1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/CodeGen/MachineOutliner.h" 60 #include "llvm/ADT/DenseMap.h" 61 #include "llvm/ADT/Statistic.h" 62 #include "llvm/ADT/Twine.h" 63 #include "llvm/CodeGen/MachineFunction.h" 64 #include "llvm/CodeGen/MachineModuleInfo.h" 65 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/TargetInstrInfo.h" 69 #include "llvm/CodeGen/TargetRegisterInfo.h" 70 #include "llvm/CodeGen/TargetSubtargetInfo.h" 71 #include "llvm/IR/DIBuilder.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/Mangler.h" 74 #include "llvm/Support/Allocator.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include <functional> 79 #include <map> 80 #include <sstream> 81 #include <tuple> 82 #include <vector> 83 84 #define DEBUG_TYPE "machine-outliner" 85 86 using namespace llvm; 87 using namespace ore; 88 using namespace outliner; 89 90 STATISTIC(NumOutlined, "Number of candidates outlined"); 91 STATISTIC(FunctionsCreated, "Number of functions created"); 92 93 // Set to true if the user wants the outliner to run on linkonceodr linkage 94 // functions. This is false by default because the linker can dedupe linkonceodr 95 // functions. Since the outliner is confined to a single module (modulo LTO), 96 // this is off by default. It should, however, be the default behaviour in 97 // LTO. 98 static cl::opt<bool> EnableLinkOnceODROutlining( 99 "enable-linkonceodr-outlining", 100 cl::Hidden, 101 cl::desc("Enable the machine outliner on linkonceodr functions"), 102 cl::init(false)); 103 104 namespace { 105 106 /// Represents an undefined index in the suffix tree. 107 const unsigned EmptyIdx = -1; 108 109 /// A node in a suffix tree which represents a substring or suffix. 110 /// 111 /// Each node has either no children or at least two children, with the root 112 /// being a exception in the empty tree. 113 /// 114 /// Children are represented as a map between unsigned integers and nodes. If 115 /// a node N has a child M on unsigned integer k, then the mapping represented 116 /// by N is a proper prefix of the mapping represented by M. Note that this, 117 /// although similar to a trie is somewhat different: each node stores a full 118 /// substring of the full mapping rather than a single character state. 119 /// 120 /// Each internal node contains a pointer to the internal node representing 121 /// the same string, but with the first character chopped off. This is stored 122 /// in \p Link. Each leaf node stores the start index of its respective 123 /// suffix in \p SuffixIdx. 124 struct SuffixTreeNode { 125 126 /// The children of this node. 127 /// 128 /// A child existing on an unsigned integer implies that from the mapping 129 /// represented by the current node, there is a way to reach another 130 /// mapping by tacking that character on the end of the current string. 131 DenseMap<unsigned, SuffixTreeNode *> Children; 132 133 /// A flag set to false if the node has been pruned from the tree. 134 bool IsInTree = true; 135 136 /// The start index of this node's substring in the main string. 137 unsigned StartIdx = EmptyIdx; 138 139 /// The end index of this node's substring in the main string. 140 /// 141 /// Every leaf node must have its \p EndIdx incremented at the end of every 142 /// step in the construction algorithm. To avoid having to update O(N) 143 /// nodes individually at the end of every step, the end index is stored 144 /// as a pointer. 145 unsigned *EndIdx = nullptr; 146 147 /// For leaves, the start index of the suffix represented by this node. 148 /// 149 /// For all other nodes, this is ignored. 150 unsigned SuffixIdx = EmptyIdx; 151 152 /// For internal nodes, a pointer to the internal node representing 153 /// the same sequence with the first character chopped off. 154 /// 155 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 156 /// Ukkonen's algorithm does to achieve linear-time construction is 157 /// keep track of which node the next insert should be at. This makes each 158 /// insert O(1), and there are a total of O(N) inserts. The suffix link 159 /// helps with inserting children of internal nodes. 160 /// 161 /// Say we add a child to an internal node with associated mapping S. The 162 /// next insertion must be at the node representing S - its first character. 163 /// This is given by the way that we iteratively build the tree in Ukkonen's 164 /// algorithm. The main idea is to look at the suffixes of each prefix in the 165 /// string, starting with the longest suffix of the prefix, and ending with 166 /// the shortest. Therefore, if we keep pointers between such nodes, we can 167 /// move to the next insertion point in O(1) time. If we don't, then we'd 168 /// have to query from the root, which takes O(N) time. This would make the 169 /// construction algorithm O(N^2) rather than O(N). 170 SuffixTreeNode *Link = nullptr; 171 172 /// The parent of this node. Every node except for the root has a parent. 173 SuffixTreeNode *Parent = nullptr; 174 175 /// The number of times this node's string appears in the tree. 176 /// 177 /// This is equal to the number of leaf children of the string. It represents 178 /// the number of suffixes that the node's string is a prefix of. 179 unsigned OccurrenceCount = 0; 180 181 /// The length of the string formed by concatenating the edge labels from the 182 /// root to this node. 183 unsigned ConcatLen = 0; 184 185 /// Returns true if this node is a leaf. 186 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 187 188 /// Returns true if this node is the root of its owning \p SuffixTree. 189 bool isRoot() const { return StartIdx == EmptyIdx; } 190 191 /// Return the number of elements in the substring associated with this node. 192 size_t size() const { 193 194 // Is it the root? If so, it's the empty string so return 0. 195 if (isRoot()) 196 return 0; 197 198 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 199 200 // Size = the number of elements in the string. 201 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 202 return *EndIdx - StartIdx + 1; 203 } 204 205 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 206 SuffixTreeNode *Parent) 207 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 208 209 SuffixTreeNode() {} 210 }; 211 212 /// A data structure for fast substring queries. 213 /// 214 /// Suffix trees represent the suffixes of their input strings in their leaves. 215 /// A suffix tree is a type of compressed trie structure where each node 216 /// represents an entire substring rather than a single character. Each leaf 217 /// of the tree is a suffix. 218 /// 219 /// A suffix tree can be seen as a type of state machine where each state is a 220 /// substring of the full string. The tree is structured so that, for a string 221 /// of length N, there are exactly N leaves in the tree. This structure allows 222 /// us to quickly find repeated substrings of the input string. 223 /// 224 /// In this implementation, a "string" is a vector of unsigned integers. 225 /// These integers may result from hashing some data type. A suffix tree can 226 /// contain 1 or many strings, which can then be queried as one large string. 227 /// 228 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 229 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 230 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 231 /// paper is available at 232 /// 233 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 234 class SuffixTree { 235 public: 236 /// Stores each leaf node in the tree. 237 /// 238 /// This is used for finding outlining candidates. 239 std::vector<SuffixTreeNode *> LeafVector; 240 241 /// Each element is an integer representing an instruction in the module. 242 ArrayRef<unsigned> Str; 243 244 private: 245 /// Maintains each node in the tree. 246 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 247 248 /// The root of the suffix tree. 249 /// 250 /// The root represents the empty string. It is maintained by the 251 /// \p NodeAllocator like every other node in the tree. 252 SuffixTreeNode *Root = nullptr; 253 254 /// Maintains the end indices of the internal nodes in the tree. 255 /// 256 /// Each internal node is guaranteed to never have its end index change 257 /// during the construction algorithm; however, leaves must be updated at 258 /// every step. Therefore, we need to store leaf end indices by reference 259 /// to avoid updating O(N) leaves at every step of construction. Thus, 260 /// every internal node must be allocated its own end index. 261 BumpPtrAllocator InternalEndIdxAllocator; 262 263 /// The end index of each leaf in the tree. 264 unsigned LeafEndIdx = -1; 265 266 /// Helper struct which keeps track of the next insertion point in 267 /// Ukkonen's algorithm. 268 struct ActiveState { 269 /// The next node to insert at. 270 SuffixTreeNode *Node; 271 272 /// The index of the first character in the substring currently being added. 273 unsigned Idx = EmptyIdx; 274 275 /// The length of the substring we have to add at the current step. 276 unsigned Len = 0; 277 }; 278 279 /// The point the next insertion will take place at in the 280 /// construction algorithm. 281 ActiveState Active; 282 283 /// Allocate a leaf node and add it to the tree. 284 /// 285 /// \param Parent The parent of this node. 286 /// \param StartIdx The start index of this node's associated string. 287 /// \param Edge The label on the edge leaving \p Parent to this node. 288 /// 289 /// \returns A pointer to the allocated leaf node. 290 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 291 unsigned Edge) { 292 293 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 294 295 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 296 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 297 Parent.Children[Edge] = N; 298 299 return N; 300 } 301 302 /// Allocate an internal node and add it to the tree. 303 /// 304 /// \param Parent The parent of this node. Only null when allocating the root. 305 /// \param StartIdx The start index of this node's associated string. 306 /// \param EndIdx The end index of this node's associated string. 307 /// \param Edge The label on the edge leaving \p Parent to this node. 308 /// 309 /// \returns A pointer to the allocated internal node. 310 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 311 unsigned EndIdx, unsigned Edge) { 312 313 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 314 assert(!(!Parent && StartIdx != EmptyIdx) && 315 "Non-root internal nodes must have parents!"); 316 317 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 318 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 319 SuffixTreeNode(StartIdx, E, Root, Parent); 320 if (Parent) 321 Parent->Children[Edge] = N; 322 323 return N; 324 } 325 326 /// Set the suffix indices of the leaves to the start indices of their 327 /// respective suffixes. Also stores each leaf in \p LeafVector at its 328 /// respective suffix index. 329 /// 330 /// \param[in] CurrNode The node currently being visited. 331 /// \param CurrIdx The current index of the string being visited. 332 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 333 334 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 335 336 // Store the length of the concatenation of all strings from the root to 337 // this node. 338 if (!CurrNode.isRoot()) { 339 if (CurrNode.ConcatLen == 0) 340 CurrNode.ConcatLen = CurrNode.size(); 341 342 if (CurrNode.Parent) 343 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 344 } 345 346 // Traverse the tree depth-first. 347 for (auto &ChildPair : CurrNode.Children) { 348 assert(ChildPair.second && "Node had a null child!"); 349 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 350 } 351 352 // Is this node a leaf? 353 if (IsLeaf) { 354 // If yes, give it a suffix index and bump its parent's occurrence count. 355 CurrNode.SuffixIdx = Str.size() - CurrIdx; 356 assert(CurrNode.Parent && "CurrNode had no parent!"); 357 CurrNode.Parent->OccurrenceCount++; 358 359 // Store the leaf in the leaf vector for pruning later. 360 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 361 } 362 } 363 364 /// Construct the suffix tree for the prefix of the input ending at 365 /// \p EndIdx. 366 /// 367 /// Used to construct the full suffix tree iteratively. At the end of each 368 /// step, the constructed suffix tree is either a valid suffix tree, or a 369 /// suffix tree with implicit suffixes. At the end of the final step, the 370 /// suffix tree is a valid tree. 371 /// 372 /// \param EndIdx The end index of the current prefix in the main string. 373 /// \param SuffixesToAdd The number of suffixes that must be added 374 /// to complete the suffix tree at the current phase. 375 /// 376 /// \returns The number of suffixes that have not been added at the end of 377 /// this step. 378 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 379 SuffixTreeNode *NeedsLink = nullptr; 380 381 while (SuffixesToAdd > 0) { 382 383 // Are we waiting to add anything other than just the last character? 384 if (Active.Len == 0) { 385 // If not, then say the active index is the end index. 386 Active.Idx = EndIdx; 387 } 388 389 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 390 391 // The first character in the current substring we're looking at. 392 unsigned FirstChar = Str[Active.Idx]; 393 394 // Have we inserted anything starting with FirstChar at the current node? 395 if (Active.Node->Children.count(FirstChar) == 0) { 396 // If not, then we can just insert a leaf and move too the next step. 397 insertLeaf(*Active.Node, EndIdx, FirstChar); 398 399 // The active node is an internal node, and we visited it, so it must 400 // need a link if it doesn't have one. 401 if (NeedsLink) { 402 NeedsLink->Link = Active.Node; 403 NeedsLink = nullptr; 404 } 405 } else { 406 // There's a match with FirstChar, so look for the point in the tree to 407 // insert a new node. 408 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 409 410 unsigned SubstringLen = NextNode->size(); 411 412 // Is the current suffix we're trying to insert longer than the size of 413 // the child we want to move to? 414 if (Active.Len >= SubstringLen) { 415 // If yes, then consume the characters we've seen and move to the next 416 // node. 417 Active.Idx += SubstringLen; 418 Active.Len -= SubstringLen; 419 Active.Node = NextNode; 420 continue; 421 } 422 423 // Otherwise, the suffix we're trying to insert must be contained in the 424 // next node we want to move to. 425 unsigned LastChar = Str[EndIdx]; 426 427 // Is the string we're trying to insert a substring of the next node? 428 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 429 // If yes, then we're done for this step. Remember our insertion point 430 // and move to the next end index. At this point, we have an implicit 431 // suffix tree. 432 if (NeedsLink && !Active.Node->isRoot()) { 433 NeedsLink->Link = Active.Node; 434 NeedsLink = nullptr; 435 } 436 437 Active.Len++; 438 break; 439 } 440 441 // The string we're trying to insert isn't a substring of the next node, 442 // but matches up to a point. Split the node. 443 // 444 // For example, say we ended our search at a node n and we're trying to 445 // insert ABD. Then we'll create a new node s for AB, reduce n to just 446 // representing C, and insert a new leaf node l to represent d. This 447 // allows us to ensure that if n was a leaf, it remains a leaf. 448 // 449 // | ABC ---split---> | AB 450 // n s 451 // C / \ D 452 // n l 453 454 // The node s from the diagram 455 SuffixTreeNode *SplitNode = 456 insertInternalNode(Active.Node, NextNode->StartIdx, 457 NextNode->StartIdx + Active.Len - 1, FirstChar); 458 459 // Insert the new node representing the new substring into the tree as 460 // a child of the split node. This is the node l from the diagram. 461 insertLeaf(*SplitNode, EndIdx, LastChar); 462 463 // Make the old node a child of the split node and update its start 464 // index. This is the node n from the diagram. 465 NextNode->StartIdx += Active.Len; 466 NextNode->Parent = SplitNode; 467 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 468 469 // SplitNode is an internal node, update the suffix link. 470 if (NeedsLink) 471 NeedsLink->Link = SplitNode; 472 473 NeedsLink = SplitNode; 474 } 475 476 // We've added something new to the tree, so there's one less suffix to 477 // add. 478 SuffixesToAdd--; 479 480 if (Active.Node->isRoot()) { 481 if (Active.Len > 0) { 482 Active.Len--; 483 Active.Idx = EndIdx - SuffixesToAdd + 1; 484 } 485 } else { 486 // Start the next phase at the next smallest suffix. 487 Active.Node = Active.Node->Link; 488 } 489 } 490 491 return SuffixesToAdd; 492 } 493 494 public: 495 /// Construct a suffix tree from a sequence of unsigned integers. 496 /// 497 /// \param Str The string to construct the suffix tree for. 498 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 499 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 500 Root->IsInTree = true; 501 Active.Node = Root; 502 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 503 504 // Keep track of the number of suffixes we have to add of the current 505 // prefix. 506 unsigned SuffixesToAdd = 0; 507 Active.Node = Root; 508 509 // Construct the suffix tree iteratively on each prefix of the string. 510 // PfxEndIdx is the end index of the current prefix. 511 // End is one past the last element in the string. 512 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 513 PfxEndIdx++) { 514 SuffixesToAdd++; 515 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 516 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 517 } 518 519 // Set the suffix indices of each leaf. 520 assert(Root && "Root node can't be nullptr!"); 521 setSuffixIndices(*Root, 0); 522 } 523 }; 524 525 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 526 struct InstructionMapper { 527 528 /// The next available integer to assign to a \p MachineInstr that 529 /// cannot be outlined. 530 /// 531 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 532 unsigned IllegalInstrNumber = -3; 533 534 /// The next available integer to assign to a \p MachineInstr that can 535 /// be outlined. 536 unsigned LegalInstrNumber = 0; 537 538 /// Correspondence from \p MachineInstrs to unsigned integers. 539 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 540 InstructionIntegerMap; 541 542 /// Corresponcence from unsigned integers to \p MachineInstrs. 543 /// Inverse of \p InstructionIntegerMap. 544 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 545 546 /// The vector of unsigned integers that the module is mapped to. 547 std::vector<unsigned> UnsignedVec; 548 549 /// Stores the location of the instruction associated with the integer 550 /// at index i in \p UnsignedVec for each index i. 551 std::vector<MachineBasicBlock::iterator> InstrList; 552 553 /// Maps \p *It to a legal integer. 554 /// 555 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 556 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 557 /// 558 /// \returns The integer that \p *It was mapped to. 559 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 560 561 // Get the integer for this instruction or give it the current 562 // LegalInstrNumber. 563 InstrList.push_back(It); 564 MachineInstr &MI = *It; 565 bool WasInserted; 566 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 567 ResultIt; 568 std::tie(ResultIt, WasInserted) = 569 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 570 unsigned MINumber = ResultIt->second; 571 572 // There was an insertion. 573 if (WasInserted) { 574 LegalInstrNumber++; 575 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 576 } 577 578 UnsignedVec.push_back(MINumber); 579 580 // Make sure we don't overflow or use any integers reserved by the DenseMap. 581 if (LegalInstrNumber >= IllegalInstrNumber) 582 report_fatal_error("Instruction mapping overflow!"); 583 584 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 585 "Tried to assign DenseMap tombstone or empty key to instruction."); 586 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 587 "Tried to assign DenseMap tombstone or empty key to instruction."); 588 589 return MINumber; 590 } 591 592 /// Maps \p *It to an illegal integer. 593 /// 594 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 595 /// 596 /// \returns The integer that \p *It was mapped to. 597 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 598 unsigned MINumber = IllegalInstrNumber; 599 600 InstrList.push_back(It); 601 UnsignedVec.push_back(IllegalInstrNumber); 602 IllegalInstrNumber--; 603 604 assert(LegalInstrNumber < IllegalInstrNumber && 605 "Instruction mapping overflow!"); 606 607 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 608 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 609 610 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 611 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 612 613 return MINumber; 614 } 615 616 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 617 /// and appends it to \p UnsignedVec and \p InstrList. 618 /// 619 /// Two instructions are assigned the same integer if they are identical. 620 /// If an instruction is deemed unsafe to outline, then it will be assigned an 621 /// unique integer. The resulting mapping is placed into a suffix tree and 622 /// queried for candidates. 623 /// 624 /// \param MBB The \p MachineBasicBlock to be translated into integers. 625 /// \param TRI \p TargetRegisterInfo for the module. 626 /// \param TII \p TargetInstrInfo for the module. 627 void convertToUnsignedVec(MachineBasicBlock &MBB, 628 const TargetRegisterInfo &TRI, 629 const TargetInstrInfo &TII) { 630 unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB); 631 632 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 633 It++) { 634 635 // Keep track of where this instruction is in the module. 636 switch (TII.getOutliningType(It, Flags)) { 637 case InstrType::Illegal: 638 mapToIllegalUnsigned(It); 639 break; 640 641 case InstrType::Legal: 642 mapToLegalUnsigned(It); 643 break; 644 645 case InstrType::LegalTerminator: 646 mapToLegalUnsigned(It); 647 InstrList.push_back(It); 648 UnsignedVec.push_back(IllegalInstrNumber); 649 IllegalInstrNumber--; 650 break; 651 652 case InstrType::Invisible: 653 break; 654 } 655 } 656 657 // After we're done every insertion, uniquely terminate this part of the 658 // "string". This makes sure we won't match across basic block or function 659 // boundaries since the "end" is encoded uniquely and thus appears in no 660 // repeated substring. 661 InstrList.push_back(MBB.end()); 662 UnsignedVec.push_back(IllegalInstrNumber); 663 IllegalInstrNumber--; 664 } 665 666 InstructionMapper() { 667 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 668 // changed. 669 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 670 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 671 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 672 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 673 } 674 }; 675 676 /// An interprocedural pass which finds repeated sequences of 677 /// instructions and replaces them with calls to functions. 678 /// 679 /// Each instruction is mapped to an unsigned integer and placed in a string. 680 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 681 /// is then repeatedly queried for repeated sequences of instructions. Each 682 /// non-overlapping repeated sequence is then placed in its own 683 /// \p MachineFunction and each instance is then replaced with a call to that 684 /// function. 685 struct MachineOutliner : public ModulePass { 686 687 static char ID; 688 689 /// Set to true if the outliner should consider functions with 690 /// linkonceodr linkage. 691 bool OutlineFromLinkOnceODRs = false; 692 693 // Collection of IR functions created by the outliner. 694 std::vector<Function *> CreatedIRFunctions; 695 696 StringRef getPassName() const override { return "Machine Outliner"; } 697 698 void getAnalysisUsage(AnalysisUsage &AU) const override { 699 AU.addRequired<MachineModuleInfo>(); 700 AU.addPreserved<MachineModuleInfo>(); 701 AU.setPreservesAll(); 702 ModulePass::getAnalysisUsage(AU); 703 } 704 705 MachineOutliner() : ModulePass(ID) { 706 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 707 } 708 709 /// Find all repeated substrings that satisfy the outlining cost model. 710 /// 711 /// If a substring appears at least twice, then it must be represented by 712 /// an internal node which appears in at least two suffixes. Each suffix is 713 /// represented by a leaf node. To do this, we visit each internal node in 714 /// the tree, using the leaf children of each internal node. If an internal 715 /// node represents a beneficial substring, then we use each of its leaf 716 /// children to find the locations of its substring. 717 /// 718 /// \param ST A suffix tree to query. 719 /// \param TII TargetInstrInfo for the target. 720 /// \param Mapper Contains outlining mapping information. 721 /// \param[out] CandidateList Filled with candidates representing each 722 /// beneficial substring. 723 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 724 /// type of candidate. 725 /// 726 /// \returns The length of the longest candidate found. 727 unsigned 728 findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 729 InstructionMapper &Mapper, 730 std::vector<std::shared_ptr<Candidate>> &CandidateList, 731 std::vector<OutlinedFunction> &FunctionList); 732 733 /// Replace the sequences of instructions represented by the 734 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 735 /// described in \p FunctionList. 736 /// 737 /// \param M The module we are outlining from. 738 /// \param CandidateList A list of candidates to be outlined. 739 /// \param FunctionList A list of functions to be inserted into the module. 740 /// \param Mapper Contains the instruction mappings for the module. 741 bool outline(Module &M, 742 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 743 std::vector<OutlinedFunction> &FunctionList, 744 InstructionMapper &Mapper); 745 746 /// Creates a function for \p OF and inserts it into the module. 747 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 748 InstructionMapper &Mapper); 749 750 /// Find potential outlining candidates and store them in \p CandidateList. 751 /// 752 /// For each type of potential candidate, also build an \p OutlinedFunction 753 /// struct containing the information to build the function for that 754 /// candidate. 755 /// 756 /// \param[out] CandidateList Filled with outlining candidates for the module. 757 /// \param[out] FunctionList Filled with functions corresponding to each type 758 /// of \p Candidate. 759 /// \param ST The suffix tree for the module. 760 /// \param TII TargetInstrInfo for the module. 761 /// 762 /// \returns The length of the longest candidate found. 0 if there are none. 763 unsigned 764 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 765 std::vector<OutlinedFunction> &FunctionList, 766 SuffixTree &ST, InstructionMapper &Mapper, 767 const TargetInstrInfo &TII); 768 769 /// Helper function for pruneOverlaps. 770 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 771 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 772 773 /// Remove any overlapping candidates that weren't handled by the 774 /// suffix tree's pruning method. 775 /// 776 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 777 /// If a short candidate is chosen for outlining, then a longer candidate 778 /// which has that short candidate as a suffix is chosen, the tree's pruning 779 /// method will not find it. Thus, we need to prune before outlining as well. 780 /// 781 /// \param[in,out] CandidateList A list of outlining candidates. 782 /// \param[in,out] FunctionList A list of functions to be outlined. 783 /// \param Mapper Contains instruction mapping info for outlining. 784 /// \param MaxCandidateLen The length of the longest candidate. 785 /// \param TII TargetInstrInfo for the module. 786 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 787 std::vector<OutlinedFunction> &FunctionList, 788 InstructionMapper &Mapper, unsigned MaxCandidateLen, 789 const TargetInstrInfo &TII); 790 791 /// Construct a suffix tree on the instructions in \p M and outline repeated 792 /// strings from that tree. 793 bool runOnModule(Module &M) override; 794 795 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 796 /// function for remark emission. 797 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 798 DISubprogram *SP; 799 for (const std::shared_ptr<Candidate> &C : OF.Candidates) 800 if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram())) 801 return SP; 802 return nullptr; 803 } 804 }; 805 806 } // Anonymous namespace. 807 808 char MachineOutliner::ID = 0; 809 810 namespace llvm { 811 ModulePass *createMachineOutlinerPass() { 812 return new MachineOutliner(); 813 } 814 815 } // namespace llvm 816 817 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 818 false) 819 820 unsigned MachineOutliner::findCandidates( 821 SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, 822 std::vector<std::shared_ptr<Candidate>> &CandidateList, 823 std::vector<OutlinedFunction> &FunctionList) { 824 CandidateList.clear(); 825 FunctionList.clear(); 826 unsigned MaxLen = 0; 827 828 // FIXME: Visit internal nodes instead of leaves. 829 for (SuffixTreeNode *Leaf : ST.LeafVector) { 830 assert(Leaf && "Leaves in LeafVector cannot be null!"); 831 if (!Leaf->IsInTree) 832 continue; 833 834 assert(Leaf->Parent && "All leaves must have parents!"); 835 SuffixTreeNode &Parent = *(Leaf->Parent); 836 837 // If it doesn't appear enough, or we already outlined from it, skip it. 838 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 839 continue; 840 841 // Figure out if this candidate is beneficial. 842 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 843 844 // Too short to be beneficial; skip it. 845 // FIXME: This isn't necessarily true for, say, X86. If we factor in 846 // instruction lengths we need more information than this. 847 if (StringLen < 2) 848 continue; 849 850 // If this is a beneficial class of candidate, then every one is stored in 851 // this vector. 852 std::vector<Candidate> CandidatesForRepeatedSeq; 853 854 // Figure out the call overhead for each instance of the sequence. 855 for (auto &ChildPair : Parent.Children) { 856 SuffixTreeNode *M = ChildPair.second; 857 858 if (M && M->IsInTree && M->isLeaf()) { 859 // Never visit this leaf again. 860 M->IsInTree = false; 861 unsigned StartIdx = M->SuffixIdx; 862 unsigned EndIdx = StartIdx + StringLen - 1; 863 864 // Trick: Discard some candidates that would be incompatible with the 865 // ones we've already found for this sequence. This will save us some 866 // work in candidate selection. 867 // 868 // If two candidates overlap, then we can't outline them both. This 869 // happens when we have candidates that look like, say 870 // 871 // AA (where each "A" is an instruction). 872 // 873 // We might have some portion of the module that looks like this: 874 // AAAAAA (6 A's) 875 // 876 // In this case, there are 5 different copies of "AA" in this range, but 877 // at most 3 can be outlined. If only outlining 3 of these is going to 878 // be unbeneficial, then we ought to not bother. 879 // 880 // Note that two things DON'T overlap when they look like this: 881 // start1...end1 .... start2...end2 882 // That is, one must either 883 // * End before the other starts 884 // * Start after the other ends 885 if (std::all_of(CandidatesForRepeatedSeq.begin(), 886 CandidatesForRepeatedSeq.end(), 887 [&StartIdx, &EndIdx](const Candidate &C) { 888 return (EndIdx < C.getStartIdx() || 889 StartIdx > C.getEndIdx()); 890 })) { 891 // It doesn't overlap with anything, so we can outline it. 892 // Each sequence is over [StartIt, EndIt]. 893 // Save the candidate and its location. 894 895 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 896 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 897 898 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 899 EndIt, StartIt->getParent(), 900 FunctionList.size()); 901 } 902 } 903 } 904 905 // We've found something we might want to outline. 906 // Create an OutlinedFunction to store it and check if it'd be beneficial 907 // to outline. 908 TargetCostInfo TCI = 909 TII.getOutlininingCandidateInfo(CandidatesForRepeatedSeq); 910 std::vector<unsigned> Seq; 911 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 912 Seq.push_back(ST.Str[i]); 913 OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(), 914 Seq, TCI); 915 unsigned Benefit = OF.getBenefit(); 916 917 // Is it better to outline this candidate than not? 918 if (Benefit < 1) { 919 // Outlining this candidate would take more instructions than not 920 // outlining. 921 // Emit a remark explaining why we didn't outline this candidate. 922 Candidate &C = CandidatesForRepeatedSeq.front(); 923 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 924 MORE.emit([&]() { 925 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 926 C.front()->getDebugLoc(), C.getMBB()); 927 R << "Did not outline " << NV("Length", StringLen) << " instructions" 928 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 929 << " locations." 930 << " Bytes from outlining all occurrences (" 931 << NV("OutliningCost", OF.getOutliningCost()) << ")" 932 << " >= Unoutlined instruction bytes (" 933 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 934 << " (Also found at: "; 935 936 // Tell the user the other places the candidate was found. 937 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 938 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 939 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 940 if (i != e - 1) 941 R << ", "; 942 } 943 944 R << ")"; 945 return R; 946 }); 947 948 // Move to the next candidate. 949 continue; 950 } 951 952 if (StringLen > MaxLen) 953 MaxLen = StringLen; 954 955 // At this point, the candidate class is seen as beneficial. Set their 956 // benefit values and save them in the candidate list. 957 std::vector<std::shared_ptr<Candidate>> CandidatesForFn; 958 for (Candidate &C : CandidatesForRepeatedSeq) { 959 C.Benefit = Benefit; 960 C.TCI = TCI; 961 std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); 962 CandidateList.push_back(Cptr); 963 CandidatesForFn.push_back(Cptr); 964 } 965 966 FunctionList.push_back(OF); 967 FunctionList.back().Candidates = CandidatesForFn; 968 969 // Move to the next function. 970 Parent.IsInTree = false; 971 } 972 973 return MaxLen; 974 } 975 976 // Remove C from the candidate space, and update its OutlinedFunction. 977 void MachineOutliner::prune(Candidate &C, 978 std::vector<OutlinedFunction> &FunctionList) { 979 // Get the OutlinedFunction associated with this Candidate. 980 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 981 982 // Update C's associated function's occurrence count. 983 F.decrement(); 984 985 // Remove C from the CandidateList. 986 C.InCandidateList = false; 987 988 LLVM_DEBUG(dbgs() << "- Removed a Candidate \n"; 989 dbgs() << "--- Num fns left for candidate: " 990 << F.getOccurrenceCount() << "\n"; 991 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 992 << "\n";); 993 } 994 995 void MachineOutliner::pruneOverlaps( 996 std::vector<std::shared_ptr<Candidate>> &CandidateList, 997 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 998 unsigned MaxCandidateLen, const TargetInstrInfo &TII) { 999 1000 // Return true if this candidate became unbeneficial for outlining in a 1001 // previous step. 1002 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1003 1004 // Check if the candidate was removed in a previous step. 1005 if (!C.InCandidateList) 1006 return true; 1007 1008 // C must be alive. Check if we should remove it. 1009 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1010 prune(C, FunctionList); 1011 return true; 1012 } 1013 1014 // C is in the list, and F is still beneficial. 1015 return false; 1016 }; 1017 1018 // TODO: Experiment with interval trees or other interval-checking structures 1019 // to lower the time complexity of this function. 1020 // TODO: Can we do better than the simple greedy choice? 1021 // Check for overlaps in the range. 1022 // This is O(MaxCandidateLen * CandidateList.size()). 1023 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1024 It++) { 1025 Candidate &C1 = **It; 1026 1027 // If C1 was already pruned, or its function is no longer beneficial for 1028 // outlining, move to the next candidate. 1029 if (ShouldSkipCandidate(C1)) 1030 continue; 1031 1032 // The minimum start index of any candidate that could overlap with this 1033 // one. 1034 unsigned FarthestPossibleIdx = 0; 1035 1036 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1037 if (C1.getStartIdx() > MaxCandidateLen) 1038 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1039 1040 // Compare against the candidates in the list that start at most 1041 // FarthestPossibleIdx indices away from C1. There are at most 1042 // MaxCandidateLen of these. 1043 for (auto Sit = It + 1; Sit != Et; Sit++) { 1044 Candidate &C2 = **Sit; 1045 1046 // Is this candidate too far away to overlap? 1047 if (C2.getStartIdx() < FarthestPossibleIdx) 1048 break; 1049 1050 // If C2 was already pruned, or its function is no longer beneficial for 1051 // outlining, move to the next candidate. 1052 if (ShouldSkipCandidate(C2)) 1053 continue; 1054 1055 // Do C1 and C2 overlap? 1056 // 1057 // Not overlapping: 1058 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1059 // 1060 // We sorted our candidate list so C2Start <= C1Start. We know that 1061 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1062 // have to check is C2End < C2Start to see if we overlap. 1063 if (C2.getEndIdx() < C1.getStartIdx()) 1064 continue; 1065 1066 // C1 and C2 overlap. 1067 // We need to choose the better of the two. 1068 // 1069 // Approximate this by picking the one which would have saved us the 1070 // most instructions before any pruning. 1071 1072 // Is C2 a better candidate? 1073 if (C2.Benefit > C1.Benefit) { 1074 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1075 // against anything anymore, so break. 1076 prune(C1, FunctionList); 1077 break; 1078 } 1079 1080 // Prune C2 and move on to the next candidate. 1081 prune(C2, FunctionList); 1082 } 1083 } 1084 } 1085 1086 unsigned MachineOutliner::buildCandidateList( 1087 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1088 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 1089 InstructionMapper &Mapper, const TargetInstrInfo &TII) { 1090 1091 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1092 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1093 1094 MaxCandidateLen = 1095 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1096 1097 // Sort the candidates in decending order. This will simplify the outlining 1098 // process when we have to remove the candidates from the mapping by 1099 // allowing us to cut them out without keeping track of an offset. 1100 std::stable_sort( 1101 CandidateList.begin(), CandidateList.end(), 1102 [](const std::shared_ptr<Candidate> &LHS, 1103 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1104 1105 return MaxCandidateLen; 1106 } 1107 1108 MachineFunction * 1109 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1110 InstructionMapper &Mapper) { 1111 1112 // Create the function name. This should be unique. For now, just hash the 1113 // module name and include it in the function name plus the number of this 1114 // function. 1115 std::ostringstream NameStream; 1116 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1117 1118 // Create the function using an IR-level function. 1119 LLVMContext &C = M.getContext(); 1120 Function *F = dyn_cast<Function>( 1121 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1122 assert(F && "Function was null!"); 1123 1124 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1125 // which gives us better results when we outline from linkonceodr functions. 1126 F->setLinkage(GlobalValue::InternalLinkage); 1127 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1128 1129 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1130 // necessary. 1131 1132 // Set optsize/minsize, so we don't insert padding between outlined 1133 // functions. 1134 F->addFnAttr(Attribute::OptimizeForSize); 1135 F->addFnAttr(Attribute::MinSize); 1136 1137 // Save F so that we can add debug info later if we need to. 1138 CreatedIRFunctions.push_back(F); 1139 1140 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1141 IRBuilder<> Builder(EntryBB); 1142 Builder.CreateRetVoid(); 1143 1144 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1145 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1146 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1147 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1148 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1149 1150 // Insert the new function into the module. 1151 MF.insert(MF.begin(), &MBB); 1152 1153 TII.insertOutlinerPrologue(MBB, MF, OF.TCI); 1154 1155 // Copy over the instructions for the function using the integer mappings in 1156 // its sequence. 1157 for (unsigned Str : OF.Sequence) { 1158 MachineInstr *NewMI = 1159 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1160 NewMI->dropMemRefs(); 1161 1162 // Don't keep debug information for outlined instructions. 1163 NewMI->setDebugLoc(DebugLoc()); 1164 MBB.insert(MBB.end(), NewMI); 1165 } 1166 1167 TII.insertOutlinerEpilogue(MBB, MF, OF.TCI); 1168 1169 // If there's a DISubprogram associated with this outlined function, then 1170 // emit debug info for the outlined function. 1171 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1172 // We have a DISubprogram. Get its DICompileUnit. 1173 DICompileUnit *CU = SP->getUnit(); 1174 DIBuilder DB(M, true, CU); 1175 DIFile *Unit = SP->getFile(); 1176 Mangler Mg; 1177 1178 // Walk over each IR function we created in the outliner and create 1179 // DISubprograms for each function. 1180 for (Function *F : CreatedIRFunctions) { 1181 // Get the mangled name of the function for the linkage name. 1182 std::string Dummy; 1183 llvm::raw_string_ostream MangledNameStream(Dummy); 1184 Mg.getNameWithPrefix(MangledNameStream, F, false); 1185 1186 DISubprogram *SP = DB.createFunction( 1187 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1188 Unit /* File */, 1189 0 /* Line 0 is reserved for compiler-generated code. */, 1190 DB.createSubroutineType( 1191 DB.getOrCreateTypeArray(None)), /* void type */ 1192 false, true, 0, /* Line 0 is reserved for compiler-generated code. */ 1193 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1194 true /* Outlined code is optimized code by definition. */); 1195 1196 // Don't add any new variables to the subprogram. 1197 DB.finalizeSubprogram(SP); 1198 1199 // Attach subprogram to the function. 1200 F->setSubprogram(SP); 1201 } 1202 1203 // We're done with the DIBuilder. 1204 DB.finalize(); 1205 } 1206 1207 // Outlined functions shouldn't preserve liveness. 1208 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1209 MF.getRegInfo().freezeReservedRegs(MF); 1210 return &MF; 1211 } 1212 1213 bool MachineOutliner::outline( 1214 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 1215 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1216 1217 bool OutlinedSomething = false; 1218 // Replace the candidates with calls to their respective outlined functions. 1219 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 1220 Candidate &C = *Cptr; 1221 // Was the candidate removed during pruneOverlaps? 1222 if (!C.InCandidateList) 1223 continue; 1224 1225 // If not, then look at its OutlinedFunction. 1226 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1227 1228 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1229 if (OF.getBenefit() < 1) 1230 continue; 1231 1232 // Does this candidate have a function yet? 1233 if (!OF.MF) { 1234 OF.MF = createOutlinedFunction(M, OF, Mapper); 1235 MachineBasicBlock *MBB = &*OF.MF->begin(); 1236 1237 // Output a remark telling the user that an outlined function was created, 1238 // and explaining where it came from. 1239 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1240 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1241 MBB->findDebugLoc(MBB->begin()), MBB); 1242 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) 1243 << " bytes by " 1244 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 1245 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1246 << " locations. " 1247 << "(Found at: "; 1248 1249 // Tell the user the other places the candidate was found. 1250 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1251 1252 // Skip over things that were pruned. 1253 if (!OF.Candidates[i]->InCandidateList) 1254 continue; 1255 1256 R << NV( 1257 (Twine("StartLoc") + Twine(i)).str(), 1258 OF.Candidates[i]->front()->getDebugLoc()); 1259 if (i != e - 1) 1260 R << ", "; 1261 } 1262 1263 R << ")"; 1264 1265 MORE.emit(R); 1266 FunctionsCreated++; 1267 } 1268 1269 MachineFunction *MF = OF.MF; 1270 MachineBasicBlock &MBB = *C.getMBB(); 1271 MachineBasicBlock::iterator StartIt = C.front(); 1272 MachineBasicBlock::iterator EndIt = C.back(); 1273 assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!"); 1274 assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!"); 1275 1276 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1277 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1278 1279 // Insert a call to the new function and erase the old sequence. 1280 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C.TCI); 1281 1282 // If the caller tracks liveness, then we need to make sure that anything 1283 // we outline doesn't break liveness assumptions. 1284 // The outlined functions themselves currently don't track liveness, but 1285 // we should make sure that the ranges we yank things out of aren't 1286 // wrong. 1287 if (MBB.getParent()->getProperties().hasProperty( 1288 MachineFunctionProperties::Property::TracksLiveness)) { 1289 // Helper lambda for adding implicit def operands to the call instruction. 1290 auto CopyDefs = [&CallInst](MachineInstr &MI) { 1291 for (MachineOperand &MOP : MI.operands()) { 1292 // Skip over anything that isn't a register. 1293 if (!MOP.isReg()) 1294 continue; 1295 1296 // If it's a def, add it to the call instruction. 1297 if (MOP.isDef()) 1298 CallInst->addOperand( 1299 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */ 1300 true /* isImp = true */)); 1301 } 1302 }; 1303 1304 // Copy over the defs in the outlined range. 1305 // First inst in outlined range <-- Anything that's defined in this 1306 // ... .. range has to be added as an implicit 1307 // Last inst in outlined range <-- def to the call instruction. 1308 std::for_each(CallInst, EndIt, CopyDefs); 1309 } 1310 1311 // Erase from the point after where the call was inserted up to, and 1312 // including, the final instruction in the sequence. 1313 // Erase needs one past the end, so we need std::next there too. 1314 MBB.erase(std::next(StartIt), std::next(EndIt)); 1315 OutlinedSomething = true; 1316 1317 // Statistics. 1318 NumOutlined++; 1319 } 1320 1321 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1322 1323 return OutlinedSomething; 1324 } 1325 1326 bool MachineOutliner::runOnModule(Module &M) { 1327 // Check if there's anything in the module. If it's empty, then there's 1328 // nothing to outline. 1329 if (M.empty()) 1330 return false; 1331 1332 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1333 const TargetSubtargetInfo &STI = 1334 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1335 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1336 const TargetInstrInfo *TII = STI.getInstrInfo(); 1337 1338 // Does the target implement the MachineOutliner? If it doesn't, quit here. 1339 if (!TII->useMachineOutliner()) { 1340 // No. So we're done. 1341 LLVM_DEBUG( 1342 dbgs() 1343 << "Skipping pass: Target does not support the MachineOutliner.\n"); 1344 return false; 1345 } 1346 1347 // If the user specifies that they want to outline from linkonceodrs, set 1348 // it here. 1349 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1350 1351 InstructionMapper Mapper; 1352 1353 // Build instruction mappings for each function in the module. Start by 1354 // iterating over each Function in M. 1355 for (Function &F : M) { 1356 1357 // If there's nothing in F, then there's no reason to try and outline from 1358 // it. 1359 if (F.empty()) 1360 continue; 1361 1362 // There's something in F. Check if it has a MachineFunction associated with 1363 // it. 1364 MachineFunction *MF = MMI.getMachineFunction(F); 1365 1366 // If it doesn't, then there's nothing to outline from. Move to the next 1367 // Function. 1368 if (!MF) 1369 continue; 1370 1371 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1372 // If it isn't, then move on to the next Function in the module. 1373 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1374 continue; 1375 1376 // We have a function suitable for outlining. Iterate over every 1377 // MachineBasicBlock in MF and try to map its instructions to a list of 1378 // unsigned integers. 1379 for (MachineBasicBlock &MBB : *MF) { 1380 // If there isn't anything in MBB, then there's no point in outlining from 1381 // it. 1382 if (MBB.empty()) 1383 continue; 1384 1385 // Check if MBB could be the target of an indirect branch. If it is, then 1386 // we don't want to outline from it. 1387 if (MBB.hasAddressTaken()) 1388 continue; 1389 1390 // MBB is suitable for outlining. Map it to a list of unsigneds. 1391 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1392 } 1393 } 1394 1395 // Construct a suffix tree, use it to find candidates, and then outline them. 1396 SuffixTree ST(Mapper.UnsignedVec); 1397 std::vector<std::shared_ptr<Candidate>> CandidateList; 1398 std::vector<OutlinedFunction> FunctionList; 1399 1400 // Find all of the outlining candidates. 1401 unsigned MaxCandidateLen = 1402 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1403 1404 // Remove candidates that overlap with other candidates. 1405 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1406 1407 // Outline each of the candidates and return true if something was outlined. 1408 bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper); 1409 1410 return OutlinedSomething; 1411 } 1412