1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * insertOutlinerEpilogue
29 ///   * insertOutlinedCall
30 ///   * insertOutlinerPrologue
31 ///   * isFunctionSafeToOutlineFrom
32 ///
33 /// in order to make use of the MachineOutliner.
34 ///
35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37 /// how this pass works, the talk is available on YouTube at
38 ///
39 /// https://www.youtube.com/watch?v=yorld-WSOeU
40 ///
41 /// The slides for the talk are available at
42 ///
43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44 ///
45 /// The talk provides an overview of how the outliner finds candidates and
46 /// ultimately outlines them. It describes how the main data structure for this
47 /// pass, the suffix tree, is queried and purged for candidates. It also gives
48 /// a simplified suffix tree construction algorithm for suffix trees based off
49 /// of the algorithm actually used here, Ukkonen's algorithm.
50 ///
51 /// For the original RFC for this pass, please see
52 ///
53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54 ///
55 /// For more information on the suffix tree data structure, please see
56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57 ///
58 //===----------------------------------------------------------------------===//
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/MachineRegisterInfo.h"
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/TargetInstrInfo.h"
68 #include "llvm/CodeGen/TargetRegisterInfo.h"
69 #include "llvm/CodeGen/TargetSubtargetInfo.h"
70 #include "llvm/IR/DIBuilder.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/Mangler.h"
73 #include "llvm/Support/Allocator.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <functional>
78 #include <map>
79 #include <sstream>
80 #include <tuple>
81 #include <vector>
82 
83 #define DEBUG_TYPE "machine-outliner"
84 
85 using namespace llvm;
86 using namespace ore;
87 
88 STATISTIC(NumOutlined, "Number of candidates outlined");
89 STATISTIC(FunctionsCreated, "Number of functions created");
90 
91 // Set to true if the user wants the outliner to run on linkonceodr linkage
92 // functions. This is false by default because the linker can dedupe linkonceodr
93 // functions. Since the outliner is confined to a single module (modulo LTO),
94 // this is off by default. It should, however, be the default behaviour in
95 // LTO.
96 static cl::opt<bool> EnableLinkOnceODROutlining(
97     "enable-linkonceodr-outlining",
98     cl::Hidden,
99     cl::desc("Enable the machine outliner on linkonceodr functions"),
100     cl::init(false));
101 
102 namespace {
103 
104 /// An individual sequence of instructions to be replaced with a call to
105 /// an outlined function.
106 struct Candidate {
107 private:
108   /// The start index of this \p Candidate in the instruction list.
109   unsigned StartIdx;
110 
111   /// The number of instructions in this \p Candidate.
112   unsigned Len;
113 
114   /// The MachineFunction containing this \p Candidate.
115   MachineFunction *MF = nullptr;
116 
117 public:
118   /// Set to false if the candidate overlapped with another candidate.
119   bool InCandidateList = true;
120 
121   /// The index of this \p Candidate's \p OutlinedFunction in the list of
122   /// \p OutlinedFunctions.
123   unsigned FunctionIdx;
124 
125   /// Contains all target-specific information for this \p Candidate.
126   TargetInstrInfo::MachineOutlinerInfo MInfo;
127 
128   /// If there is a DISubprogram associated with the function that this
129   /// Candidate lives in, return it.
130   DISubprogram *getSubprogramOrNull() const {
131     assert(MF && "Candidate has no MF!");
132     if (DISubprogram *SP = MF->getFunction().getSubprogram())
133       return SP;
134     return nullptr;
135   }
136 
137   /// Return the number of instructions in this Candidate.
138   unsigned getLength() const { return Len; }
139 
140   /// Return the start index of this candidate.
141   unsigned getStartIdx() const { return StartIdx; }
142 
143   // Return the end index of this candidate.
144   unsigned getEndIdx() const { return StartIdx + Len - 1; }
145 
146   /// The number of instructions that would be saved by outlining every
147   /// candidate of this type.
148   ///
149   /// This is a fixed value which is not updated during the candidate pruning
150   /// process. It is only used for deciding which candidate to keep if two
151   /// candidates overlap. The true benefit is stored in the OutlinedFunction
152   /// for some given candidate.
153   unsigned Benefit = 0;
154 
155   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx,
156             MachineFunction *MF)
157       : StartIdx(StartIdx), Len(Len), MF(MF), FunctionIdx(FunctionIdx) {}
158 
159   Candidate() {}
160 
161   /// Used to ensure that \p Candidates are outlined in an order that
162   /// preserves the start and end indices of other \p Candidates.
163   bool operator<(const Candidate &RHS) const {
164     return getStartIdx() > RHS.getStartIdx();
165   }
166 };
167 
168 /// The information necessary to create an outlined function for some
169 /// class of candidate.
170 struct OutlinedFunction {
171 
172 private:
173   /// The number of candidates for this \p OutlinedFunction.
174   unsigned OccurrenceCount = 0;
175 
176 public:
177   std::vector<std::shared_ptr<Candidate>> Candidates;
178 
179   /// The actual outlined function created.
180   /// This is initialized after we go through and create the actual function.
181   MachineFunction *MF = nullptr;
182 
183   /// A number assigned to this function which appears at the end of its name.
184   unsigned Name;
185 
186   /// The sequence of integers corresponding to the instructions in this
187   /// function.
188   std::vector<unsigned> Sequence;
189 
190   /// Contains all target-specific information for this \p OutlinedFunction.
191   TargetInstrInfo::MachineOutlinerInfo MInfo;
192 
193   /// If there is a DISubprogram for any Candidate for this outlined function,
194   /// then return it. Otherwise, return nullptr.
195   DISubprogram *getSubprogramOrNull() const {
196     for (const auto &C : Candidates)
197       if (DISubprogram *SP = C->getSubprogramOrNull())
198         return SP;
199     return nullptr;
200   }
201 
202   /// Return the number of candidates for this \p OutlinedFunction.
203   unsigned getOccurrenceCount() { return OccurrenceCount; }
204 
205   /// Decrement the occurrence count of this OutlinedFunction and return the
206   /// new count.
207   unsigned decrement() {
208     assert(OccurrenceCount > 0 && "Can't decrement an empty function!");
209     OccurrenceCount--;
210     return getOccurrenceCount();
211   }
212 
213   /// Return the number of instructions it would take to outline this
214   /// function.
215   unsigned getOutliningCost() {
216     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
217            MInfo.FrameOverhead;
218   }
219 
220   /// Return the number of instructions that would be saved by outlining
221   /// this function.
222   unsigned getBenefit() {
223     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
224     unsigned OutlinedCost = getOutliningCost();
225     return (NotOutlinedCost < OutlinedCost) ? 0
226                                             : NotOutlinedCost - OutlinedCost;
227   }
228 
229   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
230                    const std::vector<unsigned> &Sequence,
231                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
232       : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence),
233         MInfo(MInfo) {}
234 };
235 
236 /// Represents an undefined index in the suffix tree.
237 const unsigned EmptyIdx = -1;
238 
239 /// A node in a suffix tree which represents a substring or suffix.
240 ///
241 /// Each node has either no children or at least two children, with the root
242 /// being a exception in the empty tree.
243 ///
244 /// Children are represented as a map between unsigned integers and nodes. If
245 /// a node N has a child M on unsigned integer k, then the mapping represented
246 /// by N is a proper prefix of the mapping represented by M. Note that this,
247 /// although similar to a trie is somewhat different: each node stores a full
248 /// substring of the full mapping rather than a single character state.
249 ///
250 /// Each internal node contains a pointer to the internal node representing
251 /// the same string, but with the first character chopped off. This is stored
252 /// in \p Link. Each leaf node stores the start index of its respective
253 /// suffix in \p SuffixIdx.
254 struct SuffixTreeNode {
255 
256   /// The children of this node.
257   ///
258   /// A child existing on an unsigned integer implies that from the mapping
259   /// represented by the current node, there is a way to reach another
260   /// mapping by tacking that character on the end of the current string.
261   DenseMap<unsigned, SuffixTreeNode *> Children;
262 
263   /// A flag set to false if the node has been pruned from the tree.
264   bool IsInTree = true;
265 
266   /// The start index of this node's substring in the main string.
267   unsigned StartIdx = EmptyIdx;
268 
269   /// The end index of this node's substring in the main string.
270   ///
271   /// Every leaf node must have its \p EndIdx incremented at the end of every
272   /// step in the construction algorithm. To avoid having to update O(N)
273   /// nodes individually at the end of every step, the end index is stored
274   /// as a pointer.
275   unsigned *EndIdx = nullptr;
276 
277   /// For leaves, the start index of the suffix represented by this node.
278   ///
279   /// For all other nodes, this is ignored.
280   unsigned SuffixIdx = EmptyIdx;
281 
282   /// For internal nodes, a pointer to the internal node representing
283   /// the same sequence with the first character chopped off.
284   ///
285   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
286   /// Ukkonen's algorithm does to achieve linear-time construction is
287   /// keep track of which node the next insert should be at. This makes each
288   /// insert O(1), and there are a total of O(N) inserts. The suffix link
289   /// helps with inserting children of internal nodes.
290   ///
291   /// Say we add a child to an internal node with associated mapping S. The
292   /// next insertion must be at the node representing S - its first character.
293   /// This is given by the way that we iteratively build the tree in Ukkonen's
294   /// algorithm. The main idea is to look at the suffixes of each prefix in the
295   /// string, starting with the longest suffix of the prefix, and ending with
296   /// the shortest. Therefore, if we keep pointers between such nodes, we can
297   /// move to the next insertion point in O(1) time. If we don't, then we'd
298   /// have to query from the root, which takes O(N) time. This would make the
299   /// construction algorithm O(N^2) rather than O(N).
300   SuffixTreeNode *Link = nullptr;
301 
302   /// The parent of this node. Every node except for the root has a parent.
303   SuffixTreeNode *Parent = nullptr;
304 
305   /// The number of times this node's string appears in the tree.
306   ///
307   /// This is equal to the number of leaf children of the string. It represents
308   /// the number of suffixes that the node's string is a prefix of.
309   unsigned OccurrenceCount = 0;
310 
311   /// The length of the string formed by concatenating the edge labels from the
312   /// root to this node.
313   unsigned ConcatLen = 0;
314 
315   /// Returns true if this node is a leaf.
316   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
317 
318   /// Returns true if this node is the root of its owning \p SuffixTree.
319   bool isRoot() const { return StartIdx == EmptyIdx; }
320 
321   /// Return the number of elements in the substring associated with this node.
322   size_t size() const {
323 
324     // Is it the root? If so, it's the empty string so return 0.
325     if (isRoot())
326       return 0;
327 
328     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
329 
330     // Size = the number of elements in the string.
331     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
332     return *EndIdx - StartIdx + 1;
333   }
334 
335   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
336                  SuffixTreeNode *Parent)
337       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
338 
339   SuffixTreeNode() {}
340 };
341 
342 /// A data structure for fast substring queries.
343 ///
344 /// Suffix trees represent the suffixes of their input strings in their leaves.
345 /// A suffix tree is a type of compressed trie structure where each node
346 /// represents an entire substring rather than a single character. Each leaf
347 /// of the tree is a suffix.
348 ///
349 /// A suffix tree can be seen as a type of state machine where each state is a
350 /// substring of the full string. The tree is structured so that, for a string
351 /// of length N, there are exactly N leaves in the tree. This structure allows
352 /// us to quickly find repeated substrings of the input string.
353 ///
354 /// In this implementation, a "string" is a vector of unsigned integers.
355 /// These integers may result from hashing some data type. A suffix tree can
356 /// contain 1 or many strings, which can then be queried as one large string.
357 ///
358 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
359 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
360 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
361 /// paper is available at
362 ///
363 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
364 class SuffixTree {
365 public:
366   /// Stores each leaf node in the tree.
367   ///
368   /// This is used for finding outlining candidates.
369   std::vector<SuffixTreeNode *> LeafVector;
370 
371   /// Each element is an integer representing an instruction in the module.
372   ArrayRef<unsigned> Str;
373 
374 private:
375   /// Maintains each node in the tree.
376   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
377 
378   /// The root of the suffix tree.
379   ///
380   /// The root represents the empty string. It is maintained by the
381   /// \p NodeAllocator like every other node in the tree.
382   SuffixTreeNode *Root = nullptr;
383 
384   /// Maintains the end indices of the internal nodes in the tree.
385   ///
386   /// Each internal node is guaranteed to never have its end index change
387   /// during the construction algorithm; however, leaves must be updated at
388   /// every step. Therefore, we need to store leaf end indices by reference
389   /// to avoid updating O(N) leaves at every step of construction. Thus,
390   /// every internal node must be allocated its own end index.
391   BumpPtrAllocator InternalEndIdxAllocator;
392 
393   /// The end index of each leaf in the tree.
394   unsigned LeafEndIdx = -1;
395 
396   /// Helper struct which keeps track of the next insertion point in
397   /// Ukkonen's algorithm.
398   struct ActiveState {
399     /// The next node to insert at.
400     SuffixTreeNode *Node;
401 
402     /// The index of the first character in the substring currently being added.
403     unsigned Idx = EmptyIdx;
404 
405     /// The length of the substring we have to add at the current step.
406     unsigned Len = 0;
407   };
408 
409   /// The point the next insertion will take place at in the
410   /// construction algorithm.
411   ActiveState Active;
412 
413   /// Allocate a leaf node and add it to the tree.
414   ///
415   /// \param Parent The parent of this node.
416   /// \param StartIdx The start index of this node's associated string.
417   /// \param Edge The label on the edge leaving \p Parent to this node.
418   ///
419   /// \returns A pointer to the allocated leaf node.
420   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
421                              unsigned Edge) {
422 
423     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
424 
425     SuffixTreeNode *N = new (NodeAllocator.Allocate())
426         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
427     Parent.Children[Edge] = N;
428 
429     return N;
430   }
431 
432   /// Allocate an internal node and add it to the tree.
433   ///
434   /// \param Parent The parent of this node. Only null when allocating the root.
435   /// \param StartIdx The start index of this node's associated string.
436   /// \param EndIdx The end index of this node's associated string.
437   /// \param Edge The label on the edge leaving \p Parent to this node.
438   ///
439   /// \returns A pointer to the allocated internal node.
440   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
441                                      unsigned EndIdx, unsigned Edge) {
442 
443     assert(StartIdx <= EndIdx && "String can't start after it ends!");
444     assert(!(!Parent && StartIdx != EmptyIdx) &&
445            "Non-root internal nodes must have parents!");
446 
447     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
448     SuffixTreeNode *N = new (NodeAllocator.Allocate())
449         SuffixTreeNode(StartIdx, E, Root, Parent);
450     if (Parent)
451       Parent->Children[Edge] = N;
452 
453     return N;
454   }
455 
456   /// Set the suffix indices of the leaves to the start indices of their
457   /// respective suffixes. Also stores each leaf in \p LeafVector at its
458   /// respective suffix index.
459   ///
460   /// \param[in] CurrNode The node currently being visited.
461   /// \param CurrIdx The current index of the string being visited.
462   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
463 
464     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
465 
466     // Store the length of the concatenation of all strings from the root to
467     // this node.
468     if (!CurrNode.isRoot()) {
469       if (CurrNode.ConcatLen == 0)
470         CurrNode.ConcatLen = CurrNode.size();
471 
472       if (CurrNode.Parent)
473         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
474     }
475 
476     // Traverse the tree depth-first.
477     for (auto &ChildPair : CurrNode.Children) {
478       assert(ChildPair.second && "Node had a null child!");
479       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
480     }
481 
482     // Is this node a leaf?
483     if (IsLeaf) {
484       // If yes, give it a suffix index and bump its parent's occurrence count.
485       CurrNode.SuffixIdx = Str.size() - CurrIdx;
486       assert(CurrNode.Parent && "CurrNode had no parent!");
487       CurrNode.Parent->OccurrenceCount++;
488 
489       // Store the leaf in the leaf vector for pruning later.
490       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
491     }
492   }
493 
494   /// Construct the suffix tree for the prefix of the input ending at
495   /// \p EndIdx.
496   ///
497   /// Used to construct the full suffix tree iteratively. At the end of each
498   /// step, the constructed suffix tree is either a valid suffix tree, or a
499   /// suffix tree with implicit suffixes. At the end of the final step, the
500   /// suffix tree is a valid tree.
501   ///
502   /// \param EndIdx The end index of the current prefix in the main string.
503   /// \param SuffixesToAdd The number of suffixes that must be added
504   /// to complete the suffix tree at the current phase.
505   ///
506   /// \returns The number of suffixes that have not been added at the end of
507   /// this step.
508   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
509     SuffixTreeNode *NeedsLink = nullptr;
510 
511     while (SuffixesToAdd > 0) {
512 
513       // Are we waiting to add anything other than just the last character?
514       if (Active.Len == 0) {
515         // If not, then say the active index is the end index.
516         Active.Idx = EndIdx;
517       }
518 
519       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
520 
521       // The first character in the current substring we're looking at.
522       unsigned FirstChar = Str[Active.Idx];
523 
524       // Have we inserted anything starting with FirstChar at the current node?
525       if (Active.Node->Children.count(FirstChar) == 0) {
526         // If not, then we can just insert a leaf and move too the next step.
527         insertLeaf(*Active.Node, EndIdx, FirstChar);
528 
529         // The active node is an internal node, and we visited it, so it must
530         // need a link if it doesn't have one.
531         if (NeedsLink) {
532           NeedsLink->Link = Active.Node;
533           NeedsLink = nullptr;
534         }
535       } else {
536         // There's a match with FirstChar, so look for the point in the tree to
537         // insert a new node.
538         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
539 
540         unsigned SubstringLen = NextNode->size();
541 
542         // Is the current suffix we're trying to insert longer than the size of
543         // the child we want to move to?
544         if (Active.Len >= SubstringLen) {
545           // If yes, then consume the characters we've seen and move to the next
546           // node.
547           Active.Idx += SubstringLen;
548           Active.Len -= SubstringLen;
549           Active.Node = NextNode;
550           continue;
551         }
552 
553         // Otherwise, the suffix we're trying to insert must be contained in the
554         // next node we want to move to.
555         unsigned LastChar = Str[EndIdx];
556 
557         // Is the string we're trying to insert a substring of the next node?
558         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
559           // If yes, then we're done for this step. Remember our insertion point
560           // and move to the next end index. At this point, we have an implicit
561           // suffix tree.
562           if (NeedsLink && !Active.Node->isRoot()) {
563             NeedsLink->Link = Active.Node;
564             NeedsLink = nullptr;
565           }
566 
567           Active.Len++;
568           break;
569         }
570 
571         // The string we're trying to insert isn't a substring of the next node,
572         // but matches up to a point. Split the node.
573         //
574         // For example, say we ended our search at a node n and we're trying to
575         // insert ABD. Then we'll create a new node s for AB, reduce n to just
576         // representing C, and insert a new leaf node l to represent d. This
577         // allows us to ensure that if n was a leaf, it remains a leaf.
578         //
579         //   | ABC  ---split--->  | AB
580         //   n                    s
581         //                     C / \ D
582         //                      n   l
583 
584         // The node s from the diagram
585         SuffixTreeNode *SplitNode =
586             insertInternalNode(Active.Node, NextNode->StartIdx,
587                                NextNode->StartIdx + Active.Len - 1, FirstChar);
588 
589         // Insert the new node representing the new substring into the tree as
590         // a child of the split node. This is the node l from the diagram.
591         insertLeaf(*SplitNode, EndIdx, LastChar);
592 
593         // Make the old node a child of the split node and update its start
594         // index. This is the node n from the diagram.
595         NextNode->StartIdx += Active.Len;
596         NextNode->Parent = SplitNode;
597         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
598 
599         // SplitNode is an internal node, update the suffix link.
600         if (NeedsLink)
601           NeedsLink->Link = SplitNode;
602 
603         NeedsLink = SplitNode;
604       }
605 
606       // We've added something new to the tree, so there's one less suffix to
607       // add.
608       SuffixesToAdd--;
609 
610       if (Active.Node->isRoot()) {
611         if (Active.Len > 0) {
612           Active.Len--;
613           Active.Idx = EndIdx - SuffixesToAdd + 1;
614         }
615       } else {
616         // Start the next phase at the next smallest suffix.
617         Active.Node = Active.Node->Link;
618       }
619     }
620 
621     return SuffixesToAdd;
622   }
623 
624 public:
625   /// Construct a suffix tree from a sequence of unsigned integers.
626   ///
627   /// \param Str The string to construct the suffix tree for.
628   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
629     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
630     Root->IsInTree = true;
631     Active.Node = Root;
632     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
633 
634     // Keep track of the number of suffixes we have to add of the current
635     // prefix.
636     unsigned SuffixesToAdd = 0;
637     Active.Node = Root;
638 
639     // Construct the suffix tree iteratively on each prefix of the string.
640     // PfxEndIdx is the end index of the current prefix.
641     // End is one past the last element in the string.
642     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
643          PfxEndIdx++) {
644       SuffixesToAdd++;
645       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
646       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
647     }
648 
649     // Set the suffix indices of each leaf.
650     assert(Root && "Root node can't be nullptr!");
651     setSuffixIndices(*Root, 0);
652   }
653 };
654 
655 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
656 struct InstructionMapper {
657 
658   /// The next available integer to assign to a \p MachineInstr that
659   /// cannot be outlined.
660   ///
661   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
662   unsigned IllegalInstrNumber = -3;
663 
664   /// The next available integer to assign to a \p MachineInstr that can
665   /// be outlined.
666   unsigned LegalInstrNumber = 0;
667 
668   /// Correspondence from \p MachineInstrs to unsigned integers.
669   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
670       InstructionIntegerMap;
671 
672   /// Corresponcence from unsigned integers to \p MachineInstrs.
673   /// Inverse of \p InstructionIntegerMap.
674   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
675 
676   /// The vector of unsigned integers that the module is mapped to.
677   std::vector<unsigned> UnsignedVec;
678 
679   /// Stores the location of the instruction associated with the integer
680   /// at index i in \p UnsignedVec for each index i.
681   std::vector<MachineBasicBlock::iterator> InstrList;
682 
683   /// Maps \p *It to a legal integer.
684   ///
685   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
686   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
687   ///
688   /// \returns The integer that \p *It was mapped to.
689   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
690 
691     // Get the integer for this instruction or give it the current
692     // LegalInstrNumber.
693     InstrList.push_back(It);
694     MachineInstr &MI = *It;
695     bool WasInserted;
696     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
697         ResultIt;
698     std::tie(ResultIt, WasInserted) =
699         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
700     unsigned MINumber = ResultIt->second;
701 
702     // There was an insertion.
703     if (WasInserted) {
704       LegalInstrNumber++;
705       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
706     }
707 
708     UnsignedVec.push_back(MINumber);
709 
710     // Make sure we don't overflow or use any integers reserved by the DenseMap.
711     if (LegalInstrNumber >= IllegalInstrNumber)
712       report_fatal_error("Instruction mapping overflow!");
713 
714     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
715            "Tried to assign DenseMap tombstone or empty key to instruction.");
716     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
717            "Tried to assign DenseMap tombstone or empty key to instruction.");
718 
719     return MINumber;
720   }
721 
722   /// Maps \p *It to an illegal integer.
723   ///
724   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
725   ///
726   /// \returns The integer that \p *It was mapped to.
727   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
728     unsigned MINumber = IllegalInstrNumber;
729 
730     InstrList.push_back(It);
731     UnsignedVec.push_back(IllegalInstrNumber);
732     IllegalInstrNumber--;
733 
734     assert(LegalInstrNumber < IllegalInstrNumber &&
735            "Instruction mapping overflow!");
736 
737     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
738            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
739 
740     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
741            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
742 
743     return MINumber;
744   }
745 
746   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
747   /// and appends it to \p UnsignedVec and \p InstrList.
748   ///
749   /// Two instructions are assigned the same integer if they are identical.
750   /// If an instruction is deemed unsafe to outline, then it will be assigned an
751   /// unique integer. The resulting mapping is placed into a suffix tree and
752   /// queried for candidates.
753   ///
754   /// \param MBB The \p MachineBasicBlock to be translated into integers.
755   /// \param TRI \p TargetRegisterInfo for the module.
756   /// \param TII \p TargetInstrInfo for the module.
757   void convertToUnsignedVec(MachineBasicBlock &MBB,
758                             const TargetRegisterInfo &TRI,
759                             const TargetInstrInfo &TII) {
760     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
761 
762     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
763          It++) {
764 
765       // Keep track of where this instruction is in the module.
766       switch (TII.getOutliningType(It, Flags)) {
767       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
768         mapToIllegalUnsigned(It);
769         break;
770 
771       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
772         mapToLegalUnsigned(It);
773         break;
774 
775       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
776         break;
777       }
778     }
779 
780     // After we're done every insertion, uniquely terminate this part of the
781     // "string". This makes sure we won't match across basic block or function
782     // boundaries since the "end" is encoded uniquely and thus appears in no
783     // repeated substring.
784     InstrList.push_back(MBB.end());
785     UnsignedVec.push_back(IllegalInstrNumber);
786     IllegalInstrNumber--;
787   }
788 
789   InstructionMapper() {
790     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
791     // changed.
792     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
793            "DenseMapInfo<unsigned>'s empty key isn't -1!");
794     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
795            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
796   }
797 };
798 
799 /// An interprocedural pass which finds repeated sequences of
800 /// instructions and replaces them with calls to functions.
801 ///
802 /// Each instruction is mapped to an unsigned integer and placed in a string.
803 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
804 /// is then repeatedly queried for repeated sequences of instructions. Each
805 /// non-overlapping repeated sequence is then placed in its own
806 /// \p MachineFunction and each instance is then replaced with a call to that
807 /// function.
808 struct MachineOutliner : public ModulePass {
809 
810   static char ID;
811 
812   /// Set to true if the outliner should consider functions with
813   /// linkonceodr linkage.
814   bool OutlineFromLinkOnceODRs = false;
815 
816   // Collection of IR functions created by the outliner.
817   std::vector<Function *> CreatedIRFunctions;
818 
819   StringRef getPassName() const override { return "Machine Outliner"; }
820 
821   void getAnalysisUsage(AnalysisUsage &AU) const override {
822     AU.addRequired<MachineModuleInfo>();
823     AU.addPreserved<MachineModuleInfo>();
824     AU.setPreservesAll();
825     ModulePass::getAnalysisUsage(AU);
826   }
827 
828   MachineOutliner() : ModulePass(ID) {
829     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
830   }
831 
832   /// Find all repeated substrings that satisfy the outlining cost model.
833   ///
834   /// If a substring appears at least twice, then it must be represented by
835   /// an internal node which appears in at least two suffixes. Each suffix is
836   /// represented by a leaf node. To do this, we visit each internal node in
837   /// the tree, using the leaf children of each internal node. If an internal
838   /// node represents a beneficial substring, then we use each of its leaf
839   /// children to find the locations of its substring.
840   ///
841   /// \param ST A suffix tree to query.
842   /// \param TII TargetInstrInfo for the target.
843   /// \param Mapper Contains outlining mapping information.
844   /// \param[out] CandidateList Filled with candidates representing each
845   /// beneficial substring.
846   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
847   /// type of candidate.
848   ///
849   /// \returns The length of the longest candidate found.
850   unsigned
851   findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
852                  InstructionMapper &Mapper,
853                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
854                  std::vector<OutlinedFunction> &FunctionList);
855 
856   /// Replace the sequences of instructions represented by the
857   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
858   /// described in \p FunctionList.
859   ///
860   /// \param M The module we are outlining from.
861   /// \param CandidateList A list of candidates to be outlined.
862   /// \param FunctionList A list of functions to be inserted into the module.
863   /// \param Mapper Contains the instruction mappings for the module.
864   bool outline(Module &M,
865                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
866                std::vector<OutlinedFunction> &FunctionList,
867                InstructionMapper &Mapper);
868 
869   /// Creates a function for \p OF and inserts it into the module.
870   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
871                                           InstructionMapper &Mapper);
872 
873   /// Find potential outlining candidates and store them in \p CandidateList.
874   ///
875   /// For each type of potential candidate, also build an \p OutlinedFunction
876   /// struct containing the information to build the function for that
877   /// candidate.
878   ///
879   /// \param[out] CandidateList Filled with outlining candidates for the module.
880   /// \param[out] FunctionList Filled with functions corresponding to each type
881   /// of \p Candidate.
882   /// \param ST The suffix tree for the module.
883   /// \param TII TargetInstrInfo for the module.
884   ///
885   /// \returns The length of the longest candidate found. 0 if there are none.
886   unsigned
887   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
888                      std::vector<OutlinedFunction> &FunctionList,
889                      SuffixTree &ST, InstructionMapper &Mapper,
890                      const TargetInstrInfo &TII);
891 
892   /// Helper function for pruneOverlaps.
893   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
894   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
895 
896   /// Remove any overlapping candidates that weren't handled by the
897   /// suffix tree's pruning method.
898   ///
899   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
900   /// If a short candidate is chosen for outlining, then a longer candidate
901   /// which has that short candidate as a suffix is chosen, the tree's pruning
902   /// method will not find it. Thus, we need to prune before outlining as well.
903   ///
904   /// \param[in,out] CandidateList A list of outlining candidates.
905   /// \param[in,out] FunctionList A list of functions to be outlined.
906   /// \param Mapper Contains instruction mapping info for outlining.
907   /// \param MaxCandidateLen The length of the longest candidate.
908   /// \param TII TargetInstrInfo for the module.
909   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
910                      std::vector<OutlinedFunction> &FunctionList,
911                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
912                      const TargetInstrInfo &TII);
913 
914   /// Construct a suffix tree on the instructions in \p M and outline repeated
915   /// strings from that tree.
916   bool runOnModule(Module &M) override;
917 };
918 
919 } // Anonymous namespace.
920 
921 char MachineOutliner::ID = 0;
922 
923 namespace llvm {
924 ModulePass *createMachineOutlinerPass() {
925   return new MachineOutliner();
926 }
927 
928 } // namespace llvm
929 
930 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
931                 false)
932 
933 unsigned MachineOutliner::findCandidates(
934     SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper,
935     std::vector<std::shared_ptr<Candidate>> &CandidateList,
936     std::vector<OutlinedFunction> &FunctionList) {
937   CandidateList.clear();
938   FunctionList.clear();
939   unsigned MaxLen = 0;
940 
941   // FIXME: Visit internal nodes instead of leaves.
942   for (SuffixTreeNode *Leaf : ST.LeafVector) {
943     assert(Leaf && "Leaves in LeafVector cannot be null!");
944     if (!Leaf->IsInTree)
945       continue;
946 
947     assert(Leaf->Parent && "All leaves must have parents!");
948     SuffixTreeNode &Parent = *(Leaf->Parent);
949 
950     // If it doesn't appear enough, or we already outlined from it, skip it.
951     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
952       continue;
953 
954     // Figure out if this candidate is beneficial.
955     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
956 
957     // Too short to be beneficial; skip it.
958     // FIXME: This isn't necessarily true for, say, X86. If we factor in
959     // instruction lengths we need more information than this.
960     if (StringLen < 2)
961       continue;
962 
963     // If this is a beneficial class of candidate, then every one is stored in
964     // this vector.
965     std::vector<Candidate> CandidatesForRepeatedSeq;
966 
967     // Describes the start and end point of each candidate. This allows the
968     // target to infer some information about each occurrence of each repeated
969     // sequence.
970     // FIXME: CandidatesForRepeatedSeq and this should be combined.
971     std::vector<
972         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
973         RepeatedSequenceLocs;
974 
975     // Figure out the call overhead for each instance of the sequence.
976     for (auto &ChildPair : Parent.Children) {
977       SuffixTreeNode *M = ChildPair.second;
978 
979       if (M && M->IsInTree && M->isLeaf()) {
980         // Never visit this leaf again.
981         M->IsInTree = false;
982         unsigned StartIdx = M->SuffixIdx;
983         unsigned EndIdx = StartIdx + StringLen - 1;
984 
985         // Trick: Discard some candidates that would be incompatible with the
986         // ones we've already found for this sequence. This will save us some
987         // work in candidate selection.
988         //
989         // If two candidates overlap, then we can't outline them both. This
990         // happens when we have candidates that look like, say
991         //
992         // AA (where each "A" is an instruction).
993         //
994         // We might have some portion of the module that looks like this:
995         // AAAAAA (6 A's)
996         //
997         // In this case, there are 5 different copies of "AA" in this range, but
998         // at most 3 can be outlined. If only outlining 3 of these is going to
999         // be unbeneficial, then we ought to not bother.
1000         //
1001         // Note that two things DON'T overlap when they look like this:
1002         // start1...end1 .... start2...end2
1003         // That is, one must either
1004         // * End before the other starts
1005         // * Start after the other ends
1006         if (std::all_of(CandidatesForRepeatedSeq.begin(),
1007                         CandidatesForRepeatedSeq.end(),
1008                         [&StartIdx, &EndIdx](const Candidate &C) {
1009                           return (EndIdx < C.getStartIdx() ||
1010                                   StartIdx > C.getEndIdx());
1011                         })) {
1012           // It doesn't overlap with anything, so we can outline it.
1013           // Each sequence is over [StartIt, EndIt].
1014           MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1015           MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1016 
1017           // Save the MachineFunction containing the Candidate.
1018           MachineFunction *MF = StartIt->getParent()->getParent();
1019           assert(MF && "Candidate doesn't have a MF?");
1020 
1021           // Save the candidate and its location.
1022           CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen,
1023                                                 FunctionList.size(), MF);
1024           RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
1025         }
1026       }
1027     }
1028 
1029     // We've found something we might want to outline.
1030     // Create an OutlinedFunction to store it and check if it'd be beneficial
1031     // to outline.
1032     TargetInstrInfo::MachineOutlinerInfo MInfo =
1033         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
1034     std::vector<unsigned> Seq;
1035     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
1036       Seq.push_back(ST.Str[i]);
1037     OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(),
1038                         Seq, MInfo);
1039     unsigned Benefit = OF.getBenefit();
1040 
1041     // Is it better to outline this candidate than not?
1042     if (Benefit < 1) {
1043       // Outlining this candidate would take more instructions than not
1044       // outlining.
1045       // Emit a remark explaining why we didn't outline this candidate.
1046       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
1047           RepeatedSequenceLocs[0];
1048       MachineOptimizationRemarkEmitter MORE(
1049           *(C.first->getParent()->getParent()), nullptr);
1050       MORE.emit([&]() {
1051         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
1052                                           C.first->getDebugLoc(),
1053                                           C.first->getParent());
1054         R << "Did not outline " << NV("Length", StringLen) << " instructions"
1055           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
1056           << " locations."
1057           << " Instructions from outlining all occurrences ("
1058           << NV("OutliningCost", OF.getOutliningCost()) << ")"
1059           << " >= Unoutlined instruction count ("
1060           << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")"
1061           << " (Also found at: ";
1062 
1063         // Tell the user the other places the candidate was found.
1064         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
1065           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
1066                   RepeatedSequenceLocs[i].first->getDebugLoc());
1067           if (i != e - 1)
1068             R << ", ";
1069         }
1070 
1071         R << ")";
1072         return R;
1073       });
1074 
1075       // Move to the next candidate.
1076       continue;
1077     }
1078 
1079     if (StringLen > MaxLen)
1080       MaxLen = StringLen;
1081 
1082     // At this point, the candidate class is seen as beneficial. Set their
1083     // benefit values and save them in the candidate list.
1084     std::vector<std::shared_ptr<Candidate>> CandidatesForFn;
1085     for (Candidate &C : CandidatesForRepeatedSeq) {
1086       C.Benefit = Benefit;
1087       C.MInfo = MInfo;
1088       std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C);
1089       CandidateList.push_back(Cptr);
1090       CandidatesForFn.push_back(Cptr);
1091     }
1092 
1093     FunctionList.push_back(OF);
1094     FunctionList.back().Candidates = CandidatesForFn;
1095 
1096     // Move to the next function.
1097     Parent.IsInTree = false;
1098   }
1099 
1100   return MaxLen;
1101 }
1102 
1103 // Remove C from the candidate space, and update its OutlinedFunction.
1104 void MachineOutliner::prune(Candidate &C,
1105                             std::vector<OutlinedFunction> &FunctionList) {
1106   // Get the OutlinedFunction associated with this Candidate.
1107   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1108 
1109   // Update C's associated function's occurrence count.
1110   F.decrement();
1111 
1112   // Remove C from the CandidateList.
1113   C.InCandidateList = false;
1114 
1115   LLVM_DEBUG(dbgs() << "- Removed a Candidate \n";
1116              dbgs() << "--- Num fns left for candidate: "
1117                     << F.getOccurrenceCount() << "\n";
1118              dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1119                     << "\n";);
1120 }
1121 
1122 void MachineOutliner::pruneOverlaps(
1123     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1124     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1125     unsigned MaxCandidateLen, const TargetInstrInfo &TII) {
1126 
1127   // Return true if this candidate became unbeneficial for outlining in a
1128   // previous step.
1129   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1130 
1131     // Check if the candidate was removed in a previous step.
1132     if (!C.InCandidateList)
1133       return true;
1134 
1135     // C must be alive. Check if we should remove it.
1136     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1137       prune(C, FunctionList);
1138       return true;
1139     }
1140 
1141     // C is in the list, and F is still beneficial.
1142     return false;
1143   };
1144 
1145   // TODO: Experiment with interval trees or other interval-checking structures
1146   // to lower the time complexity of this function.
1147   // TODO: Can we do better than the simple greedy choice?
1148   // Check for overlaps in the range.
1149   // This is O(MaxCandidateLen * CandidateList.size()).
1150   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1151        It++) {
1152     Candidate &C1 = **It;
1153 
1154     // If C1 was already pruned, or its function is no longer beneficial for
1155     // outlining, move to the next candidate.
1156     if (ShouldSkipCandidate(C1))
1157       continue;
1158 
1159     // The minimum start index of any candidate that could overlap with this
1160     // one.
1161     unsigned FarthestPossibleIdx = 0;
1162 
1163     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1164     if (C1.getStartIdx() > MaxCandidateLen)
1165       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1166 
1167     // Compare against the candidates in the list that start at most
1168     // FarthestPossibleIdx indices away from C1. There are at most
1169     // MaxCandidateLen of these.
1170     for (auto Sit = It + 1; Sit != Et; Sit++) {
1171       Candidate &C2 = **Sit;
1172 
1173       // Is this candidate too far away to overlap?
1174       if (C2.getStartIdx() < FarthestPossibleIdx)
1175         break;
1176 
1177       // If C2 was already pruned, or its function is no longer beneficial for
1178       // outlining, move to the next candidate.
1179       if (ShouldSkipCandidate(C2))
1180         continue;
1181 
1182       // Do C1 and C2 overlap?
1183       //
1184       // Not overlapping:
1185       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1186       //
1187       // We sorted our candidate list so C2Start <= C1Start. We know that
1188       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1189       // have to check is C2End < C2Start to see if we overlap.
1190       if (C2.getEndIdx() < C1.getStartIdx())
1191         continue;
1192 
1193       // C1 and C2 overlap.
1194       // We need to choose the better of the two.
1195       //
1196       // Approximate this by picking the one which would have saved us the
1197       // most instructions before any pruning.
1198 
1199       // Is C2 a better candidate?
1200       if (C2.Benefit > C1.Benefit) {
1201         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1202         // against anything anymore, so break.
1203         prune(C1, FunctionList);
1204         break;
1205       }
1206 
1207       // Prune C2 and move on to the next candidate.
1208       prune(C2, FunctionList);
1209     }
1210   }
1211 }
1212 
1213 unsigned MachineOutliner::buildCandidateList(
1214     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1215     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1216     InstructionMapper &Mapper, const TargetInstrInfo &TII) {
1217 
1218   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1219   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1220 
1221   MaxCandidateLen =
1222       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1223 
1224   // Sort the candidates in decending order. This will simplify the outlining
1225   // process when we have to remove the candidates from the mapping by
1226   // allowing us to cut them out without keeping track of an offset.
1227   std::stable_sort(
1228       CandidateList.begin(), CandidateList.end(),
1229       [](const std::shared_ptr<Candidate> &LHS,
1230          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1231 
1232   return MaxCandidateLen;
1233 }
1234 
1235 MachineFunction *
1236 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1237                                         InstructionMapper &Mapper) {
1238 
1239   // Create the function name. This should be unique. For now, just hash the
1240   // module name and include it in the function name plus the number of this
1241   // function.
1242   std::ostringstream NameStream;
1243   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1244 
1245   // Create the function using an IR-level function.
1246   LLVMContext &C = M.getContext();
1247   Function *F = dyn_cast<Function>(
1248       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1249   assert(F && "Function was null!");
1250 
1251   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1252   // which gives us better results when we outline from linkonceodr functions.
1253   F->setLinkage(GlobalValue::InternalLinkage);
1254   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1255 
1256   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1257   // necessary.
1258 
1259   // Set optsize/minsize, so we don't insert padding between outlined
1260   // functions.
1261   F->addFnAttr(Attribute::OptimizeForSize);
1262   F->addFnAttr(Attribute::MinSize);
1263 
1264   // Save F so that we can add debug info later if we need to.
1265   CreatedIRFunctions.push_back(F);
1266 
1267   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1268   IRBuilder<> Builder(EntryBB);
1269   Builder.CreateRetVoid();
1270 
1271   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1272   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1273   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1274   const TargetSubtargetInfo &STI = MF.getSubtarget();
1275   const TargetInstrInfo &TII = *STI.getInstrInfo();
1276 
1277   // Insert the new function into the module.
1278   MF.insert(MF.begin(), &MBB);
1279 
1280   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1281 
1282   // Copy over the instructions for the function using the integer mappings in
1283   // its sequence.
1284   for (unsigned Str : OF.Sequence) {
1285     MachineInstr *NewMI =
1286         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1287     NewMI->dropMemRefs();
1288 
1289     // Don't keep debug information for outlined instructions.
1290     NewMI->setDebugLoc(DebugLoc());
1291     MBB.insert(MBB.end(), NewMI);
1292   }
1293 
1294   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1295 
1296   // If there's a DISubprogram associated with this outlined function, then
1297   // emit debug info for the outlined function.
1298   if (DISubprogram *SP = OF.getSubprogramOrNull()) {
1299     // We have a DISubprogram. Get its DICompileUnit.
1300     DICompileUnit *CU = SP->getUnit();
1301     DIBuilder DB(M, true, CU);
1302     DIFile *Unit = SP->getFile();
1303     Mangler Mg;
1304 
1305     // Walk over each IR function we created in the outliner and create
1306     // DISubprograms for each function.
1307     for (Function *F : CreatedIRFunctions) {
1308       // Get the mangled name of the function for the linkage name.
1309       std::string Dummy;
1310       llvm::raw_string_ostream MangledNameStream(Dummy);
1311       Mg.getNameWithPrefix(MangledNameStream, F, false);
1312 
1313       DISubprogram *SP = DB.createFunction(
1314           Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1315           Unit /* File */,
1316           0 /* Line 0 is reserved for compiler-generated code. */,
1317           DB.createSubroutineType(
1318               DB.getOrCreateTypeArray(None)), /* void type */
1319           false, true, 0, /* Line 0 is reserved for compiler-generated code. */
1320           DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1321           true /* Outlined code is optimized code by definition. */);
1322 
1323       // Don't add any new variables to the subprogram.
1324       DB.finalizeSubprogram(SP);
1325 
1326       // Attach subprogram to the function.
1327       F->setSubprogram(SP);
1328     }
1329 
1330     // We're done with the DIBuilder.
1331     DB.finalize();
1332   }
1333 
1334   // Outlined functions shouldn't preserve liveness.
1335   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1336   MF.getRegInfo().freezeReservedRegs(MF);
1337   return &MF;
1338 }
1339 
1340 bool MachineOutliner::outline(
1341     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1342     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1343 
1344   bool OutlinedSomething = false;
1345   // Replace the candidates with calls to their respective outlined functions.
1346   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1347     Candidate &C = *Cptr;
1348     // Was the candidate removed during pruneOverlaps?
1349     if (!C.InCandidateList)
1350       continue;
1351 
1352     // If not, then look at its OutlinedFunction.
1353     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1354 
1355     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1356     if (OF.getBenefit() < 1)
1357       continue;
1358 
1359     // If not, then outline it.
1360     assert(C.getStartIdx() < Mapper.InstrList.size() &&
1361            "Candidate out of bounds!");
1362     MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent();
1363     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()];
1364     unsigned EndIdx = C.getEndIdx();
1365 
1366     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1367     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1368     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1369 
1370     // Does this candidate have a function yet?
1371     if (!OF.MF) {
1372       OF.MF = createOutlinedFunction(M, OF, Mapper);
1373       MachineBasicBlock *MBB = &*OF.MF->begin();
1374 
1375       // Output a remark telling the user that an outlined function was created,
1376       // and explaining where it came from.
1377       MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
1378       MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
1379                                   MBB->findDebugLoc(MBB->begin()), MBB);
1380       R << "Saved " << NV("OutliningBenefit", OF.getBenefit())
1381         << " instructions by "
1382         << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
1383         << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
1384         << " locations. "
1385         << "(Found at: ";
1386 
1387       // Tell the user the other places the candidate was found.
1388       for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1389 
1390         // Skip over things that were pruned.
1391         if (!OF.Candidates[i]->InCandidateList)
1392           continue;
1393 
1394         R << NV(
1395             (Twine("StartLoc") + Twine(i)).str(),
1396             Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc());
1397         if (i != e - 1)
1398           R << ", ";
1399       }
1400 
1401       R << ")";
1402 
1403       MORE.emit(R);
1404       FunctionsCreated++;
1405     }
1406 
1407     MachineFunction *MF = OF.MF;
1408     const TargetSubtargetInfo &STI = MF->getSubtarget();
1409     const TargetInstrInfo &TII = *STI.getInstrInfo();
1410 
1411     // Insert a call to the new function and erase the old sequence.
1412     auto CallInst = TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
1413     StartIt = Mapper.InstrList[C.getStartIdx()];
1414 
1415     // If the caller tracks liveness, then we need to make sure that anything
1416     // we outline doesn't break liveness assumptions.
1417     // The outlined functions themselves currently don't track liveness, but
1418     // we should make sure that the ranges we yank things out of aren't
1419     // wrong.
1420     if (MBB->getParent()->getProperties().hasProperty(
1421             MachineFunctionProperties::Property::TracksLiveness)) {
1422       // Helper lambda for adding implicit def operands to the call instruction.
1423       auto CopyDefs = [&CallInst](MachineInstr &MI) {
1424         for (MachineOperand &MOP : MI.operands()) {
1425           // Skip over anything that isn't a register.
1426           if (!MOP.isReg())
1427             continue;
1428 
1429           // If it's a def, add it to the call instruction.
1430           if (MOP.isDef())
1431             CallInst->addOperand(
1432                 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */
1433                                           true /* isImp = true */));
1434         }
1435       };
1436 
1437       // Copy over the defs in the outlined range.
1438       // First inst in outlined range <-- Anything that's defined in this
1439       // ...                           .. range has to be added as an implicit
1440       // Last inst in outlined range  <-- def to the call instruction.
1441       std::for_each(CallInst, EndIt, CopyDefs);
1442     }
1443 
1444     EndIt++; // Erase needs one past the end index.
1445     MBB->erase(StartIt, EndIt);
1446     OutlinedSomething = true;
1447 
1448     // Statistics.
1449     NumOutlined++;
1450   }
1451 
1452   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1453 
1454   return OutlinedSomething;
1455 }
1456 
1457 bool MachineOutliner::runOnModule(Module &M) {
1458   // Check if there's anything in the module. If it's empty, then there's
1459   // nothing to outline.
1460   if (M.empty())
1461     return false;
1462 
1463   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1464   const TargetSubtargetInfo &STI =
1465       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1466   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1467   const TargetInstrInfo *TII = STI.getInstrInfo();
1468 
1469   // Does the target implement the MachineOutliner? If it doesn't, quit here.
1470   if (!TII->useMachineOutliner()) {
1471     // No. So we're done.
1472     LLVM_DEBUG(
1473         dbgs()
1474         << "Skipping pass: Target does not support the MachineOutliner.\n");
1475     return false;
1476   }
1477 
1478   // If the user specifies that they want to outline from linkonceodrs, set
1479   // it here.
1480   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1481 
1482   InstructionMapper Mapper;
1483 
1484   // Build instruction mappings for each function in the module. Start by
1485   // iterating over each Function in M.
1486   for (Function &F : M) {
1487 
1488     // If there's nothing in F, then there's no reason to try and outline from
1489     // it.
1490     if (F.empty())
1491       continue;
1492 
1493     // There's something in F. Check if it has a MachineFunction associated with
1494     // it.
1495     MachineFunction *MF = MMI.getMachineFunction(F);
1496 
1497     // If it doesn't, then there's nothing to outline from. Move to the next
1498     // Function.
1499     if (!MF)
1500       continue;
1501 
1502     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1503     // If it isn't, then move on to the next Function in the module.
1504     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1505       continue;
1506 
1507     // We have a function suitable for outlining. Iterate over every
1508     // MachineBasicBlock in MF and try to map its instructions to a list of
1509     // unsigned integers.
1510     for (MachineBasicBlock &MBB : *MF) {
1511       // If there isn't anything in MBB, then there's no point in outlining from
1512       // it.
1513       if (MBB.empty())
1514         continue;
1515 
1516       // Check if MBB could be the target of an indirect branch. If it is, then
1517       // we don't want to outline from it.
1518       if (MBB.hasAddressTaken())
1519         continue;
1520 
1521       // MBB is suitable for outlining. Map it to a list of unsigneds.
1522       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1523     }
1524   }
1525 
1526   // Construct a suffix tree, use it to find candidates, and then outline them.
1527   SuffixTree ST(Mapper.UnsignedVec);
1528   std::vector<std::shared_ptr<Candidate>> CandidateList;
1529   std::vector<OutlinedFunction> FunctionList;
1530 
1531   // Find all of the outlining candidates.
1532   unsigned MaxCandidateLen =
1533       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1534 
1535   // Remove candidates that overlap with other candidates.
1536   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1537 
1538   // Outline each of the candidates and return true if something was outlined.
1539   bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
1540 
1541   return OutlinedSomething;
1542 }
1543