1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/MachineRegisterInfo.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/TargetInstrInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Mangler.h" 72 #include "llvm/InitializePasses.h" 73 #include "llvm/Support/Allocator.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <functional> 78 #include <tuple> 79 #include <vector> 80 81 #define DEBUG_TYPE "machine-outliner" 82 83 using namespace llvm; 84 using namespace ore; 85 using namespace outliner; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 // Set to true if the user wants the outliner to run on linkonceodr linkage 91 // functions. This is false by default because the linker can dedupe linkonceodr 92 // functions. Since the outliner is confined to a single module (modulo LTO), 93 // this is off by default. It should, however, be the default behaviour in 94 // LTO. 95 static cl::opt<bool> EnableLinkOnceODROutlining( 96 "enable-linkonceodr-outlining", cl::Hidden, 97 cl::desc("Enable the machine outliner on linkonceodr functions"), 98 cl::init(false)); 99 100 /// Number of times to re-run the outliner. This is not the total number of runs 101 /// as the outliner will run at least one time. The default value is set to 0, 102 /// meaning the outliner will run one time and rerun zero times after that. 103 static cl::opt<unsigned> OutlinerReruns( 104 "machine-outliner-reruns", cl::init(0), cl::Hidden, 105 cl::desc( 106 "Number of times to rerun the outliner after the initial outline")); 107 108 namespace { 109 110 /// Represents an undefined index in the suffix tree. 111 const unsigned EmptyIdx = -1; 112 113 /// A node in a suffix tree which represents a substring or suffix. 114 /// 115 /// Each node has either no children or at least two children, with the root 116 /// being a exception in the empty tree. 117 /// 118 /// Children are represented as a map between unsigned integers and nodes. If 119 /// a node N has a child M on unsigned integer k, then the mapping represented 120 /// by N is a proper prefix of the mapping represented by M. Note that this, 121 /// although similar to a trie is somewhat different: each node stores a full 122 /// substring of the full mapping rather than a single character state. 123 /// 124 /// Each internal node contains a pointer to the internal node representing 125 /// the same string, but with the first character chopped off. This is stored 126 /// in \p Link. Each leaf node stores the start index of its respective 127 /// suffix in \p SuffixIdx. 128 struct SuffixTreeNode { 129 130 /// The children of this node. 131 /// 132 /// A child existing on an unsigned integer implies that from the mapping 133 /// represented by the current node, there is a way to reach another 134 /// mapping by tacking that character on the end of the current string. 135 DenseMap<unsigned, SuffixTreeNode *> Children; 136 137 /// The start index of this node's substring in the main string. 138 unsigned StartIdx = EmptyIdx; 139 140 /// The end index of this node's substring in the main string. 141 /// 142 /// Every leaf node must have its \p EndIdx incremented at the end of every 143 /// step in the construction algorithm. To avoid having to update O(N) 144 /// nodes individually at the end of every step, the end index is stored 145 /// as a pointer. 146 unsigned *EndIdx = nullptr; 147 148 /// For leaves, the start index of the suffix represented by this node. 149 /// 150 /// For all other nodes, this is ignored. 151 unsigned SuffixIdx = EmptyIdx; 152 153 /// For internal nodes, a pointer to the internal node representing 154 /// the same sequence with the first character chopped off. 155 /// 156 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 157 /// Ukkonen's algorithm does to achieve linear-time construction is 158 /// keep track of which node the next insert should be at. This makes each 159 /// insert O(1), and there are a total of O(N) inserts. The suffix link 160 /// helps with inserting children of internal nodes. 161 /// 162 /// Say we add a child to an internal node with associated mapping S. The 163 /// next insertion must be at the node representing S - its first character. 164 /// This is given by the way that we iteratively build the tree in Ukkonen's 165 /// algorithm. The main idea is to look at the suffixes of each prefix in the 166 /// string, starting with the longest suffix of the prefix, and ending with 167 /// the shortest. Therefore, if we keep pointers between such nodes, we can 168 /// move to the next insertion point in O(1) time. If we don't, then we'd 169 /// have to query from the root, which takes O(N) time. This would make the 170 /// construction algorithm O(N^2) rather than O(N). 171 SuffixTreeNode *Link = nullptr; 172 173 /// The length of the string formed by concatenating the edge labels from the 174 /// root to this node. 175 unsigned ConcatLen = 0; 176 177 /// Returns true if this node is a leaf. 178 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 179 180 /// Returns true if this node is the root of its owning \p SuffixTree. 181 bool isRoot() const { return StartIdx == EmptyIdx; } 182 183 /// Return the number of elements in the substring associated with this node. 184 size_t size() const { 185 186 // Is it the root? If so, it's the empty string so return 0. 187 if (isRoot()) 188 return 0; 189 190 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 191 192 // Size = the number of elements in the string. 193 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 194 return *EndIdx - StartIdx + 1; 195 } 196 197 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 198 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 199 200 SuffixTreeNode() {} 201 }; 202 203 /// A data structure for fast substring queries. 204 /// 205 /// Suffix trees represent the suffixes of their input strings in their leaves. 206 /// A suffix tree is a type of compressed trie structure where each node 207 /// represents an entire substring rather than a single character. Each leaf 208 /// of the tree is a suffix. 209 /// 210 /// A suffix tree can be seen as a type of state machine where each state is a 211 /// substring of the full string. The tree is structured so that, for a string 212 /// of length N, there are exactly N leaves in the tree. This structure allows 213 /// us to quickly find repeated substrings of the input string. 214 /// 215 /// In this implementation, a "string" is a vector of unsigned integers. 216 /// These integers may result from hashing some data type. A suffix tree can 217 /// contain 1 or many strings, which can then be queried as one large string. 218 /// 219 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 220 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 221 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 222 /// paper is available at 223 /// 224 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 225 class SuffixTree { 226 public: 227 /// Each element is an integer representing an instruction in the module. 228 ArrayRef<unsigned> Str; 229 230 /// A repeated substring in the tree. 231 struct RepeatedSubstring { 232 /// The length of the string. 233 unsigned Length; 234 235 /// The start indices of each occurrence. 236 std::vector<unsigned> StartIndices; 237 }; 238 239 private: 240 /// Maintains each node in the tree. 241 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 242 243 /// The root of the suffix tree. 244 /// 245 /// The root represents the empty string. It is maintained by the 246 /// \p NodeAllocator like every other node in the tree. 247 SuffixTreeNode *Root = nullptr; 248 249 /// Maintains the end indices of the internal nodes in the tree. 250 /// 251 /// Each internal node is guaranteed to never have its end index change 252 /// during the construction algorithm; however, leaves must be updated at 253 /// every step. Therefore, we need to store leaf end indices by reference 254 /// to avoid updating O(N) leaves at every step of construction. Thus, 255 /// every internal node must be allocated its own end index. 256 BumpPtrAllocator InternalEndIdxAllocator; 257 258 /// The end index of each leaf in the tree. 259 unsigned LeafEndIdx = -1; 260 261 /// Helper struct which keeps track of the next insertion point in 262 /// Ukkonen's algorithm. 263 struct ActiveState { 264 /// The next node to insert at. 265 SuffixTreeNode *Node = nullptr; 266 267 /// The index of the first character in the substring currently being added. 268 unsigned Idx = EmptyIdx; 269 270 /// The length of the substring we have to add at the current step. 271 unsigned Len = 0; 272 }; 273 274 /// The point the next insertion will take place at in the 275 /// construction algorithm. 276 ActiveState Active; 277 278 /// Allocate a leaf node and add it to the tree. 279 /// 280 /// \param Parent The parent of this node. 281 /// \param StartIdx The start index of this node's associated string. 282 /// \param Edge The label on the edge leaving \p Parent to this node. 283 /// 284 /// \returns A pointer to the allocated leaf node. 285 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 286 unsigned Edge) { 287 288 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 289 290 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 291 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 292 Parent.Children[Edge] = N; 293 294 return N; 295 } 296 297 /// Allocate an internal node and add it to the tree. 298 /// 299 /// \param Parent The parent of this node. Only null when allocating the root. 300 /// \param StartIdx The start index of this node's associated string. 301 /// \param EndIdx The end index of this node's associated string. 302 /// \param Edge The label on the edge leaving \p Parent to this node. 303 /// 304 /// \returns A pointer to the allocated internal node. 305 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 306 unsigned EndIdx, unsigned Edge) { 307 308 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 309 assert(!(!Parent && StartIdx != EmptyIdx) && 310 "Non-root internal nodes must have parents!"); 311 312 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 313 SuffixTreeNode *N = 314 new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root); 315 if (Parent) 316 Parent->Children[Edge] = N; 317 318 return N; 319 } 320 321 /// Set the suffix indices of the leaves to the start indices of their 322 /// respective suffixes. 323 void setSuffixIndices() { 324 // List of nodes we need to visit along with the current length of the 325 // string. 326 std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit; 327 328 // Current node being visited. 329 SuffixTreeNode *CurrNode = Root; 330 331 // Sum of the lengths of the nodes down the path to the current one. 332 unsigned CurrNodeLen = 0; 333 ToVisit.push_back({CurrNode, CurrNodeLen}); 334 while (!ToVisit.empty()) { 335 std::tie(CurrNode, CurrNodeLen) = ToVisit.back(); 336 ToVisit.pop_back(); 337 CurrNode->ConcatLen = CurrNodeLen; 338 for (auto &ChildPair : CurrNode->Children) { 339 assert(ChildPair.second && "Node had a null child!"); 340 ToVisit.push_back( 341 {ChildPair.second, CurrNodeLen + ChildPair.second->size()}); 342 } 343 344 // No children, so we are at the end of the string. 345 if (CurrNode->Children.size() == 0 && !CurrNode->isRoot()) 346 CurrNode->SuffixIdx = Str.size() - CurrNodeLen; 347 } 348 } 349 350 /// Construct the suffix tree for the prefix of the input ending at 351 /// \p EndIdx. 352 /// 353 /// Used to construct the full suffix tree iteratively. At the end of each 354 /// step, the constructed suffix tree is either a valid suffix tree, or a 355 /// suffix tree with implicit suffixes. At the end of the final step, the 356 /// suffix tree is a valid tree. 357 /// 358 /// \param EndIdx The end index of the current prefix in the main string. 359 /// \param SuffixesToAdd The number of suffixes that must be added 360 /// to complete the suffix tree at the current phase. 361 /// 362 /// \returns The number of suffixes that have not been added at the end of 363 /// this step. 364 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 365 SuffixTreeNode *NeedsLink = nullptr; 366 367 while (SuffixesToAdd > 0) { 368 369 // Are we waiting to add anything other than just the last character? 370 if (Active.Len == 0) { 371 // If not, then say the active index is the end index. 372 Active.Idx = EndIdx; 373 } 374 375 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 376 377 // The first character in the current substring we're looking at. 378 unsigned FirstChar = Str[Active.Idx]; 379 380 // Have we inserted anything starting with FirstChar at the current node? 381 if (Active.Node->Children.count(FirstChar) == 0) { 382 // If not, then we can just insert a leaf and move too the next step. 383 insertLeaf(*Active.Node, EndIdx, FirstChar); 384 385 // The active node is an internal node, and we visited it, so it must 386 // need a link if it doesn't have one. 387 if (NeedsLink) { 388 NeedsLink->Link = Active.Node; 389 NeedsLink = nullptr; 390 } 391 } else { 392 // There's a match with FirstChar, so look for the point in the tree to 393 // insert a new node. 394 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 395 396 unsigned SubstringLen = NextNode->size(); 397 398 // Is the current suffix we're trying to insert longer than the size of 399 // the child we want to move to? 400 if (Active.Len >= SubstringLen) { 401 // If yes, then consume the characters we've seen and move to the next 402 // node. 403 Active.Idx += SubstringLen; 404 Active.Len -= SubstringLen; 405 Active.Node = NextNode; 406 continue; 407 } 408 409 // Otherwise, the suffix we're trying to insert must be contained in the 410 // next node we want to move to. 411 unsigned LastChar = Str[EndIdx]; 412 413 // Is the string we're trying to insert a substring of the next node? 414 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 415 // If yes, then we're done for this step. Remember our insertion point 416 // and move to the next end index. At this point, we have an implicit 417 // suffix tree. 418 if (NeedsLink && !Active.Node->isRoot()) { 419 NeedsLink->Link = Active.Node; 420 NeedsLink = nullptr; 421 } 422 423 Active.Len++; 424 break; 425 } 426 427 // The string we're trying to insert isn't a substring of the next node, 428 // but matches up to a point. Split the node. 429 // 430 // For example, say we ended our search at a node n and we're trying to 431 // insert ABD. Then we'll create a new node s for AB, reduce n to just 432 // representing C, and insert a new leaf node l to represent d. This 433 // allows us to ensure that if n was a leaf, it remains a leaf. 434 // 435 // | ABC ---split---> | AB 436 // n s 437 // C / \ D 438 // n l 439 440 // The node s from the diagram 441 SuffixTreeNode *SplitNode = 442 insertInternalNode(Active.Node, NextNode->StartIdx, 443 NextNode->StartIdx + Active.Len - 1, FirstChar); 444 445 // Insert the new node representing the new substring into the tree as 446 // a child of the split node. This is the node l from the diagram. 447 insertLeaf(*SplitNode, EndIdx, LastChar); 448 449 // Make the old node a child of the split node and update its start 450 // index. This is the node n from the diagram. 451 NextNode->StartIdx += Active.Len; 452 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 453 454 // SplitNode is an internal node, update the suffix link. 455 if (NeedsLink) 456 NeedsLink->Link = SplitNode; 457 458 NeedsLink = SplitNode; 459 } 460 461 // We've added something new to the tree, so there's one less suffix to 462 // add. 463 SuffixesToAdd--; 464 465 if (Active.Node->isRoot()) { 466 if (Active.Len > 0) { 467 Active.Len--; 468 Active.Idx = EndIdx - SuffixesToAdd + 1; 469 } 470 } else { 471 // Start the next phase at the next smallest suffix. 472 Active.Node = Active.Node->Link; 473 } 474 } 475 476 return SuffixesToAdd; 477 } 478 479 public: 480 /// Construct a suffix tree from a sequence of unsigned integers. 481 /// 482 /// \param Str The string to construct the suffix tree for. 483 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 484 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 485 Active.Node = Root; 486 487 // Keep track of the number of suffixes we have to add of the current 488 // prefix. 489 unsigned SuffixesToAdd = 0; 490 491 // Construct the suffix tree iteratively on each prefix of the string. 492 // PfxEndIdx is the end index of the current prefix. 493 // End is one past the last element in the string. 494 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 495 PfxEndIdx++) { 496 SuffixesToAdd++; 497 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 498 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 499 } 500 501 // Set the suffix indices of each leaf. 502 assert(Root && "Root node can't be nullptr!"); 503 setSuffixIndices(); 504 } 505 506 /// Iterator for finding all repeated substrings in the suffix tree. 507 struct RepeatedSubstringIterator { 508 private: 509 /// The current node we're visiting. 510 SuffixTreeNode *N = nullptr; 511 512 /// The repeated substring associated with this node. 513 RepeatedSubstring RS; 514 515 /// The nodes left to visit. 516 std::vector<SuffixTreeNode *> ToVisit; 517 518 /// The minimum length of a repeated substring to find. 519 /// Since we're outlining, we want at least two instructions in the range. 520 /// FIXME: This may not be true for targets like X86 which support many 521 /// instruction lengths. 522 const unsigned MinLength = 2; 523 524 /// Move the iterator to the next repeated substring. 525 void advance() { 526 // Clear the current state. If we're at the end of the range, then this 527 // is the state we want to be in. 528 RS = RepeatedSubstring(); 529 N = nullptr; 530 531 // Each leaf node represents a repeat of a string. 532 std::vector<SuffixTreeNode *> LeafChildren; 533 534 // Continue visiting nodes until we find one which repeats more than once. 535 while (!ToVisit.empty()) { 536 SuffixTreeNode *Curr = ToVisit.back(); 537 ToVisit.pop_back(); 538 LeafChildren.clear(); 539 540 // Keep track of the length of the string associated with the node. If 541 // it's too short, we'll quit. 542 unsigned Length = Curr->ConcatLen; 543 544 // Iterate over each child, saving internal nodes for visiting, and 545 // leaf nodes in LeafChildren. Internal nodes represent individual 546 // strings, which may repeat. 547 for (auto &ChildPair : Curr->Children) { 548 // Save all of this node's children for processing. 549 if (!ChildPair.second->isLeaf()) 550 ToVisit.push_back(ChildPair.second); 551 552 // It's not an internal node, so it must be a leaf. If we have a 553 // long enough string, then save the leaf children. 554 else if (Length >= MinLength) 555 LeafChildren.push_back(ChildPair.second); 556 } 557 558 // The root never represents a repeated substring. If we're looking at 559 // that, then skip it. 560 if (Curr->isRoot()) 561 continue; 562 563 // Do we have any repeated substrings? 564 if (LeafChildren.size() >= 2) { 565 // Yes. Update the state to reflect this, and then bail out. 566 N = Curr; 567 RS.Length = Length; 568 for (SuffixTreeNode *Leaf : LeafChildren) 569 RS.StartIndices.push_back(Leaf->SuffixIdx); 570 break; 571 } 572 } 573 574 // At this point, either NewRS is an empty RepeatedSubstring, or it was 575 // set in the above loop. Similarly, N is either nullptr, or the node 576 // associated with NewRS. 577 } 578 579 public: 580 /// Return the current repeated substring. 581 RepeatedSubstring &operator*() { return RS; } 582 583 RepeatedSubstringIterator &operator++() { 584 advance(); 585 return *this; 586 } 587 588 RepeatedSubstringIterator operator++(int I) { 589 RepeatedSubstringIterator It(*this); 590 advance(); 591 return It; 592 } 593 594 bool operator==(const RepeatedSubstringIterator &Other) { 595 return N == Other.N; 596 } 597 bool operator!=(const RepeatedSubstringIterator &Other) { 598 return !(*this == Other); 599 } 600 601 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 602 // Do we have a non-null node? 603 if (N) { 604 // Yes. At the first step, we need to visit all of N's children. 605 // Note: This means that we visit N last. 606 ToVisit.push_back(N); 607 advance(); 608 } 609 } 610 }; 611 612 typedef RepeatedSubstringIterator iterator; 613 iterator begin() { return iterator(Root); } 614 iterator end() { return iterator(nullptr); } 615 }; 616 617 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 618 struct InstructionMapper { 619 620 /// The next available integer to assign to a \p MachineInstr that 621 /// cannot be outlined. 622 /// 623 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 624 unsigned IllegalInstrNumber = -3; 625 626 /// The next available integer to assign to a \p MachineInstr that can 627 /// be outlined. 628 unsigned LegalInstrNumber = 0; 629 630 /// Correspondence from \p MachineInstrs to unsigned integers. 631 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 632 InstructionIntegerMap; 633 634 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 635 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 636 637 /// The vector of unsigned integers that the module is mapped to. 638 std::vector<unsigned> UnsignedVec; 639 640 /// Stores the location of the instruction associated with the integer 641 /// at index i in \p UnsignedVec for each index i. 642 std::vector<MachineBasicBlock::iterator> InstrList; 643 644 // Set if we added an illegal number in the previous step. 645 // Since each illegal number is unique, we only need one of them between 646 // each range of legal numbers. This lets us make sure we don't add more 647 // than one illegal number per range. 648 bool AddedIllegalLastTime = false; 649 650 /// Maps \p *It to a legal integer. 651 /// 652 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 653 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 654 /// 655 /// \returns The integer that \p *It was mapped to. 656 unsigned mapToLegalUnsigned( 657 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 658 bool &HaveLegalRange, unsigned &NumLegalInBlock, 659 std::vector<unsigned> &UnsignedVecForMBB, 660 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 661 // We added something legal, so we should unset the AddedLegalLastTime 662 // flag. 663 AddedIllegalLastTime = false; 664 665 // If we have at least two adjacent legal instructions (which may have 666 // invisible instructions in between), remember that. 667 if (CanOutlineWithPrevInstr) 668 HaveLegalRange = true; 669 CanOutlineWithPrevInstr = true; 670 671 // Keep track of the number of legal instructions we insert. 672 NumLegalInBlock++; 673 674 // Get the integer for this instruction or give it the current 675 // LegalInstrNumber. 676 InstrListForMBB.push_back(It); 677 MachineInstr &MI = *It; 678 bool WasInserted; 679 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 680 ResultIt; 681 std::tie(ResultIt, WasInserted) = 682 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 683 unsigned MINumber = ResultIt->second; 684 685 // There was an insertion. 686 if (WasInserted) 687 LegalInstrNumber++; 688 689 UnsignedVecForMBB.push_back(MINumber); 690 691 // Make sure we don't overflow or use any integers reserved by the DenseMap. 692 if (LegalInstrNumber >= IllegalInstrNumber) 693 report_fatal_error("Instruction mapping overflow!"); 694 695 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 696 "Tried to assign DenseMap tombstone or empty key to instruction."); 697 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 698 "Tried to assign DenseMap tombstone or empty key to instruction."); 699 700 return MINumber; 701 } 702 703 /// Maps \p *It to an illegal integer. 704 /// 705 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 706 /// IllegalInstrNumber. 707 /// 708 /// \returns The integer that \p *It was mapped to. 709 unsigned mapToIllegalUnsigned( 710 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 711 std::vector<unsigned> &UnsignedVecForMBB, 712 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 713 // Can't outline an illegal instruction. Set the flag. 714 CanOutlineWithPrevInstr = false; 715 716 // Only add one illegal number per range of legal numbers. 717 if (AddedIllegalLastTime) 718 return IllegalInstrNumber; 719 720 // Remember that we added an illegal number last time. 721 AddedIllegalLastTime = true; 722 unsigned MINumber = IllegalInstrNumber; 723 724 InstrListForMBB.push_back(It); 725 UnsignedVecForMBB.push_back(IllegalInstrNumber); 726 IllegalInstrNumber--; 727 728 assert(LegalInstrNumber < IllegalInstrNumber && 729 "Instruction mapping overflow!"); 730 731 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 732 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 733 734 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 735 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 736 737 return MINumber; 738 } 739 740 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 741 /// and appends it to \p UnsignedVec and \p InstrList. 742 /// 743 /// Two instructions are assigned the same integer if they are identical. 744 /// If an instruction is deemed unsafe to outline, then it will be assigned an 745 /// unique integer. The resulting mapping is placed into a suffix tree and 746 /// queried for candidates. 747 /// 748 /// \param MBB The \p MachineBasicBlock to be translated into integers. 749 /// \param TII \p TargetInstrInfo for the function. 750 void convertToUnsignedVec(MachineBasicBlock &MBB, 751 const TargetInstrInfo &TII) { 752 unsigned Flags = 0; 753 754 // Don't even map in this case. 755 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 756 return; 757 758 // Store info for the MBB for later outlining. 759 MBBFlagsMap[&MBB] = Flags; 760 761 MachineBasicBlock::iterator It = MBB.begin(); 762 763 // The number of instructions in this block that will be considered for 764 // outlining. 765 unsigned NumLegalInBlock = 0; 766 767 // True if we have at least two legal instructions which aren't separated 768 // by an illegal instruction. 769 bool HaveLegalRange = false; 770 771 // True if we can perform outlining given the last mapped (non-invisible) 772 // instruction. This lets us know if we have a legal range. 773 bool CanOutlineWithPrevInstr = false; 774 775 // FIXME: Should this all just be handled in the target, rather than using 776 // repeated calls to getOutliningType? 777 std::vector<unsigned> UnsignedVecForMBB; 778 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 779 780 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) { 781 // Keep track of where this instruction is in the module. 782 switch (TII.getOutliningType(It, Flags)) { 783 case InstrType::Illegal: 784 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 785 InstrListForMBB); 786 break; 787 788 case InstrType::Legal: 789 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 790 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 791 break; 792 793 case InstrType::LegalTerminator: 794 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 795 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 796 // The instruction also acts as a terminator, so we have to record that 797 // in the string. 798 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 799 InstrListForMBB); 800 break; 801 802 case InstrType::Invisible: 803 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 804 // skip this instruction. So, unset the flag here. 805 AddedIllegalLastTime = false; 806 break; 807 } 808 } 809 810 // Are there enough legal instructions in the block for outlining to be 811 // possible? 812 if (HaveLegalRange) { 813 // After we're done every insertion, uniquely terminate this part of the 814 // "string". This makes sure we won't match across basic block or function 815 // boundaries since the "end" is encoded uniquely and thus appears in no 816 // repeated substring. 817 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 818 InstrListForMBB); 819 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 820 InstrListForMBB.end()); 821 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 822 UnsignedVecForMBB.end()); 823 } 824 } 825 826 InstructionMapper() { 827 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 828 // changed. 829 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 830 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 831 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 832 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 833 } 834 }; 835 836 /// An interprocedural pass which finds repeated sequences of 837 /// instructions and replaces them with calls to functions. 838 /// 839 /// Each instruction is mapped to an unsigned integer and placed in a string. 840 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 841 /// is then repeatedly queried for repeated sequences of instructions. Each 842 /// non-overlapping repeated sequence is then placed in its own 843 /// \p MachineFunction and each instance is then replaced with a call to that 844 /// function. 845 struct MachineOutliner : public ModulePass { 846 847 static char ID; 848 849 /// Set to true if the outliner should consider functions with 850 /// linkonceodr linkage. 851 bool OutlineFromLinkOnceODRs = false; 852 853 /// The current repeat number of machine outlining. 854 unsigned OutlineRepeatedNum = 0; 855 856 /// Set to true if the outliner should run on all functions in the module 857 /// considered safe for outlining. 858 /// Set to true by default for compatibility with llc's -run-pass option. 859 /// Set when the pass is constructed in TargetPassConfig. 860 bool RunOnAllFunctions = true; 861 862 StringRef getPassName() const override { return "Machine Outliner"; } 863 864 void getAnalysisUsage(AnalysisUsage &AU) const override { 865 AU.addRequired<MachineModuleInfoWrapperPass>(); 866 AU.addPreserved<MachineModuleInfoWrapperPass>(); 867 AU.setPreservesAll(); 868 ModulePass::getAnalysisUsage(AU); 869 } 870 871 MachineOutliner() : ModulePass(ID) { 872 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 873 } 874 875 /// Remark output explaining that not outlining a set of candidates would be 876 /// better than outlining that set. 877 void emitNotOutliningCheaperRemark( 878 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 879 OutlinedFunction &OF); 880 881 /// Remark output explaining that a function was outlined. 882 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 883 884 /// Find all repeated substrings that satisfy the outlining cost model by 885 /// constructing a suffix tree. 886 /// 887 /// If a substring appears at least twice, then it must be represented by 888 /// an internal node which appears in at least two suffixes. Each suffix 889 /// is represented by a leaf node. To do this, we visit each internal node 890 /// in the tree, using the leaf children of each internal node. If an 891 /// internal node represents a beneficial substring, then we use each of 892 /// its leaf children to find the locations of its substring. 893 /// 894 /// \param Mapper Contains outlining mapping information. 895 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 896 /// each type of candidate. 897 void findCandidates(InstructionMapper &Mapper, 898 std::vector<OutlinedFunction> &FunctionList); 899 900 /// Replace the sequences of instructions represented by \p OutlinedFunctions 901 /// with calls to functions. 902 /// 903 /// \param M The module we are outlining from. 904 /// \param FunctionList A list of functions to be inserted into the module. 905 /// \param Mapper Contains the instruction mappings for the module. 906 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 907 InstructionMapper &Mapper, unsigned &OutlinedFunctionNum); 908 909 /// Creates a function for \p OF and inserts it into the module. 910 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 911 InstructionMapper &Mapper, 912 unsigned Name); 913 914 /// Calls 'doOutline()' 1 + OutlinerReruns times. 915 bool runOnModule(Module &M) override; 916 917 /// Construct a suffix tree on the instructions in \p M and outline repeated 918 /// strings from that tree. 919 bool doOutline(Module &M, unsigned &OutlinedFunctionNum); 920 921 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 922 /// function for remark emission. 923 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 924 for (const Candidate &C : OF.Candidates) 925 if (MachineFunction *MF = C.getMF()) 926 if (DISubprogram *SP = MF->getFunction().getSubprogram()) 927 return SP; 928 return nullptr; 929 } 930 931 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 932 /// These are used to construct a suffix tree. 933 void populateMapper(InstructionMapper &Mapper, Module &M, 934 MachineModuleInfo &MMI); 935 936 /// Initialize information necessary to output a size remark. 937 /// FIXME: This should be handled by the pass manager, not the outliner. 938 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 939 /// pass manager. 940 void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI, 941 StringMap<unsigned> &FunctionToInstrCount); 942 943 /// Emit the remark. 944 // FIXME: This should be handled by the pass manager, not the outliner. 945 void 946 emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI, 947 const StringMap<unsigned> &FunctionToInstrCount); 948 }; 949 } // Anonymous namespace. 950 951 char MachineOutliner::ID = 0; 952 953 namespace llvm { 954 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 955 MachineOutliner *OL = new MachineOutliner(); 956 OL->RunOnAllFunctions = RunOnAllFunctions; 957 return OL; 958 } 959 960 } // namespace llvm 961 962 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 963 false) 964 965 void MachineOutliner::emitNotOutliningCheaperRemark( 966 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 967 OutlinedFunction &OF) { 968 // FIXME: Right now, we arbitrarily choose some Candidate from the 969 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 970 // We should probably sort these by function name or something to make sure 971 // the remarks are stable. 972 Candidate &C = CandidatesForRepeatedSeq.front(); 973 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 974 MORE.emit([&]() { 975 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 976 C.front()->getDebugLoc(), C.getMBB()); 977 R << "Did not outline " << NV("Length", StringLen) << " instructions" 978 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 979 << " locations." 980 << " Bytes from outlining all occurrences (" 981 << NV("OutliningCost", OF.getOutliningCost()) << ")" 982 << " >= Unoutlined instruction bytes (" 983 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 984 << " (Also found at: "; 985 986 // Tell the user the other places the candidate was found. 987 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 988 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 989 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 990 if (i != e - 1) 991 R << ", "; 992 } 993 994 R << ")"; 995 return R; 996 }); 997 } 998 999 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 1000 MachineBasicBlock *MBB = &*OF.MF->begin(); 1001 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1002 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1003 MBB->findDebugLoc(MBB->begin()), MBB); 1004 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 1005 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 1006 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1007 << " locations. " 1008 << "(Found at: "; 1009 1010 // Tell the user the other places the candidate was found. 1011 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1012 1013 R << NV((Twine("StartLoc") + Twine(i)).str(), 1014 OF.Candidates[i].front()->getDebugLoc()); 1015 if (i != e - 1) 1016 R << ", "; 1017 } 1018 1019 R << ")"; 1020 1021 MORE.emit(R); 1022 } 1023 1024 void MachineOutliner::findCandidates( 1025 InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) { 1026 FunctionList.clear(); 1027 SuffixTree ST(Mapper.UnsignedVec); 1028 1029 // First, find all of the repeated substrings in the tree of minimum length 1030 // 2. 1031 std::vector<Candidate> CandidatesForRepeatedSeq; 1032 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1033 CandidatesForRepeatedSeq.clear(); 1034 SuffixTree::RepeatedSubstring RS = *It; 1035 unsigned StringLen = RS.Length; 1036 for (const unsigned &StartIdx : RS.StartIndices) { 1037 unsigned EndIdx = StartIdx + StringLen - 1; 1038 // Trick: Discard some candidates that would be incompatible with the 1039 // ones we've already found for this sequence. This will save us some 1040 // work in candidate selection. 1041 // 1042 // If two candidates overlap, then we can't outline them both. This 1043 // happens when we have candidates that look like, say 1044 // 1045 // AA (where each "A" is an instruction). 1046 // 1047 // We might have some portion of the module that looks like this: 1048 // AAAAAA (6 A's) 1049 // 1050 // In this case, there are 5 different copies of "AA" in this range, but 1051 // at most 3 can be outlined. If only outlining 3 of these is going to 1052 // be unbeneficial, then we ought to not bother. 1053 // 1054 // Note that two things DON'T overlap when they look like this: 1055 // start1...end1 .... start2...end2 1056 // That is, one must either 1057 // * End before the other starts 1058 // * Start after the other ends 1059 if (std::all_of( 1060 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1061 [&StartIdx, &EndIdx](const Candidate &C) { 1062 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1063 })) { 1064 // It doesn't overlap with anything, so we can outline it. 1065 // Each sequence is over [StartIt, EndIt]. 1066 // Save the candidate and its location. 1067 1068 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1069 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1070 MachineBasicBlock *MBB = StartIt->getParent(); 1071 1072 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1073 EndIt, MBB, FunctionList.size(), 1074 Mapper.MBBFlagsMap[MBB]); 1075 } 1076 } 1077 1078 // We've found something we might want to outline. 1079 // Create an OutlinedFunction to store it and check if it'd be beneficial 1080 // to outline. 1081 if (CandidatesForRepeatedSeq.size() < 2) 1082 continue; 1083 1084 // Arbitrarily choose a TII from the first candidate. 1085 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1086 const TargetInstrInfo *TII = 1087 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1088 1089 OutlinedFunction OF = 1090 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1091 1092 // If we deleted too many candidates, then there's nothing worth outlining. 1093 // FIXME: This should take target-specified instruction sizes into account. 1094 if (OF.Candidates.size() < 2) 1095 continue; 1096 1097 // Is it better to outline this candidate than not? 1098 if (OF.getBenefit() < 1) { 1099 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1100 continue; 1101 } 1102 1103 FunctionList.push_back(OF); 1104 } 1105 } 1106 1107 MachineFunction *MachineOutliner::createOutlinedFunction( 1108 Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) { 1109 1110 // Create the function name. This should be unique. 1111 // FIXME: We should have a better naming scheme. This should be stable, 1112 // regardless of changes to the outliner's cost model/traversal order. 1113 std::string FunctionName = "OUTLINED_FUNCTION_"; 1114 if (OutlineRepeatedNum > 0) 1115 FunctionName += std::to_string(OutlineRepeatedNum + 1) + "_"; 1116 FunctionName += std::to_string(Name); 1117 1118 // Create the function using an IR-level function. 1119 LLVMContext &C = M.getContext(); 1120 Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1121 Function::ExternalLinkage, FunctionName, M); 1122 1123 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1124 // which gives us better results when we outline from linkonceodr functions. 1125 F->setLinkage(GlobalValue::InternalLinkage); 1126 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1127 1128 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1129 // necessary. 1130 1131 // Set optsize/minsize, so we don't insert padding between outlined 1132 // functions. 1133 F->addFnAttr(Attribute::OptimizeForSize); 1134 F->addFnAttr(Attribute::MinSize); 1135 1136 // Include target features from an arbitrary candidate for the outlined 1137 // function. This makes sure the outlined function knows what kinds of 1138 // instructions are going into it. This is fine, since all parent functions 1139 // must necessarily support the instructions that are in the outlined region. 1140 Candidate &FirstCand = OF.Candidates.front(); 1141 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1142 if (ParentFn.hasFnAttribute("target-features")) 1143 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1144 1145 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1146 IRBuilder<> Builder(EntryBB); 1147 Builder.CreateRetVoid(); 1148 1149 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1150 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1151 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1152 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1153 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1154 1155 // Insert the new function into the module. 1156 MF.insert(MF.begin(), &MBB); 1157 1158 MachineFunction *OriginalMF = FirstCand.front()->getMF(); 1159 const std::vector<MCCFIInstruction> &Instrs = 1160 OriginalMF->getFrameInstructions(); 1161 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1162 ++I) { 1163 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1164 if (I->isCFIInstruction()) { 1165 unsigned CFIIndex = NewMI->getOperand(0).getCFIIndex(); 1166 MCCFIInstruction CFI = Instrs[CFIIndex]; 1167 (void)MF.addFrameInst(CFI); 1168 } 1169 NewMI->dropMemRefs(MF); 1170 1171 // Don't keep debug information for outlined instructions. 1172 NewMI->setDebugLoc(DebugLoc()); 1173 MBB.insert(MBB.end(), NewMI); 1174 } 1175 1176 // Set normal properties for a late MachineFunction. 1177 MF.getProperties().reset(MachineFunctionProperties::Property::IsSSA); 1178 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 1179 MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs); 1180 MF.getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1181 MF.getRegInfo().freezeReservedRegs(MF); 1182 1183 // Compute live-in set for outlined fn 1184 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1185 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1186 LivePhysRegs LiveIns(TRI); 1187 for (auto &Cand : OF.Candidates) { 1188 // Figure out live-ins at the first instruction. 1189 MachineBasicBlock &OutlineBB = *Cand.front()->getParent(); 1190 LivePhysRegs CandLiveIns(TRI); 1191 CandLiveIns.addLiveOuts(OutlineBB); 1192 for (const MachineInstr &MI : 1193 reverse(make_range(Cand.front(), OutlineBB.end()))) 1194 CandLiveIns.stepBackward(MI); 1195 1196 // The live-in set for the outlined function is the union of the live-ins 1197 // from all the outlining points. 1198 for (MCPhysReg Reg : make_range(CandLiveIns.begin(), CandLiveIns.end())) 1199 LiveIns.addReg(Reg); 1200 } 1201 addLiveIns(MBB, LiveIns); 1202 1203 TII.buildOutlinedFrame(MBB, MF, OF); 1204 1205 // If there's a DISubprogram associated with this outlined function, then 1206 // emit debug info for the outlined function. 1207 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1208 // We have a DISubprogram. Get its DICompileUnit. 1209 DICompileUnit *CU = SP->getUnit(); 1210 DIBuilder DB(M, true, CU); 1211 DIFile *Unit = SP->getFile(); 1212 Mangler Mg; 1213 // Get the mangled name of the function for the linkage name. 1214 std::string Dummy; 1215 llvm::raw_string_ostream MangledNameStream(Dummy); 1216 Mg.getNameWithPrefix(MangledNameStream, F, false); 1217 1218 DISubprogram *OutlinedSP = DB.createFunction( 1219 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1220 Unit /* File */, 1221 0 /* Line 0 is reserved for compiler-generated code. */, 1222 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1223 0, /* Line 0 is reserved for compiler-generated code. */ 1224 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1225 /* Outlined code is optimized code by definition. */ 1226 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1227 1228 // Don't add any new variables to the subprogram. 1229 DB.finalizeSubprogram(OutlinedSP); 1230 1231 // Attach subprogram to the function. 1232 F->setSubprogram(OutlinedSP); 1233 // We're done with the DIBuilder. 1234 DB.finalize(); 1235 } 1236 1237 return &MF; 1238 } 1239 1240 bool MachineOutliner::outline(Module &M, 1241 std::vector<OutlinedFunction> &FunctionList, 1242 InstructionMapper &Mapper, 1243 unsigned &OutlinedFunctionNum) { 1244 1245 bool OutlinedSomething = false; 1246 1247 // Sort by benefit. The most beneficial functions should be outlined first. 1248 llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, 1249 const OutlinedFunction &RHS) { 1250 return LHS.getBenefit() > RHS.getBenefit(); 1251 }); 1252 1253 // Walk over each function, outlining them as we go along. Functions are 1254 // outlined greedily, based off the sort above. 1255 for (OutlinedFunction &OF : FunctionList) { 1256 // If we outlined something that overlapped with a candidate in a previous 1257 // step, then we can't outline from it. 1258 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1259 return std::any_of( 1260 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1261 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1262 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1263 }); 1264 1265 // If we made it unbeneficial to outline this function, skip it. 1266 if (OF.getBenefit() < 1) 1267 continue; 1268 1269 // It's beneficial. Create the function and outline its sequence's 1270 // occurrences. 1271 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1272 emitOutlinedFunctionRemark(OF); 1273 FunctionsCreated++; 1274 OutlinedFunctionNum++; // Created a function, move to the next name. 1275 MachineFunction *MF = OF.MF; 1276 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1277 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1278 1279 // Replace occurrences of the sequence with calls to the new function. 1280 for (Candidate &C : OF.Candidates) { 1281 MachineBasicBlock &MBB = *C.getMBB(); 1282 MachineBasicBlock::iterator StartIt = C.front(); 1283 MachineBasicBlock::iterator EndIt = C.back(); 1284 1285 // Insert the call. 1286 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1287 1288 // If the caller tracks liveness, then we need to make sure that 1289 // anything we outline doesn't break liveness assumptions. The outlined 1290 // functions themselves currently don't track liveness, but we should 1291 // make sure that the ranges we yank things out of aren't wrong. 1292 if (MBB.getParent()->getProperties().hasProperty( 1293 MachineFunctionProperties::Property::TracksLiveness)) { 1294 // The following code is to add implicit def operands to the call 1295 // instruction. It also updates call site information for moved 1296 // code. 1297 SmallSet<Register, 2> UseRegs, DefRegs; 1298 // Copy over the defs in the outlined range. 1299 // First inst in outlined range <-- Anything that's defined in this 1300 // ... .. range has to be added as an 1301 // implicit Last inst in outlined range <-- def to the call 1302 // instruction. Also remove call site information for outlined block 1303 // of code. The exposed uses need to be copied in the outlined range. 1304 for (MachineBasicBlock::reverse_iterator 1305 Iter = EndIt.getReverse(), 1306 Last = std::next(CallInst.getReverse()); 1307 Iter != Last; Iter++) { 1308 MachineInstr *MI = &*Iter; 1309 for (MachineOperand &MOP : MI->operands()) { 1310 // Skip over anything that isn't a register. 1311 if (!MOP.isReg()) 1312 continue; 1313 1314 if (MOP.isDef()) { 1315 // Introduce DefRegs set to skip the redundant register. 1316 DefRegs.insert(MOP.getReg()); 1317 if (UseRegs.count(MOP.getReg())) 1318 // Since the regiester is modeled as defined, 1319 // it is not necessary to be put in use register set. 1320 UseRegs.erase(MOP.getReg()); 1321 } else if (!MOP.isUndef()) { 1322 // Any register which is not undefined should 1323 // be put in the use register set. 1324 UseRegs.insert(MOP.getReg()); 1325 } 1326 } 1327 if (MI->isCandidateForCallSiteEntry()) 1328 MI->getMF()->eraseCallSiteInfo(MI); 1329 } 1330 1331 for (const Register &I : DefRegs) 1332 // If it's a def, add it to the call instruction. 1333 CallInst->addOperand( 1334 MachineOperand::CreateReg(I, true, /* isDef = true */ 1335 true /* isImp = true */)); 1336 1337 for (const Register &I : UseRegs) 1338 // If it's a exposed use, add it to the call instruction. 1339 CallInst->addOperand( 1340 MachineOperand::CreateReg(I, false, /* isDef = false */ 1341 true /* isImp = true */)); 1342 } 1343 1344 // Erase from the point after where the call was inserted up to, and 1345 // including, the final instruction in the sequence. 1346 // Erase needs one past the end, so we need std::next there too. 1347 MBB.erase(std::next(StartIt), std::next(EndIt)); 1348 1349 // Keep track of what we removed by marking them all as -1. 1350 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1351 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1352 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1353 OutlinedSomething = true; 1354 1355 // Statistics. 1356 NumOutlined++; 1357 } 1358 } 1359 1360 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1361 return OutlinedSomething; 1362 } 1363 1364 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1365 MachineModuleInfo &MMI) { 1366 // Build instruction mappings for each function in the module. Start by 1367 // iterating over each Function in M. 1368 for (Function &F : M) { 1369 1370 // If there's nothing in F, then there's no reason to try and outline from 1371 // it. 1372 if (F.empty()) 1373 continue; 1374 1375 // There's something in F. Check if it has a MachineFunction associated with 1376 // it. 1377 MachineFunction *MF = MMI.getMachineFunction(F); 1378 1379 // If it doesn't, then there's nothing to outline from. Move to the next 1380 // Function. 1381 if (!MF) 1382 continue; 1383 1384 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1385 1386 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1387 continue; 1388 1389 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1390 // If it isn't, then move on to the next Function in the module. 1391 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1392 continue; 1393 1394 // We have a function suitable for outlining. Iterate over every 1395 // MachineBasicBlock in MF and try to map its instructions to a list of 1396 // unsigned integers. 1397 for (MachineBasicBlock &MBB : *MF) { 1398 // If there isn't anything in MBB, then there's no point in outlining from 1399 // it. 1400 // If there are fewer than 2 instructions in the MBB, then it can't ever 1401 // contain something worth outlining. 1402 // FIXME: This should be based off of the maximum size in B of an outlined 1403 // call versus the size in B of the MBB. 1404 if (MBB.empty() || MBB.size() < 2) 1405 continue; 1406 1407 // Check if MBB could be the target of an indirect branch. If it is, then 1408 // we don't want to outline from it. 1409 if (MBB.hasAddressTaken()) 1410 continue; 1411 1412 // MBB is suitable for outlining. Map it to a list of unsigneds. 1413 Mapper.convertToUnsignedVec(MBB, *TII); 1414 } 1415 } 1416 } 1417 1418 void MachineOutliner::initSizeRemarkInfo( 1419 const Module &M, const MachineModuleInfo &MMI, 1420 StringMap<unsigned> &FunctionToInstrCount) { 1421 // Collect instruction counts for every function. We'll use this to emit 1422 // per-function size remarks later. 1423 for (const Function &F : M) { 1424 MachineFunction *MF = MMI.getMachineFunction(F); 1425 1426 // We only care about MI counts here. If there's no MachineFunction at this 1427 // point, then there won't be after the outliner runs, so let's move on. 1428 if (!MF) 1429 continue; 1430 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1431 } 1432 } 1433 1434 void MachineOutliner::emitInstrCountChangedRemark( 1435 const Module &M, const MachineModuleInfo &MMI, 1436 const StringMap<unsigned> &FunctionToInstrCount) { 1437 // Iterate over each function in the module and emit remarks. 1438 // Note that we won't miss anything by doing this, because the outliner never 1439 // deletes functions. 1440 for (const Function &F : M) { 1441 MachineFunction *MF = MMI.getMachineFunction(F); 1442 1443 // The outliner never deletes functions. If we don't have a MF here, then we 1444 // didn't have one prior to outlining either. 1445 if (!MF) 1446 continue; 1447 1448 std::string Fname = std::string(F.getName()); 1449 unsigned FnCountAfter = MF->getInstructionCount(); 1450 unsigned FnCountBefore = 0; 1451 1452 // Check if the function was recorded before. 1453 auto It = FunctionToInstrCount.find(Fname); 1454 1455 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1456 // to that. 1457 if (It != FunctionToInstrCount.end()) 1458 FnCountBefore = It->second; 1459 1460 // Compute the delta and emit a remark if there was a change. 1461 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1462 static_cast<int64_t>(FnCountBefore); 1463 if (FnDelta == 0) 1464 continue; 1465 1466 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1467 MORE.emit([&]() { 1468 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1469 DiagnosticLocation(), &MF->front()); 1470 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1471 << ": Function: " 1472 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1473 << ": MI instruction count changed from " 1474 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1475 FnCountBefore) 1476 << " to " 1477 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1478 FnCountAfter) 1479 << "; Delta: " 1480 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1481 return R; 1482 }); 1483 } 1484 } 1485 1486 bool MachineOutliner::runOnModule(Module &M) { 1487 // Check if there's anything in the module. If it's empty, then there's 1488 // nothing to outline. 1489 if (M.empty()) 1490 return false; 1491 1492 // Number to append to the current outlined function. 1493 unsigned OutlinedFunctionNum = 0; 1494 1495 OutlineRepeatedNum = 0; 1496 if (!doOutline(M, OutlinedFunctionNum)) 1497 return false; 1498 1499 for (unsigned I = 0; I < OutlinerReruns; ++I) { 1500 OutlinedFunctionNum = 0; 1501 OutlineRepeatedNum++; 1502 if (!doOutline(M, OutlinedFunctionNum)) { 1503 LLVM_DEBUG({ 1504 dbgs() << "Did not outline on iteration " << I + 2 << " out of " 1505 << OutlinerReruns + 1 << "\n"; 1506 }); 1507 break; 1508 } 1509 } 1510 1511 return true; 1512 } 1513 1514 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) { 1515 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1516 1517 // If the user passed -enable-machine-outliner=always or 1518 // -enable-machine-outliner, the pass will run on all functions in the module. 1519 // Otherwise, if the target supports default outlining, it will run on all 1520 // functions deemed by the target to be worth outlining from by default. Tell 1521 // the user how the outliner is running. 1522 LLVM_DEBUG({ 1523 dbgs() << "Machine Outliner: Running on "; 1524 if (RunOnAllFunctions) 1525 dbgs() << "all functions"; 1526 else 1527 dbgs() << "target-default functions"; 1528 dbgs() << "\n"; 1529 }); 1530 1531 // If the user specifies that they want to outline from linkonceodrs, set 1532 // it here. 1533 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1534 InstructionMapper Mapper; 1535 1536 // Prepare instruction mappings for the suffix tree. 1537 populateMapper(Mapper, M, MMI); 1538 std::vector<OutlinedFunction> FunctionList; 1539 1540 // Find all of the outlining candidates. 1541 findCandidates(Mapper, FunctionList); 1542 1543 // If we've requested size remarks, then collect the MI counts of every 1544 // function before outlining, and the MI counts after outlining. 1545 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1546 // the pass manager's responsibility. 1547 // This could pretty easily be placed in outline instead, but because we 1548 // really ultimately *don't* want this here, it's done like this for now 1549 // instead. 1550 1551 // Check if we want size remarks. 1552 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1553 StringMap<unsigned> FunctionToInstrCount; 1554 if (ShouldEmitSizeRemarks) 1555 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1556 1557 // Outline each of the candidates and return true if something was outlined. 1558 bool OutlinedSomething = 1559 outline(M, FunctionList, Mapper, OutlinedFunctionNum); 1560 1561 // If we outlined something, we definitely changed the MI count of the 1562 // module. If we've asked for size remarks, then output them. 1563 // FIXME: This should be in the pass manager. 1564 if (ShouldEmitSizeRemarks && OutlinedSomething) 1565 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1566 1567 LLVM_DEBUG({ 1568 if (!OutlinedSomething) 1569 dbgs() << "Stopped outlining at iteration " << OutlineRepeatedNum 1570 << " because no changes were found.\n"; 1571 }); 1572 1573 return OutlinedSomething; 1574 } 1575