1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Replaces repeated sequences of instructions with function calls.
11 ///
12 /// This works by placing every instruction from every basic block in a
13 /// suffix tree, and repeatedly querying that tree for repeated sequences of
14 /// instructions. If a sequence of instructions appears often, then it ought
15 /// to be beneficial to pull out into a function.
16 ///
17 /// The MachineOutliner communicates with a given target using hooks defined in
18 /// TargetInstrInfo.h. The target supplies the outliner with information on how
19 /// a specific sequence of instructions should be outlined. This information
20 /// is used to deduce the number of instructions necessary to
21 ///
22 /// * Create an outlined function
23 /// * Call that outlined function
24 ///
25 /// Targets must implement
26 ///   * getOutliningCandidateInfo
27 ///   * buildOutlinedFrame
28 ///   * insertOutlinedCall
29 ///   * isFunctionSafeToOutlineFrom
30 ///
31 /// in order to make use of the MachineOutliner.
32 ///
33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
35 /// how this pass works, the talk is available on YouTube at
36 ///
37 /// https://www.youtube.com/watch?v=yorld-WSOeU
38 ///
39 /// The slides for the talk are available at
40 ///
41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
42 ///
43 /// The talk provides an overview of how the outliner finds candidates and
44 /// ultimately outlines them. It describes how the main data structure for this
45 /// pass, the suffix tree, is queried and purged for candidates. It also gives
46 /// a simplified suffix tree construction algorithm for suffix trees based off
47 /// of the algorithm actually used here, Ukkonen's algorithm.
48 ///
49 /// For the original RFC for this pass, please see
50 ///
51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
52 ///
53 /// For more information on the suffix tree data structure, please see
54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
55 ///
56 //===----------------------------------------------------------------------===//
57 #include "llvm/CodeGen/MachineOutliner.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/CodeGen/MachineFunction.h"
62 #include "llvm/CodeGen/MachineModuleInfo.h"
63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
64 #include "llvm/CodeGen/MachineRegisterInfo.h"
65 #include "llvm/CodeGen/Passes.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/IR/Mangler.h"
71 #include "llvm/Support/Allocator.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <functional>
76 #include <tuple>
77 #include <vector>
78 
79 #define DEBUG_TYPE "machine-outliner"
80 
81 using namespace llvm;
82 using namespace ore;
83 using namespace outliner;
84 
85 STATISTIC(NumOutlined, "Number of candidates outlined");
86 STATISTIC(FunctionsCreated, "Number of functions created");
87 
88 // Set to true if the user wants the outliner to run on linkonceodr linkage
89 // functions. This is false by default because the linker can dedupe linkonceodr
90 // functions. Since the outliner is confined to a single module (modulo LTO),
91 // this is off by default. It should, however, be the default behaviour in
92 // LTO.
93 static cl::opt<bool> EnableLinkOnceODROutlining(
94     "enable-linkonceodr-outlining", cl::Hidden,
95     cl::desc("Enable the machine outliner on linkonceodr functions"),
96     cl::init(false));
97 
98 namespace {
99 
100 /// Represents an undefined index in the suffix tree.
101 const unsigned EmptyIdx = -1;
102 
103 /// A node in a suffix tree which represents a substring or suffix.
104 ///
105 /// Each node has either no children or at least two children, with the root
106 /// being a exception in the empty tree.
107 ///
108 /// Children are represented as a map between unsigned integers and nodes. If
109 /// a node N has a child M on unsigned integer k, then the mapping represented
110 /// by N is a proper prefix of the mapping represented by M. Note that this,
111 /// although similar to a trie is somewhat different: each node stores a full
112 /// substring of the full mapping rather than a single character state.
113 ///
114 /// Each internal node contains a pointer to the internal node representing
115 /// the same string, but with the first character chopped off. This is stored
116 /// in \p Link. Each leaf node stores the start index of its respective
117 /// suffix in \p SuffixIdx.
118 struct SuffixTreeNode {
119 
120   /// The children of this node.
121   ///
122   /// A child existing on an unsigned integer implies that from the mapping
123   /// represented by the current node, there is a way to reach another
124   /// mapping by tacking that character on the end of the current string.
125   DenseMap<unsigned, SuffixTreeNode *> Children;
126 
127   /// The start index of this node's substring in the main string.
128   unsigned StartIdx = EmptyIdx;
129 
130   /// The end index of this node's substring in the main string.
131   ///
132   /// Every leaf node must have its \p EndIdx incremented at the end of every
133   /// step in the construction algorithm. To avoid having to update O(N)
134   /// nodes individually at the end of every step, the end index is stored
135   /// as a pointer.
136   unsigned *EndIdx = nullptr;
137 
138   /// For leaves, the start index of the suffix represented by this node.
139   ///
140   /// For all other nodes, this is ignored.
141   unsigned SuffixIdx = EmptyIdx;
142 
143   /// For internal nodes, a pointer to the internal node representing
144   /// the same sequence with the first character chopped off.
145   ///
146   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
147   /// Ukkonen's algorithm does to achieve linear-time construction is
148   /// keep track of which node the next insert should be at. This makes each
149   /// insert O(1), and there are a total of O(N) inserts. The suffix link
150   /// helps with inserting children of internal nodes.
151   ///
152   /// Say we add a child to an internal node with associated mapping S. The
153   /// next insertion must be at the node representing S - its first character.
154   /// This is given by the way that we iteratively build the tree in Ukkonen's
155   /// algorithm. The main idea is to look at the suffixes of each prefix in the
156   /// string, starting with the longest suffix of the prefix, and ending with
157   /// the shortest. Therefore, if we keep pointers between such nodes, we can
158   /// move to the next insertion point in O(1) time. If we don't, then we'd
159   /// have to query from the root, which takes O(N) time. This would make the
160   /// construction algorithm O(N^2) rather than O(N).
161   SuffixTreeNode *Link = nullptr;
162 
163   /// The length of the string formed by concatenating the edge labels from the
164   /// root to this node.
165   unsigned ConcatLen = 0;
166 
167   /// Returns true if this node is a leaf.
168   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
169 
170   /// Returns true if this node is the root of its owning \p SuffixTree.
171   bool isRoot() const { return StartIdx == EmptyIdx; }
172 
173   /// Return the number of elements in the substring associated with this node.
174   size_t size() const {
175 
176     // Is it the root? If so, it's the empty string so return 0.
177     if (isRoot())
178       return 0;
179 
180     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
181 
182     // Size = the number of elements in the string.
183     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
184     return *EndIdx - StartIdx + 1;
185   }
186 
187   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
188       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
189 
190   SuffixTreeNode() {}
191 };
192 
193 /// A data structure for fast substring queries.
194 ///
195 /// Suffix trees represent the suffixes of their input strings in their leaves.
196 /// A suffix tree is a type of compressed trie structure where each node
197 /// represents an entire substring rather than a single character. Each leaf
198 /// of the tree is a suffix.
199 ///
200 /// A suffix tree can be seen as a type of state machine where each state is a
201 /// substring of the full string. The tree is structured so that, for a string
202 /// of length N, there are exactly N leaves in the tree. This structure allows
203 /// us to quickly find repeated substrings of the input string.
204 ///
205 /// In this implementation, a "string" is a vector of unsigned integers.
206 /// These integers may result from hashing some data type. A suffix tree can
207 /// contain 1 or many strings, which can then be queried as one large string.
208 ///
209 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
210 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
211 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
212 /// paper is available at
213 ///
214 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
215 class SuffixTree {
216 public:
217   /// Each element is an integer representing an instruction in the module.
218   ArrayRef<unsigned> Str;
219 
220   /// A repeated substring in the tree.
221   struct RepeatedSubstring {
222     /// The length of the string.
223     unsigned Length;
224 
225     /// The start indices of each occurrence.
226     std::vector<unsigned> StartIndices;
227   };
228 
229 private:
230   /// Maintains each node in the tree.
231   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
232 
233   /// The root of the suffix tree.
234   ///
235   /// The root represents the empty string. It is maintained by the
236   /// \p NodeAllocator like every other node in the tree.
237   SuffixTreeNode *Root = nullptr;
238 
239   /// Maintains the end indices of the internal nodes in the tree.
240   ///
241   /// Each internal node is guaranteed to never have its end index change
242   /// during the construction algorithm; however, leaves must be updated at
243   /// every step. Therefore, we need to store leaf end indices by reference
244   /// to avoid updating O(N) leaves at every step of construction. Thus,
245   /// every internal node must be allocated its own end index.
246   BumpPtrAllocator InternalEndIdxAllocator;
247 
248   /// The end index of each leaf in the tree.
249   unsigned LeafEndIdx = -1;
250 
251   /// Helper struct which keeps track of the next insertion point in
252   /// Ukkonen's algorithm.
253   struct ActiveState {
254     /// The next node to insert at.
255     SuffixTreeNode *Node;
256 
257     /// The index of the first character in the substring currently being added.
258     unsigned Idx = EmptyIdx;
259 
260     /// The length of the substring we have to add at the current step.
261     unsigned Len = 0;
262   };
263 
264   /// The point the next insertion will take place at in the
265   /// construction algorithm.
266   ActiveState Active;
267 
268   /// Allocate a leaf node and add it to the tree.
269   ///
270   /// \param Parent The parent of this node.
271   /// \param StartIdx The start index of this node's associated string.
272   /// \param Edge The label on the edge leaving \p Parent to this node.
273   ///
274   /// \returns A pointer to the allocated leaf node.
275   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
276                              unsigned Edge) {
277 
278     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
279 
280     SuffixTreeNode *N = new (NodeAllocator.Allocate())
281         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
282     Parent.Children[Edge] = N;
283 
284     return N;
285   }
286 
287   /// Allocate an internal node and add it to the tree.
288   ///
289   /// \param Parent The parent of this node. Only null when allocating the root.
290   /// \param StartIdx The start index of this node's associated string.
291   /// \param EndIdx The end index of this node's associated string.
292   /// \param Edge The label on the edge leaving \p Parent to this node.
293   ///
294   /// \returns A pointer to the allocated internal node.
295   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
296                                      unsigned EndIdx, unsigned Edge) {
297 
298     assert(StartIdx <= EndIdx && "String can't start after it ends!");
299     assert(!(!Parent && StartIdx != EmptyIdx) &&
300            "Non-root internal nodes must have parents!");
301 
302     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
303     SuffixTreeNode *N =
304         new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root);
305     if (Parent)
306       Parent->Children[Edge] = N;
307 
308     return N;
309   }
310 
311   /// Set the suffix indices of the leaves to the start indices of their
312   /// respective suffixes.
313   ///
314   /// \param[in] CurrNode The node currently being visited.
315   /// \param CurrNodeLen The concatenation of all node sizes from the root to
316   /// this node. Used to produce suffix indices.
317   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
318 
319     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
320 
321     // Store the concatenation of lengths down from the root.
322     CurrNode.ConcatLen = CurrNodeLen;
323     // Traverse the tree depth-first.
324     for (auto &ChildPair : CurrNode.Children) {
325       assert(ChildPair.second && "Node had a null child!");
326       setSuffixIndices(*ChildPair.second,
327                        CurrNodeLen + ChildPair.second->size());
328     }
329 
330     // Is this node a leaf? If it is, give it a suffix index.
331     if (IsLeaf)
332       CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
333   }
334 
335   /// Construct the suffix tree for the prefix of the input ending at
336   /// \p EndIdx.
337   ///
338   /// Used to construct the full suffix tree iteratively. At the end of each
339   /// step, the constructed suffix tree is either a valid suffix tree, or a
340   /// suffix tree with implicit suffixes. At the end of the final step, the
341   /// suffix tree is a valid tree.
342   ///
343   /// \param EndIdx The end index of the current prefix in the main string.
344   /// \param SuffixesToAdd The number of suffixes that must be added
345   /// to complete the suffix tree at the current phase.
346   ///
347   /// \returns The number of suffixes that have not been added at the end of
348   /// this step.
349   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
350     SuffixTreeNode *NeedsLink = nullptr;
351 
352     while (SuffixesToAdd > 0) {
353 
354       // Are we waiting to add anything other than just the last character?
355       if (Active.Len == 0) {
356         // If not, then say the active index is the end index.
357         Active.Idx = EndIdx;
358       }
359 
360       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
361 
362       // The first character in the current substring we're looking at.
363       unsigned FirstChar = Str[Active.Idx];
364 
365       // Have we inserted anything starting with FirstChar at the current node?
366       if (Active.Node->Children.count(FirstChar) == 0) {
367         // If not, then we can just insert a leaf and move too the next step.
368         insertLeaf(*Active.Node, EndIdx, FirstChar);
369 
370         // The active node is an internal node, and we visited it, so it must
371         // need a link if it doesn't have one.
372         if (NeedsLink) {
373           NeedsLink->Link = Active.Node;
374           NeedsLink = nullptr;
375         }
376       } else {
377         // There's a match with FirstChar, so look for the point in the tree to
378         // insert a new node.
379         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
380 
381         unsigned SubstringLen = NextNode->size();
382 
383         // Is the current suffix we're trying to insert longer than the size of
384         // the child we want to move to?
385         if (Active.Len >= SubstringLen) {
386           // If yes, then consume the characters we've seen and move to the next
387           // node.
388           Active.Idx += SubstringLen;
389           Active.Len -= SubstringLen;
390           Active.Node = NextNode;
391           continue;
392         }
393 
394         // Otherwise, the suffix we're trying to insert must be contained in the
395         // next node we want to move to.
396         unsigned LastChar = Str[EndIdx];
397 
398         // Is the string we're trying to insert a substring of the next node?
399         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
400           // If yes, then we're done for this step. Remember our insertion point
401           // and move to the next end index. At this point, we have an implicit
402           // suffix tree.
403           if (NeedsLink && !Active.Node->isRoot()) {
404             NeedsLink->Link = Active.Node;
405             NeedsLink = nullptr;
406           }
407 
408           Active.Len++;
409           break;
410         }
411 
412         // The string we're trying to insert isn't a substring of the next node,
413         // but matches up to a point. Split the node.
414         //
415         // For example, say we ended our search at a node n and we're trying to
416         // insert ABD. Then we'll create a new node s for AB, reduce n to just
417         // representing C, and insert a new leaf node l to represent d. This
418         // allows us to ensure that if n was a leaf, it remains a leaf.
419         //
420         //   | ABC  ---split--->  | AB
421         //   n                    s
422         //                     C / \ D
423         //                      n   l
424 
425         // The node s from the diagram
426         SuffixTreeNode *SplitNode =
427             insertInternalNode(Active.Node, NextNode->StartIdx,
428                                NextNode->StartIdx + Active.Len - 1, FirstChar);
429 
430         // Insert the new node representing the new substring into the tree as
431         // a child of the split node. This is the node l from the diagram.
432         insertLeaf(*SplitNode, EndIdx, LastChar);
433 
434         // Make the old node a child of the split node and update its start
435         // index. This is the node n from the diagram.
436         NextNode->StartIdx += Active.Len;
437         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
438 
439         // SplitNode is an internal node, update the suffix link.
440         if (NeedsLink)
441           NeedsLink->Link = SplitNode;
442 
443         NeedsLink = SplitNode;
444       }
445 
446       // We've added something new to the tree, so there's one less suffix to
447       // add.
448       SuffixesToAdd--;
449 
450       if (Active.Node->isRoot()) {
451         if (Active.Len > 0) {
452           Active.Len--;
453           Active.Idx = EndIdx - SuffixesToAdd + 1;
454         }
455       } else {
456         // Start the next phase at the next smallest suffix.
457         Active.Node = Active.Node->Link;
458       }
459     }
460 
461     return SuffixesToAdd;
462   }
463 
464 public:
465   /// Construct a suffix tree from a sequence of unsigned integers.
466   ///
467   /// \param Str The string to construct the suffix tree for.
468   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
469     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
470     Active.Node = Root;
471 
472     // Keep track of the number of suffixes we have to add of the current
473     // prefix.
474     unsigned SuffixesToAdd = 0;
475     Active.Node = Root;
476 
477     // Construct the suffix tree iteratively on each prefix of the string.
478     // PfxEndIdx is the end index of the current prefix.
479     // End is one past the last element in the string.
480     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
481          PfxEndIdx++) {
482       SuffixesToAdd++;
483       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
484       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
485     }
486 
487     // Set the suffix indices of each leaf.
488     assert(Root && "Root node can't be nullptr!");
489     setSuffixIndices(*Root, 0);
490   }
491 
492   /// Iterator for finding all repeated substrings in the suffix tree.
493   struct RepeatedSubstringIterator {
494   private:
495     /// The current node we're visiting.
496     SuffixTreeNode *N = nullptr;
497 
498     /// The repeated substring associated with this node.
499     RepeatedSubstring RS;
500 
501     /// The nodes left to visit.
502     std::vector<SuffixTreeNode *> ToVisit;
503 
504     /// The minimum length of a repeated substring to find.
505     /// Since we're outlining, we want at least two instructions in the range.
506     /// FIXME: This may not be true for targets like X86 which support many
507     /// instruction lengths.
508     const unsigned MinLength = 2;
509 
510     /// Move the iterator to the next repeated substring.
511     void advance() {
512       // Clear the current state. If we're at the end of the range, then this
513       // is the state we want to be in.
514       RS = RepeatedSubstring();
515       N = nullptr;
516 
517       // Each leaf node represents a repeat of a string.
518       std::vector<SuffixTreeNode *> LeafChildren;
519 
520       // Continue visiting nodes until we find one which repeats more than once.
521       while (!ToVisit.empty()) {
522         SuffixTreeNode *Curr = ToVisit.back();
523         ToVisit.pop_back();
524         LeafChildren.clear();
525 
526         // Keep track of the length of the string associated with the node. If
527         // it's too short, we'll quit.
528         unsigned Length = Curr->ConcatLen;
529 
530         // Iterate over each child, saving internal nodes for visiting, and
531         // leaf nodes in LeafChildren. Internal nodes represent individual
532         // strings, which may repeat.
533         for (auto &ChildPair : Curr->Children) {
534           // Save all of this node's children for processing.
535           if (!ChildPair.second->isLeaf())
536             ToVisit.push_back(ChildPair.second);
537 
538           // It's not an internal node, so it must be a leaf. If we have a
539           // long enough string, then save the leaf children.
540           else if (Length >= MinLength)
541             LeafChildren.push_back(ChildPair.second);
542         }
543 
544         // The root never represents a repeated substring. If we're looking at
545         // that, then skip it.
546         if (Curr->isRoot())
547           continue;
548 
549         // Do we have any repeated substrings?
550         if (LeafChildren.size() >= 2) {
551           // Yes. Update the state to reflect this, and then bail out.
552           N = Curr;
553           RS.Length = Length;
554           for (SuffixTreeNode *Leaf : LeafChildren)
555             RS.StartIndices.push_back(Leaf->SuffixIdx);
556           break;
557         }
558       }
559 
560       // At this point, either NewRS is an empty RepeatedSubstring, or it was
561       // set in the above loop. Similarly, N is either nullptr, or the node
562       // associated with NewRS.
563     }
564 
565   public:
566     /// Return the current repeated substring.
567     RepeatedSubstring &operator*() { return RS; }
568 
569     RepeatedSubstringIterator &operator++() {
570       advance();
571       return *this;
572     }
573 
574     RepeatedSubstringIterator operator++(int I) {
575       RepeatedSubstringIterator It(*this);
576       advance();
577       return It;
578     }
579 
580     bool operator==(const RepeatedSubstringIterator &Other) {
581       return N == Other.N;
582     }
583     bool operator!=(const RepeatedSubstringIterator &Other) {
584       return !(*this == Other);
585     }
586 
587     RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
588       // Do we have a non-null node?
589       if (N) {
590         // Yes. At the first step, we need to visit all of N's children.
591         // Note: This means that we visit N last.
592         ToVisit.push_back(N);
593         advance();
594       }
595     }
596   };
597 
598   typedef RepeatedSubstringIterator iterator;
599   iterator begin() { return iterator(Root); }
600   iterator end() { return iterator(nullptr); }
601 };
602 
603 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
604 struct InstructionMapper {
605 
606   /// The next available integer to assign to a \p MachineInstr that
607   /// cannot be outlined.
608   ///
609   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
610   unsigned IllegalInstrNumber = -3;
611 
612   /// The next available integer to assign to a \p MachineInstr that can
613   /// be outlined.
614   unsigned LegalInstrNumber = 0;
615 
616   /// Correspondence from \p MachineInstrs to unsigned integers.
617   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
618       InstructionIntegerMap;
619 
620   /// Correspondence between \p MachineBasicBlocks and target-defined flags.
621   DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
622 
623   /// The vector of unsigned integers that the module is mapped to.
624   std::vector<unsigned> UnsignedVec;
625 
626   /// Stores the location of the instruction associated with the integer
627   /// at index i in \p UnsignedVec for each index i.
628   std::vector<MachineBasicBlock::iterator> InstrList;
629 
630   // Set if we added an illegal number in the previous step.
631   // Since each illegal number is unique, we only need one of them between
632   // each range of legal numbers. This lets us make sure we don't add more
633   // than one illegal number per range.
634   bool AddedIllegalLastTime = false;
635 
636   /// Maps \p *It to a legal integer.
637   ///
638   /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
639   /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
640   ///
641   /// \returns The integer that \p *It was mapped to.
642   unsigned mapToLegalUnsigned(
643       MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
644       bool &HaveLegalRange, unsigned &NumLegalInBlock,
645       std::vector<unsigned> &UnsignedVecForMBB,
646       std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
647     // We added something legal, so we should unset the AddedLegalLastTime
648     // flag.
649     AddedIllegalLastTime = false;
650 
651     // If we have at least two adjacent legal instructions (which may have
652     // invisible instructions in between), remember that.
653     if (CanOutlineWithPrevInstr)
654       HaveLegalRange = true;
655     CanOutlineWithPrevInstr = true;
656 
657     // Keep track of the number of legal instructions we insert.
658     NumLegalInBlock++;
659 
660     // Get the integer for this instruction or give it the current
661     // LegalInstrNumber.
662     InstrListForMBB.push_back(It);
663     MachineInstr &MI = *It;
664     bool WasInserted;
665     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
666         ResultIt;
667     std::tie(ResultIt, WasInserted) =
668         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
669     unsigned MINumber = ResultIt->second;
670 
671     // There was an insertion.
672     if (WasInserted)
673       LegalInstrNumber++;
674 
675     UnsignedVecForMBB.push_back(MINumber);
676 
677     // Make sure we don't overflow or use any integers reserved by the DenseMap.
678     if (LegalInstrNumber >= IllegalInstrNumber)
679       report_fatal_error("Instruction mapping overflow!");
680 
681     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
682            "Tried to assign DenseMap tombstone or empty key to instruction.");
683     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
684            "Tried to assign DenseMap tombstone or empty key to instruction.");
685 
686     return MINumber;
687   }
688 
689   /// Maps \p *It to an illegal integer.
690   ///
691   /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
692   /// IllegalInstrNumber.
693   ///
694   /// \returns The integer that \p *It was mapped to.
695   unsigned mapToIllegalUnsigned(
696       MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
697       std::vector<unsigned> &UnsignedVecForMBB,
698       std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
699     // Can't outline an illegal instruction. Set the flag.
700     CanOutlineWithPrevInstr = false;
701 
702     // Only add one illegal number per range of legal numbers.
703     if (AddedIllegalLastTime)
704       return IllegalInstrNumber;
705 
706     // Remember that we added an illegal number last time.
707     AddedIllegalLastTime = true;
708     unsigned MINumber = IllegalInstrNumber;
709 
710     InstrListForMBB.push_back(It);
711     UnsignedVecForMBB.push_back(IllegalInstrNumber);
712     IllegalInstrNumber--;
713 
714     assert(LegalInstrNumber < IllegalInstrNumber &&
715            "Instruction mapping overflow!");
716 
717     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
718            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
719 
720     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
721            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
722 
723     return MINumber;
724   }
725 
726   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
727   /// and appends it to \p UnsignedVec and \p InstrList.
728   ///
729   /// Two instructions are assigned the same integer if they are identical.
730   /// If an instruction is deemed unsafe to outline, then it will be assigned an
731   /// unique integer. The resulting mapping is placed into a suffix tree and
732   /// queried for candidates.
733   ///
734   /// \param MBB The \p MachineBasicBlock to be translated into integers.
735   /// \param TII \p TargetInstrInfo for the function.
736   void convertToUnsignedVec(MachineBasicBlock &MBB,
737                             const TargetInstrInfo &TII) {
738     unsigned Flags = 0;
739 
740     // Don't even map in this case.
741     if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
742       return;
743 
744     // Store info for the MBB for later outlining.
745     MBBFlagsMap[&MBB] = Flags;
746 
747     MachineBasicBlock::iterator It = MBB.begin();
748 
749     // The number of instructions in this block that will be considered for
750     // outlining.
751     unsigned NumLegalInBlock = 0;
752 
753     // True if we have at least two legal instructions which aren't separated
754     // by an illegal instruction.
755     bool HaveLegalRange = false;
756 
757     // True if we can perform outlining given the last mapped (non-invisible)
758     // instruction. This lets us know if we have a legal range.
759     bool CanOutlineWithPrevInstr = false;
760 
761     // FIXME: Should this all just be handled in the target, rather than using
762     // repeated calls to getOutliningType?
763     std::vector<unsigned> UnsignedVecForMBB;
764     std::vector<MachineBasicBlock::iterator> InstrListForMBB;
765 
766     for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
767       // Keep track of where this instruction is in the module.
768       switch (TII.getOutliningType(It, Flags)) {
769       case InstrType::Illegal:
770         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
771                              InstrListForMBB);
772         break;
773 
774       case InstrType::Legal:
775         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
776                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
777         break;
778 
779       case InstrType::LegalTerminator:
780         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
781                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
782         // The instruction also acts as a terminator, so we have to record that
783         // in the string.
784         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
785                              InstrListForMBB);
786         break;
787 
788       case InstrType::Invisible:
789         // Normally this is set by mapTo(Blah)Unsigned, but we just want to
790         // skip this instruction. So, unset the flag here.
791         AddedIllegalLastTime = false;
792         break;
793       }
794     }
795 
796     // Are there enough legal instructions in the block for outlining to be
797     // possible?
798     if (HaveLegalRange) {
799       // After we're done every insertion, uniquely terminate this part of the
800       // "string". This makes sure we won't match across basic block or function
801       // boundaries since the "end" is encoded uniquely and thus appears in no
802       // repeated substring.
803       mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
804                            InstrListForMBB);
805       InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
806                        InstrListForMBB.end());
807       UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
808                          UnsignedVecForMBB.end());
809     }
810   }
811 
812   InstructionMapper() {
813     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
814     // changed.
815     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
816            "DenseMapInfo<unsigned>'s empty key isn't -1!");
817     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
818            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
819   }
820 };
821 
822 /// An interprocedural pass which finds repeated sequences of
823 /// instructions and replaces them with calls to functions.
824 ///
825 /// Each instruction is mapped to an unsigned integer and placed in a string.
826 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
827 /// is then repeatedly queried for repeated sequences of instructions. Each
828 /// non-overlapping repeated sequence is then placed in its own
829 /// \p MachineFunction and each instance is then replaced with a call to that
830 /// function.
831 struct MachineOutliner : public ModulePass {
832 
833   static char ID;
834 
835   /// Set to true if the outliner should consider functions with
836   /// linkonceodr linkage.
837   bool OutlineFromLinkOnceODRs = false;
838 
839   /// Set to true if the outliner should run on all functions in the module
840   /// considered safe for outlining.
841   /// Set to true by default for compatibility with llc's -run-pass option.
842   /// Set when the pass is constructed in TargetPassConfig.
843   bool RunOnAllFunctions = true;
844 
845   StringRef getPassName() const override { return "Machine Outliner"; }
846 
847   void getAnalysisUsage(AnalysisUsage &AU) const override {
848     AU.addRequired<MachineModuleInfoWrapperPass>();
849     AU.addPreserved<MachineModuleInfoWrapperPass>();
850     AU.setPreservesAll();
851     ModulePass::getAnalysisUsage(AU);
852   }
853 
854   MachineOutliner() : ModulePass(ID) {
855     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
856   }
857 
858   /// Remark output explaining that not outlining a set of candidates would be
859   /// better than outlining that set.
860   void emitNotOutliningCheaperRemark(
861       unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
862       OutlinedFunction &OF);
863 
864   /// Remark output explaining that a function was outlined.
865   void emitOutlinedFunctionRemark(OutlinedFunction &OF);
866 
867   /// Find all repeated substrings that satisfy the outlining cost model by
868   /// constructing a suffix tree.
869   ///
870   /// If a substring appears at least twice, then it must be represented by
871   /// an internal node which appears in at least two suffixes. Each suffix
872   /// is represented by a leaf node. To do this, we visit each internal node
873   /// in the tree, using the leaf children of each internal node. If an
874   /// internal node represents a beneficial substring, then we use each of
875   /// its leaf children to find the locations of its substring.
876   ///
877   /// \param Mapper Contains outlining mapping information.
878   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
879   /// each type of candidate.
880   void findCandidates(InstructionMapper &Mapper,
881                       std::vector<OutlinedFunction> &FunctionList);
882 
883   /// Replace the sequences of instructions represented by \p OutlinedFunctions
884   /// with calls to functions.
885   ///
886   /// \param M The module we are outlining from.
887   /// \param FunctionList A list of functions to be inserted into the module.
888   /// \param Mapper Contains the instruction mappings for the module.
889   bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
890                InstructionMapper &Mapper, unsigned &OutlinedFunctionNum);
891 
892   /// Creates a function for \p OF and inserts it into the module.
893   MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
894                                           InstructionMapper &Mapper,
895                                           unsigned Name);
896 
897   /// Calls 'doOutline()'.
898   bool runOnModule(Module &M) override;
899 
900   /// Construct a suffix tree on the instructions in \p M and outline repeated
901   /// strings from that tree.
902   bool doOutline(Module &M, unsigned &OutlinedFunctionNum);
903 
904   /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
905   /// function for remark emission.
906   DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
907     DISubprogram *SP;
908     for (const Candidate &C : OF.Candidates)
909       if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram()))
910         return SP;
911     return nullptr;
912   }
913 
914   /// Populate and \p InstructionMapper with instruction-to-integer mappings.
915   /// These are used to construct a suffix tree.
916   void populateMapper(InstructionMapper &Mapper, Module &M,
917                       MachineModuleInfo &MMI);
918 
919   /// Initialize information necessary to output a size remark.
920   /// FIXME: This should be handled by the pass manager, not the outliner.
921   /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
922   /// pass manager.
923   void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI,
924                           StringMap<unsigned> &FunctionToInstrCount);
925 
926   /// Emit the remark.
927   // FIXME: This should be handled by the pass manager, not the outliner.
928   void
929   emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI,
930                               const StringMap<unsigned> &FunctionToInstrCount);
931 };
932 } // Anonymous namespace.
933 
934 char MachineOutliner::ID = 0;
935 
936 namespace llvm {
937 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
938   MachineOutliner *OL = new MachineOutliner();
939   OL->RunOnAllFunctions = RunOnAllFunctions;
940   return OL;
941 }
942 
943 } // namespace llvm
944 
945 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
946                 false)
947 
948 void MachineOutliner::emitNotOutliningCheaperRemark(
949     unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
950     OutlinedFunction &OF) {
951   // FIXME: Right now, we arbitrarily choose some Candidate from the
952   // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
953   // We should probably sort these by function name or something to make sure
954   // the remarks are stable.
955   Candidate &C = CandidatesForRepeatedSeq.front();
956   MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
957   MORE.emit([&]() {
958     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
959                                       C.front()->getDebugLoc(), C.getMBB());
960     R << "Did not outline " << NV("Length", StringLen) << " instructions"
961       << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
962       << " locations."
963       << " Bytes from outlining all occurrences ("
964       << NV("OutliningCost", OF.getOutliningCost()) << ")"
965       << " >= Unoutlined instruction bytes ("
966       << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
967       << " (Also found at: ";
968 
969     // Tell the user the other places the candidate was found.
970     for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
971       R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
972               CandidatesForRepeatedSeq[i].front()->getDebugLoc());
973       if (i != e - 1)
974         R << ", ";
975     }
976 
977     R << ")";
978     return R;
979   });
980 }
981 
982 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
983   MachineBasicBlock *MBB = &*OF.MF->begin();
984   MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
985   MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
986                               MBB->findDebugLoc(MBB->begin()), MBB);
987   R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
988     << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
989     << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
990     << " locations. "
991     << "(Found at: ";
992 
993   // Tell the user the other places the candidate was found.
994   for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
995 
996     R << NV((Twine("StartLoc") + Twine(i)).str(),
997             OF.Candidates[i].front()->getDebugLoc());
998     if (i != e - 1)
999       R << ", ";
1000   }
1001 
1002   R << ")";
1003 
1004   MORE.emit(R);
1005 }
1006 
1007 void MachineOutliner::findCandidates(
1008     InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) {
1009   FunctionList.clear();
1010   SuffixTree ST(Mapper.UnsignedVec);
1011 
1012   // First, find all of the repeated substrings in the tree of minimum length
1013   // 2.
1014   std::vector<Candidate> CandidatesForRepeatedSeq;
1015   for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
1016     CandidatesForRepeatedSeq.clear();
1017     SuffixTree::RepeatedSubstring RS = *It;
1018     unsigned StringLen = RS.Length;
1019     for (const unsigned &StartIdx : RS.StartIndices) {
1020       unsigned EndIdx = StartIdx + StringLen - 1;
1021       // Trick: Discard some candidates that would be incompatible with the
1022       // ones we've already found for this sequence. This will save us some
1023       // work in candidate selection.
1024       //
1025       // If two candidates overlap, then we can't outline them both. This
1026       // happens when we have candidates that look like, say
1027       //
1028       // AA (where each "A" is an instruction).
1029       //
1030       // We might have some portion of the module that looks like this:
1031       // AAAAAA (6 A's)
1032       //
1033       // In this case, there are 5 different copies of "AA" in this range, but
1034       // at most 3 can be outlined. If only outlining 3 of these is going to
1035       // be unbeneficial, then we ought to not bother.
1036       //
1037       // Note that two things DON'T overlap when they look like this:
1038       // start1...end1 .... start2...end2
1039       // That is, one must either
1040       // * End before the other starts
1041       // * Start after the other ends
1042       if (std::all_of(
1043               CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
1044               [&StartIdx, &EndIdx](const Candidate &C) {
1045                 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
1046               })) {
1047         // It doesn't overlap with anything, so we can outline it.
1048         // Each sequence is over [StartIt, EndIt].
1049         // Save the candidate and its location.
1050 
1051         MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1052         MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1053         MachineBasicBlock *MBB = StartIt->getParent();
1054 
1055         CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
1056                                               EndIt, MBB, FunctionList.size(),
1057                                               Mapper.MBBFlagsMap[MBB]);
1058       }
1059     }
1060 
1061     // We've found something we might want to outline.
1062     // Create an OutlinedFunction to store it and check if it'd be beneficial
1063     // to outline.
1064     if (CandidatesForRepeatedSeq.size() < 2)
1065       continue;
1066 
1067     // Arbitrarily choose a TII from the first candidate.
1068     // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1069     const TargetInstrInfo *TII =
1070         CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1071 
1072     OutlinedFunction OF =
1073         TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1074 
1075     // If we deleted too many candidates, then there's nothing worth outlining.
1076     // FIXME: This should take target-specified instruction sizes into account.
1077     if (OF.Candidates.size() < 2)
1078       continue;
1079 
1080     // Is it better to outline this candidate than not?
1081     if (OF.getBenefit() < 1) {
1082       emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1083       continue;
1084     }
1085 
1086     FunctionList.push_back(OF);
1087   }
1088 }
1089 
1090 MachineFunction *MachineOutliner::createOutlinedFunction(
1091     Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) {
1092 
1093   // Create the function name. This should be unique.
1094   // FIXME: We should have a better naming scheme. This should be stable,
1095   // regardless of changes to the outliner's cost model/traversal order.
1096   std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str();
1097 
1098   // Create the function using an IR-level function.
1099   LLVMContext &C = M.getContext();
1100   Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false),
1101                                  Function::ExternalLinkage, FunctionName, M);
1102 
1103   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1104   // which gives us better results when we outline from linkonceodr functions.
1105   F->setLinkage(GlobalValue::InternalLinkage);
1106   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1107 
1108   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1109   // necessary.
1110 
1111   // Set optsize/minsize, so we don't insert padding between outlined
1112   // functions.
1113   F->addFnAttr(Attribute::OptimizeForSize);
1114   F->addFnAttr(Attribute::MinSize);
1115 
1116   // Include target features from an arbitrary candidate for the outlined
1117   // function. This makes sure the outlined function knows what kinds of
1118   // instructions are going into it. This is fine, since all parent functions
1119   // must necessarily support the instructions that are in the outlined region.
1120   Candidate &FirstCand = OF.Candidates.front();
1121   const Function &ParentFn = FirstCand.getMF()->getFunction();
1122   if (ParentFn.hasFnAttribute("target-features"))
1123     F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1124 
1125   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1126   IRBuilder<> Builder(EntryBB);
1127   Builder.CreateRetVoid();
1128 
1129   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1130   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1131   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1132   const TargetSubtargetInfo &STI = MF.getSubtarget();
1133   const TargetInstrInfo &TII = *STI.getInstrInfo();
1134 
1135   // Insert the new function into the module.
1136   MF.insert(MF.begin(), &MBB);
1137 
1138   for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
1139        ++I) {
1140     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
1141     NewMI->dropMemRefs(MF);
1142 
1143     // Don't keep debug information for outlined instructions.
1144     NewMI->setDebugLoc(DebugLoc());
1145     MBB.insert(MBB.end(), NewMI);
1146   }
1147 
1148   TII.buildOutlinedFrame(MBB, MF, OF);
1149 
1150   // Outlined functions shouldn't preserve liveness.
1151   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1152   MF.getRegInfo().freezeReservedRegs(MF);
1153 
1154   // If there's a DISubprogram associated with this outlined function, then
1155   // emit debug info for the outlined function.
1156   if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1157     // We have a DISubprogram. Get its DICompileUnit.
1158     DICompileUnit *CU = SP->getUnit();
1159     DIBuilder DB(M, true, CU);
1160     DIFile *Unit = SP->getFile();
1161     Mangler Mg;
1162     // Get the mangled name of the function for the linkage name.
1163     std::string Dummy;
1164     llvm::raw_string_ostream MangledNameStream(Dummy);
1165     Mg.getNameWithPrefix(MangledNameStream, F, false);
1166 
1167     DISubprogram *OutlinedSP = DB.createFunction(
1168         Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1169         Unit /* File */,
1170         0 /* Line 0 is reserved for compiler-generated code. */,
1171         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1172         0, /* Line 0 is reserved for compiler-generated code. */
1173         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1174         /* Outlined code is optimized code by definition. */
1175         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
1176 
1177     // Don't add any new variables to the subprogram.
1178     DB.finalizeSubprogram(OutlinedSP);
1179 
1180     // Attach subprogram to the function.
1181     F->setSubprogram(OutlinedSP);
1182     // We're done with the DIBuilder.
1183     DB.finalize();
1184   }
1185 
1186   return &MF;
1187 }
1188 
1189 bool MachineOutliner::outline(Module &M,
1190                               std::vector<OutlinedFunction> &FunctionList,
1191                               InstructionMapper &Mapper,
1192                               unsigned &OutlinedFunctionNum) {
1193 
1194   bool OutlinedSomething = false;
1195 
1196   // Sort by benefit. The most beneficial functions should be outlined first.
1197   llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS,
1198                                      const OutlinedFunction &RHS) {
1199     return LHS.getBenefit() > RHS.getBenefit();
1200   });
1201 
1202   // Walk over each function, outlining them as we go along. Functions are
1203   // outlined greedily, based off the sort above.
1204   for (OutlinedFunction &OF : FunctionList) {
1205     // If we outlined something that overlapped with a candidate in a previous
1206     // step, then we can't outline from it.
1207     erase_if(OF.Candidates, [&Mapper](Candidate &C) {
1208       return std::any_of(
1209           Mapper.UnsignedVec.begin() + C.getStartIdx(),
1210           Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1211           [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
1212     });
1213 
1214     // If we made it unbeneficial to outline this function, skip it.
1215     if (OF.getBenefit() < 1)
1216       continue;
1217 
1218     // It's beneficial. Create the function and outline its sequence's
1219     // occurrences.
1220     OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
1221     emitOutlinedFunctionRemark(OF);
1222     FunctionsCreated++;
1223     OutlinedFunctionNum++; // Created a function, move to the next name.
1224     MachineFunction *MF = OF.MF;
1225     const TargetSubtargetInfo &STI = MF->getSubtarget();
1226     const TargetInstrInfo &TII = *STI.getInstrInfo();
1227 
1228     // Replace occurrences of the sequence with calls to the new function.
1229     for (Candidate &C : OF.Candidates) {
1230       MachineBasicBlock &MBB = *C.getMBB();
1231       MachineBasicBlock::iterator StartIt = C.front();
1232       MachineBasicBlock::iterator EndIt = C.back();
1233 
1234       // Insert the call.
1235       auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
1236 
1237       // If the caller tracks liveness, then we need to make sure that
1238       // anything we outline doesn't break liveness assumptions. The outlined
1239       // functions themselves currently don't track liveness, but we should
1240       // make sure that the ranges we yank things out of aren't wrong.
1241       if (MBB.getParent()->getProperties().hasProperty(
1242               MachineFunctionProperties::Property::TracksLiveness)) {
1243         // Helper lambda for adding implicit def operands to the call
1244         // instruction. It also updates call site information for moved
1245         // code.
1246         auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) {
1247           for (MachineOperand &MOP : MI.operands()) {
1248             // Skip over anything that isn't a register.
1249             if (!MOP.isReg())
1250               continue;
1251 
1252             // If it's a def, add it to the call instruction.
1253             if (MOP.isDef())
1254               CallInst->addOperand(MachineOperand::CreateReg(
1255                   MOP.getReg(), true, /* isDef = true */
1256                   true /* isImp = true */));
1257           }
1258           if (MI.isCall())
1259             MI.getMF()->eraseCallSiteInfo(&MI);
1260         };
1261         // Copy over the defs in the outlined range.
1262         // First inst in outlined range <-- Anything that's defined in this
1263         // ...                           .. range has to be added as an
1264         // implicit Last inst in outlined range  <-- def to the call
1265         // instruction. Also remove call site information for outlined block
1266         // of code.
1267         std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls);
1268       }
1269 
1270       // Erase from the point after where the call was inserted up to, and
1271       // including, the final instruction in the sequence.
1272       // Erase needs one past the end, so we need std::next there too.
1273       MBB.erase(std::next(StartIt), std::next(EndIt));
1274 
1275       // Keep track of what we removed by marking them all as -1.
1276       std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
1277                     Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1278                     [](unsigned &I) { I = static_cast<unsigned>(-1); });
1279       OutlinedSomething = true;
1280 
1281       // Statistics.
1282       NumOutlined++;
1283     }
1284   }
1285 
1286   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1287 
1288   return OutlinedSomething;
1289 }
1290 
1291 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1292                                      MachineModuleInfo &MMI) {
1293   // Build instruction mappings for each function in the module. Start by
1294   // iterating over each Function in M.
1295   for (Function &F : M) {
1296 
1297     // If there's nothing in F, then there's no reason to try and outline from
1298     // it.
1299     if (F.empty())
1300       continue;
1301 
1302     // Disable outlining from noreturn functions right now. Noreturn requires
1303     // special handling for the case where what we are outlining could be a
1304     // tail call.
1305     if (F.hasFnAttribute(Attribute::NoReturn))
1306       continue;
1307 
1308     // There's something in F. Check if it has a MachineFunction associated with
1309     // it.
1310     MachineFunction *MF = MMI.getMachineFunction(F);
1311 
1312     // If it doesn't, then there's nothing to outline from. Move to the next
1313     // Function.
1314     if (!MF)
1315       continue;
1316 
1317     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1318 
1319     if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1320       continue;
1321 
1322     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1323     // If it isn't, then move on to the next Function in the module.
1324     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1325       continue;
1326 
1327     // We have a function suitable for outlining. Iterate over every
1328     // MachineBasicBlock in MF and try to map its instructions to a list of
1329     // unsigned integers.
1330     for (MachineBasicBlock &MBB : *MF) {
1331       // If there isn't anything in MBB, then there's no point in outlining from
1332       // it.
1333       // If there are fewer than 2 instructions in the MBB, then it can't ever
1334       // contain something worth outlining.
1335       // FIXME: This should be based off of the maximum size in B of an outlined
1336       // call versus the size in B of the MBB.
1337       if (MBB.empty() || MBB.size() < 2)
1338         continue;
1339 
1340       // Check if MBB could be the target of an indirect branch. If it is, then
1341       // we don't want to outline from it.
1342       if (MBB.hasAddressTaken())
1343         continue;
1344 
1345       // MBB is suitable for outlining. Map it to a list of unsigneds.
1346       Mapper.convertToUnsignedVec(MBB, *TII);
1347     }
1348   }
1349 }
1350 
1351 void MachineOutliner::initSizeRemarkInfo(
1352     const Module &M, const MachineModuleInfo &MMI,
1353     StringMap<unsigned> &FunctionToInstrCount) {
1354   // Collect instruction counts for every function. We'll use this to emit
1355   // per-function size remarks later.
1356   for (const Function &F : M) {
1357     MachineFunction *MF = MMI.getMachineFunction(F);
1358 
1359     // We only care about MI counts here. If there's no MachineFunction at this
1360     // point, then there won't be after the outliner runs, so let's move on.
1361     if (!MF)
1362       continue;
1363     FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1364   }
1365 }
1366 
1367 void MachineOutliner::emitInstrCountChangedRemark(
1368     const Module &M, const MachineModuleInfo &MMI,
1369     const StringMap<unsigned> &FunctionToInstrCount) {
1370   // Iterate over each function in the module and emit remarks.
1371   // Note that we won't miss anything by doing this, because the outliner never
1372   // deletes functions.
1373   for (const Function &F : M) {
1374     MachineFunction *MF = MMI.getMachineFunction(F);
1375 
1376     // The outliner never deletes functions. If we don't have a MF here, then we
1377     // didn't have one prior to outlining either.
1378     if (!MF)
1379       continue;
1380 
1381     std::string Fname = F.getName();
1382     unsigned FnCountAfter = MF->getInstructionCount();
1383     unsigned FnCountBefore = 0;
1384 
1385     // Check if the function was recorded before.
1386     auto It = FunctionToInstrCount.find(Fname);
1387 
1388     // Did we have a previously-recorded size? If yes, then set FnCountBefore
1389     // to that.
1390     if (It != FunctionToInstrCount.end())
1391       FnCountBefore = It->second;
1392 
1393     // Compute the delta and emit a remark if there was a change.
1394     int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1395                       static_cast<int64_t>(FnCountBefore);
1396     if (FnDelta == 0)
1397       continue;
1398 
1399     MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1400     MORE.emit([&]() {
1401       MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1402                                           DiagnosticLocation(), &MF->front());
1403       R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1404         << ": Function: "
1405         << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1406         << ": MI instruction count changed from "
1407         << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1408                                                     FnCountBefore)
1409         << " to "
1410         << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1411                                                     FnCountAfter)
1412         << "; Delta: "
1413         << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1414       return R;
1415     });
1416   }
1417 }
1418 
1419 bool MachineOutliner::runOnModule(Module &M) {
1420   // Check if there's anything in the module. If it's empty, then there's
1421   // nothing to outline.
1422   if (M.empty())
1423     return false;
1424 
1425   // Number to append to the current outlined function.
1426   unsigned OutlinedFunctionNum = 0;
1427 
1428   if (!doOutline(M, OutlinedFunctionNum))
1429     return false;
1430   return true;
1431 }
1432 
1433 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) {
1434   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1435 
1436   // If the user passed -enable-machine-outliner=always or
1437   // -enable-machine-outliner, the pass will run on all functions in the module.
1438   // Otherwise, if the target supports default outlining, it will run on all
1439   // functions deemed by the target to be worth outlining from by default. Tell
1440   // the user how the outliner is running.
1441   LLVM_DEBUG({
1442     dbgs() << "Machine Outliner: Running on ";
1443     if (RunOnAllFunctions)
1444       dbgs() << "all functions";
1445     else
1446       dbgs() << "target-default functions";
1447     dbgs() << "\n";
1448   });
1449 
1450   // If the user specifies that they want to outline from linkonceodrs, set
1451   // it here.
1452   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1453   InstructionMapper Mapper;
1454 
1455   // Prepare instruction mappings for the suffix tree.
1456   populateMapper(Mapper, M, MMI);
1457   std::vector<OutlinedFunction> FunctionList;
1458 
1459   // Find all of the outlining candidates.
1460   findCandidates(Mapper, FunctionList);
1461 
1462   // If we've requested size remarks, then collect the MI counts of every
1463   // function before outlining, and the MI counts after outlining.
1464   // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1465   // the pass manager's responsibility.
1466   // This could pretty easily be placed in outline instead, but because we
1467   // really ultimately *don't* want this here, it's done like this for now
1468   // instead.
1469 
1470   // Check if we want size remarks.
1471   bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1472   StringMap<unsigned> FunctionToInstrCount;
1473   if (ShouldEmitSizeRemarks)
1474     initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1475 
1476   // Outline each of the candidates and return true if something was outlined.
1477   bool OutlinedSomething =
1478       outline(M, FunctionList, Mapper, OutlinedFunctionNum);
1479 
1480   // If we outlined something, we definitely changed the MI count of the
1481   // module. If we've asked for size remarks, then output them.
1482   // FIXME: This should be in the pass manager.
1483   if (ShouldEmitSizeRemarks && OutlinedSomething)
1484     emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1485 
1486   return OutlinedSomething;
1487 }
1488