug information for outlined instructions.
1270     NewMI->setDebugLoc(DebugLoc());
1271     MBB.insert(MBB.end(), NewMI);
1272   }
1273 
1274   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1275 
1276   // If there's a DISubprogram associated with this outlined function, then
1277   // emit debug info for the outlined function.
1278   if (DISubprogram *SP = OF.getSubprogramOrNull()) {
1279     // We have a DISubprogram. Get its DICompileUnit.
1280     DICompileUnit *CU = SP->getUnit();
1281     DIBuilder DB(M, true, CU);
1282     DIFile *Unit = SP->getFile();
1283     Mangler Mg;
1284 
1285     // Walk over each IR function we created in the outliner and create
1286     // DISubprograms for each function.
1287     for (Function *F : CreatedIRFunctions) {
1288       // Get the mangled name of the function for the linkage name.
1289       std::string Dummy;
1290       llvm::raw_string_ostream MangledNameStream(Dummy);
1291       Mg.getNameWithPrefix(MangledNameStream, F, false);
1292 
1293       DISubprogram *SP = DB.createFunction(
1294           Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1295           Unit /* File */,
1296           0 /* Line 0 is reserved for compiler-generated code. */,
1297           DB.createSubroutineType(
1298               DB.getOrCreateTypeArray(None)), /* void type */
1299           false, true, 0, /* Line 0 is reserved for compiler-generated code. */
1300           DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1301           true /* Outlined code is optimized code by definition. */);
1302 
1303       // Don't add any new variables to the subprogram.
1304       DB.finalizeSubprogram(SP);
1305 
1306       // Attach subprogram to the function.
1307       F->setSubprogram(SP);
1308     }
1309 
1310     // We're done with the DIBuilder.
1311     DB.finalize();
1312   }
1313 
1314   return &MF;
1315 }
1316 
1317 bool MachineOutliner::outline(
1318     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1319     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1320 
1321   bool OutlinedSomething = false;
1322   // Replace the candidates with calls to their respective outlined functions.
1323   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1324     Candidate &C = *Cptr;
1325     // Was the candidate removed during pruneOverlaps?
1326     if (!C.InCandidateList)
1327       continue;
1328 
1329     // If not, then look at its OutlinedFunction.
1330     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1331 
1332     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1333     if (OF.getBenefit() < 1)
1334       continue;
1335 
1336     // If not, then outline it.
1337     assert(C.getStartIdx() < Mapper.InstrList.size() &&
1338            "Candidate out of bounds!");
1339     MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent();
1340     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()];
1341     unsigned EndIdx = C.getEndIdx();
1342 
1343     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1344     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1345     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1346 
1347     EndIt++; // Erase needs one past the end index.
1348 
1349     // Does this candidate have a function yet?
1350     if (!OF.MF) {
1351       OF.MF = createOutlinedFunction(M, OF, Mapper);
1352       MachineBasicBlock *MBB = &*OF.MF->begin();
1353 
1354       // Output a remark telling the user that an outlined function was created,
1355       // and explaining where it came from.
1356       MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
1357       MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
1358                                   MBB->findDebugLoc(MBB->begin()), MBB);
1359       R << "Saved " << NV("OutliningBenefit", OF.getBenefit())
1360         << " instructions by "
1361         << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
1362         << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
1363         << " locations. "
1364         << "(Found at: ";
1365 
1366       // Tell the user the other places the candidate was found.
1367       for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1368 
1369         // Skip over things that were pruned.
1370         if (!OF.Candidates[i]->InCandidateList)
1371           continue;
1372 
1373         R << NV(
1374             (Twine("StartLoc") + Twine(i)).str(),
1375             Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc());
1376         if (i != e - 1)
1377           R << ", ";
1378       }
1379 
1380       R << ")";
1381 
1382       MORE.emit(R);
1383       FunctionsCreated++;
1384     }
1385 
1386     MachineFunction *MF = OF.MF;
1387     const TargetSubtargetInfo &STI = MF->getSubtarget();
1388     const TargetInstrInfo &TII = *STI.getInstrInfo();
1389 
1390     // Insert a call to the new function and erase the old sequence.
1391     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
1392     StartIt = Mapper.InstrList[C.getStartIdx()];
1393     MBB->erase(StartIt, EndIt);
1394 
1395     OutlinedSomething = true;
1396 
1397     // Statistics.
1398     NumOutlined++;
1399   }
1400 
1401   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1402 
1403   return OutlinedSomething;
1404 }
1405 
1406 bool MachineOutliner::runOnModule(Module &M) {
1407 
1408   // Is there anything in the module at all?
1409   if (M.empty())
1410     return false;
1411 
1412   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1413   const TargetSubtargetInfo &STI =
1414       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1415   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1416   const TargetInstrInfo *TII = STI.getInstrInfo();
1417 
1418   InstructionMapper Mapper;
1419 
1420   // Build instruction mappings for each function in the module.
1421   for (Function &F : M) {
1422     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1423 
1424     // Is the function empty? Safe to outline from?
1425     if (F.empty() ||
1426         !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
1427       continue;
1428 
1429     // If it is, look at each MachineBasicBlock in the function.
1430     for (MachineBasicBlock &MBB : MF) {
1431 
1432       // Is there anything in MBB? And is it the target of an indirect branch?
1433       if (MBB.empty() || MBB.hasAddressTaken())
1434         continue;
1435 
1436       // If yes, map it.
1437       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1438     }
1439   }
1440 
1441   // Construct a suffix tree, use it to find candidates, and then outline them.
1442   SuffixTree ST(Mapper.UnsignedVec);
1443   std::vector<std::shared_ptr<Candidate>> CandidateList;
1444   std::vector<OutlinedFunction> FunctionList;
1445 
1446   // Find all of the outlining candidates.
1447   unsigned MaxCandidateLen =
1448       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1449 
1450   // Remove candidates that overlap with other candidates.
1451   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1452 
1453   // Outline each of the candidates and return true if something was outlined.
1454   bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
1455 
1456   return OutlinedSomething;
1457 }
1458