1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * buildOutlinedFrame
29 ///   * insertOutlinedCall
30 ///   * isFunctionSafeToOutlineFrom
31 ///
32 /// in order to make use of the MachineOutliner.
33 ///
34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
36 /// how this pass works, the talk is available on YouTube at
37 ///
38 /// https://www.youtube.com/watch?v=yorld-WSOeU
39 ///
40 /// The slides for the talk are available at
41 ///
42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
43 ///
44 /// The talk provides an overview of how the outliner finds candidates and
45 /// ultimately outlines them. It describes how the main data structure for this
46 /// pass, the suffix tree, is queried and purged for candidates. It also gives
47 /// a simplified suffix tree construction algorithm for suffix trees based off
48 /// of the algorithm actually used here, Ukkonen's algorithm.
49 ///
50 /// For the original RFC for this pass, please see
51 ///
52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
53 ///
54 /// For more information on the suffix tree data structure, please see
55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
56 ///
57 //===----------------------------------------------------------------------===//
58 #include "llvm/CodeGen/MachineOutliner.h"
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/MachineRegisterInfo.h"
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/TargetInstrInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/Mangler.h"
72 #include "llvm/Support/Allocator.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <functional>
77 #include <map>
78 #include <sstream>
79 #include <tuple>
80 #include <vector>
81 
82 #define DEBUG_TYPE "machine-outliner"
83 
84 using namespace llvm;
85 using namespace ore;
86 using namespace outliner;
87 
88 STATISTIC(NumOutlined, "Number of candidates outlined");
89 STATISTIC(FunctionsCreated, "Number of functions created");
90 
91 // Set to true if the user wants the outliner to run on linkonceodr linkage
92 // functions. This is false by default because the linker can dedupe linkonceodr
93 // functions. Since the outliner is confined to a single module (modulo LTO),
94 // this is off by default. It should, however, be the default behaviour in
95 // LTO.
96 static cl::opt<bool> EnableLinkOnceODROutlining(
97     "enable-linkonceodr-outlining",
98     cl::Hidden,
99     cl::desc("Enable the machine outliner on linkonceodr functions"),
100     cl::init(false));
101 
102 namespace {
103 
104 /// Represents an undefined index in the suffix tree.
105 const unsigned EmptyIdx = -1;
106 
107 /// A node in a suffix tree which represents a substring or suffix.
108 ///
109 /// Each node has either no children or at least two children, with the root
110 /// being a exception in the empty tree.
111 ///
112 /// Children are represented as a map between unsigned integers and nodes. If
113 /// a node N has a child M on unsigned integer k, then the mapping represented
114 /// by N is a proper prefix of the mapping represented by M. Note that this,
115 /// although similar to a trie is somewhat different: each node stores a full
116 /// substring of the full mapping rather than a single character state.
117 ///
118 /// Each internal node contains a pointer to the internal node representing
119 /// the same string, but with the first character chopped off. This is stored
120 /// in \p Link. Each leaf node stores the start index of its respective
121 /// suffix in \p SuffixIdx.
122 struct SuffixTreeNode {
123 
124   /// The children of this node.
125   ///
126   /// A child existing on an unsigned integer implies that from the mapping
127   /// represented by the current node, there is a way to reach another
128   /// mapping by tacking that character on the end of the current string.
129   DenseMap<unsigned, SuffixTreeNode *> Children;
130 
131   /// The start index of this node's substring in the main string.
132   unsigned StartIdx = EmptyIdx;
133 
134   /// The end index of this node's substring in the main string.
135   ///
136   /// Every leaf node must have its \p EndIdx incremented at the end of every
137   /// step in the construction algorithm. To avoid having to update O(N)
138   /// nodes individually at the end of every step, the end index is stored
139   /// as a pointer.
140   unsigned *EndIdx = nullptr;
141 
142   /// For leaves, the start index of the suffix represented by this node.
143   ///
144   /// For all other nodes, this is ignored.
145   unsigned SuffixIdx = EmptyIdx;
146 
147   /// For internal nodes, a pointer to the internal node representing
148   /// the same sequence with the first character chopped off.
149   ///
150   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
151   /// Ukkonen's algorithm does to achieve linear-time construction is
152   /// keep track of which node the next insert should be at. This makes each
153   /// insert O(1), and there are a total of O(N) inserts. The suffix link
154   /// helps with inserting children of internal nodes.
155   ///
156   /// Say we add a child to an internal node with associated mapping S. The
157   /// next insertion must be at the node representing S - its first character.
158   /// This is given by the way that we iteratively build the tree in Ukkonen's
159   /// algorithm. The main idea is to look at the suffixes of each prefix in the
160   /// string, starting with the longest suffix of the prefix, and ending with
161   /// the shortest. Therefore, if we keep pointers between such nodes, we can
162   /// move to the next insertion point in O(1) time. If we don't, then we'd
163   /// have to query from the root, which takes O(N) time. This would make the
164   /// construction algorithm O(N^2) rather than O(N).
165   SuffixTreeNode *Link = nullptr;
166 
167   /// The length of the string formed by concatenating the edge labels from the
168   /// root to this node.
169   unsigned ConcatLen = 0;
170 
171   /// Returns true if this node is a leaf.
172   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
173 
174   /// Returns true if this node is the root of its owning \p SuffixTree.
175   bool isRoot() const { return StartIdx == EmptyIdx; }
176 
177   /// Return the number of elements in the substring associated with this node.
178   size_t size() const {
179 
180     // Is it the root? If so, it's the empty string so return 0.
181     if (isRoot())
182       return 0;
183 
184     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
185 
186     // Size = the number of elements in the string.
187     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
188     return *EndIdx - StartIdx + 1;
189   }
190 
191   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
192       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
193 
194   SuffixTreeNode() {}
195 };
196 
197 /// A data structure for fast substring queries.
198 ///
199 /// Suffix trees represent the suffixes of their input strings in their leaves.
200 /// A suffix tree is a type of compressed trie structure where each node
201 /// represents an entire substring rather than a single character. Each leaf
202 /// of the tree is a suffix.
203 ///
204 /// A suffix tree can be seen as a type of state machine where each state is a
205 /// substring of the full string. The tree is structured so that, for a string
206 /// of length N, there are exactly N leaves in the tree. This structure allows
207 /// us to quickly find repeated substrings of the input string.
208 ///
209 /// In this implementation, a "string" is a vector of unsigned integers.
210 /// These integers may result from hashing some data type. A suffix tree can
211 /// contain 1 or many strings, which can then be queried as one large string.
212 ///
213 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
214 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
215 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
216 /// paper is available at
217 ///
218 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
219 class SuffixTree {
220 public:
221   /// Each element is an integer representing an instruction in the module.
222   ArrayRef<unsigned> Str;
223 
224   /// A repeated substring in the tree.
225   struct RepeatedSubstring {
226     /// The length of the string.
227     unsigned Length;
228 
229     /// The start indices of each occurrence.
230     std::vector<unsigned> StartIndices;
231   };
232 
233 private:
234   /// Maintains each node in the tree.
235   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
236 
237   /// The root of the suffix tree.
238   ///
239   /// The root represents the empty string. It is maintained by the
240   /// \p NodeAllocator like every other node in the tree.
241   SuffixTreeNode *Root = nullptr;
242 
243   /// Maintains the end indices of the internal nodes in the tree.
244   ///
245   /// Each internal node is guaranteed to never have its end index change
246   /// during the construction algorithm; however, leaves must be updated at
247   /// every step. Therefore, we need to store leaf end indices by reference
248   /// to avoid updating O(N) leaves at every step of construction. Thus,
249   /// every internal node must be allocated its own end index.
250   BumpPtrAllocator InternalEndIdxAllocator;
251 
252   /// The end index of each leaf in the tree.
253   unsigned LeafEndIdx = -1;
254 
255   /// Helper struct which keeps track of the next insertion point in
256   /// Ukkonen's algorithm.
257   struct ActiveState {
258     /// The next node to insert at.
259     SuffixTreeNode *Node;
260 
261     /// The index of the first character in the substring currently being added.
262     unsigned Idx = EmptyIdx;
263 
264     /// The length of the substring we have to add at the current step.
265     unsigned Len = 0;
266   };
267 
268   /// The point the next insertion will take place at in the
269   /// construction algorithm.
270   ActiveState Active;
271 
272   /// Allocate a leaf node and add it to the tree.
273   ///
274   /// \param Parent The parent of this node.
275   /// \param StartIdx The start index of this node's associated string.
276   /// \param Edge The label on the edge leaving \p Parent to this node.
277   ///
278   /// \returns A pointer to the allocated leaf node.
279   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
280                              unsigned Edge) {
281 
282     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
283 
284     SuffixTreeNode *N = new (NodeAllocator.Allocate())
285         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
286     Parent.Children[Edge] = N;
287 
288     return N;
289   }
290 
291   /// Allocate an internal node and add it to the tree.
292   ///
293   /// \param Parent The parent of this node. Only null when allocating the root.
294   /// \param StartIdx The start index of this node's associated string.
295   /// \param EndIdx The end index of this node's associated string.
296   /// \param Edge The label on the edge leaving \p Parent to this node.
297   ///
298   /// \returns A pointer to the allocated internal node.
299   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
300                                      unsigned EndIdx, unsigned Edge) {
301 
302     assert(StartIdx <= EndIdx && "String can't start after it ends!");
303     assert(!(!Parent && StartIdx != EmptyIdx) &&
304            "Non-root internal nodes must have parents!");
305 
306     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
307     SuffixTreeNode *N = new (NodeAllocator.Allocate())
308         SuffixTreeNode(StartIdx, E, Root);
309     if (Parent)
310       Parent->Children[Edge] = N;
311 
312     return N;
313   }
314 
315   /// Set the suffix indices of the leaves to the start indices of their
316   /// respective suffixes.
317   ///
318   /// \param[in] CurrNode The node currently being visited.
319   /// \param CurrNodeLen The concatenation of all node sizes from the root to
320   /// this node. Used to produce suffix indices.
321   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
322 
323     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
324 
325     // Store the concatenation of lengths down from the root.
326     CurrNode.ConcatLen = CurrNodeLen;
327     // Traverse the tree depth-first.
328     for (auto &ChildPair : CurrNode.Children) {
329       assert(ChildPair.second && "Node had a null child!");
330       setSuffixIndices(*ChildPair.second,
331                        CurrNodeLen + ChildPair.second->size());
332     }
333 
334     // Is this node a leaf? If it is, give it a suffix index.
335     if (IsLeaf)
336       CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
337   }
338 
339   /// Construct the suffix tree for the prefix of the input ending at
340   /// \p EndIdx.
341   ///
342   /// Used to construct the full suffix tree iteratively. At the end of each
343   /// step, the constructed suffix tree is either a valid suffix tree, or a
344   /// suffix tree with implicit suffixes. At the end of the final step, the
345   /// suffix tree is a valid tree.
346   ///
347   /// \param EndIdx The end index of the current prefix in the main string.
348   /// \param SuffixesToAdd The number of suffixes that must be added
349   /// to complete the suffix tree at the current phase.
350   ///
351   /// \returns The number of suffixes that have not been added at the end of
352   /// this step.
353   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
354     SuffixTreeNode *NeedsLink = nullptr;
355 
356     while (SuffixesToAdd > 0) {
357 
358       // Are we waiting to add anything other than just the last character?
359       if (Active.Len == 0) {
360         // If not, then say the active index is the end index.
361         Active.Idx = EndIdx;
362       }
363 
364       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
365 
366       // The first character in the current substring we're looking at.
367       unsigned FirstChar = Str[Active.Idx];
368 
369       // Have we inserted anything starting with FirstChar at the current node?
370       if (Active.Node->Children.count(FirstChar) == 0) {
371         // If not, then we can just insert a leaf and move too the next step.
372         insertLeaf(*Active.Node, EndIdx, FirstChar);
373 
374         // The active node is an internal node, and we visited it, so it must
375         // need a link if it doesn't have one.
376         if (NeedsLink) {
377           NeedsLink->Link = Active.Node;
378           NeedsLink = nullptr;
379         }
380       } else {
381         // There's a match with FirstChar, so look for the point in the tree to
382         // insert a new node.
383         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
384 
385         unsigned SubstringLen = NextNode->size();
386 
387         // Is the current suffix we're trying to insert longer than the size of
388         // the child we want to move to?
389         if (Active.Len >= SubstringLen) {
390           // If yes, then consume the characters we've seen and move to the next
391           // node.
392           Active.Idx += SubstringLen;
393           Active.Len -= SubstringLen;
394           Active.Node = NextNode;
395           continue;
396         }
397 
398         // Otherwise, the suffix we're trying to insert must be contained in the
399         // next node we want to move to.
400         unsigned LastChar = Str[EndIdx];
401 
402         // Is the string we're trying to insert a substring of the next node?
403         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
404           // If yes, then we're done for this step. Remember our insertion point
405           // and move to the next end index. At this point, we have an implicit
406           // suffix tree.
407           if (NeedsLink && !Active.Node->isRoot()) {
408             NeedsLink->Link = Active.Node;
409             NeedsLink = nullptr;
410           }
411 
412           Active.Len++;
413           break;
414         }
415 
416         // The string we're trying to insert isn't a substring of the next node,
417         // but matches up to a point. Split the node.
418         //
419         // For example, say we ended our search at a node n and we're trying to
420         // insert ABD. Then we'll create a new node s for AB, reduce n to just
421         // representing C, and insert a new leaf node l to represent d. This
422         // allows us to ensure that if n was a leaf, it remains a leaf.
423         //
424         //   | ABC  ---split--->  | AB
425         //   n                    s
426         //                     C / \ D
427         //                      n   l
428 
429         // The node s from the diagram
430         SuffixTreeNode *SplitNode =
431             insertInternalNode(Active.Node, NextNode->StartIdx,
432                                NextNode->StartIdx + Active.Len - 1, FirstChar);
433 
434         // Insert the new node representing the new substring into the tree as
435         // a child of the split node. This is the node l from the diagram.
436         insertLeaf(*SplitNode, EndIdx, LastChar);
437 
438         // Make the old node a child of the split node and update its start
439         // index. This is the node n from the diagram.
440         NextNode->StartIdx += Active.Len;
441         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
442 
443         // SplitNode is an internal node, update the suffix link.
444         if (NeedsLink)
445           NeedsLink->Link = SplitNode;
446 
447         NeedsLink = SplitNode;
448       }
449 
450       // We've added something new to the tree, so there's one less suffix to
451       // add.
452       SuffixesToAdd--;
453 
454       if (Active.Node->isRoot()) {
455         if (Active.Len > 0) {
456           Active.Len--;
457           Active.Idx = EndIdx - SuffixesToAdd + 1;
458         }
459       } else {
460         // Start the next phase at the next smallest suffix.
461         Active.Node = Active.Node->Link;
462       }
463     }
464 
465     return SuffixesToAdd;
466   }
467 
468 public:
469   /// Construct a suffix tree from a sequence of unsigned integers.
470   ///
471   /// \param Str The string to construct the suffix tree for.
472   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
473     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
474     Active.Node = Root;
475 
476     // Keep track of the number of suffixes we have to add of the current
477     // prefix.
478     unsigned SuffixesToAdd = 0;
479     Active.Node = Root;
480 
481     // Construct the suffix tree iteratively on each prefix of the string.
482     // PfxEndIdx is the end index of the current prefix.
483     // End is one past the last element in the string.
484     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
485          PfxEndIdx++) {
486       SuffixesToAdd++;
487       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
488       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
489     }
490 
491     // Set the suffix indices of each leaf.
492     assert(Root && "Root node can't be nullptr!");
493     setSuffixIndices(*Root, 0);
494   }
495 
496 
497   /// Iterator for finding all repeated substrings in the suffix tree.
498   struct RepeatedSubstringIterator {
499     private:
500     /// The current node we're visiting.
501     SuffixTreeNode *N = nullptr;
502 
503     /// The repeated substring associated with this node.
504     RepeatedSubstring RS;
505 
506     /// The nodes left to visit.
507     std::vector<SuffixTreeNode *> ToVisit;
508 
509     /// The minimum length of a repeated substring to find.
510     /// Since we're outlining, we want at least two instructions in the range.
511     /// FIXME: This may not be true for targets like X86 which support many
512     /// instruction lengths.
513     const unsigned MinLength = 2;
514 
515     /// Move the iterator to the next repeated substring.
516     void advance() {
517       // Clear the current state. If we're at the end of the range, then this
518       // is the state we want to be in.
519       RS = RepeatedSubstring();
520       N = nullptr;
521 
522       // Continue visiting nodes until we find one which repeats more than once.
523       while (!ToVisit.empty()) {
524         SuffixTreeNode *Curr = ToVisit.back();
525         ToVisit.pop_back();
526 
527         // Keep track of the length of the string associated with the node. If
528         // it's too short, we'll quit.
529         unsigned Length = Curr->ConcatLen;
530 
531         // Each leaf node represents a repeat of a string.
532         std::vector<SuffixTreeNode *> LeafChildren;
533 
534         // Iterate over each child, saving internal nodes for visiting, and
535         // leaf nodes in LeafChildren. Internal nodes represent individual
536         // strings, which may repeat.
537         for (auto &ChildPair : Curr->Children) {
538           // Save all of this node's children for processing.
539           if (!ChildPair.second->isLeaf())
540             ToVisit.push_back(ChildPair.second);
541 
542           // It's not an internal node, so it must be a leaf. If we have a
543           // long enough string, then save the leaf children.
544           else if (Length >= MinLength)
545             LeafChildren.push_back(ChildPair.second);
546         }
547 
548         // The root never represents a repeated substring. If we're looking at
549         // that, then skip it.
550         if (Curr->isRoot())
551           continue;
552 
553         // Do we have any repeated substrings?
554         if (LeafChildren.size() >= 2) {
555           // Yes. Update the state to reflect this, and then bail out.
556           N = Curr;
557           RS.Length = Length;
558           for (SuffixTreeNode *Leaf : LeafChildren)
559             RS.StartIndices.push_back(Leaf->SuffixIdx);
560           break;
561         }
562       }
563 
564       // At this point, either NewRS is an empty RepeatedSubstring, or it was
565       // set in the above loop. Similarly, N is either nullptr, or the node
566       // associated with NewRS.
567     }
568 
569   public:
570     /// Return the current repeated substring.
571     RepeatedSubstring &operator*() { return RS; }
572 
573     RepeatedSubstringIterator &operator++() {
574       advance();
575       return *this;
576     }
577 
578     RepeatedSubstringIterator operator++(int I) {
579       RepeatedSubstringIterator It(*this);
580       advance();
581       return It;
582     }
583 
584     bool operator==(const RepeatedSubstringIterator &Other) {
585       return N == Other.N;
586     }
587     bool operator!=(const RepeatedSubstringIterator &Other) {
588       return !(*this == Other);
589     }
590 
591     RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
592       // Do we have a non-null node?
593       if (N) {
594         // Yes. At the first step, we need to visit all of N's children.
595         // Note: This means that we visit N last.
596         ToVisit.push_back(N);
597         advance();
598       }
599     }
600 };
601 
602   typedef RepeatedSubstringIterator iterator;
603   iterator begin() { return iterator(Root); }
604   iterator end() { return iterator(nullptr); }
605 };
606 
607 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
608 struct InstructionMapper {
609 
610   /// The next available integer to assign to a \p MachineInstr that
611   /// cannot be outlined.
612   ///
613   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
614   unsigned IllegalInstrNumber = -3;
615 
616   /// The next available integer to assign to a \p MachineInstr that can
617   /// be outlined.
618   unsigned LegalInstrNumber = 0;
619 
620   /// Correspondence from \p MachineInstrs to unsigned integers.
621   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
622       InstructionIntegerMap;
623 
624   /// Corresponcence from unsigned integers to \p MachineInstrs.
625   /// Inverse of \p InstructionIntegerMap.
626   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
627 
628   /// The vector of unsigned integers that the module is mapped to.
629   std::vector<unsigned> UnsignedVec;
630 
631   /// Stores the location of the instruction associated with the integer
632   /// at index i in \p UnsignedVec for each index i.
633   std::vector<MachineBasicBlock::iterator> InstrList;
634 
635   // Set if we added an illegal number in the previous step.
636   // Since each illegal number is unique, we only need one of them between
637   // each range of legal numbers. This lets us make sure we don't add more
638   // than one illegal number per range.
639   bool AddedIllegalLastTime = false;
640 
641   /// Maps \p *It to a legal integer.
642   ///
643   /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
644   /// \p UnsignedVecForMBB, \p InstructionIntegerMap, \p IntegerInstructionMap,
645   /// and \p LegalInstrNumber.
646   ///
647   /// \returns The integer that \p *It was mapped to.
648   unsigned mapToLegalUnsigned(
649       MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
650       bool &HaveLegalRange, unsigned &NumLegalInBlock,
651       std::vector<unsigned> &UnsignedVecForMBB,
652       std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
653     // We added something legal, so we should unset the AddedLegalLastTime
654     // flag.
655     AddedIllegalLastTime = false;
656 
657     // If we have at least two adjacent legal instructions (which may have
658     // invisible instructions in between), remember that.
659     if (CanOutlineWithPrevInstr)
660       HaveLegalRange = true;
661     CanOutlineWithPrevInstr = true;
662 
663     // Keep track of the number of legal instructions we insert.
664     NumLegalInBlock++;
665 
666     // Get the integer for this instruction or give it the current
667     // LegalInstrNumber.
668     InstrListForMBB.push_back(It);
669     MachineInstr &MI = *It;
670     bool WasInserted;
671     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
672         ResultIt;
673     std::tie(ResultIt, WasInserted) =
674         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
675     unsigned MINumber = ResultIt->second;
676 
677     // There was an insertion.
678     if (WasInserted) {
679       LegalInstrNumber++;
680       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
681     }
682 
683     UnsignedVecForMBB.push_back(MINumber);
684 
685     // Make sure we don't overflow or use any integers reserved by the DenseMap.
686     if (LegalInstrNumber >= IllegalInstrNumber)
687       report_fatal_error("Instruction mapping overflow!");
688 
689     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
690            "Tried to assign DenseMap tombstone or empty key to instruction.");
691     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
692            "Tried to assign DenseMap tombstone or empty key to instruction.");
693 
694     return MINumber;
695   }
696 
697   /// Maps \p *It to an illegal integer.
698   ///
699   /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
700   /// IllegalInstrNumber.
701   ///
702   /// \returns The integer that \p *It was mapped to.
703   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It,
704   bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB,
705   std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
706     // Can't outline an illegal instruction. Set the flag.
707     CanOutlineWithPrevInstr = false;
708 
709     // Only add one illegal number per range of legal numbers.
710     if (AddedIllegalLastTime)
711       return IllegalInstrNumber;
712 
713     // Remember that we added an illegal number last time.
714     AddedIllegalLastTime = true;
715     unsigned MINumber = IllegalInstrNumber;
716 
717     InstrListForMBB.push_back(It);
718     UnsignedVecForMBB.push_back(IllegalInstrNumber);
719     IllegalInstrNumber--;
720 
721     assert(LegalInstrNumber < IllegalInstrNumber &&
722            "Instruction mapping overflow!");
723 
724     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
725            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
726 
727     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
728            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
729 
730     return MINumber;
731   }
732 
733   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
734   /// and appends it to \p UnsignedVec and \p InstrList.
735   ///
736   /// Two instructions are assigned the same integer if they are identical.
737   /// If an instruction is deemed unsafe to outline, then it will be assigned an
738   /// unique integer. The resulting mapping is placed into a suffix tree and
739   /// queried for candidates.
740   ///
741   /// \param MBB The \p MachineBasicBlock to be translated into integers.
742   /// \param TII \p TargetInstrInfo for the function.
743   void convertToUnsignedVec(MachineBasicBlock &MBB,
744                             const TargetInstrInfo &TII) {
745     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
746     MachineBasicBlock::iterator It = MBB.begin();
747 
748     // The number of instructions in this block that will be considered for
749     // outlining.
750     unsigned NumLegalInBlock = 0;
751 
752     // True if we have at least two legal instructions which aren't separated
753     // by an illegal instruction.
754     bool HaveLegalRange = false;
755 
756     // True if we can perform outlining given the last mapped (non-invisible)
757     // instruction. This lets us know if we have a legal range.
758     bool CanOutlineWithPrevInstr = false;
759 
760     // FIXME: Should this all just be handled in the target, rather than using
761     // repeated calls to getOutliningType?
762     std::vector<unsigned> UnsignedVecForMBB;
763     std::vector<MachineBasicBlock::iterator> InstrListForMBB;
764 
765     for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
766       // Keep track of where this instruction is in the module.
767       switch (TII.getOutliningType(It, Flags)) {
768       case InstrType::Illegal:
769         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr,
770                              UnsignedVecForMBB, InstrListForMBB);
771         break;
772 
773       case InstrType::Legal:
774         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
775                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
776         break;
777 
778       case InstrType::LegalTerminator:
779         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
780                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
781         // The instruction also acts as a terminator, so we have to record that
782         // in the string.
783         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
784         InstrListForMBB);
785         break;
786 
787       case InstrType::Invisible:
788         // Normally this is set by mapTo(Blah)Unsigned, but we just want to
789         // skip this instruction. So, unset the flag here.
790         AddedIllegalLastTime = false;
791         break;
792       }
793     }
794 
795     // Are there enough legal instructions in the block for outlining to be
796     // possible?
797     if (HaveLegalRange) {
798       // After we're done every insertion, uniquely terminate this part of the
799       // "string". This makes sure we won't match across basic block or function
800       // boundaries since the "end" is encoded uniquely and thus appears in no
801       // repeated substring.
802       mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
803       InstrListForMBB);
804       InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
805                        InstrListForMBB.end());
806       UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
807                          UnsignedVecForMBB.end());
808     }
809   }
810 
811   InstructionMapper() {
812     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
813     // changed.
814     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
815            "DenseMapInfo<unsigned>'s empty key isn't -1!");
816     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
817            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
818   }
819 };
820 
821 /// An interprocedural pass which finds repeated sequences of
822 /// instructions and replaces them with calls to functions.
823 ///
824 /// Each instruction is mapped to an unsigned integer and placed in a string.
825 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
826 /// is then repeatedly queried for repeated sequences of instructions. Each
827 /// non-overlapping repeated sequence is then placed in its own
828 /// \p MachineFunction and each instance is then replaced with a call to that
829 /// function.
830 struct MachineOutliner : public ModulePass {
831 
832   static char ID;
833 
834   /// Set to true if the outliner should consider functions with
835   /// linkonceodr linkage.
836   bool OutlineFromLinkOnceODRs = false;
837 
838   /// Set to true if the outliner should run on all functions in the module
839   /// considered safe for outlining.
840   /// Set to true by default for compatibility with llc's -run-pass option.
841   /// Set when the pass is constructed in TargetPassConfig.
842   bool RunOnAllFunctions = true;
843 
844   StringRef getPassName() const override { return "Machine Outliner"; }
845 
846   void getAnalysisUsage(AnalysisUsage &AU) const override {
847     AU.addRequired<MachineModuleInfo>();
848     AU.addPreserved<MachineModuleInfo>();
849     AU.setPreservesAll();
850     ModulePass::getAnalysisUsage(AU);
851   }
852 
853   MachineOutliner() : ModulePass(ID) {
854     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
855   }
856 
857   /// Remark output explaining that not outlining a set of candidates would be
858   /// better than outlining that set.
859   void emitNotOutliningCheaperRemark(
860       unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
861       OutlinedFunction &OF);
862 
863   /// Remark output explaining that a function was outlined.
864   void emitOutlinedFunctionRemark(OutlinedFunction &OF);
865 
866   /// Find all repeated substrings that satisfy the outlining cost model.
867   ///
868   /// If a substring appears at least twice, then it must be represented by
869   /// an internal node which appears in at least two suffixes. Each suffix
870   /// is represented by a leaf node. To do this, we visit each internal node
871   /// in the tree, using the leaf children of each internal node. If an
872   /// internal node represents a beneficial substring, then we use each of
873   /// its leaf children to find the locations of its substring.
874   ///
875   /// \param ST A suffix tree to query.
876   /// \param Mapper Contains outlining mapping information.
877   /// \param[out] CandidateList Filled with candidates representing each
878   /// beneficial substring.
879   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
880   /// each type of candidate.
881   ///
882   /// \returns The length of the longest candidate found.
883   unsigned
884   findCandidates(SuffixTree &ST,
885                  InstructionMapper &Mapper,
886                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
887                  std::vector<OutlinedFunction> &FunctionList);
888 
889   /// Replace the sequences of instructions represented by the
890   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
891   /// described in \p FunctionList.
892   ///
893   /// \param M The module we are outlining from.
894   /// \param CandidateList A list of candidates to be outlined.
895   /// \param FunctionList A list of functions to be inserted into the module.
896   /// \param Mapper Contains the instruction mappings for the module.
897   bool outline(Module &M,
898                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
899                std::vector<OutlinedFunction> &FunctionList,
900                InstructionMapper &Mapper);
901 
902   /// Creates a function for \p OF and inserts it into the module.
903   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
904                                           InstructionMapper &Mapper,
905                                           unsigned Name);
906 
907   /// Find potential outlining candidates and store them in \p CandidateList.
908   ///
909   /// For each type of potential candidate, also build an \p OutlinedFunction
910   /// struct containing the information to build the function for that
911   /// candidate.
912   ///
913   /// \param[out] CandidateList Filled with outlining candidates for the module.
914   /// \param[out] FunctionList Filled with functions corresponding to each type
915   /// of \p Candidate.
916   /// \param ST The suffix tree for the module.
917   ///
918   /// \returns The length of the longest candidate found. 0 if there are none.
919   unsigned
920   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
921                      std::vector<OutlinedFunction> &FunctionList,
922                      SuffixTree &ST, InstructionMapper &Mapper);
923 
924   /// Helper function for pruneOverlaps.
925   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
926   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
927 
928   /// Remove any overlapping candidates that weren't handled by the
929   /// suffix tree's pruning method.
930   ///
931   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
932   /// If a short candidate is chosen for outlining, then a longer candidate
933   /// which has that short candidate as a suffix is chosen, the tree's pruning
934   /// method will not find it. Thus, we need to prune before outlining as well.
935   ///
936   /// \param[in,out] CandidateList A list of outlining candidates.
937   /// \param[in,out] FunctionList A list of functions to be outlined.
938   /// \param Mapper Contains instruction mapping info for outlining.
939   /// \param MaxCandidateLen The length of the longest candidate.
940   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
941                      std::vector<OutlinedFunction> &FunctionList,
942                      InstructionMapper &Mapper, unsigned MaxCandidateLen);
943 
944   /// Construct a suffix tree on the instructions in \p M and outline repeated
945   /// strings from that tree.
946   bool runOnModule(Module &M) override;
947 
948   /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
949   /// function for remark emission.
950   DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
951     DISubprogram *SP;
952     for (const std::shared_ptr<Candidate> &C : OF.Candidates)
953       if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram()))
954         return SP;
955     return nullptr;
956   }
957 
958   /// Populate and \p InstructionMapper with instruction-to-integer mappings.
959   /// These are used to construct a suffix tree.
960   void populateMapper(InstructionMapper &Mapper, Module &M,
961                       MachineModuleInfo &MMI);
962 
963   /// Initialize information necessary to output a size remark.
964   /// FIXME: This should be handled by the pass manager, not the outliner.
965   /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
966   /// pass manager.
967   void initSizeRemarkInfo(
968       const Module &M, const MachineModuleInfo &MMI,
969       StringMap<unsigned> &FunctionToInstrCount);
970 
971   /// Emit the remark.
972   // FIXME: This should be handled by the pass manager, not the outliner.
973   void emitInstrCountChangedRemark(
974       const Module &M, const MachineModuleInfo &MMI,
975       const StringMap<unsigned> &FunctionToInstrCount);
976 };
977 } // Anonymous namespace.
978 
979 char MachineOutliner::ID = 0;
980 
981 namespace llvm {
982 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
983   MachineOutliner *OL = new MachineOutliner();
984   OL->RunOnAllFunctions = RunOnAllFunctions;
985   return OL;
986 }
987 
988 } // namespace llvm
989 
990 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
991                 false)
992 
993 void MachineOutliner::emitNotOutliningCheaperRemark(
994     unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
995     OutlinedFunction &OF) {
996   // FIXME: Right now, we arbitrarily choose some Candidate from the
997   // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
998   // We should probably sort these by function name or something to make sure
999   // the remarks are stable.
1000   Candidate &C = CandidatesForRepeatedSeq.front();
1001   MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
1002   MORE.emit([&]() {
1003     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
1004                                       C.front()->getDebugLoc(), C.getMBB());
1005     R << "Did not outline " << NV("Length", StringLen) << " instructions"
1006       << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
1007       << " locations."
1008       << " Bytes from outlining all occurrences ("
1009       << NV("OutliningCost", OF.getOutliningCost()) << ")"
1010       << " >= Unoutlined instruction bytes ("
1011       << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
1012       << " (Also found at: ";
1013 
1014     // Tell the user the other places the candidate was found.
1015     for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
1016       R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
1017               CandidatesForRepeatedSeq[i].front()->getDebugLoc());
1018       if (i != e - 1)
1019         R << ", ";
1020     }
1021 
1022     R << ")";
1023     return R;
1024   });
1025 }
1026 
1027 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
1028   MachineBasicBlock *MBB = &*OF.MF->begin();
1029   MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
1030   MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
1031                               MBB->findDebugLoc(MBB->begin()), MBB);
1032   R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
1033     << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
1034     << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
1035     << " locations. "
1036     << "(Found at: ";
1037 
1038   // Tell the user the other places the candidate was found.
1039   for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1040 
1041     // Skip over things that were pruned.
1042     if (!OF.Candidates[i]->InCandidateList)
1043       continue;
1044 
1045     R << NV((Twine("StartLoc") + Twine(i)).str(),
1046             OF.Candidates[i]->front()->getDebugLoc());
1047     if (i != e - 1)
1048       R << ", ";
1049   }
1050 
1051   R << ")";
1052 
1053   MORE.emit(R);
1054 }
1055 
1056 unsigned MachineOutliner::findCandidates(
1057     SuffixTree &ST, InstructionMapper &Mapper,
1058     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1059     std::vector<OutlinedFunction> &FunctionList) {
1060   CandidateList.clear();
1061   FunctionList.clear();
1062   unsigned MaxLen = 0;
1063 
1064   // First, find dall of the repeated substrings in the tree of minimum length
1065   // 2.
1066   for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
1067     SuffixTree::RepeatedSubstring RS = *It;
1068     std::vector<Candidate> CandidatesForRepeatedSeq;
1069     unsigned StringLen = RS.Length;
1070     for (const unsigned &StartIdx : RS.StartIndices) {
1071       unsigned EndIdx = StartIdx + StringLen - 1;
1072       // Trick: Discard some candidates that would be incompatible with the
1073       // ones we've already found for this sequence. This will save us some
1074       // work in candidate selection.
1075       //
1076       // If two candidates overlap, then we can't outline them both. This
1077       // happens when we have candidates that look like, say
1078       //
1079       // AA (where each "A" is an instruction).
1080       //
1081       // We might have some portion of the module that looks like this:
1082       // AAAAAA (6 A's)
1083       //
1084       // In this case, there are 5 different copies of "AA" in this range, but
1085       // at most 3 can be outlined. If only outlining 3 of these is going to
1086       // be unbeneficial, then we ought to not bother.
1087       //
1088       // Note that two things DON'T overlap when they look like this:
1089       // start1...end1 .... start2...end2
1090       // That is, one must either
1091       // * End before the other starts
1092       // * Start after the other ends
1093       if (std::all_of(
1094               CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
1095               [&StartIdx, &EndIdx](const Candidate &C) {
1096                 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
1097               })) {
1098         // It doesn't overlap with anything, so we can outline it.
1099         // Each sequence is over [StartIt, EndIt].
1100         // Save the candidate and its location.
1101 
1102         MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1103         MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1104 
1105         CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
1106                                               EndIt, StartIt->getParent(),
1107                                               FunctionList.size());
1108       }
1109     }
1110 
1111     // We've found something we might want to outline.
1112     // Create an OutlinedFunction to store it and check if it'd be beneficial
1113     // to outline.
1114     if (CandidatesForRepeatedSeq.empty())
1115       continue;
1116 
1117     // Arbitrarily choose a TII from the first candidate.
1118     // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1119     const TargetInstrInfo *TII =
1120         CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1121 
1122     OutlinedFunction OF =
1123         TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1124 
1125     // If we deleted every candidate, then there's nothing to outline.
1126     if (OF.Candidates.empty())
1127       continue;
1128 
1129     std::vector<unsigned> Seq;
1130     unsigned StartIdx = RS.StartIndices[0]; // Grab any start index.
1131     for (unsigned i = StartIdx; i < StartIdx + StringLen; i++)
1132       Seq.push_back(ST.Str[i]);
1133     OF.Sequence = Seq;
1134 
1135     // Is it better to outline this candidate than not?
1136     if (OF.getBenefit() < 1) {
1137       emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1138       continue;
1139     }
1140 
1141     if (StringLen > MaxLen)
1142       MaxLen = StringLen;
1143 
1144     // The function is beneficial. Save its candidates to the candidate list
1145     // for pruning.
1146     for (std::shared_ptr<Candidate> &C : OF.Candidates)
1147       CandidateList.push_back(C);
1148     FunctionList.push_back(OF);
1149   }
1150 
1151   return MaxLen;
1152 }
1153 
1154 // Remove C from the candidate space, and update its OutlinedFunction.
1155 void MachineOutliner::prune(Candidate &C,
1156                             std::vector<OutlinedFunction> &FunctionList) {
1157   // Get the OutlinedFunction associated with this Candidate.
1158   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1159 
1160   // Update C's associated function's occurrence count.
1161   F.decrement();
1162 
1163   // Remove C from the CandidateList.
1164   C.InCandidateList = false;
1165 
1166   LLVM_DEBUG(dbgs() << "- Removed a Candidate \n";
1167              dbgs() << "--- Num fns left for candidate: "
1168                     << F.getOccurrenceCount() << "\n";
1169              dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1170                     << "\n";);
1171 }
1172 
1173 void MachineOutliner::pruneOverlaps(
1174     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1175     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1176     unsigned MaxCandidateLen) {
1177 
1178   // Return true if this candidate became unbeneficial for outlining in a
1179   // previous step.
1180   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1181 
1182     // Check if the candidate was removed in a previous step.
1183     if (!C.InCandidateList)
1184       return true;
1185 
1186     // C must be alive. Check if we should remove it.
1187     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1188       prune(C, FunctionList);
1189       return true;
1190     }
1191 
1192     // C is in the list, and F is still beneficial.
1193     return false;
1194   };
1195 
1196   // TODO: Experiment with interval trees or other interval-checking structures
1197   // to lower the time complexity of this function.
1198   // TODO: Can we do better than the simple greedy choice?
1199   // Check for overlaps in the range.
1200   // This is O(MaxCandidateLen * CandidateList.size()).
1201   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1202        It++) {
1203     Candidate &C1 = **It;
1204 
1205     // If C1 was already pruned, or its function is no longer beneficial for
1206     // outlining, move to the next candidate.
1207     if (ShouldSkipCandidate(C1))
1208       continue;
1209 
1210     // The minimum start index of any candidate that could overlap with this
1211     // one.
1212     unsigned FarthestPossibleIdx = 0;
1213 
1214     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1215     if (C1.getStartIdx() > MaxCandidateLen)
1216       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1217 
1218     // Compare against the candidates in the list that start at most
1219     // FarthestPossibleIdx indices away from C1. There are at most
1220     // MaxCandidateLen of these.
1221     for (auto Sit = It + 1; Sit != Et; Sit++) {
1222       Candidate &C2 = **Sit;
1223 
1224       // Is this candidate too far away to overlap?
1225       if (C2.getStartIdx() < FarthestPossibleIdx)
1226         break;
1227 
1228       // If C2 was already pruned, or its function is no longer beneficial for
1229       // outlining, move to the next candidate.
1230       if (ShouldSkipCandidate(C2))
1231         continue;
1232 
1233       // Do C1 and C2 overlap?
1234       //
1235       // Not overlapping:
1236       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1237       //
1238       // We sorted our candidate list so C2Start <= C1Start. We know that
1239       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1240       // have to check is C2End < C2Start to see if we overlap.
1241       if (C2.getEndIdx() < C1.getStartIdx())
1242         continue;
1243 
1244       // C1 and C2 overlap.
1245       // We need to choose the better of the two.
1246       //
1247       // Approximate this by picking the one which would have saved us the
1248       // most instructions before any pruning.
1249 
1250       // Is C2 a better candidate?
1251       if (C2.Benefit > C1.Benefit) {
1252         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1253         // against anything anymore, so break.
1254         prune(C1, FunctionList);
1255         break;
1256       }
1257 
1258       // Prune C2 and move on to the next candidate.
1259       prune(C2, FunctionList);
1260     }
1261   }
1262 }
1263 
1264 unsigned MachineOutliner::buildCandidateList(
1265     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1266     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1267     InstructionMapper &Mapper) {
1268 
1269   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1270   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1271 
1272   MaxCandidateLen =
1273       findCandidates(ST, Mapper, CandidateList, FunctionList);
1274 
1275   // Sort the candidates in decending order. This will simplify the outlining
1276   // process when we have to remove the candidates from the mapping by
1277   // allowing us to cut them out without keeping track of an offset.
1278   std::stable_sort(
1279       CandidateList.begin(), CandidateList.end(),
1280       [](const std::shared_ptr<Candidate> &LHS,
1281          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1282 
1283   return MaxCandidateLen;
1284 }
1285 
1286 MachineFunction *
1287 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1288                                         InstructionMapper &Mapper,
1289                                         unsigned Name) {
1290 
1291   // Create the function name. This should be unique. For now, just hash the
1292   // module name and include it in the function name plus the number of this
1293   // function.
1294   std::ostringstream NameStream;
1295   // FIXME: We should have a better naming scheme. This should be stable,
1296   // regardless of changes to the outliner's cost model/traversal order.
1297   NameStream << "OUTLINED_FUNCTION_" << Name;
1298 
1299   // Create the function using an IR-level function.
1300   LLVMContext &C = M.getContext();
1301   Function *F = dyn_cast<Function>(
1302       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1303   assert(F && "Function was null!");
1304 
1305   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1306   // which gives us better results when we outline from linkonceodr functions.
1307   F->setLinkage(GlobalValue::InternalLinkage);
1308   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1309 
1310   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1311   // necessary.
1312 
1313   // Set optsize/minsize, so we don't insert padding between outlined
1314   // functions.
1315   F->addFnAttr(Attribute::OptimizeForSize);
1316   F->addFnAttr(Attribute::MinSize);
1317 
1318   // Include target features from an arbitrary candidate for the outlined
1319   // function. This makes sure the outlined function knows what kinds of
1320   // instructions are going into it. This is fine, since all parent functions
1321   // must necessarily support the instructions that are in the outlined region.
1322   const Function &ParentFn = OF.Candidates.front()->getMF()->getFunction();
1323   if (ParentFn.hasFnAttribute("target-features"))
1324     F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1325 
1326   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1327   IRBuilder<> Builder(EntryBB);
1328   Builder.CreateRetVoid();
1329 
1330   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1331   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1332   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1333   const TargetSubtargetInfo &STI = MF.getSubtarget();
1334   const TargetInstrInfo &TII = *STI.getInstrInfo();
1335 
1336   // Insert the new function into the module.
1337   MF.insert(MF.begin(), &MBB);
1338 
1339   // Copy over the instructions for the function using the integer mappings in
1340   // its sequence.
1341   for (unsigned Str : OF.Sequence) {
1342     MachineInstr *NewMI =
1343         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1344     NewMI->dropMemRefs(MF);
1345 
1346     // Don't keep debug information for outlined instructions.
1347     NewMI->setDebugLoc(DebugLoc());
1348     MBB.insert(MBB.end(), NewMI);
1349   }
1350 
1351   TII.buildOutlinedFrame(MBB, MF, OF);
1352 
1353   // Outlined functions shouldn't preserve liveness.
1354   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1355   MF.getRegInfo().freezeReservedRegs(MF);
1356 
1357   // If there's a DISubprogram associated with this outlined function, then
1358   // emit debug info for the outlined function.
1359   if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1360     // We have a DISubprogram. Get its DICompileUnit.
1361     DICompileUnit *CU = SP->getUnit();
1362     DIBuilder DB(M, true, CU);
1363     DIFile *Unit = SP->getFile();
1364     Mangler Mg;
1365     // Get the mangled name of the function for the linkage name.
1366     std::string Dummy;
1367     llvm::raw_string_ostream MangledNameStream(Dummy);
1368     Mg.getNameWithPrefix(MangledNameStream, F, false);
1369 
1370     DISubprogram *OutlinedSP = DB.createFunction(
1371         Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1372         Unit /* File */,
1373         0 /* Line 0 is reserved for compiler-generated code. */,
1374         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1375         false, true, 0, /* Line 0 is reserved for compiler-generated code. */
1376         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1377         true /* Outlined code is optimized code by definition. */);
1378 
1379     // Don't add any new variables to the subprogram.
1380     DB.finalizeSubprogram(OutlinedSP);
1381 
1382     // Attach subprogram to the function.
1383     F->setSubprogram(OutlinedSP);
1384     // We're done with the DIBuilder.
1385     DB.finalize();
1386   }
1387 
1388   return &MF;
1389 }
1390 
1391 bool MachineOutliner::outline(
1392     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1393     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1394 
1395   bool OutlinedSomething = false;
1396 
1397   // Number to append to the current outlined function.
1398   unsigned OutlinedFunctionNum = 0;
1399 
1400   // Replace the candidates with calls to their respective outlined functions.
1401   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1402     Candidate &C = *Cptr;
1403     // Was the candidate removed during pruneOverlaps?
1404     if (!C.InCandidateList)
1405       continue;
1406 
1407     // If not, then look at its OutlinedFunction.
1408     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1409 
1410     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1411     if (OF.getBenefit() < 1)
1412       continue;
1413 
1414     // Does this candidate have a function yet?
1415     if (!OF.MF) {
1416       OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
1417       emitOutlinedFunctionRemark(OF);
1418       FunctionsCreated++;
1419       OutlinedFunctionNum++; // Created a function, move to the next name.
1420     }
1421 
1422     MachineFunction *MF = OF.MF;
1423     MachineBasicBlock &MBB = *C.getMBB();
1424     MachineBasicBlock::iterator StartIt = C.front();
1425     MachineBasicBlock::iterator EndIt = C.back();
1426     assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!");
1427     assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!");
1428 
1429     const TargetSubtargetInfo &STI = MF->getSubtarget();
1430     const TargetInstrInfo &TII = *STI.getInstrInfo();
1431 
1432     // Insert a call to the new function and erase the old sequence.
1433     auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C);
1434 
1435     // If the caller tracks liveness, then we need to make sure that anything
1436     // we outline doesn't break liveness assumptions.
1437     // The outlined functions themselves currently don't track liveness, but
1438     // we should make sure that the ranges we yank things out of aren't
1439     // wrong.
1440     if (MBB.getParent()->getProperties().hasProperty(
1441             MachineFunctionProperties::Property::TracksLiveness)) {
1442       // Helper lambda for adding implicit def operands to the call instruction.
1443       auto CopyDefs = [&CallInst](MachineInstr &MI) {
1444         for (MachineOperand &MOP : MI.operands()) {
1445           // Skip over anything that isn't a register.
1446           if (!MOP.isReg())
1447             continue;
1448 
1449           // If it's a def, add it to the call instruction.
1450           if (MOP.isDef())
1451             CallInst->addOperand(
1452                 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */
1453                                           true /* isImp = true */));
1454         }
1455       };
1456 
1457       // Copy over the defs in the outlined range.
1458       // First inst in outlined range <-- Anything that's defined in this
1459       // ...                           .. range has to be added as an implicit
1460       // Last inst in outlined range  <-- def to the call instruction.
1461       std::for_each(CallInst, std::next(EndIt), CopyDefs);
1462     }
1463 
1464     // Erase from the point after where the call was inserted up to, and
1465     // including, the final instruction in the sequence.
1466     // Erase needs one past the end, so we need std::next there too.
1467     MBB.erase(std::next(StartIt), std::next(EndIt));
1468     OutlinedSomething = true;
1469 
1470     // Statistics.
1471     NumOutlined++;
1472   }
1473 
1474   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1475 
1476   return OutlinedSomething;
1477 }
1478 
1479 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1480                                      MachineModuleInfo &MMI) {
1481   // Build instruction mappings for each function in the module. Start by
1482   // iterating over each Function in M.
1483   for (Function &F : M) {
1484 
1485     // If there's nothing in F, then there's no reason to try and outline from
1486     // it.
1487     if (F.empty())
1488       continue;
1489 
1490     // There's something in F. Check if it has a MachineFunction associated with
1491     // it.
1492     MachineFunction *MF = MMI.getMachineFunction(F);
1493 
1494     // If it doesn't, then there's nothing to outline from. Move to the next
1495     // Function.
1496     if (!MF)
1497       continue;
1498 
1499     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1500 
1501     if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1502       continue;
1503 
1504     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1505     // If it isn't, then move on to the next Function in the module.
1506     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1507       continue;
1508 
1509     // We have a function suitable for outlining. Iterate over every
1510     // MachineBasicBlock in MF and try to map its instructions to a list of
1511     // unsigned integers.
1512     for (MachineBasicBlock &MBB : *MF) {
1513       // If there isn't anything in MBB, then there's no point in outlining from
1514       // it.
1515       // If there are fewer than 2 instructions in the MBB, then it can't ever
1516       // contain something worth outlining.
1517       // FIXME: This should be based off of the maximum size in B of an outlined
1518       // call versus the size in B of the MBB.
1519       if (MBB.empty() || MBB.size() < 2)
1520         continue;
1521 
1522       // Check if MBB could be the target of an indirect branch. If it is, then
1523       // we don't want to outline from it.
1524       if (MBB.hasAddressTaken())
1525         continue;
1526 
1527       // MBB is suitable for outlining. Map it to a list of unsigneds.
1528       Mapper.convertToUnsignedVec(MBB, *TII);
1529     }
1530   }
1531 }
1532 
1533 void MachineOutliner::initSizeRemarkInfo(
1534     const Module &M, const MachineModuleInfo &MMI,
1535     StringMap<unsigned> &FunctionToInstrCount) {
1536   // Collect instruction counts for every function. We'll use this to emit
1537   // per-function size remarks later.
1538   for (const Function &F : M) {
1539     MachineFunction *MF = MMI.getMachineFunction(F);
1540 
1541     // We only care about MI counts here. If there's no MachineFunction at this
1542     // point, then there won't be after the outliner runs, so let's move on.
1543     if (!MF)
1544       continue;
1545     FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1546   }
1547 }
1548 
1549 void MachineOutliner::emitInstrCountChangedRemark(
1550     const Module &M, const MachineModuleInfo &MMI,
1551     const StringMap<unsigned> &FunctionToInstrCount) {
1552   // Iterate over each function in the module and emit remarks.
1553   // Note that we won't miss anything by doing this, because the outliner never
1554   // deletes functions.
1555   for (const Function &F : M) {
1556     MachineFunction *MF = MMI.getMachineFunction(F);
1557 
1558     // The outliner never deletes functions. If we don't have a MF here, then we
1559     // didn't have one prior to outlining either.
1560     if (!MF)
1561       continue;
1562 
1563     std::string Fname = F.getName();
1564     unsigned FnCountAfter = MF->getInstructionCount();
1565     unsigned FnCountBefore = 0;
1566 
1567     // Check if the function was recorded before.
1568     auto It = FunctionToInstrCount.find(Fname);
1569 
1570     // Did we have a previously-recorded size? If yes, then set FnCountBefore
1571     // to that.
1572     if (It != FunctionToInstrCount.end())
1573       FnCountBefore = It->second;
1574 
1575     // Compute the delta and emit a remark if there was a change.
1576     int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1577                       static_cast<int64_t>(FnCountBefore);
1578     if (FnDelta == 0)
1579       continue;
1580 
1581     MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1582     MORE.emit([&]() {
1583       MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1584                                           DiagnosticLocation(),
1585                                           &MF->front());
1586       R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1587         << ": Function: "
1588         << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1589         << ": MI instruction count changed from "
1590         << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1591                                                     FnCountBefore)
1592         << " to "
1593         << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1594                                                     FnCountAfter)
1595         << "; Delta: "
1596         << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1597       return R;
1598     });
1599   }
1600 }
1601 
1602 bool MachineOutliner::runOnModule(Module &M) {
1603   // Check if there's anything in the module. If it's empty, then there's
1604   // nothing to outline.
1605   if (M.empty())
1606     return false;
1607 
1608   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1609 
1610   // If the user passed -enable-machine-outliner=always or
1611   // -enable-machine-outliner, the pass will run on all functions in the module.
1612   // Otherwise, if the target supports default outlining, it will run on all
1613   // functions deemed by the target to be worth outlining from by default. Tell
1614   // the user how the outliner is running.
1615   LLVM_DEBUG(
1616     dbgs() << "Machine Outliner: Running on ";
1617     if (RunOnAllFunctions)
1618       dbgs() << "all functions";
1619     else
1620       dbgs() << "target-default functions";
1621     dbgs() << "\n"
1622   );
1623 
1624   // If the user specifies that they want to outline from linkonceodrs, set
1625   // it here.
1626   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1627   InstructionMapper Mapper;
1628 
1629   // Prepare instruction mappings for the suffix tree.
1630   populateMapper(Mapper, M, MMI);
1631 
1632   // Construct a suffix tree, use it to find candidates, and then outline them.
1633   SuffixTree ST(Mapper.UnsignedVec);
1634   std::vector<std::shared_ptr<Candidate>> CandidateList;
1635   std::vector<OutlinedFunction> FunctionList;
1636 
1637   // Find all of the outlining candidates.
1638   unsigned MaxCandidateLen =
1639       buildCandidateList(CandidateList, FunctionList, ST, Mapper);
1640 
1641   // Remove candidates that overlap with other candidates.
1642   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen);
1643 
1644   // If we've requested size remarks, then collect the MI counts of every
1645   // function before outlining, and the MI counts after outlining.
1646   // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1647   // the pass manager's responsibility.
1648   // This could pretty easily be placed in outline instead, but because we
1649   // really ultimately *don't* want this here, it's done like this for now
1650   // instead.
1651 
1652   // Check if we want size remarks.
1653   bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1654   StringMap<unsigned> FunctionToInstrCount;
1655   if (ShouldEmitSizeRemarks)
1656     initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1657 
1658   // Outline each of the candidates and return true if something was outlined.
1659   bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
1660 
1661   // If we outlined something, we definitely changed the MI count of the
1662   // module. If we've asked for size remarks, then output them.
1663   // FIXME: This should be in the pass manager.
1664   if (ShouldEmitSizeRemarks && OutlinedSomething)
1665     emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1666 
1667   return OutlinedSomething;
1668 }
1669