1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/MachineRegisterInfo.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/TargetInstrInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Mangler.h" 72 #include "llvm/InitializePasses.h" 73 #include "llvm/Support/Allocator.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <functional> 78 #include <tuple> 79 #include <vector> 80 81 #define DEBUG_TYPE "machine-outliner" 82 83 using namespace llvm; 84 using namespace ore; 85 using namespace outliner; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 // Set to true if the user wants the outliner to run on linkonceodr linkage 91 // functions. This is false by default because the linker can dedupe linkonceodr 92 // functions. Since the outliner is confined to a single module (modulo LTO), 93 // this is off by default. It should, however, be the default behaviour in 94 // LTO. 95 static cl::opt<bool> EnableLinkOnceODROutlining( 96 "enable-linkonceodr-outlining", cl::Hidden, 97 cl::desc("Enable the machine outliner on linkonceodr functions"), 98 cl::init(false)); 99 100 namespace { 101 102 /// Represents an undefined index in the suffix tree. 103 const unsigned EmptyIdx = -1; 104 105 /// A node in a suffix tree which represents a substring or suffix. 106 /// 107 /// Each node has either no children or at least two children, with the root 108 /// being a exception in the empty tree. 109 /// 110 /// Children are represented as a map between unsigned integers and nodes. If 111 /// a node N has a child M on unsigned integer k, then the mapping represented 112 /// by N is a proper prefix of the mapping represented by M. Note that this, 113 /// although similar to a trie is somewhat different: each node stores a full 114 /// substring of the full mapping rather than a single character state. 115 /// 116 /// Each internal node contains a pointer to the internal node representing 117 /// the same string, but with the first character chopped off. This is stored 118 /// in \p Link. Each leaf node stores the start index of its respective 119 /// suffix in \p SuffixIdx. 120 struct SuffixTreeNode { 121 122 /// The children of this node. 123 /// 124 /// A child existing on an unsigned integer implies that from the mapping 125 /// represented by the current node, there is a way to reach another 126 /// mapping by tacking that character on the end of the current string. 127 DenseMap<unsigned, SuffixTreeNode *> Children; 128 129 /// The start index of this node's substring in the main string. 130 unsigned StartIdx = EmptyIdx; 131 132 /// The end index of this node's substring in the main string. 133 /// 134 /// Every leaf node must have its \p EndIdx incremented at the end of every 135 /// step in the construction algorithm. To avoid having to update O(N) 136 /// nodes individually at the end of every step, the end index is stored 137 /// as a pointer. 138 unsigned *EndIdx = nullptr; 139 140 /// For leaves, the start index of the suffix represented by this node. 141 /// 142 /// For all other nodes, this is ignored. 143 unsigned SuffixIdx = EmptyIdx; 144 145 /// For internal nodes, a pointer to the internal node representing 146 /// the same sequence with the first character chopped off. 147 /// 148 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 149 /// Ukkonen's algorithm does to achieve linear-time construction is 150 /// keep track of which node the next insert should be at. This makes each 151 /// insert O(1), and there are a total of O(N) inserts. The suffix link 152 /// helps with inserting children of internal nodes. 153 /// 154 /// Say we add a child to an internal node with associated mapping S. The 155 /// next insertion must be at the node representing S - its first character. 156 /// This is given by the way that we iteratively build the tree in Ukkonen's 157 /// algorithm. The main idea is to look at the suffixes of each prefix in the 158 /// string, starting with the longest suffix of the prefix, and ending with 159 /// the shortest. Therefore, if we keep pointers between such nodes, we can 160 /// move to the next insertion point in O(1) time. If we don't, then we'd 161 /// have to query from the root, which takes O(N) time. This would make the 162 /// construction algorithm O(N^2) rather than O(N). 163 SuffixTreeNode *Link = nullptr; 164 165 /// The length of the string formed by concatenating the edge labels from the 166 /// root to this node. 167 unsigned ConcatLen = 0; 168 169 /// Returns true if this node is a leaf. 170 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 171 172 /// Returns true if this node is the root of its owning \p SuffixTree. 173 bool isRoot() const { return StartIdx == EmptyIdx; } 174 175 /// Return the number of elements in the substring associated with this node. 176 size_t size() const { 177 178 // Is it the root? If so, it's the empty string so return 0. 179 if (isRoot()) 180 return 0; 181 182 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 183 184 // Size = the number of elements in the string. 185 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 186 return *EndIdx - StartIdx + 1; 187 } 188 189 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 190 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 191 192 SuffixTreeNode() {} 193 }; 194 195 /// A data structure for fast substring queries. 196 /// 197 /// Suffix trees represent the suffixes of their input strings in their leaves. 198 /// A suffix tree is a type of compressed trie structure where each node 199 /// represents an entire substring rather than a single character. Each leaf 200 /// of the tree is a suffix. 201 /// 202 /// A suffix tree can be seen as a type of state machine where each state is a 203 /// substring of the full string. The tree is structured so that, for a string 204 /// of length N, there are exactly N leaves in the tree. This structure allows 205 /// us to quickly find repeated substrings of the input string. 206 /// 207 /// In this implementation, a "string" is a vector of unsigned integers. 208 /// These integers may result from hashing some data type. A suffix tree can 209 /// contain 1 or many strings, which can then be queried as one large string. 210 /// 211 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 212 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 213 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 214 /// paper is available at 215 /// 216 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 217 class SuffixTree { 218 public: 219 /// Each element is an integer representing an instruction in the module. 220 ArrayRef<unsigned> Str; 221 222 /// A repeated substring in the tree. 223 struct RepeatedSubstring { 224 /// The length of the string. 225 unsigned Length; 226 227 /// The start indices of each occurrence. 228 std::vector<unsigned> StartIndices; 229 }; 230 231 private: 232 /// Maintains each node in the tree. 233 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 234 235 /// The root of the suffix tree. 236 /// 237 /// The root represents the empty string. It is maintained by the 238 /// \p NodeAllocator like every other node in the tree. 239 SuffixTreeNode *Root = nullptr; 240 241 /// Maintains the end indices of the internal nodes in the tree. 242 /// 243 /// Each internal node is guaranteed to never have its end index change 244 /// during the construction algorithm; however, leaves must be updated at 245 /// every step. Therefore, we need to store leaf end indices by reference 246 /// to avoid updating O(N) leaves at every step of construction. Thus, 247 /// every internal node must be allocated its own end index. 248 BumpPtrAllocator InternalEndIdxAllocator; 249 250 /// The end index of each leaf in the tree. 251 unsigned LeafEndIdx = -1; 252 253 /// Helper struct which keeps track of the next insertion point in 254 /// Ukkonen's algorithm. 255 struct ActiveState { 256 /// The next node to insert at. 257 SuffixTreeNode *Node = nullptr; 258 259 /// The index of the first character in the substring currently being added. 260 unsigned Idx = EmptyIdx; 261 262 /// The length of the substring we have to add at the current step. 263 unsigned Len = 0; 264 }; 265 266 /// The point the next insertion will take place at in the 267 /// construction algorithm. 268 ActiveState Active; 269 270 /// Allocate a leaf node and add it to the tree. 271 /// 272 /// \param Parent The parent of this node. 273 /// \param StartIdx The start index of this node's associated string. 274 /// \param Edge The label on the edge leaving \p Parent to this node. 275 /// 276 /// \returns A pointer to the allocated leaf node. 277 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 278 unsigned Edge) { 279 280 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 281 282 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 283 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 284 Parent.Children[Edge] = N; 285 286 return N; 287 } 288 289 /// Allocate an internal node and add it to the tree. 290 /// 291 /// \param Parent The parent of this node. Only null when allocating the root. 292 /// \param StartIdx The start index of this node's associated string. 293 /// \param EndIdx The end index of this node's associated string. 294 /// \param Edge The label on the edge leaving \p Parent to this node. 295 /// 296 /// \returns A pointer to the allocated internal node. 297 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 298 unsigned EndIdx, unsigned Edge) { 299 300 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 301 assert(!(!Parent && StartIdx != EmptyIdx) && 302 "Non-root internal nodes must have parents!"); 303 304 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 305 SuffixTreeNode *N = 306 new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root); 307 if (Parent) 308 Parent->Children[Edge] = N; 309 310 return N; 311 } 312 313 /// Set the suffix indices of the leaves to the start indices of their 314 /// respective suffixes. 315 void setSuffixIndices() { 316 // List of nodes we need to visit along with the current length of the 317 // string. 318 std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit; 319 320 // Current node being visited. 321 SuffixTreeNode *CurrNode = Root; 322 323 // Sum of the lengths of the nodes down the path to the current one. 324 unsigned CurrNodeLen = 0; 325 ToVisit.push_back({CurrNode, CurrNodeLen}); 326 while (!ToVisit.empty()) { 327 std::tie(CurrNode, CurrNodeLen) = ToVisit.back(); 328 ToVisit.pop_back(); 329 CurrNode->ConcatLen = CurrNodeLen; 330 for (auto &ChildPair : CurrNode->Children) { 331 assert(ChildPair.second && "Node had a null child!"); 332 ToVisit.push_back( 333 {ChildPair.second, CurrNodeLen + ChildPair.second->size()}); 334 } 335 336 // No children, so we are at the end of the string. 337 if (CurrNode->Children.size() == 0 && !CurrNode->isRoot()) 338 CurrNode->SuffixIdx = Str.size() - CurrNodeLen; 339 } 340 } 341 342 /// Construct the suffix tree for the prefix of the input ending at 343 /// \p EndIdx. 344 /// 345 /// Used to construct the full suffix tree iteratively. At the end of each 346 /// step, the constructed suffix tree is either a valid suffix tree, or a 347 /// suffix tree with implicit suffixes. At the end of the final step, the 348 /// suffix tree is a valid tree. 349 /// 350 /// \param EndIdx The end index of the current prefix in the main string. 351 /// \param SuffixesToAdd The number of suffixes that must be added 352 /// to complete the suffix tree at the current phase. 353 /// 354 /// \returns The number of suffixes that have not been added at the end of 355 /// this step. 356 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 357 SuffixTreeNode *NeedsLink = nullptr; 358 359 while (SuffixesToAdd > 0) { 360 361 // Are we waiting to add anything other than just the last character? 362 if (Active.Len == 0) { 363 // If not, then say the active index is the end index. 364 Active.Idx = EndIdx; 365 } 366 367 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 368 369 // The first character in the current substring we're looking at. 370 unsigned FirstChar = Str[Active.Idx]; 371 372 // Have we inserted anything starting with FirstChar at the current node? 373 if (Active.Node->Children.count(FirstChar) == 0) { 374 // If not, then we can just insert a leaf and move too the next step. 375 insertLeaf(*Active.Node, EndIdx, FirstChar); 376 377 // The active node is an internal node, and we visited it, so it must 378 // need a link if it doesn't have one. 379 if (NeedsLink) { 380 NeedsLink->Link = Active.Node; 381 NeedsLink = nullptr; 382 } 383 } else { 384 // There's a match with FirstChar, so look for the point in the tree to 385 // insert a new node. 386 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 387 388 unsigned SubstringLen = NextNode->size(); 389 390 // Is the current suffix we're trying to insert longer than the size of 391 // the child we want to move to? 392 if (Active.Len >= SubstringLen) { 393 // If yes, then consume the characters we've seen and move to the next 394 // node. 395 Active.Idx += SubstringLen; 396 Active.Len -= SubstringLen; 397 Active.Node = NextNode; 398 continue; 399 } 400 401 // Otherwise, the suffix we're trying to insert must be contained in the 402 // next node we want to move to. 403 unsigned LastChar = Str[EndIdx]; 404 405 // Is the string we're trying to insert a substring of the next node? 406 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 407 // If yes, then we're done for this step. Remember our insertion point 408 // and move to the next end index. At this point, we have an implicit 409 // suffix tree. 410 if (NeedsLink && !Active.Node->isRoot()) { 411 NeedsLink->Link = Active.Node; 412 NeedsLink = nullptr; 413 } 414 415 Active.Len++; 416 break; 417 } 418 419 // The string we're trying to insert isn't a substring of the next node, 420 // but matches up to a point. Split the node. 421 // 422 // For example, say we ended our search at a node n and we're trying to 423 // insert ABD. Then we'll create a new node s for AB, reduce n to just 424 // representing C, and insert a new leaf node l to represent d. This 425 // allows us to ensure that if n was a leaf, it remains a leaf. 426 // 427 // | ABC ---split---> | AB 428 // n s 429 // C / \ D 430 // n l 431 432 // The node s from the diagram 433 SuffixTreeNode *SplitNode = 434 insertInternalNode(Active.Node, NextNode->StartIdx, 435 NextNode->StartIdx + Active.Len - 1, FirstChar); 436 437 // Insert the new node representing the new substring into the tree as 438 // a child of the split node. This is the node l from the diagram. 439 insertLeaf(*SplitNode, EndIdx, LastChar); 440 441 // Make the old node a child of the split node and update its start 442 // index. This is the node n from the diagram. 443 NextNode->StartIdx += Active.Len; 444 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 445 446 // SplitNode is an internal node, update the suffix link. 447 if (NeedsLink) 448 NeedsLink->Link = SplitNode; 449 450 NeedsLink = SplitNode; 451 } 452 453 // We've added something new to the tree, so there's one less suffix to 454 // add. 455 SuffixesToAdd--; 456 457 if (Active.Node->isRoot()) { 458 if (Active.Len > 0) { 459 Active.Len--; 460 Active.Idx = EndIdx - SuffixesToAdd + 1; 461 } 462 } else { 463 // Start the next phase at the next smallest suffix. 464 Active.Node = Active.Node->Link; 465 } 466 } 467 468 return SuffixesToAdd; 469 } 470 471 public: 472 /// Construct a suffix tree from a sequence of unsigned integers. 473 /// 474 /// \param Str The string to construct the suffix tree for. 475 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 476 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 477 Active.Node = Root; 478 479 // Keep track of the number of suffixes we have to add of the current 480 // prefix. 481 unsigned SuffixesToAdd = 0; 482 483 // Construct the suffix tree iteratively on each prefix of the string. 484 // PfxEndIdx is the end index of the current prefix. 485 // End is one past the last element in the string. 486 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 487 PfxEndIdx++) { 488 SuffixesToAdd++; 489 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 490 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 491 } 492 493 // Set the suffix indices of each leaf. 494 assert(Root && "Root node can't be nullptr!"); 495 setSuffixIndices(); 496 } 497 498 /// Iterator for finding all repeated substrings in the suffix tree. 499 struct RepeatedSubstringIterator { 500 private: 501 /// The current node we're visiting. 502 SuffixTreeNode *N = nullptr; 503 504 /// The repeated substring associated with this node. 505 RepeatedSubstring RS; 506 507 /// The nodes left to visit. 508 std::vector<SuffixTreeNode *> ToVisit; 509 510 /// The minimum length of a repeated substring to find. 511 /// Since we're outlining, we want at least two instructions in the range. 512 /// FIXME: This may not be true for targets like X86 which support many 513 /// instruction lengths. 514 const unsigned MinLength = 2; 515 516 /// Move the iterator to the next repeated substring. 517 void advance() { 518 // Clear the current state. If we're at the end of the range, then this 519 // is the state we want to be in. 520 RS = RepeatedSubstring(); 521 N = nullptr; 522 523 // Each leaf node represents a repeat of a string. 524 std::vector<SuffixTreeNode *> LeafChildren; 525 526 // Continue visiting nodes until we find one which repeats more than once. 527 while (!ToVisit.empty()) { 528 SuffixTreeNode *Curr = ToVisit.back(); 529 ToVisit.pop_back(); 530 LeafChildren.clear(); 531 532 // Keep track of the length of the string associated with the node. If 533 // it's too short, we'll quit. 534 unsigned Length = Curr->ConcatLen; 535 536 // Iterate over each child, saving internal nodes for visiting, and 537 // leaf nodes in LeafChildren. Internal nodes represent individual 538 // strings, which may repeat. 539 for (auto &ChildPair : Curr->Children) { 540 // Save all of this node's children for processing. 541 if (!ChildPair.second->isLeaf()) 542 ToVisit.push_back(ChildPair.second); 543 544 // It's not an internal node, so it must be a leaf. If we have a 545 // long enough string, then save the leaf children. 546 else if (Length >= MinLength) 547 LeafChildren.push_back(ChildPair.second); 548 } 549 550 // The root never represents a repeated substring. If we're looking at 551 // that, then skip it. 552 if (Curr->isRoot()) 553 continue; 554 555 // Do we have any repeated substrings? 556 if (LeafChildren.size() >= 2) { 557 // Yes. Update the state to reflect this, and then bail out. 558 N = Curr; 559 RS.Length = Length; 560 for (SuffixTreeNode *Leaf : LeafChildren) 561 RS.StartIndices.push_back(Leaf->SuffixIdx); 562 break; 563 } 564 } 565 566 // At this point, either NewRS is an empty RepeatedSubstring, or it was 567 // set in the above loop. Similarly, N is either nullptr, or the node 568 // associated with NewRS. 569 } 570 571 public: 572 /// Return the current repeated substring. 573 RepeatedSubstring &operator*() { return RS; } 574 575 RepeatedSubstringIterator &operator++() { 576 advance(); 577 return *this; 578 } 579 580 RepeatedSubstringIterator operator++(int I) { 581 RepeatedSubstringIterator It(*this); 582 advance(); 583 return It; 584 } 585 586 bool operator==(const RepeatedSubstringIterator &Other) { 587 return N == Other.N; 588 } 589 bool operator!=(const RepeatedSubstringIterator &Other) { 590 return !(*this == Other); 591 } 592 593 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 594 // Do we have a non-null node? 595 if (N) { 596 // Yes. At the first step, we need to visit all of N's children. 597 // Note: This means that we visit N last. 598 ToVisit.push_back(N); 599 advance(); 600 } 601 } 602 }; 603 604 typedef RepeatedSubstringIterator iterator; 605 iterator begin() { return iterator(Root); } 606 iterator end() { return iterator(nullptr); } 607 }; 608 609 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 610 struct InstructionMapper { 611 612 /// The next available integer to assign to a \p MachineInstr that 613 /// cannot be outlined. 614 /// 615 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 616 unsigned IllegalInstrNumber = -3; 617 618 /// The next available integer to assign to a \p MachineInstr that can 619 /// be outlined. 620 unsigned LegalInstrNumber = 0; 621 622 /// Correspondence from \p MachineInstrs to unsigned integers. 623 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 624 InstructionIntegerMap; 625 626 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 627 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 628 629 /// The vector of unsigned integers that the module is mapped to. 630 std::vector<unsigned> UnsignedVec; 631 632 /// Stores the location of the instruction associated with the integer 633 /// at index i in \p UnsignedVec for each index i. 634 std::vector<MachineBasicBlock::iterator> InstrList; 635 636 // Set if we added an illegal number in the previous step. 637 // Since each illegal number is unique, we only need one of them between 638 // each range of legal numbers. This lets us make sure we don't add more 639 // than one illegal number per range. 640 bool AddedIllegalLastTime = false; 641 642 /// Maps \p *It to a legal integer. 643 /// 644 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 645 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 646 /// 647 /// \returns The integer that \p *It was mapped to. 648 unsigned mapToLegalUnsigned( 649 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 650 bool &HaveLegalRange, unsigned &NumLegalInBlock, 651 std::vector<unsigned> &UnsignedVecForMBB, 652 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 653 // We added something legal, so we should unset the AddedLegalLastTime 654 // flag. 655 AddedIllegalLastTime = false; 656 657 // If we have at least two adjacent legal instructions (which may have 658 // invisible instructions in between), remember that. 659 if (CanOutlineWithPrevInstr) 660 HaveLegalRange = true; 661 CanOutlineWithPrevInstr = true; 662 663 // Keep track of the number of legal instructions we insert. 664 NumLegalInBlock++; 665 666 // Get the integer for this instruction or give it the current 667 // LegalInstrNumber. 668 InstrListForMBB.push_back(It); 669 MachineInstr &MI = *It; 670 bool WasInserted; 671 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 672 ResultIt; 673 std::tie(ResultIt, WasInserted) = 674 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 675 unsigned MINumber = ResultIt->second; 676 677 // There was an insertion. 678 if (WasInserted) 679 LegalInstrNumber++; 680 681 UnsignedVecForMBB.push_back(MINumber); 682 683 // Make sure we don't overflow or use any integers reserved by the DenseMap. 684 if (LegalInstrNumber >= IllegalInstrNumber) 685 report_fatal_error("Instruction mapping overflow!"); 686 687 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 688 "Tried to assign DenseMap tombstone or empty key to instruction."); 689 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 690 "Tried to assign DenseMap tombstone or empty key to instruction."); 691 692 return MINumber; 693 } 694 695 /// Maps \p *It to an illegal integer. 696 /// 697 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 698 /// IllegalInstrNumber. 699 /// 700 /// \returns The integer that \p *It was mapped to. 701 unsigned mapToIllegalUnsigned( 702 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 703 std::vector<unsigned> &UnsignedVecForMBB, 704 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 705 // Can't outline an illegal instruction. Set the flag. 706 CanOutlineWithPrevInstr = false; 707 708 // Only add one illegal number per range of legal numbers. 709 if (AddedIllegalLastTime) 710 return IllegalInstrNumber; 711 712 // Remember that we added an illegal number last time. 713 AddedIllegalLastTime = true; 714 unsigned MINumber = IllegalInstrNumber; 715 716 InstrListForMBB.push_back(It); 717 UnsignedVecForMBB.push_back(IllegalInstrNumber); 718 IllegalInstrNumber--; 719 720 assert(LegalInstrNumber < IllegalInstrNumber && 721 "Instruction mapping overflow!"); 722 723 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 724 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 725 726 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 727 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 728 729 return MINumber; 730 } 731 732 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 733 /// and appends it to \p UnsignedVec and \p InstrList. 734 /// 735 /// Two instructions are assigned the same integer if they are identical. 736 /// If an instruction is deemed unsafe to outline, then it will be assigned an 737 /// unique integer. The resulting mapping is placed into a suffix tree and 738 /// queried for candidates. 739 /// 740 /// \param MBB The \p MachineBasicBlock to be translated into integers. 741 /// \param TII \p TargetInstrInfo for the function. 742 void convertToUnsignedVec(MachineBasicBlock &MBB, 743 const TargetInstrInfo &TII) { 744 unsigned Flags = 0; 745 746 // Don't even map in this case. 747 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 748 return; 749 750 // Store info for the MBB for later outlining. 751 MBBFlagsMap[&MBB] = Flags; 752 753 MachineBasicBlock::iterator It = MBB.begin(); 754 755 // The number of instructions in this block that will be considered for 756 // outlining. 757 unsigned NumLegalInBlock = 0; 758 759 // True if we have at least two legal instructions which aren't separated 760 // by an illegal instruction. 761 bool HaveLegalRange = false; 762 763 // True if we can perform outlining given the last mapped (non-invisible) 764 // instruction. This lets us know if we have a legal range. 765 bool CanOutlineWithPrevInstr = false; 766 767 // FIXME: Should this all just be handled in the target, rather than using 768 // repeated calls to getOutliningType? 769 std::vector<unsigned> UnsignedVecForMBB; 770 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 771 772 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) { 773 // Keep track of where this instruction is in the module. 774 switch (TII.getOutliningType(It, Flags)) { 775 case InstrType::Illegal: 776 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 777 InstrListForMBB); 778 break; 779 780 case InstrType::Legal: 781 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 782 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 783 break; 784 785 case InstrType::LegalTerminator: 786 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 787 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 788 // The instruction also acts as a terminator, so we have to record that 789 // in the string. 790 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 791 InstrListForMBB); 792 break; 793 794 case InstrType::Invisible: 795 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 796 // skip this instruction. So, unset the flag here. 797 AddedIllegalLastTime = false; 798 break; 799 } 800 } 801 802 // Are there enough legal instructions in the block for outlining to be 803 // possible? 804 if (HaveLegalRange) { 805 // After we're done every insertion, uniquely terminate this part of the 806 // "string". This makes sure we won't match across basic block or function 807 // boundaries since the "end" is encoded uniquely and thus appears in no 808 // repeated substring. 809 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 810 InstrListForMBB); 811 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 812 InstrListForMBB.end()); 813 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 814 UnsignedVecForMBB.end()); 815 } 816 } 817 818 InstructionMapper() { 819 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 820 // changed. 821 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 822 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 823 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 824 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 825 } 826 }; 827 828 /// An interprocedural pass which finds repeated sequences of 829 /// instructions and replaces them with calls to functions. 830 /// 831 /// Each instruction is mapped to an unsigned integer and placed in a string. 832 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 833 /// is then repeatedly queried for repeated sequences of instructions. Each 834 /// non-overlapping repeated sequence is then placed in its own 835 /// \p MachineFunction and each instance is then replaced with a call to that 836 /// function. 837 struct MachineOutliner : public ModulePass { 838 839 static char ID; 840 841 /// Set to true if the outliner should consider functions with 842 /// linkonceodr linkage. 843 bool OutlineFromLinkOnceODRs = false; 844 845 /// Set to true if the outliner should run on all functions in the module 846 /// considered safe for outlining. 847 /// Set to true by default for compatibility with llc's -run-pass option. 848 /// Set when the pass is constructed in TargetPassConfig. 849 bool RunOnAllFunctions = true; 850 851 StringRef getPassName() const override { return "Machine Outliner"; } 852 853 void getAnalysisUsage(AnalysisUsage &AU) const override { 854 AU.addRequired<MachineModuleInfoWrapperPass>(); 855 AU.addPreserved<MachineModuleInfoWrapperPass>(); 856 AU.setPreservesAll(); 857 ModulePass::getAnalysisUsage(AU); 858 } 859 860 MachineOutliner() : ModulePass(ID) { 861 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 862 } 863 864 /// Remark output explaining that not outlining a set of candidates would be 865 /// better than outlining that set. 866 void emitNotOutliningCheaperRemark( 867 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 868 OutlinedFunction &OF); 869 870 /// Remark output explaining that a function was outlined. 871 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 872 873 /// Find all repeated substrings that satisfy the outlining cost model by 874 /// constructing a suffix tree. 875 /// 876 /// If a substring appears at least twice, then it must be represented by 877 /// an internal node which appears in at least two suffixes. Each suffix 878 /// is represented by a leaf node. To do this, we visit each internal node 879 /// in the tree, using the leaf children of each internal node. If an 880 /// internal node represents a beneficial substring, then we use each of 881 /// its leaf children to find the locations of its substring. 882 /// 883 /// \param Mapper Contains outlining mapping information. 884 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 885 /// each type of candidate. 886 void findCandidates(InstructionMapper &Mapper, 887 std::vector<OutlinedFunction> &FunctionList); 888 889 /// Replace the sequences of instructions represented by \p OutlinedFunctions 890 /// with calls to functions. 891 /// 892 /// \param M The module we are outlining from. 893 /// \param FunctionList A list of functions to be inserted into the module. 894 /// \param Mapper Contains the instruction mappings for the module. 895 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 896 InstructionMapper &Mapper, unsigned &OutlinedFunctionNum); 897 898 /// Creates a function for \p OF and inserts it into the module. 899 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 900 InstructionMapper &Mapper, 901 unsigned Name); 902 903 /// Calls 'doOutline()'. 904 bool runOnModule(Module &M) override; 905 906 /// Construct a suffix tree on the instructions in \p M and outline repeated 907 /// strings from that tree. 908 bool doOutline(Module &M, unsigned &OutlinedFunctionNum); 909 910 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 911 /// function for remark emission. 912 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 913 for (const Candidate &C : OF.Candidates) 914 if (MachineFunction *MF = C.getMF()) 915 if (DISubprogram *SP = MF->getFunction().getSubprogram()) 916 return SP; 917 return nullptr; 918 } 919 920 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 921 /// These are used to construct a suffix tree. 922 void populateMapper(InstructionMapper &Mapper, Module &M, 923 MachineModuleInfo &MMI); 924 925 /// Initialize information necessary to output a size remark. 926 /// FIXME: This should be handled by the pass manager, not the outliner. 927 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 928 /// pass manager. 929 void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI, 930 StringMap<unsigned> &FunctionToInstrCount); 931 932 /// Emit the remark. 933 // FIXME: This should be handled by the pass manager, not the outliner. 934 void 935 emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI, 936 const StringMap<unsigned> &FunctionToInstrCount); 937 }; 938 } // Anonymous namespace. 939 940 char MachineOutliner::ID = 0; 941 942 namespace llvm { 943 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 944 MachineOutliner *OL = new MachineOutliner(); 945 OL->RunOnAllFunctions = RunOnAllFunctions; 946 return OL; 947 } 948 949 } // namespace llvm 950 951 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 952 false) 953 954 void MachineOutliner::emitNotOutliningCheaperRemark( 955 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 956 OutlinedFunction &OF) { 957 // FIXME: Right now, we arbitrarily choose some Candidate from the 958 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 959 // We should probably sort these by function name or something to make sure 960 // the remarks are stable. 961 Candidate &C = CandidatesForRepeatedSeq.front(); 962 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 963 MORE.emit([&]() { 964 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 965 C.front()->getDebugLoc(), C.getMBB()); 966 R << "Did not outline " << NV("Length", StringLen) << " instructions" 967 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 968 << " locations." 969 << " Bytes from outlining all occurrences (" 970 << NV("OutliningCost", OF.getOutliningCost()) << ")" 971 << " >= Unoutlined instruction bytes (" 972 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 973 << " (Also found at: "; 974 975 // Tell the user the other places the candidate was found. 976 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 977 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 978 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 979 if (i != e - 1) 980 R << ", "; 981 } 982 983 R << ")"; 984 return R; 985 }); 986 } 987 988 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 989 MachineBasicBlock *MBB = &*OF.MF->begin(); 990 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 991 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 992 MBB->findDebugLoc(MBB->begin()), MBB); 993 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 994 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 995 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 996 << " locations. " 997 << "(Found at: "; 998 999 // Tell the user the other places the candidate was found. 1000 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1001 1002 R << NV((Twine("StartLoc") + Twine(i)).str(), 1003 OF.Candidates[i].front()->getDebugLoc()); 1004 if (i != e - 1) 1005 R << ", "; 1006 } 1007 1008 R << ")"; 1009 1010 MORE.emit(R); 1011 } 1012 1013 void MachineOutliner::findCandidates( 1014 InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) { 1015 FunctionList.clear(); 1016 SuffixTree ST(Mapper.UnsignedVec); 1017 1018 // First, find all of the repeated substrings in the tree of minimum length 1019 // 2. 1020 std::vector<Candidate> CandidatesForRepeatedSeq; 1021 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1022 CandidatesForRepeatedSeq.clear(); 1023 SuffixTree::RepeatedSubstring RS = *It; 1024 unsigned StringLen = RS.Length; 1025 for (const unsigned &StartIdx : RS.StartIndices) { 1026 unsigned EndIdx = StartIdx + StringLen - 1; 1027 // Trick: Discard some candidates that would be incompatible with the 1028 // ones we've already found for this sequence. This will save us some 1029 // work in candidate selection. 1030 // 1031 // If two candidates overlap, then we can't outline them both. This 1032 // happens when we have candidates that look like, say 1033 // 1034 // AA (where each "A" is an instruction). 1035 // 1036 // We might have some portion of the module that looks like this: 1037 // AAAAAA (6 A's) 1038 // 1039 // In this case, there are 5 different copies of "AA" in this range, but 1040 // at most 3 can be outlined. If only outlining 3 of these is going to 1041 // be unbeneficial, then we ought to not bother. 1042 // 1043 // Note that two things DON'T overlap when they look like this: 1044 // start1...end1 .... start2...end2 1045 // That is, one must either 1046 // * End before the other starts 1047 // * Start after the other ends 1048 if (std::all_of( 1049 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1050 [&StartIdx, &EndIdx](const Candidate &C) { 1051 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1052 })) { 1053 // It doesn't overlap with anything, so we can outline it. 1054 // Each sequence is over [StartIt, EndIt]. 1055 // Save the candidate and its location. 1056 1057 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1058 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1059 MachineBasicBlock *MBB = StartIt->getParent(); 1060 1061 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1062 EndIt, MBB, FunctionList.size(), 1063 Mapper.MBBFlagsMap[MBB]); 1064 } 1065 } 1066 1067 // We've found something we might want to outline. 1068 // Create an OutlinedFunction to store it and check if it'd be beneficial 1069 // to outline. 1070 if (CandidatesForRepeatedSeq.size() < 2) 1071 continue; 1072 1073 // Arbitrarily choose a TII from the first candidate. 1074 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1075 const TargetInstrInfo *TII = 1076 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1077 1078 OutlinedFunction OF = 1079 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1080 1081 // If we deleted too many candidates, then there's nothing worth outlining. 1082 // FIXME: This should take target-specified instruction sizes into account. 1083 if (OF.Candidates.size() < 2) 1084 continue; 1085 1086 // Is it better to outline this candidate than not? 1087 if (OF.getBenefit() < 1) { 1088 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1089 continue; 1090 } 1091 1092 FunctionList.push_back(OF); 1093 } 1094 } 1095 1096 MachineFunction *MachineOutliner::createOutlinedFunction( 1097 Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) { 1098 1099 // Create the function name. This should be unique. 1100 // FIXME: We should have a better naming scheme. This should be stable, 1101 // regardless of changes to the outliner's cost model/traversal order. 1102 std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); 1103 1104 // Create the function using an IR-level function. 1105 LLVMContext &C = M.getContext(); 1106 Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1107 Function::ExternalLinkage, FunctionName, M); 1108 1109 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1110 // which gives us better results when we outline from linkonceodr functions. 1111 F->setLinkage(GlobalValue::InternalLinkage); 1112 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1113 1114 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1115 // necessary. 1116 1117 // Set optsize/minsize, so we don't insert padding between outlined 1118 // functions. 1119 F->addFnAttr(Attribute::OptimizeForSize); 1120 F->addFnAttr(Attribute::MinSize); 1121 1122 // Include target features from an arbitrary candidate for the outlined 1123 // function. This makes sure the outlined function knows what kinds of 1124 // instructions are going into it. This is fine, since all parent functions 1125 // must necessarily support the instructions that are in the outlined region. 1126 Candidate &FirstCand = OF.Candidates.front(); 1127 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1128 if (ParentFn.hasFnAttribute("target-features")) 1129 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1130 1131 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1132 IRBuilder<> Builder(EntryBB); 1133 Builder.CreateRetVoid(); 1134 1135 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1136 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1137 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1138 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1139 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1140 1141 // Insert the new function into the module. 1142 MF.insert(MF.begin(), &MBB); 1143 1144 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1145 ++I) { 1146 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1147 NewMI->dropMemRefs(MF); 1148 1149 // Don't keep debug information for outlined instructions. 1150 NewMI->setDebugLoc(DebugLoc()); 1151 MBB.insert(MBB.end(), NewMI); 1152 } 1153 1154 TII.buildOutlinedFrame(MBB, MF, OF); 1155 1156 // Outlined functions shouldn't preserve liveness. 1157 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1158 MF.getRegInfo().freezeReservedRegs(MF); 1159 1160 // If there's a DISubprogram associated with this outlined function, then 1161 // emit debug info for the outlined function. 1162 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1163 // We have a DISubprogram. Get its DICompileUnit. 1164 DICompileUnit *CU = SP->getUnit(); 1165 DIBuilder DB(M, true, CU); 1166 DIFile *Unit = SP->getFile(); 1167 Mangler Mg; 1168 // Get the mangled name of the function for the linkage name. 1169 std::string Dummy; 1170 llvm::raw_string_ostream MangledNameStream(Dummy); 1171 Mg.getNameWithPrefix(MangledNameStream, F, false); 1172 1173 DISubprogram *OutlinedSP = DB.createFunction( 1174 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1175 Unit /* File */, 1176 0 /* Line 0 is reserved for compiler-generated code. */, 1177 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1178 0, /* Line 0 is reserved for compiler-generated code. */ 1179 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1180 /* Outlined code is optimized code by definition. */ 1181 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1182 1183 // Don't add any new variables to the subprogram. 1184 DB.finalizeSubprogram(OutlinedSP); 1185 1186 // Attach subprogram to the function. 1187 F->setSubprogram(OutlinedSP); 1188 // We're done with the DIBuilder. 1189 DB.finalize(); 1190 } 1191 1192 return &MF; 1193 } 1194 1195 bool MachineOutliner::outline(Module &M, 1196 std::vector<OutlinedFunction> &FunctionList, 1197 InstructionMapper &Mapper, 1198 unsigned &OutlinedFunctionNum) { 1199 1200 bool OutlinedSomething = false; 1201 1202 // Sort by benefit. The most beneficial functions should be outlined first. 1203 llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, 1204 const OutlinedFunction &RHS) { 1205 return LHS.getBenefit() > RHS.getBenefit(); 1206 }); 1207 1208 // Walk over each function, outlining them as we go along. Functions are 1209 // outlined greedily, based off the sort above. 1210 for (OutlinedFunction &OF : FunctionList) { 1211 // If we outlined something that overlapped with a candidate in a previous 1212 // step, then we can't outline from it. 1213 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1214 return std::any_of( 1215 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1216 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1217 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1218 }); 1219 1220 // If we made it unbeneficial to outline this function, skip it. 1221 if (OF.getBenefit() < 1) 1222 continue; 1223 1224 // It's beneficial. Create the function and outline its sequence's 1225 // occurrences. 1226 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1227 emitOutlinedFunctionRemark(OF); 1228 FunctionsCreated++; 1229 OutlinedFunctionNum++; // Created a function, move to the next name. 1230 MachineFunction *MF = OF.MF; 1231 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1232 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1233 1234 // Replace occurrences of the sequence with calls to the new function. 1235 for (Candidate &C : OF.Candidates) { 1236 MachineBasicBlock &MBB = *C.getMBB(); 1237 MachineBasicBlock::iterator StartIt = C.front(); 1238 MachineBasicBlock::iterator EndIt = C.back(); 1239 1240 // Insert the call. 1241 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1242 1243 // If the caller tracks liveness, then we need to make sure that 1244 // anything we outline doesn't break liveness assumptions. The outlined 1245 // functions themselves currently don't track liveness, but we should 1246 // make sure that the ranges we yank things out of aren't wrong. 1247 if (MBB.getParent()->getProperties().hasProperty( 1248 MachineFunctionProperties::Property::TracksLiveness)) { 1249 // The following code is to add implicit def operands to the call 1250 // instruction. It also updates call site information for moved 1251 // code. 1252 SmallSet<Register, 2> UseRegs, DefRegs; 1253 // Copy over the defs in the outlined range. 1254 // First inst in outlined range <-- Anything that's defined in this 1255 // ... .. range has to be added as an 1256 // implicit Last inst in outlined range <-- def to the call 1257 // instruction. Also remove call site information for outlined block 1258 // of code. The exposed uses need to be copied in the outlined range. 1259 for (MachineBasicBlock::reverse_iterator Iter = EndIt.getReverse(), 1260 Last = std::next(CallInst.getReverse()); 1261 Iter != Last; Iter++) { 1262 MachineInstr *MI = &*Iter; 1263 for (MachineOperand &MOP : MI->operands()) { 1264 // Skip over anything that isn't a register. 1265 if (!MOP.isReg()) 1266 continue; 1267 1268 if (MOP.isDef()) { 1269 // Introduce DefRegs set to skip the redundant register. 1270 DefRegs.insert(MOP.getReg()); 1271 if (UseRegs.count(MOP.getReg())) 1272 // Since the regiester is modeled as defined, 1273 // it is not necessary to be put in use register set. 1274 UseRegs.erase(MOP.getReg()); 1275 } else if (!MOP.isUndef()) { 1276 // Any register which is not undefined should 1277 // be put in the use register set. 1278 UseRegs.insert(MOP.getReg()); 1279 } 1280 } 1281 if (MI->isCandidateForCallSiteEntry()) 1282 MI->getMF()->eraseCallSiteInfo(MI); 1283 } 1284 1285 for (const Register &I : DefRegs) 1286 // If it's a def, add it to the call instruction. 1287 CallInst->addOperand(MachineOperand::CreateReg( 1288 I, true, /* isDef = true */ 1289 true /* isImp = true */)); 1290 1291 for (const Register &I : UseRegs) 1292 // If it's a exposed use, add it to the call instruction. 1293 CallInst->addOperand( 1294 MachineOperand::CreateReg(I, false, /* isDef = false */ 1295 true /* isImp = true */)); 1296 } 1297 1298 // Erase from the point after where the call was inserted up to, and 1299 // including, the final instruction in the sequence. 1300 // Erase needs one past the end, so we need std::next there too. 1301 MBB.erase(std::next(StartIt), std::next(EndIt)); 1302 1303 // Keep track of what we removed by marking them all as -1. 1304 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1305 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1306 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1307 OutlinedSomething = true; 1308 1309 // Statistics. 1310 NumOutlined++; 1311 } 1312 } 1313 1314 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1315 1316 return OutlinedSomething; 1317 } 1318 1319 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1320 MachineModuleInfo &MMI) { 1321 // Build instruction mappings for each function in the module. Start by 1322 // iterating over each Function in M. 1323 for (Function &F : M) { 1324 1325 // If there's nothing in F, then there's no reason to try and outline from 1326 // it. 1327 if (F.empty()) 1328 continue; 1329 1330 // There's something in F. Check if it has a MachineFunction associated with 1331 // it. 1332 MachineFunction *MF = MMI.getMachineFunction(F); 1333 1334 // If it doesn't, then there's nothing to outline from. Move to the next 1335 // Function. 1336 if (!MF) 1337 continue; 1338 1339 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1340 1341 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1342 continue; 1343 1344 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1345 // If it isn't, then move on to the next Function in the module. 1346 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1347 continue; 1348 1349 // We have a function suitable for outlining. Iterate over every 1350 // MachineBasicBlock in MF and try to map its instructions to a list of 1351 // unsigned integers. 1352 for (MachineBasicBlock &MBB : *MF) { 1353 // If there isn't anything in MBB, then there's no point in outlining from 1354 // it. 1355 // If there are fewer than 2 instructions in the MBB, then it can't ever 1356 // contain something worth outlining. 1357 // FIXME: This should be based off of the maximum size in B of an outlined 1358 // call versus the size in B of the MBB. 1359 if (MBB.empty() || MBB.size() < 2) 1360 continue; 1361 1362 // Check if MBB could be the target of an indirect branch. If it is, then 1363 // we don't want to outline from it. 1364 if (MBB.hasAddressTaken()) 1365 continue; 1366 1367 // MBB is suitable for outlining. Map it to a list of unsigneds. 1368 Mapper.convertToUnsignedVec(MBB, *TII); 1369 } 1370 } 1371 } 1372 1373 void MachineOutliner::initSizeRemarkInfo( 1374 const Module &M, const MachineModuleInfo &MMI, 1375 StringMap<unsigned> &FunctionToInstrCount) { 1376 // Collect instruction counts for every function. We'll use this to emit 1377 // per-function size remarks later. 1378 for (const Function &F : M) { 1379 MachineFunction *MF = MMI.getMachineFunction(F); 1380 1381 // We only care about MI counts here. If there's no MachineFunction at this 1382 // point, then there won't be after the outliner runs, so let's move on. 1383 if (!MF) 1384 continue; 1385 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1386 } 1387 } 1388 1389 void MachineOutliner::emitInstrCountChangedRemark( 1390 const Module &M, const MachineModuleInfo &MMI, 1391 const StringMap<unsigned> &FunctionToInstrCount) { 1392 // Iterate over each function in the module and emit remarks. 1393 // Note that we won't miss anything by doing this, because the outliner never 1394 // deletes functions. 1395 for (const Function &F : M) { 1396 MachineFunction *MF = MMI.getMachineFunction(F); 1397 1398 // The outliner never deletes functions. If we don't have a MF here, then we 1399 // didn't have one prior to outlining either. 1400 if (!MF) 1401 continue; 1402 1403 std::string Fname = std::string(F.getName()); 1404 unsigned FnCountAfter = MF->getInstructionCount(); 1405 unsigned FnCountBefore = 0; 1406 1407 // Check if the function was recorded before. 1408 auto It = FunctionToInstrCount.find(Fname); 1409 1410 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1411 // to that. 1412 if (It != FunctionToInstrCount.end()) 1413 FnCountBefore = It->second; 1414 1415 // Compute the delta and emit a remark if there was a change. 1416 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1417 static_cast<int64_t>(FnCountBefore); 1418 if (FnDelta == 0) 1419 continue; 1420 1421 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1422 MORE.emit([&]() { 1423 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1424 DiagnosticLocation(), &MF->front()); 1425 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1426 << ": Function: " 1427 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1428 << ": MI instruction count changed from " 1429 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1430 FnCountBefore) 1431 << " to " 1432 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1433 FnCountAfter) 1434 << "; Delta: " 1435 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1436 return R; 1437 }); 1438 } 1439 } 1440 1441 bool MachineOutliner::runOnModule(Module &M) { 1442 // Check if there's anything in the module. If it's empty, then there's 1443 // nothing to outline. 1444 if (M.empty()) 1445 return false; 1446 1447 // Number to append to the current outlined function. 1448 unsigned OutlinedFunctionNum = 0; 1449 1450 if (!doOutline(M, OutlinedFunctionNum)) 1451 return false; 1452 return true; 1453 } 1454 1455 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) { 1456 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1457 1458 // If the user passed -enable-machine-outliner=always or 1459 // -enable-machine-outliner, the pass will run on all functions in the module. 1460 // Otherwise, if the target supports default outlining, it will run on all 1461 // functions deemed by the target to be worth outlining from by default. Tell 1462 // the user how the outliner is running. 1463 LLVM_DEBUG({ 1464 dbgs() << "Machine Outliner: Running on "; 1465 if (RunOnAllFunctions) 1466 dbgs() << "all functions"; 1467 else 1468 dbgs() << "target-default functions"; 1469 dbgs() << "\n"; 1470 }); 1471 1472 // If the user specifies that they want to outline from linkonceodrs, set 1473 // it here. 1474 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1475 InstructionMapper Mapper; 1476 1477 // Prepare instruction mappings for the suffix tree. 1478 populateMapper(Mapper, M, MMI); 1479 std::vector<OutlinedFunction> FunctionList; 1480 1481 // Find all of the outlining candidates. 1482 findCandidates(Mapper, FunctionList); 1483 1484 // If we've requested size remarks, then collect the MI counts of every 1485 // function before outlining, and the MI counts after outlining. 1486 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1487 // the pass manager's responsibility. 1488 // This could pretty easily be placed in outline instead, but because we 1489 // really ultimately *don't* want this here, it's done like this for now 1490 // instead. 1491 1492 // Check if we want size remarks. 1493 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1494 StringMap<unsigned> FunctionToInstrCount; 1495 if (ShouldEmitSizeRemarks) 1496 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1497 1498 // Outline each of the candidates and return true if something was outlined. 1499 bool OutlinedSomething = 1500 outline(M, FunctionList, Mapper, OutlinedFunctionNum); 1501 1502 // If we outlined something, we definitely changed the MI count of the 1503 // module. If we've asked for size remarks, then output them. 1504 // FIXME: This should be in the pass manager. 1505 if (ShouldEmitSizeRemarks && OutlinedSomething) 1506 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1507 1508 return OutlinedSomething; 1509 } 1510