1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * buildOutlinedFrame 29 /// * insertOutlinedCall 30 /// * isFunctionSafeToOutlineFrom 31 /// 32 /// in order to make use of the MachineOutliner. 33 /// 34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 36 /// how this pass works, the talk is available on YouTube at 37 /// 38 /// https://www.youtube.com/watch?v=yorld-WSOeU 39 /// 40 /// The slides for the talk are available at 41 /// 42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 43 /// 44 /// The talk provides an overview of how the outliner finds candidates and 45 /// ultimately outlines them. It describes how the main data structure for this 46 /// pass, the suffix tree, is queried and purged for candidates. It also gives 47 /// a simplified suffix tree construction algorithm for suffix trees based off 48 /// of the algorithm actually used here, Ukkonen's algorithm. 49 /// 50 /// For the original RFC for this pass, please see 51 /// 52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 53 /// 54 /// For more information on the suffix tree data structure, please see 55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 56 /// 57 //===----------------------------------------------------------------------===// 58 #include "llvm/CodeGen/MachineOutliner.h" 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/MachineRegisterInfo.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/TargetInstrInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Mangler.h" 72 #include "llvm/Support/Allocator.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <functional> 77 #include <map> 78 #include <sstream> 79 #include <tuple> 80 #include <vector> 81 82 #define DEBUG_TYPE "machine-outliner" 83 84 using namespace llvm; 85 using namespace ore; 86 using namespace outliner; 87 88 STATISTIC(NumOutlined, "Number of candidates outlined"); 89 STATISTIC(FunctionsCreated, "Number of functions created"); 90 91 // Set to true if the user wants the outliner to run on linkonceodr linkage 92 // functions. This is false by default because the linker can dedupe linkonceodr 93 // functions. Since the outliner is confined to a single module (modulo LTO), 94 // this is off by default. It should, however, be the default behaviour in 95 // LTO. 96 static cl::opt<bool> EnableLinkOnceODROutlining( 97 "enable-linkonceodr-outlining", 98 cl::Hidden, 99 cl::desc("Enable the machine outliner on linkonceodr functions"), 100 cl::init(false)); 101 102 namespace { 103 104 /// Represents an undefined index in the suffix tree. 105 const unsigned EmptyIdx = -1; 106 107 /// A node in a suffix tree which represents a substring or suffix. 108 /// 109 /// Each node has either no children or at least two children, with the root 110 /// being a exception in the empty tree. 111 /// 112 /// Children are represented as a map between unsigned integers and nodes. If 113 /// a node N has a child M on unsigned integer k, then the mapping represented 114 /// by N is a proper prefix of the mapping represented by M. Note that this, 115 /// although similar to a trie is somewhat different: each node stores a full 116 /// substring of the full mapping rather than a single character state. 117 /// 118 /// Each internal node contains a pointer to the internal node representing 119 /// the same string, but with the first character chopped off. This is stored 120 /// in \p Link. Each leaf node stores the start index of its respective 121 /// suffix in \p SuffixIdx. 122 struct SuffixTreeNode { 123 124 /// The children of this node. 125 /// 126 /// A child existing on an unsigned integer implies that from the mapping 127 /// represented by the current node, there is a way to reach another 128 /// mapping by tacking that character on the end of the current string. 129 DenseMap<unsigned, SuffixTreeNode *> Children; 130 131 /// The start index of this node's substring in the main string. 132 unsigned StartIdx = EmptyIdx; 133 134 /// The end index of this node's substring in the main string. 135 /// 136 /// Every leaf node must have its \p EndIdx incremented at the end of every 137 /// step in the construction algorithm. To avoid having to update O(N) 138 /// nodes individually at the end of every step, the end index is stored 139 /// as a pointer. 140 unsigned *EndIdx = nullptr; 141 142 /// For leaves, the start index of the suffix represented by this node. 143 /// 144 /// For all other nodes, this is ignored. 145 unsigned SuffixIdx = EmptyIdx; 146 147 /// For internal nodes, a pointer to the internal node representing 148 /// the same sequence with the first character chopped off. 149 /// 150 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 151 /// Ukkonen's algorithm does to achieve linear-time construction is 152 /// keep track of which node the next insert should be at. This makes each 153 /// insert O(1), and there are a total of O(N) inserts. The suffix link 154 /// helps with inserting children of internal nodes. 155 /// 156 /// Say we add a child to an internal node with associated mapping S. The 157 /// next insertion must be at the node representing S - its first character. 158 /// This is given by the way that we iteratively build the tree in Ukkonen's 159 /// algorithm. The main idea is to look at the suffixes of each prefix in the 160 /// string, starting with the longest suffix of the prefix, and ending with 161 /// the shortest. Therefore, if we keep pointers between such nodes, we can 162 /// move to the next insertion point in O(1) time. If we don't, then we'd 163 /// have to query from the root, which takes O(N) time. This would make the 164 /// construction algorithm O(N^2) rather than O(N). 165 SuffixTreeNode *Link = nullptr; 166 167 /// The length of the string formed by concatenating the edge labels from the 168 /// root to this node. 169 unsigned ConcatLen = 0; 170 171 /// Returns true if this node is a leaf. 172 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 173 174 /// Returns true if this node is the root of its owning \p SuffixTree. 175 bool isRoot() const { return StartIdx == EmptyIdx; } 176 177 /// Return the number of elements in the substring associated with this node. 178 size_t size() const { 179 180 // Is it the root? If so, it's the empty string so return 0. 181 if (isRoot()) 182 return 0; 183 184 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 185 186 // Size = the number of elements in the string. 187 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 188 return *EndIdx - StartIdx + 1; 189 } 190 191 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 192 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 193 194 SuffixTreeNode() {} 195 }; 196 197 /// A data structure for fast substring queries. 198 /// 199 /// Suffix trees represent the suffixes of their input strings in their leaves. 200 /// A suffix tree is a type of compressed trie structure where each node 201 /// represents an entire substring rather than a single character. Each leaf 202 /// of the tree is a suffix. 203 /// 204 /// A suffix tree can be seen as a type of state machine where each state is a 205 /// substring of the full string. The tree is structured so that, for a string 206 /// of length N, there are exactly N leaves in the tree. This structure allows 207 /// us to quickly find repeated substrings of the input string. 208 /// 209 /// In this implementation, a "string" is a vector of unsigned integers. 210 /// These integers may result from hashing some data type. A suffix tree can 211 /// contain 1 or many strings, which can then be queried as one large string. 212 /// 213 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 214 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 215 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 216 /// paper is available at 217 /// 218 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 219 class SuffixTree { 220 public: 221 /// Each element is an integer representing an instruction in the module. 222 ArrayRef<unsigned> Str; 223 224 /// A repeated substring in the tree. 225 struct RepeatedSubstring { 226 /// The length of the string. 227 unsigned Length; 228 229 /// The start indices of each occurrence. 230 std::vector<unsigned> StartIndices; 231 }; 232 233 private: 234 /// Maintains each node in the tree. 235 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 236 237 /// The root of the suffix tree. 238 /// 239 /// The root represents the empty string. It is maintained by the 240 /// \p NodeAllocator like every other node in the tree. 241 SuffixTreeNode *Root = nullptr; 242 243 /// Maintains the end indices of the internal nodes in the tree. 244 /// 245 /// Each internal node is guaranteed to never have its end index change 246 /// during the construction algorithm; however, leaves must be updated at 247 /// every step. Therefore, we need to store leaf end indices by reference 248 /// to avoid updating O(N) leaves at every step of construction. Thus, 249 /// every internal node must be allocated its own end index. 250 BumpPtrAllocator InternalEndIdxAllocator; 251 252 /// The end index of each leaf in the tree. 253 unsigned LeafEndIdx = -1; 254 255 /// Helper struct which keeps track of the next insertion point in 256 /// Ukkonen's algorithm. 257 struct ActiveState { 258 /// The next node to insert at. 259 SuffixTreeNode *Node; 260 261 /// The index of the first character in the substring currently being added. 262 unsigned Idx = EmptyIdx; 263 264 /// The length of the substring we have to add at the current step. 265 unsigned Len = 0; 266 }; 267 268 /// The point the next insertion will take place at in the 269 /// construction algorithm. 270 ActiveState Active; 271 272 /// Allocate a leaf node and add it to the tree. 273 /// 274 /// \param Parent The parent of this node. 275 /// \param StartIdx The start index of this node's associated string. 276 /// \param Edge The label on the edge leaving \p Parent to this node. 277 /// 278 /// \returns A pointer to the allocated leaf node. 279 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 280 unsigned Edge) { 281 282 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 283 284 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 285 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 286 Parent.Children[Edge] = N; 287 288 return N; 289 } 290 291 /// Allocate an internal node and add it to the tree. 292 /// 293 /// \param Parent The parent of this node. Only null when allocating the root. 294 /// \param StartIdx The start index of this node's associated string. 295 /// \param EndIdx The end index of this node's associated string. 296 /// \param Edge The label on the edge leaving \p Parent to this node. 297 /// 298 /// \returns A pointer to the allocated internal node. 299 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 300 unsigned EndIdx, unsigned Edge) { 301 302 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 303 assert(!(!Parent && StartIdx != EmptyIdx) && 304 "Non-root internal nodes must have parents!"); 305 306 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 307 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 308 SuffixTreeNode(StartIdx, E, Root); 309 if (Parent) 310 Parent->Children[Edge] = N; 311 312 return N; 313 } 314 315 /// Set the suffix indices of the leaves to the start indices of their 316 /// respective suffixes. 317 /// 318 /// \param[in] CurrNode The node currently being visited. 319 /// \param CurrNodeLen The concatenation of all node sizes from the root to 320 /// this node. Used to produce suffix indices. 321 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) { 322 323 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 324 325 // Store the concatenation of lengths down from the root. 326 CurrNode.ConcatLen = CurrNodeLen; 327 // Traverse the tree depth-first. 328 for (auto &ChildPair : CurrNode.Children) { 329 assert(ChildPair.second && "Node had a null child!"); 330 setSuffixIndices(*ChildPair.second, 331 CurrNodeLen + ChildPair.second->size()); 332 } 333 334 // Is this node a leaf? If it is, give it a suffix index. 335 if (IsLeaf) 336 CurrNode.SuffixIdx = Str.size() - CurrNodeLen; 337 } 338 339 /// Construct the suffix tree for the prefix of the input ending at 340 /// \p EndIdx. 341 /// 342 /// Used to construct the full suffix tree iteratively. At the end of each 343 /// step, the constructed suffix tree is either a valid suffix tree, or a 344 /// suffix tree with implicit suffixes. At the end of the final step, the 345 /// suffix tree is a valid tree. 346 /// 347 /// \param EndIdx The end index of the current prefix in the main string. 348 /// \param SuffixesToAdd The number of suffixes that must be added 349 /// to complete the suffix tree at the current phase. 350 /// 351 /// \returns The number of suffixes that have not been added at the end of 352 /// this step. 353 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 354 SuffixTreeNode *NeedsLink = nullptr; 355 356 while (SuffixesToAdd > 0) { 357 358 // Are we waiting to add anything other than just the last character? 359 if (Active.Len == 0) { 360 // If not, then say the active index is the end index. 361 Active.Idx = EndIdx; 362 } 363 364 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 365 366 // The first character in the current substring we're looking at. 367 unsigned FirstChar = Str[Active.Idx]; 368 369 // Have we inserted anything starting with FirstChar at the current node? 370 if (Active.Node->Children.count(FirstChar) == 0) { 371 // If not, then we can just insert a leaf and move too the next step. 372 insertLeaf(*Active.Node, EndIdx, FirstChar); 373 374 // The active node is an internal node, and we visited it, so it must 375 // need a link if it doesn't have one. 376 if (NeedsLink) { 377 NeedsLink->Link = Active.Node; 378 NeedsLink = nullptr; 379 } 380 } else { 381 // There's a match with FirstChar, so look for the point in the tree to 382 // insert a new node. 383 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 384 385 unsigned SubstringLen = NextNode->size(); 386 387 // Is the current suffix we're trying to insert longer than the size of 388 // the child we want to move to? 389 if (Active.Len >= SubstringLen) { 390 // If yes, then consume the characters we've seen and move to the next 391 // node. 392 Active.Idx += SubstringLen; 393 Active.Len -= SubstringLen; 394 Active.Node = NextNode; 395 continue; 396 } 397 398 // Otherwise, the suffix we're trying to insert must be contained in the 399 // next node we want to move to. 400 unsigned LastChar = Str[EndIdx]; 401 402 // Is the string we're trying to insert a substring of the next node? 403 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 404 // If yes, then we're done for this step. Remember our insertion point 405 // and move to the next end index. At this point, we have an implicit 406 // suffix tree. 407 if (NeedsLink && !Active.Node->isRoot()) { 408 NeedsLink->Link = Active.Node; 409 NeedsLink = nullptr; 410 } 411 412 Active.Len++; 413 break; 414 } 415 416 // The string we're trying to insert isn't a substring of the next node, 417 // but matches up to a point. Split the node. 418 // 419 // For example, say we ended our search at a node n and we're trying to 420 // insert ABD. Then we'll create a new node s for AB, reduce n to just 421 // representing C, and insert a new leaf node l to represent d. This 422 // allows us to ensure that if n was a leaf, it remains a leaf. 423 // 424 // | ABC ---split---> | AB 425 // n s 426 // C / \ D 427 // n l 428 429 // The node s from the diagram 430 SuffixTreeNode *SplitNode = 431 insertInternalNode(Active.Node, NextNode->StartIdx, 432 NextNode->StartIdx + Active.Len - 1, FirstChar); 433 434 // Insert the new node representing the new substring into the tree as 435 // a child of the split node. This is the node l from the diagram. 436 insertLeaf(*SplitNode, EndIdx, LastChar); 437 438 // Make the old node a child of the split node and update its start 439 // index. This is the node n from the diagram. 440 NextNode->StartIdx += Active.Len; 441 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 442 443 // SplitNode is an internal node, update the suffix link. 444 if (NeedsLink) 445 NeedsLink->Link = SplitNode; 446 447 NeedsLink = SplitNode; 448 } 449 450 // We've added something new to the tree, so there's one less suffix to 451 // add. 452 SuffixesToAdd--; 453 454 if (Active.Node->isRoot()) { 455 if (Active.Len > 0) { 456 Active.Len--; 457 Active.Idx = EndIdx - SuffixesToAdd + 1; 458 } 459 } else { 460 // Start the next phase at the next smallest suffix. 461 Active.Node = Active.Node->Link; 462 } 463 } 464 465 return SuffixesToAdd; 466 } 467 468 public: 469 /// Construct a suffix tree from a sequence of unsigned integers. 470 /// 471 /// \param Str The string to construct the suffix tree for. 472 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 473 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 474 Active.Node = Root; 475 476 // Keep track of the number of suffixes we have to add of the current 477 // prefix. 478 unsigned SuffixesToAdd = 0; 479 Active.Node = Root; 480 481 // Construct the suffix tree iteratively on each prefix of the string. 482 // PfxEndIdx is the end index of the current prefix. 483 // End is one past the last element in the string. 484 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 485 PfxEndIdx++) { 486 SuffixesToAdd++; 487 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 488 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 489 } 490 491 // Set the suffix indices of each leaf. 492 assert(Root && "Root node can't be nullptr!"); 493 setSuffixIndices(*Root, 0); 494 } 495 496 497 /// Iterator for finding all repeated substrings in the suffix tree. 498 struct RepeatedSubstringIterator { 499 private: 500 /// The current node we're visiting. 501 SuffixTreeNode *N = nullptr; 502 503 /// The repeated substring associated with this node. 504 RepeatedSubstring RS; 505 506 /// The nodes left to visit. 507 std::vector<SuffixTreeNode *> ToVisit; 508 509 /// The minimum length of a repeated substring to find. 510 /// Since we're outlining, we want at least two instructions in the range. 511 /// FIXME: This may not be true for targets like X86 which support many 512 /// instruction lengths. 513 const unsigned MinLength = 2; 514 515 /// Move the iterator to the next repeated substring. 516 void advance() { 517 // Clear the current state. If we're at the end of the range, then this 518 // is the state we want to be in. 519 RS = RepeatedSubstring(); 520 N = nullptr; 521 522 // Each leaf node represents a repeat of a string. 523 std::vector<SuffixTreeNode *> LeafChildren; 524 525 // Continue visiting nodes until we find one which repeats more than once. 526 while (!ToVisit.empty()) { 527 SuffixTreeNode *Curr = ToVisit.back(); 528 ToVisit.pop_back(); 529 LeafChildren.clear(); 530 531 // Keep track of the length of the string associated with the node. If 532 // it's too short, we'll quit. 533 unsigned Length = Curr->ConcatLen; 534 535 // Iterate over each child, saving internal nodes for visiting, and 536 // leaf nodes in LeafChildren. Internal nodes represent individual 537 // strings, which may repeat. 538 for (auto &ChildPair : Curr->Children) { 539 // Save all of this node's children for processing. 540 if (!ChildPair.second->isLeaf()) 541 ToVisit.push_back(ChildPair.second); 542 543 // It's not an internal node, so it must be a leaf. If we have a 544 // long enough string, then save the leaf children. 545 else if (Length >= MinLength) 546 LeafChildren.push_back(ChildPair.second); 547 } 548 549 // The root never represents a repeated substring. If we're looking at 550 // that, then skip it. 551 if (Curr->isRoot()) 552 continue; 553 554 // Do we have any repeated substrings? 555 if (LeafChildren.size() >= 2) { 556 // Yes. Update the state to reflect this, and then bail out. 557 N = Curr; 558 RS.Length = Length; 559 for (SuffixTreeNode *Leaf : LeafChildren) 560 RS.StartIndices.push_back(Leaf->SuffixIdx); 561 break; 562 } 563 } 564 565 // At this point, either NewRS is an empty RepeatedSubstring, or it was 566 // set in the above loop. Similarly, N is either nullptr, or the node 567 // associated with NewRS. 568 } 569 570 public: 571 /// Return the current repeated substring. 572 RepeatedSubstring &operator*() { return RS; } 573 574 RepeatedSubstringIterator &operator++() { 575 advance(); 576 return *this; 577 } 578 579 RepeatedSubstringIterator operator++(int I) { 580 RepeatedSubstringIterator It(*this); 581 advance(); 582 return It; 583 } 584 585 bool operator==(const RepeatedSubstringIterator &Other) { 586 return N == Other.N; 587 } 588 bool operator!=(const RepeatedSubstringIterator &Other) { 589 return !(*this == Other); 590 } 591 592 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 593 // Do we have a non-null node? 594 if (N) { 595 // Yes. At the first step, we need to visit all of N's children. 596 // Note: This means that we visit N last. 597 ToVisit.push_back(N); 598 advance(); 599 } 600 } 601 }; 602 603 typedef RepeatedSubstringIterator iterator; 604 iterator begin() { return iterator(Root); } 605 iterator end() { return iterator(nullptr); } 606 }; 607 608 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 609 struct InstructionMapper { 610 611 /// The next available integer to assign to a \p MachineInstr that 612 /// cannot be outlined. 613 /// 614 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 615 unsigned IllegalInstrNumber = -3; 616 617 /// The next available integer to assign to a \p MachineInstr that can 618 /// be outlined. 619 unsigned LegalInstrNumber = 0; 620 621 /// Correspondence from \p MachineInstrs to unsigned integers. 622 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 623 InstructionIntegerMap; 624 625 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 626 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 627 628 /// The vector of unsigned integers that the module is mapped to. 629 std::vector<unsigned> UnsignedVec; 630 631 /// Stores the location of the instruction associated with the integer 632 /// at index i in \p UnsignedVec for each index i. 633 std::vector<MachineBasicBlock::iterator> InstrList; 634 635 // Set if we added an illegal number in the previous step. 636 // Since each illegal number is unique, we only need one of them between 637 // each range of legal numbers. This lets us make sure we don't add more 638 // than one illegal number per range. 639 bool AddedIllegalLastTime = false; 640 641 /// Maps \p *It to a legal integer. 642 /// 643 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 644 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 645 /// 646 /// \returns The integer that \p *It was mapped to. 647 unsigned mapToLegalUnsigned( 648 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 649 bool &HaveLegalRange, unsigned &NumLegalInBlock, 650 std::vector<unsigned> &UnsignedVecForMBB, 651 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 652 // We added something legal, so we should unset the AddedLegalLastTime 653 // flag. 654 AddedIllegalLastTime = false; 655 656 // If we have at least two adjacent legal instructions (which may have 657 // invisible instructions in between), remember that. 658 if (CanOutlineWithPrevInstr) 659 HaveLegalRange = true; 660 CanOutlineWithPrevInstr = true; 661 662 // Keep track of the number of legal instructions we insert. 663 NumLegalInBlock++; 664 665 // Get the integer for this instruction or give it the current 666 // LegalInstrNumber. 667 InstrListForMBB.push_back(It); 668 MachineInstr &MI = *It; 669 bool WasInserted; 670 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 671 ResultIt; 672 std::tie(ResultIt, WasInserted) = 673 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 674 unsigned MINumber = ResultIt->second; 675 676 // There was an insertion. 677 if (WasInserted) 678 LegalInstrNumber++; 679 680 UnsignedVecForMBB.push_back(MINumber); 681 682 // Make sure we don't overflow or use any integers reserved by the DenseMap. 683 if (LegalInstrNumber >= IllegalInstrNumber) 684 report_fatal_error("Instruction mapping overflow!"); 685 686 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 687 "Tried to assign DenseMap tombstone or empty key to instruction."); 688 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 689 "Tried to assign DenseMap tombstone or empty key to instruction."); 690 691 return MINumber; 692 } 693 694 /// Maps \p *It to an illegal integer. 695 /// 696 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 697 /// IllegalInstrNumber. 698 /// 699 /// \returns The integer that \p *It was mapped to. 700 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It, 701 bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB, 702 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 703 // Can't outline an illegal instruction. Set the flag. 704 CanOutlineWithPrevInstr = false; 705 706 // Only add one illegal number per range of legal numbers. 707 if (AddedIllegalLastTime) 708 return IllegalInstrNumber; 709 710 // Remember that we added an illegal number last time. 711 AddedIllegalLastTime = true; 712 unsigned MINumber = IllegalInstrNumber; 713 714 InstrListForMBB.push_back(It); 715 UnsignedVecForMBB.push_back(IllegalInstrNumber); 716 IllegalInstrNumber--; 717 718 assert(LegalInstrNumber < IllegalInstrNumber && 719 "Instruction mapping overflow!"); 720 721 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 722 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 723 724 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 725 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 726 727 return MINumber; 728 } 729 730 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 731 /// and appends it to \p UnsignedVec and \p InstrList. 732 /// 733 /// Two instructions are assigned the same integer if they are identical. 734 /// If an instruction is deemed unsafe to outline, then it will be assigned an 735 /// unique integer. The resulting mapping is placed into a suffix tree and 736 /// queried for candidates. 737 /// 738 /// \param MBB The \p MachineBasicBlock to be translated into integers. 739 /// \param TII \p TargetInstrInfo for the function. 740 void convertToUnsignedVec(MachineBasicBlock &MBB, 741 const TargetInstrInfo &TII) { 742 unsigned Flags = 0; 743 744 // Don't even map in this case. 745 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 746 return; 747 748 // Store info for the MBB for later outlining. 749 MBBFlagsMap[&MBB] = Flags; 750 751 MachineBasicBlock::iterator It = MBB.begin(); 752 753 // The number of instructions in this block that will be considered for 754 // outlining. 755 unsigned NumLegalInBlock = 0; 756 757 // True if we have at least two legal instructions which aren't separated 758 // by an illegal instruction. 759 bool HaveLegalRange = false; 760 761 // True if we can perform outlining given the last mapped (non-invisible) 762 // instruction. This lets us know if we have a legal range. 763 bool CanOutlineWithPrevInstr = false; 764 765 // FIXME: Should this all just be handled in the target, rather than using 766 // repeated calls to getOutliningType? 767 std::vector<unsigned> UnsignedVecForMBB; 768 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 769 770 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) { 771 // Keep track of where this instruction is in the module. 772 switch (TII.getOutliningType(It, Flags)) { 773 case InstrType::Illegal: 774 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, 775 UnsignedVecForMBB, InstrListForMBB); 776 break; 777 778 case InstrType::Legal: 779 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 780 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 781 break; 782 783 case InstrType::LegalTerminator: 784 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 785 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 786 // The instruction also acts as a terminator, so we have to record that 787 // in the string. 788 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 789 InstrListForMBB); 790 break; 791 792 case InstrType::Invisible: 793 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 794 // skip this instruction. So, unset the flag here. 795 AddedIllegalLastTime = false; 796 break; 797 } 798 } 799 800 // Are there enough legal instructions in the block for outlining to be 801 // possible? 802 if (HaveLegalRange) { 803 // After we're done every insertion, uniquely terminate this part of the 804 // "string". This makes sure we won't match across basic block or function 805 // boundaries since the "end" is encoded uniquely and thus appears in no 806 // repeated substring. 807 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 808 InstrListForMBB); 809 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 810 InstrListForMBB.end()); 811 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 812 UnsignedVecForMBB.end()); 813 } 814 } 815 816 InstructionMapper() { 817 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 818 // changed. 819 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 820 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 821 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 822 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 823 } 824 }; 825 826 /// An interprocedural pass which finds repeated sequences of 827 /// instructions and replaces them with calls to functions. 828 /// 829 /// Each instruction is mapped to an unsigned integer and placed in a string. 830 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 831 /// is then repeatedly queried for repeated sequences of instructions. Each 832 /// non-overlapping repeated sequence is then placed in its own 833 /// \p MachineFunction and each instance is then replaced with a call to that 834 /// function. 835 struct MachineOutliner : public ModulePass { 836 837 static char ID; 838 839 /// Set to true if the outliner should consider functions with 840 /// linkonceodr linkage. 841 bool OutlineFromLinkOnceODRs = false; 842 843 /// Set to true if the outliner should run on all functions in the module 844 /// considered safe for outlining. 845 /// Set to true by default for compatibility with llc's -run-pass option. 846 /// Set when the pass is constructed in TargetPassConfig. 847 bool RunOnAllFunctions = true; 848 849 StringRef getPassName() const override { return "Machine Outliner"; } 850 851 void getAnalysisUsage(AnalysisUsage &AU) const override { 852 AU.addRequired<MachineModuleInfo>(); 853 AU.addPreserved<MachineModuleInfo>(); 854 AU.setPreservesAll(); 855 ModulePass::getAnalysisUsage(AU); 856 } 857 858 MachineOutliner() : ModulePass(ID) { 859 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 860 } 861 862 /// Remark output explaining that not outlining a set of candidates would be 863 /// better than outlining that set. 864 void emitNotOutliningCheaperRemark( 865 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 866 OutlinedFunction &OF); 867 868 /// Remark output explaining that a function was outlined. 869 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 870 871 /// Find all repeated substrings that satisfy the outlining cost model by 872 /// constructing a suffix tree. 873 /// 874 /// If a substring appears at least twice, then it must be represented by 875 /// an internal node which appears in at least two suffixes. Each suffix 876 /// is represented by a leaf node. To do this, we visit each internal node 877 /// in the tree, using the leaf children of each internal node. If an 878 /// internal node represents a beneficial substring, then we use each of 879 /// its leaf children to find the locations of its substring. 880 /// 881 /// \param Mapper Contains outlining mapping information. 882 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 883 /// each type of candidate. 884 void findCandidates(InstructionMapper &Mapper, 885 std::vector<OutlinedFunction> &FunctionList); 886 887 /// Replace the sequences of instructions represented by \p OutlinedFunctions 888 /// with calls to functions. 889 /// 890 /// \param M The module we are outlining from. 891 /// \param FunctionList A list of functions to be inserted into the module. 892 /// \param Mapper Contains the instruction mappings for the module. 893 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 894 InstructionMapper &Mapper); 895 896 /// Creates a function for \p OF and inserts it into the module. 897 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 898 InstructionMapper &Mapper, 899 unsigned Name); 900 901 /// Construct a suffix tree on the instructions in \p M and outline repeated 902 /// strings from that tree. 903 bool runOnModule(Module &M) override; 904 905 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 906 /// function for remark emission. 907 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 908 DISubprogram *SP; 909 for (const Candidate &C : OF.Candidates) 910 if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram())) 911 return SP; 912 return nullptr; 913 } 914 915 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 916 /// These are used to construct a suffix tree. 917 void populateMapper(InstructionMapper &Mapper, Module &M, 918 MachineModuleInfo &MMI); 919 920 /// Initialize information necessary to output a size remark. 921 /// FIXME: This should be handled by the pass manager, not the outliner. 922 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 923 /// pass manager. 924 void initSizeRemarkInfo( 925 const Module &M, const MachineModuleInfo &MMI, 926 StringMap<unsigned> &FunctionToInstrCount); 927 928 /// Emit the remark. 929 // FIXME: This should be handled by the pass manager, not the outliner. 930 void emitInstrCountChangedRemark( 931 const Module &M, const MachineModuleInfo &MMI, 932 const StringMap<unsigned> &FunctionToInstrCount); 933 }; 934 } // Anonymous namespace. 935 936 char MachineOutliner::ID = 0; 937 938 namespace llvm { 939 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 940 MachineOutliner *OL = new MachineOutliner(); 941 OL->RunOnAllFunctions = RunOnAllFunctions; 942 return OL; 943 } 944 945 } // namespace llvm 946 947 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 948 false) 949 950 void MachineOutliner::emitNotOutliningCheaperRemark( 951 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 952 OutlinedFunction &OF) { 953 // FIXME: Right now, we arbitrarily choose some Candidate from the 954 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 955 // We should probably sort these by function name or something to make sure 956 // the remarks are stable. 957 Candidate &C = CandidatesForRepeatedSeq.front(); 958 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 959 MORE.emit([&]() { 960 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 961 C.front()->getDebugLoc(), C.getMBB()); 962 R << "Did not outline " << NV("Length", StringLen) << " instructions" 963 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 964 << " locations." 965 << " Bytes from outlining all occurrences (" 966 << NV("OutliningCost", OF.getOutliningCost()) << ")" 967 << " >= Unoutlined instruction bytes (" 968 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 969 << " (Also found at: "; 970 971 // Tell the user the other places the candidate was found. 972 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 973 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 974 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 975 if (i != e - 1) 976 R << ", "; 977 } 978 979 R << ")"; 980 return R; 981 }); 982 } 983 984 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 985 MachineBasicBlock *MBB = &*OF.MF->begin(); 986 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 987 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 988 MBB->findDebugLoc(MBB->begin()), MBB); 989 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 990 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 991 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 992 << " locations. " 993 << "(Found at: "; 994 995 // Tell the user the other places the candidate was found. 996 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 997 998 R << NV((Twine("StartLoc") + Twine(i)).str(), 999 OF.Candidates[i].front()->getDebugLoc()); 1000 if (i != e - 1) 1001 R << ", "; 1002 } 1003 1004 R << ")"; 1005 1006 MORE.emit(R); 1007 } 1008 1009 void 1010 MachineOutliner::findCandidates(InstructionMapper &Mapper, 1011 std::vector<OutlinedFunction> &FunctionList) { 1012 FunctionList.clear(); 1013 SuffixTree ST(Mapper.UnsignedVec); 1014 1015 // First, find dall of the repeated substrings in the tree of minimum length 1016 // 2. 1017 std::vector<Candidate> CandidatesForRepeatedSeq; 1018 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1019 CandidatesForRepeatedSeq.clear(); 1020 SuffixTree::RepeatedSubstring RS = *It; 1021 unsigned StringLen = RS.Length; 1022 for (const unsigned &StartIdx : RS.StartIndices) { 1023 unsigned EndIdx = StartIdx + StringLen - 1; 1024 // Trick: Discard some candidates that would be incompatible with the 1025 // ones we've already found for this sequence. This will save us some 1026 // work in candidate selection. 1027 // 1028 // If two candidates overlap, then we can't outline them both. This 1029 // happens when we have candidates that look like, say 1030 // 1031 // AA (where each "A" is an instruction). 1032 // 1033 // We might have some portion of the module that looks like this: 1034 // AAAAAA (6 A's) 1035 // 1036 // In this case, there are 5 different copies of "AA" in this range, but 1037 // at most 3 can be outlined. If only outlining 3 of these is going to 1038 // be unbeneficial, then we ought to not bother. 1039 // 1040 // Note that two things DON'T overlap when they look like this: 1041 // start1...end1 .... start2...end2 1042 // That is, one must either 1043 // * End before the other starts 1044 // * Start after the other ends 1045 if (std::all_of( 1046 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1047 [&StartIdx, &EndIdx](const Candidate &C) { 1048 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1049 })) { 1050 // It doesn't overlap with anything, so we can outline it. 1051 // Each sequence is over [StartIt, EndIt]. 1052 // Save the candidate and its location. 1053 1054 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1055 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1056 MachineBasicBlock *MBB = StartIt->getParent(); 1057 1058 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1059 EndIt, MBB, FunctionList.size(), 1060 Mapper.MBBFlagsMap[MBB]); 1061 } 1062 } 1063 1064 // We've found something we might want to outline. 1065 // Create an OutlinedFunction to store it and check if it'd be beneficial 1066 // to outline. 1067 if (CandidatesForRepeatedSeq.size() < 2) 1068 continue; 1069 1070 // Arbitrarily choose a TII from the first candidate. 1071 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1072 const TargetInstrInfo *TII = 1073 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1074 1075 OutlinedFunction OF = 1076 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1077 1078 // If we deleted too many candidates, then there's nothing worth outlining. 1079 // FIXME: This should take target-specified instruction sizes into account. 1080 if (OF.Candidates.size() < 2) 1081 continue; 1082 1083 // Is it better to outline this candidate than not? 1084 if (OF.getBenefit() < 1) { 1085 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1086 continue; 1087 } 1088 1089 FunctionList.push_back(OF); 1090 } 1091 } 1092 1093 MachineFunction * 1094 MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF, 1095 InstructionMapper &Mapper, 1096 unsigned Name) { 1097 1098 // Create the function name. This should be unique. For now, just hash the 1099 // module name and include it in the function name plus the number of this 1100 // function. 1101 std::ostringstream NameStream; 1102 // FIXME: We should have a better naming scheme. This should be stable, 1103 // regardless of changes to the outliner's cost model/traversal order. 1104 NameStream << "OUTLINED_FUNCTION_" << Name; 1105 1106 // Create the function using an IR-level function. 1107 LLVMContext &C = M.getContext(); 1108 Function *F = dyn_cast<Function>( 1109 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1110 assert(F && "Function was null!"); 1111 1112 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1113 // which gives us better results when we outline from linkonceodr functions. 1114 F->setLinkage(GlobalValue::InternalLinkage); 1115 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1116 1117 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1118 // necessary. 1119 1120 // Set optsize/minsize, so we don't insert padding between outlined 1121 // functions. 1122 F->addFnAttr(Attribute::OptimizeForSize); 1123 F->addFnAttr(Attribute::MinSize); 1124 1125 // Include target features from an arbitrary candidate for the outlined 1126 // function. This makes sure the outlined function knows what kinds of 1127 // instructions are going into it. This is fine, since all parent functions 1128 // must necessarily support the instructions that are in the outlined region. 1129 Candidate &FirstCand = OF.Candidates.front(); 1130 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1131 if (ParentFn.hasFnAttribute("target-features")) 1132 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1133 1134 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1135 IRBuilder<> Builder(EntryBB); 1136 Builder.CreateRetVoid(); 1137 1138 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1139 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1140 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1141 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1142 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1143 1144 // Insert the new function into the module. 1145 MF.insert(MF.begin(), &MBB); 1146 1147 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1148 ++I) { 1149 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1150 NewMI->dropMemRefs(MF); 1151 1152 // Don't keep debug information for outlined instructions. 1153 NewMI->setDebugLoc(DebugLoc()); 1154 MBB.insert(MBB.end(), NewMI); 1155 } 1156 1157 TII.buildOutlinedFrame(MBB, MF, OF); 1158 1159 // Outlined functions shouldn't preserve liveness. 1160 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1161 MF.getRegInfo().freezeReservedRegs(MF); 1162 1163 // If there's a DISubprogram associated with this outlined function, then 1164 // emit debug info for the outlined function. 1165 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1166 // We have a DISubprogram. Get its DICompileUnit. 1167 DICompileUnit *CU = SP->getUnit(); 1168 DIBuilder DB(M, true, CU); 1169 DIFile *Unit = SP->getFile(); 1170 Mangler Mg; 1171 // Get the mangled name of the function for the linkage name. 1172 std::string Dummy; 1173 llvm::raw_string_ostream MangledNameStream(Dummy); 1174 Mg.getNameWithPrefix(MangledNameStream, F, false); 1175 1176 DISubprogram *OutlinedSP = DB.createFunction( 1177 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1178 Unit /* File */, 1179 0 /* Line 0 is reserved for compiler-generated code. */, 1180 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1181 0, /* Line 0 is reserved for compiler-generated code. */ 1182 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1183 /* Outlined code is optimized code by definition. */ 1184 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1185 1186 // Don't add any new variables to the subprogram. 1187 DB.finalizeSubprogram(OutlinedSP); 1188 1189 // Attach subprogram to the function. 1190 F->setSubprogram(OutlinedSP); 1191 // We're done with the DIBuilder. 1192 DB.finalize(); 1193 } 1194 1195 return &MF; 1196 } 1197 1198 bool MachineOutliner::outline(Module &M, 1199 std::vector<OutlinedFunction> &FunctionList, 1200 InstructionMapper &Mapper) { 1201 1202 bool OutlinedSomething = false; 1203 1204 // Number to append to the current outlined function. 1205 unsigned OutlinedFunctionNum = 0; 1206 1207 // Sort by benefit. The most beneficial functions should be outlined first. 1208 std::stable_sort( 1209 FunctionList.begin(), FunctionList.end(), 1210 [](const OutlinedFunction &LHS, const OutlinedFunction &RHS) { 1211 return LHS.getBenefit() > RHS.getBenefit(); 1212 }); 1213 1214 // Walk over each function, outlining them as we go along. Functions are 1215 // outlined greedily, based off the sort above. 1216 for (OutlinedFunction &OF : FunctionList) { 1217 // If we outlined something that overlapped with a candidate in a previous 1218 // step, then we can't outline from it. 1219 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1220 return std::any_of( 1221 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1222 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1223 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1224 }); 1225 1226 // If we made it unbeneficial to outline this function, skip it. 1227 if (OF.getBenefit() < 1) 1228 continue; 1229 1230 // It's beneficial. Create the function and outline its sequence's 1231 // occurrences. 1232 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1233 emitOutlinedFunctionRemark(OF); 1234 FunctionsCreated++; 1235 OutlinedFunctionNum++; // Created a function, move to the next name. 1236 MachineFunction *MF = OF.MF; 1237 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1238 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1239 1240 // Replace occurrences of the sequence with calls to the new function. 1241 for (Candidate &C : OF.Candidates) { 1242 MachineBasicBlock &MBB = *C.getMBB(); 1243 MachineBasicBlock::iterator StartIt = C.front(); 1244 MachineBasicBlock::iterator EndIt = C.back(); 1245 1246 // Insert the call. 1247 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1248 1249 // If the caller tracks liveness, then we need to make sure that 1250 // anything we outline doesn't break liveness assumptions. The outlined 1251 // functions themselves currently don't track liveness, but we should 1252 // make sure that the ranges we yank things out of aren't wrong. 1253 if (MBB.getParent()->getProperties().hasProperty( 1254 MachineFunctionProperties::Property::TracksLiveness)) { 1255 // Helper lambda for adding implicit def operands to the call 1256 // instruction. 1257 auto CopyDefs = [&CallInst](MachineInstr &MI) { 1258 for (MachineOperand &MOP : MI.operands()) { 1259 // Skip over anything that isn't a register. 1260 if (!MOP.isReg()) 1261 continue; 1262 1263 // If it's a def, add it to the call instruction. 1264 if (MOP.isDef()) 1265 CallInst->addOperand(MachineOperand::CreateReg( 1266 MOP.getReg(), true, /* isDef = true */ 1267 true /* isImp = true */)); 1268 } 1269 }; 1270 // Copy over the defs in the outlined range. 1271 // First inst in outlined range <-- Anything that's defined in this 1272 // ... .. range has to be added as an 1273 // implicit Last inst in outlined range <-- def to the call 1274 // instruction. 1275 std::for_each(CallInst, std::next(EndIt), CopyDefs); 1276 } 1277 1278 // Erase from the point after where the call was inserted up to, and 1279 // including, the final instruction in the sequence. 1280 // Erase needs one past the end, so we need std::next there too. 1281 MBB.erase(std::next(StartIt), std::next(EndIt)); 1282 1283 // Keep track of what we removed by marking them all as -1. 1284 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1285 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1286 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1287 OutlinedSomething = true; 1288 1289 // Statistics. 1290 NumOutlined++; 1291 } 1292 } 1293 1294 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1295 1296 return OutlinedSomething; 1297 } 1298 1299 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1300 MachineModuleInfo &MMI) { 1301 // Build instruction mappings for each function in the module. Start by 1302 // iterating over each Function in M. 1303 for (Function &F : M) { 1304 1305 // If there's nothing in F, then there's no reason to try and outline from 1306 // it. 1307 if (F.empty()) 1308 continue; 1309 1310 // There's something in F. Check if it has a MachineFunction associated with 1311 // it. 1312 MachineFunction *MF = MMI.getMachineFunction(F); 1313 1314 // If it doesn't, then there's nothing to outline from. Move to the next 1315 // Function. 1316 if (!MF) 1317 continue; 1318 1319 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1320 1321 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1322 continue; 1323 1324 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1325 // If it isn't, then move on to the next Function in the module. 1326 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1327 continue; 1328 1329 // We have a function suitable for outlining. Iterate over every 1330 // MachineBasicBlock in MF and try to map its instructions to a list of 1331 // unsigned integers. 1332 for (MachineBasicBlock &MBB : *MF) { 1333 // If there isn't anything in MBB, then there's no point in outlining from 1334 // it. 1335 // If there are fewer than 2 instructions in the MBB, then it can't ever 1336 // contain something worth outlining. 1337 // FIXME: This should be based off of the maximum size in B of an outlined 1338 // call versus the size in B of the MBB. 1339 if (MBB.empty() || MBB.size() < 2) 1340 continue; 1341 1342 // Check if MBB could be the target of an indirect branch. If it is, then 1343 // we don't want to outline from it. 1344 if (MBB.hasAddressTaken()) 1345 continue; 1346 1347 // MBB is suitable for outlining. Map it to a list of unsigneds. 1348 Mapper.convertToUnsignedVec(MBB, *TII); 1349 } 1350 } 1351 } 1352 1353 void MachineOutliner::initSizeRemarkInfo( 1354 const Module &M, const MachineModuleInfo &MMI, 1355 StringMap<unsigned> &FunctionToInstrCount) { 1356 // Collect instruction counts for every function. We'll use this to emit 1357 // per-function size remarks later. 1358 for (const Function &F : M) { 1359 MachineFunction *MF = MMI.getMachineFunction(F); 1360 1361 // We only care about MI counts here. If there's no MachineFunction at this 1362 // point, then there won't be after the outliner runs, so let's move on. 1363 if (!MF) 1364 continue; 1365 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1366 } 1367 } 1368 1369 void MachineOutliner::emitInstrCountChangedRemark( 1370 const Module &M, const MachineModuleInfo &MMI, 1371 const StringMap<unsigned> &FunctionToInstrCount) { 1372 // Iterate over each function in the module and emit remarks. 1373 // Note that we won't miss anything by doing this, because the outliner never 1374 // deletes functions. 1375 for (const Function &F : M) { 1376 MachineFunction *MF = MMI.getMachineFunction(F); 1377 1378 // The outliner never deletes functions. If we don't have a MF here, then we 1379 // didn't have one prior to outlining either. 1380 if (!MF) 1381 continue; 1382 1383 std::string Fname = F.getName(); 1384 unsigned FnCountAfter = MF->getInstructionCount(); 1385 unsigned FnCountBefore = 0; 1386 1387 // Check if the function was recorded before. 1388 auto It = FunctionToInstrCount.find(Fname); 1389 1390 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1391 // to that. 1392 if (It != FunctionToInstrCount.end()) 1393 FnCountBefore = It->second; 1394 1395 // Compute the delta and emit a remark if there was a change. 1396 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1397 static_cast<int64_t>(FnCountBefore); 1398 if (FnDelta == 0) 1399 continue; 1400 1401 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1402 MORE.emit([&]() { 1403 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1404 DiagnosticLocation(), 1405 &MF->front()); 1406 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1407 << ": Function: " 1408 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1409 << ": MI instruction count changed from " 1410 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1411 FnCountBefore) 1412 << " to " 1413 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1414 FnCountAfter) 1415 << "; Delta: " 1416 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1417 return R; 1418 }); 1419 } 1420 } 1421 1422 bool MachineOutliner::runOnModule(Module &M) { 1423 // Check if there's anything in the module. If it's empty, then there's 1424 // nothing to outline. 1425 if (M.empty()) 1426 return false; 1427 1428 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1429 1430 // If the user passed -enable-machine-outliner=always or 1431 // -enable-machine-outliner, the pass will run on all functions in the module. 1432 // Otherwise, if the target supports default outlining, it will run on all 1433 // functions deemed by the target to be worth outlining from by default. Tell 1434 // the user how the outliner is running. 1435 LLVM_DEBUG( 1436 dbgs() << "Machine Outliner: Running on "; 1437 if (RunOnAllFunctions) 1438 dbgs() << "all functions"; 1439 else 1440 dbgs() << "target-default functions"; 1441 dbgs() << "\n" 1442 ); 1443 1444 // If the user specifies that they want to outline from linkonceodrs, set 1445 // it here. 1446 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1447 InstructionMapper Mapper; 1448 1449 // Prepare instruction mappings for the suffix tree. 1450 populateMapper(Mapper, M, MMI); 1451 std::vector<OutlinedFunction> FunctionList; 1452 1453 // Find all of the outlining candidates. 1454 findCandidates(Mapper, FunctionList); 1455 1456 // If we've requested size remarks, then collect the MI counts of every 1457 // function before outlining, and the MI counts after outlining. 1458 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1459 // the pass manager's responsibility. 1460 // This could pretty easily be placed in outline instead, but because we 1461 // really ultimately *don't* want this here, it's done like this for now 1462 // instead. 1463 1464 // Check if we want size remarks. 1465 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1466 StringMap<unsigned> FunctionToInstrCount; 1467 if (ShouldEmitSizeRemarks) 1468 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1469 1470 // Outline each of the candidates and return true if something was outlined. 1471 bool OutlinedSomething = outline(M, FunctionList, Mapper); 1472 1473 // If we outlined something, we definitely changed the MI count of the 1474 // module. If we've asked for size remarks, then output them. 1475 // FIXME: This should be in the pass manager. 1476 if (ShouldEmitSizeRemarks && OutlinedSomething) 1477 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1478 1479 return OutlinedSomething; 1480 } 1481