1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineModuleInfo.h" 63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 64 #include "llvm/CodeGen/MachineRegisterInfo.h" 65 #include "llvm/CodeGen/Passes.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/IR/DIBuilder.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/Mangler.h" 71 #include "llvm/Support/Allocator.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <functional> 76 #include <tuple> 77 #include <vector> 78 79 #define DEBUG_TYPE "machine-outliner" 80 81 using namespace llvm; 82 using namespace ore; 83 using namespace outliner; 84 85 STATISTIC(NumOutlined, "Number of candidates outlined"); 86 STATISTIC(FunctionsCreated, "Number of functions created"); 87 88 // Set to true if the user wants the outliner to run on linkonceodr linkage 89 // functions. This is false by default because the linker can dedupe linkonceodr 90 // functions. Since the outliner is confined to a single module (modulo LTO), 91 // this is off by default. It should, however, be the default behaviour in 92 // LTO. 93 static cl::opt<bool> EnableLinkOnceODROutlining( 94 "enable-linkonceodr-outlining", cl::Hidden, 95 cl::desc("Enable the machine outliner on linkonceodr functions"), 96 cl::init(false)); 97 98 namespace { 99 100 /// Represents an undefined index in the suffix tree. 101 const unsigned EmptyIdx = -1; 102 103 /// A node in a suffix tree which represents a substring or suffix. 104 /// 105 /// Each node has either no children or at least two children, with the root 106 /// being a exception in the empty tree. 107 /// 108 /// Children are represented as a map between unsigned integers and nodes. If 109 /// a node N has a child M on unsigned integer k, then the mapping represented 110 /// by N is a proper prefix of the mapping represented by M. Note that this, 111 /// although similar to a trie is somewhat different: each node stores a full 112 /// substring of the full mapping rather than a single character state. 113 /// 114 /// Each internal node contains a pointer to the internal node representing 115 /// the same string, but with the first character chopped off. This is stored 116 /// in \p Link. Each leaf node stores the start index of its respective 117 /// suffix in \p SuffixIdx. 118 struct SuffixTreeNode { 119 120 /// The children of this node. 121 /// 122 /// A child existing on an unsigned integer implies that from the mapping 123 /// represented by the current node, there is a way to reach another 124 /// mapping by tacking that character on the end of the current string. 125 DenseMap<unsigned, SuffixTreeNode *> Children; 126 127 /// The start index of this node's substring in the main string. 128 unsigned StartIdx = EmptyIdx; 129 130 /// The end index of this node's substring in the main string. 131 /// 132 /// Every leaf node must have its \p EndIdx incremented at the end of every 133 /// step in the construction algorithm. To avoid having to update O(N) 134 /// nodes individually at the end of every step, the end index is stored 135 /// as a pointer. 136 unsigned *EndIdx = nullptr; 137 138 /// For leaves, the start index of the suffix represented by this node. 139 /// 140 /// For all other nodes, this is ignored. 141 unsigned SuffixIdx = EmptyIdx; 142 143 /// For internal nodes, a pointer to the internal node representing 144 /// the same sequence with the first character chopped off. 145 /// 146 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 147 /// Ukkonen's algorithm does to achieve linear-time construction is 148 /// keep track of which node the next insert should be at. This makes each 149 /// insert O(1), and there are a total of O(N) inserts. The suffix link 150 /// helps with inserting children of internal nodes. 151 /// 152 /// Say we add a child to an internal node with associated mapping S. The 153 /// next insertion must be at the node representing S - its first character. 154 /// This is given by the way that we iteratively build the tree in Ukkonen's 155 /// algorithm. The main idea is to look at the suffixes of each prefix in the 156 /// string, starting with the longest suffix of the prefix, and ending with 157 /// the shortest. Therefore, if we keep pointers between such nodes, we can 158 /// move to the next insertion point in O(1) time. If we don't, then we'd 159 /// have to query from the root, which takes O(N) time. This would make the 160 /// construction algorithm O(N^2) rather than O(N). 161 SuffixTreeNode *Link = nullptr; 162 163 /// The length of the string formed by concatenating the edge labels from the 164 /// root to this node. 165 unsigned ConcatLen = 0; 166 167 /// Returns true if this node is a leaf. 168 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 169 170 /// Returns true if this node is the root of its owning \p SuffixTree. 171 bool isRoot() const { return StartIdx == EmptyIdx; } 172 173 /// Return the number of elements in the substring associated with this node. 174 size_t size() const { 175 176 // Is it the root? If so, it's the empty string so return 0. 177 if (isRoot()) 178 return 0; 179 180 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 181 182 // Size = the number of elements in the string. 183 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 184 return *EndIdx - StartIdx + 1; 185 } 186 187 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 188 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 189 190 SuffixTreeNode() {} 191 }; 192 193 /// A data structure for fast substring queries. 194 /// 195 /// Suffix trees represent the suffixes of their input strings in their leaves. 196 /// A suffix tree is a type of compressed trie structure where each node 197 /// represents an entire substring rather than a single character. Each leaf 198 /// of the tree is a suffix. 199 /// 200 /// A suffix tree can be seen as a type of state machine where each state is a 201 /// substring of the full string. The tree is structured so that, for a string 202 /// of length N, there are exactly N leaves in the tree. This structure allows 203 /// us to quickly find repeated substrings of the input string. 204 /// 205 /// In this implementation, a "string" is a vector of unsigned integers. 206 /// These integers may result from hashing some data type. A suffix tree can 207 /// contain 1 or many strings, which can then be queried as one large string. 208 /// 209 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 210 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 211 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 212 /// paper is available at 213 /// 214 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 215 class SuffixTree { 216 public: 217 /// Each element is an integer representing an instruction in the module. 218 ArrayRef<unsigned> Str; 219 220 /// A repeated substring in the tree. 221 struct RepeatedSubstring { 222 /// The length of the string. 223 unsigned Length; 224 225 /// The start indices of each occurrence. 226 std::vector<unsigned> StartIndices; 227 }; 228 229 private: 230 /// Maintains each node in the tree. 231 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 232 233 /// The root of the suffix tree. 234 /// 235 /// The root represents the empty string. It is maintained by the 236 /// \p NodeAllocator like every other node in the tree. 237 SuffixTreeNode *Root = nullptr; 238 239 /// Maintains the end indices of the internal nodes in the tree. 240 /// 241 /// Each internal node is guaranteed to never have its end index change 242 /// during the construction algorithm; however, leaves must be updated at 243 /// every step. Therefore, we need to store leaf end indices by reference 244 /// to avoid updating O(N) leaves at every step of construction. Thus, 245 /// every internal node must be allocated its own end index. 246 BumpPtrAllocator InternalEndIdxAllocator; 247 248 /// The end index of each leaf in the tree. 249 unsigned LeafEndIdx = -1; 250 251 /// Helper struct which keeps track of the next insertion point in 252 /// Ukkonen's algorithm. 253 struct ActiveState { 254 /// The next node to insert at. 255 SuffixTreeNode *Node; 256 257 /// The index of the first character in the substring currently being added. 258 unsigned Idx = EmptyIdx; 259 260 /// The length of the substring we have to add at the current step. 261 unsigned Len = 0; 262 }; 263 264 /// The point the next insertion will take place at in the 265 /// construction algorithm. 266 ActiveState Active; 267 268 /// Allocate a leaf node and add it to the tree. 269 /// 270 /// \param Parent The parent of this node. 271 /// \param StartIdx The start index of this node's associated string. 272 /// \param Edge The label on the edge leaving \p Parent to this node. 273 /// 274 /// \returns A pointer to the allocated leaf node. 275 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 276 unsigned Edge) { 277 278 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 279 280 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 281 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 282 Parent.Children[Edge] = N; 283 284 return N; 285 } 286 287 /// Allocate an internal node and add it to the tree. 288 /// 289 /// \param Parent The parent of this node. Only null when allocating the root. 290 /// \param StartIdx The start index of this node's associated string. 291 /// \param EndIdx The end index of this node's associated string. 292 /// \param Edge The label on the edge leaving \p Parent to this node. 293 /// 294 /// \returns A pointer to the allocated internal node. 295 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 296 unsigned EndIdx, unsigned Edge) { 297 298 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 299 assert(!(!Parent && StartIdx != EmptyIdx) && 300 "Non-root internal nodes must have parents!"); 301 302 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 303 SuffixTreeNode *N = 304 new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root); 305 if (Parent) 306 Parent->Children[Edge] = N; 307 308 return N; 309 } 310 311 /// Set the suffix indices of the leaves to the start indices of their 312 /// respective suffixes. 313 /// 314 /// \param[in] CurrNode The node currently being visited. 315 /// \param CurrNodeLen The concatenation of all node sizes from the root to 316 /// this node. Used to produce suffix indices. 317 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) { 318 319 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 320 321 // Store the concatenation of lengths down from the root. 322 CurrNode.ConcatLen = CurrNodeLen; 323 // Traverse the tree depth-first. 324 for (auto &ChildPair : CurrNode.Children) { 325 assert(ChildPair.second && "Node had a null child!"); 326 setSuffixIndices(*ChildPair.second, 327 CurrNodeLen + ChildPair.second->size()); 328 } 329 330 // Is this node a leaf? If it is, give it a suffix index. 331 if (IsLeaf) 332 CurrNode.SuffixIdx = Str.size() - CurrNodeLen; 333 } 334 335 /// Construct the suffix tree for the prefix of the input ending at 336 /// \p EndIdx. 337 /// 338 /// Used to construct the full suffix tree iteratively. At the end of each 339 /// step, the constructed suffix tree is either a valid suffix tree, or a 340 /// suffix tree with implicit suffixes. At the end of the final step, the 341 /// suffix tree is a valid tree. 342 /// 343 /// \param EndIdx The end index of the current prefix in the main string. 344 /// \param SuffixesToAdd The number of suffixes that must be added 345 /// to complete the suffix tree at the current phase. 346 /// 347 /// \returns The number of suffixes that have not been added at the end of 348 /// this step. 349 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 350 SuffixTreeNode *NeedsLink = nullptr; 351 352 while (SuffixesToAdd > 0) { 353 354 // Are we waiting to add anything other than just the last character? 355 if (Active.Len == 0) { 356 // If not, then say the active index is the end index. 357 Active.Idx = EndIdx; 358 } 359 360 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 361 362 // The first character in the current substring we're looking at. 363 unsigned FirstChar = Str[Active.Idx]; 364 365 // Have we inserted anything starting with FirstChar at the current node? 366 if (Active.Node->Children.count(FirstChar) == 0) { 367 // If not, then we can just insert a leaf and move too the next step. 368 insertLeaf(*Active.Node, EndIdx, FirstChar); 369 370 // The active node is an internal node, and we visited it, so it must 371 // need a link if it doesn't have one. 372 if (NeedsLink) { 373 NeedsLink->Link = Active.Node; 374 NeedsLink = nullptr; 375 } 376 } else { 377 // There's a match with FirstChar, so look for the point in the tree to 378 // insert a new node. 379 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 380 381 unsigned SubstringLen = NextNode->size(); 382 383 // Is the current suffix we're trying to insert longer than the size of 384 // the child we want to move to? 385 if (Active.Len >= SubstringLen) { 386 // If yes, then consume the characters we've seen and move to the next 387 // node. 388 Active.Idx += SubstringLen; 389 Active.Len -= SubstringLen; 390 Active.Node = NextNode; 391 continue; 392 } 393 394 // Otherwise, the suffix we're trying to insert must be contained in the 395 // next node we want to move to. 396 unsigned LastChar = Str[EndIdx]; 397 398 // Is the string we're trying to insert a substring of the next node? 399 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 400 // If yes, then we're done for this step. Remember our insertion point 401 // and move to the next end index. At this point, we have an implicit 402 // suffix tree. 403 if (NeedsLink && !Active.Node->isRoot()) { 404 NeedsLink->Link = Active.Node; 405 NeedsLink = nullptr; 406 } 407 408 Active.Len++; 409 break; 410 } 411 412 // The string we're trying to insert isn't a substring of the next node, 413 // but matches up to a point. Split the node. 414 // 415 // For example, say we ended our search at a node n and we're trying to 416 // insert ABD. Then we'll create a new node s for AB, reduce n to just 417 // representing C, and insert a new leaf node l to represent d. This 418 // allows us to ensure that if n was a leaf, it remains a leaf. 419 // 420 // | ABC ---split---> | AB 421 // n s 422 // C / \ D 423 // n l 424 425 // The node s from the diagram 426 SuffixTreeNode *SplitNode = 427 insertInternalNode(Active.Node, NextNode->StartIdx, 428 NextNode->StartIdx + Active.Len - 1, FirstChar); 429 430 // Insert the new node representing the new substring into the tree as 431 // a child of the split node. This is the node l from the diagram. 432 insertLeaf(*SplitNode, EndIdx, LastChar); 433 434 // Make the old node a child of the split node and update its start 435 // index. This is the node n from the diagram. 436 NextNode->StartIdx += Active.Len; 437 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 438 439 // SplitNode is an internal node, update the suffix link. 440 if (NeedsLink) 441 NeedsLink->Link = SplitNode; 442 443 NeedsLink = SplitNode; 444 } 445 446 // We've added something new to the tree, so there's one less suffix to 447 // add. 448 SuffixesToAdd--; 449 450 if (Active.Node->isRoot()) { 451 if (Active.Len > 0) { 452 Active.Len--; 453 Active.Idx = EndIdx - SuffixesToAdd + 1; 454 } 455 } else { 456 // Start the next phase at the next smallest suffix. 457 Active.Node = Active.Node->Link; 458 } 459 } 460 461 return SuffixesToAdd; 462 } 463 464 public: 465 /// Construct a suffix tree from a sequence of unsigned integers. 466 /// 467 /// \param Str The string to construct the suffix tree for. 468 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 469 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 470 Active.Node = Root; 471 472 // Keep track of the number of suffixes we have to add of the current 473 // prefix. 474 unsigned SuffixesToAdd = 0; 475 Active.Node = Root; 476 477 // Construct the suffix tree iteratively on each prefix of the string. 478 // PfxEndIdx is the end index of the current prefix. 479 // End is one past the last element in the string. 480 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 481 PfxEndIdx++) { 482 SuffixesToAdd++; 483 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 484 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 485 } 486 487 // Set the suffix indices of each leaf. 488 assert(Root && "Root node can't be nullptr!"); 489 setSuffixIndices(*Root, 0); 490 } 491 492 /// Iterator for finding all repeated substrings in the suffix tree. 493 struct RepeatedSubstringIterator { 494 private: 495 /// The current node we're visiting. 496 SuffixTreeNode *N = nullptr; 497 498 /// The repeated substring associated with this node. 499 RepeatedSubstring RS; 500 501 /// The nodes left to visit. 502 std::vector<SuffixTreeNode *> ToVisit; 503 504 /// The minimum length of a repeated substring to find. 505 /// Since we're outlining, we want at least two instructions in the range. 506 /// FIXME: This may not be true for targets like X86 which support many 507 /// instruction lengths. 508 const unsigned MinLength = 2; 509 510 /// Move the iterator to the next repeated substring. 511 void advance() { 512 // Clear the current state. If we're at the end of the range, then this 513 // is the state we want to be in. 514 RS = RepeatedSubstring(); 515 N = nullptr; 516 517 // Each leaf node represents a repeat of a string. 518 std::vector<SuffixTreeNode *> LeafChildren; 519 520 // Continue visiting nodes until we find one which repeats more than once. 521 while (!ToVisit.empty()) { 522 SuffixTreeNode *Curr = ToVisit.back(); 523 ToVisit.pop_back(); 524 LeafChildren.clear(); 525 526 // Keep track of the length of the string associated with the node. If 527 // it's too short, we'll quit. 528 unsigned Length = Curr->ConcatLen; 529 530 // Iterate over each child, saving internal nodes for visiting, and 531 // leaf nodes in LeafChildren. Internal nodes represent individual 532 // strings, which may repeat. 533 for (auto &ChildPair : Curr->Children) { 534 // Save all of this node's children for processing. 535 if (!ChildPair.second->isLeaf()) 536 ToVisit.push_back(ChildPair.second); 537 538 // It's not an internal node, so it must be a leaf. If we have a 539 // long enough string, then save the leaf children. 540 else if (Length >= MinLength) 541 LeafChildren.push_back(ChildPair.second); 542 } 543 544 // The root never represents a repeated substring. If we're looking at 545 // that, then skip it. 546 if (Curr->isRoot()) 547 continue; 548 549 // Do we have any repeated substrings? 550 if (LeafChildren.size() >= 2) { 551 // Yes. Update the state to reflect this, and then bail out. 552 N = Curr; 553 RS.Length = Length; 554 for (SuffixTreeNode *Leaf : LeafChildren) 555 RS.StartIndices.push_back(Leaf->SuffixIdx); 556 break; 557 } 558 } 559 560 // At this point, either NewRS is an empty RepeatedSubstring, or it was 561 // set in the above loop. Similarly, N is either nullptr, or the node 562 // associated with NewRS. 563 } 564 565 public: 566 /// Return the current repeated substring. 567 RepeatedSubstring &operator*() { return RS; } 568 569 RepeatedSubstringIterator &operator++() { 570 advance(); 571 return *this; 572 } 573 574 RepeatedSubstringIterator operator++(int I) { 575 RepeatedSubstringIterator It(*this); 576 advance(); 577 return It; 578 } 579 580 bool operator==(const RepeatedSubstringIterator &Other) { 581 return N == Other.N; 582 } 583 bool operator!=(const RepeatedSubstringIterator &Other) { 584 return !(*this == Other); 585 } 586 587 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 588 // Do we have a non-null node? 589 if (N) { 590 // Yes. At the first step, we need to visit all of N's children. 591 // Note: This means that we visit N last. 592 ToVisit.push_back(N); 593 advance(); 594 } 595 } 596 }; 597 598 typedef RepeatedSubstringIterator iterator; 599 iterator begin() { return iterator(Root); } 600 iterator end() { return iterator(nullptr); } 601 }; 602 603 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 604 struct InstructionMapper { 605 606 /// The next available integer to assign to a \p MachineInstr that 607 /// cannot be outlined. 608 /// 609 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 610 unsigned IllegalInstrNumber = -3; 611 612 /// The next available integer to assign to a \p MachineInstr that can 613 /// be outlined. 614 unsigned LegalInstrNumber = 0; 615 616 /// Correspondence from \p MachineInstrs to unsigned integers. 617 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 618 InstructionIntegerMap; 619 620 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 621 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 622 623 /// The vector of unsigned integers that the module is mapped to. 624 std::vector<unsigned> UnsignedVec; 625 626 /// Stores the location of the instruction associated with the integer 627 /// at index i in \p UnsignedVec for each index i. 628 std::vector<MachineBasicBlock::iterator> InstrList; 629 630 // Set if we added an illegal number in the previous step. 631 // Since each illegal number is unique, we only need one of them between 632 // each range of legal numbers. This lets us make sure we don't add more 633 // than one illegal number per range. 634 bool AddedIllegalLastTime = false; 635 636 /// Maps \p *It to a legal integer. 637 /// 638 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 639 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 640 /// 641 /// \returns The integer that \p *It was mapped to. 642 unsigned mapToLegalUnsigned( 643 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 644 bool &HaveLegalRange, unsigned &NumLegalInBlock, 645 std::vector<unsigned> &UnsignedVecForMBB, 646 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 647 // We added something legal, so we should unset the AddedLegalLastTime 648 // flag. 649 AddedIllegalLastTime = false; 650 651 // If we have at least two adjacent legal instructions (which may have 652 // invisible instructions in between), remember that. 653 if (CanOutlineWithPrevInstr) 654 HaveLegalRange = true; 655 CanOutlineWithPrevInstr = true; 656 657 // Keep track of the number of legal instructions we insert. 658 NumLegalInBlock++; 659 660 // Get the integer for this instruction or give it the current 661 // LegalInstrNumber. 662 InstrListForMBB.push_back(It); 663 MachineInstr &MI = *It; 664 bool WasInserted; 665 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 666 ResultIt; 667 std::tie(ResultIt, WasInserted) = 668 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 669 unsigned MINumber = ResultIt->second; 670 671 // There was an insertion. 672 if (WasInserted) 673 LegalInstrNumber++; 674 675 UnsignedVecForMBB.push_back(MINumber); 676 677 // Make sure we don't overflow or use any integers reserved by the DenseMap. 678 if (LegalInstrNumber >= IllegalInstrNumber) 679 report_fatal_error("Instruction mapping overflow!"); 680 681 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 682 "Tried to assign DenseMap tombstone or empty key to instruction."); 683 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 684 "Tried to assign DenseMap tombstone or empty key to instruction."); 685 686 return MINumber; 687 } 688 689 /// Maps \p *It to an illegal integer. 690 /// 691 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 692 /// IllegalInstrNumber. 693 /// 694 /// \returns The integer that \p *It was mapped to. 695 unsigned mapToIllegalUnsigned( 696 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 697 std::vector<unsigned> &UnsignedVecForMBB, 698 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 699 // Can't outline an illegal instruction. Set the flag. 700 CanOutlineWithPrevInstr = false; 701 702 // Only add one illegal number per range of legal numbers. 703 if (AddedIllegalLastTime) 704 return IllegalInstrNumber; 705 706 // Remember that we added an illegal number last time. 707 AddedIllegalLastTime = true; 708 unsigned MINumber = IllegalInstrNumber; 709 710 InstrListForMBB.push_back(It); 711 UnsignedVecForMBB.push_back(IllegalInstrNumber); 712 IllegalInstrNumber--; 713 714 assert(LegalInstrNumber < IllegalInstrNumber && 715 "Instruction mapping overflow!"); 716 717 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 718 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 719 720 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 721 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 722 723 return MINumber; 724 } 725 726 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 727 /// and appends it to \p UnsignedVec and \p InstrList. 728 /// 729 /// Two instructions are assigned the same integer if they are identical. 730 /// If an instruction is deemed unsafe to outline, then it will be assigned an 731 /// unique integer. The resulting mapping is placed into a suffix tree and 732 /// queried for candidates. 733 /// 734 /// \param MBB The \p MachineBasicBlock to be translated into integers. 735 /// \param TII \p TargetInstrInfo for the function. 736 void convertToUnsignedVec(MachineBasicBlock &MBB, 737 const TargetInstrInfo &TII) { 738 unsigned Flags = 0; 739 740 // Don't even map in this case. 741 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 742 return; 743 744 // Store info for the MBB for later outlining. 745 MBBFlagsMap[&MBB] = Flags; 746 747 MachineBasicBlock::iterator It = MBB.begin(); 748 749 // The number of instructions in this block that will be considered for 750 // outlining. 751 unsigned NumLegalInBlock = 0; 752 753 // True if we have at least two legal instructions which aren't separated 754 // by an illegal instruction. 755 bool HaveLegalRange = false; 756 757 // True if we can perform outlining given the last mapped (non-invisible) 758 // instruction. This lets us know if we have a legal range. 759 bool CanOutlineWithPrevInstr = false; 760 761 // FIXME: Should this all just be handled in the target, rather than using 762 // repeated calls to getOutliningType? 763 std::vector<unsigned> UnsignedVecForMBB; 764 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 765 766 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) { 767 // Keep track of where this instruction is in the module. 768 switch (TII.getOutliningType(It, Flags)) { 769 case InstrType::Illegal: 770 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 771 InstrListForMBB); 772 break; 773 774 case InstrType::Legal: 775 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 776 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 777 break; 778 779 case InstrType::LegalTerminator: 780 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 781 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 782 // The instruction also acts as a terminator, so we have to record that 783 // in the string. 784 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 785 InstrListForMBB); 786 break; 787 788 case InstrType::Invisible: 789 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 790 // skip this instruction. So, unset the flag here. 791 AddedIllegalLastTime = false; 792 break; 793 } 794 } 795 796 // Are there enough legal instructions in the block for outlining to be 797 // possible? 798 if (HaveLegalRange) { 799 // After we're done every insertion, uniquely terminate this part of the 800 // "string". This makes sure we won't match across basic block or function 801 // boundaries since the "end" is encoded uniquely and thus appears in no 802 // repeated substring. 803 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 804 InstrListForMBB); 805 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 806 InstrListForMBB.end()); 807 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 808 UnsignedVecForMBB.end()); 809 } 810 } 811 812 InstructionMapper() { 813 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 814 // changed. 815 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 816 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 817 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 818 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 819 } 820 }; 821 822 /// An interprocedural pass which finds repeated sequences of 823 /// instructions and replaces them with calls to functions. 824 /// 825 /// Each instruction is mapped to an unsigned integer and placed in a string. 826 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 827 /// is then repeatedly queried for repeated sequences of instructions. Each 828 /// non-overlapping repeated sequence is then placed in its own 829 /// \p MachineFunction and each instance is then replaced with a call to that 830 /// function. 831 struct MachineOutliner : public ModulePass { 832 833 static char ID; 834 835 /// Set to true if the outliner should consider functions with 836 /// linkonceodr linkage. 837 bool OutlineFromLinkOnceODRs = false; 838 839 /// Set to true if the outliner should run on all functions in the module 840 /// considered safe for outlining. 841 /// Set to true by default for compatibility with llc's -run-pass option. 842 /// Set when the pass is constructed in TargetPassConfig. 843 bool RunOnAllFunctions = true; 844 845 StringRef getPassName() const override { return "Machine Outliner"; } 846 847 void getAnalysisUsage(AnalysisUsage &AU) const override { 848 AU.addRequired<MachineModuleInfoWrapperPass>(); 849 AU.addPreserved<MachineModuleInfoWrapperPass>(); 850 AU.setPreservesAll(); 851 ModulePass::getAnalysisUsage(AU); 852 } 853 854 MachineOutliner() : ModulePass(ID) { 855 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 856 } 857 858 /// Remark output explaining that not outlining a set of candidates would be 859 /// better than outlining that set. 860 void emitNotOutliningCheaperRemark( 861 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 862 OutlinedFunction &OF); 863 864 /// Remark output explaining that a function was outlined. 865 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 866 867 /// Find all repeated substrings that satisfy the outlining cost model by 868 /// constructing a suffix tree. 869 /// 870 /// If a substring appears at least twice, then it must be represented by 871 /// an internal node which appears in at least two suffixes. Each suffix 872 /// is represented by a leaf node. To do this, we visit each internal node 873 /// in the tree, using the leaf children of each internal node. If an 874 /// internal node represents a beneficial substring, then we use each of 875 /// its leaf children to find the locations of its substring. 876 /// 877 /// \param Mapper Contains outlining mapping information. 878 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 879 /// each type of candidate. 880 void findCandidates(InstructionMapper &Mapper, 881 std::vector<OutlinedFunction> &FunctionList); 882 883 /// Replace the sequences of instructions represented by \p OutlinedFunctions 884 /// with calls to functions. 885 /// 886 /// \param M The module we are outlining from. 887 /// \param FunctionList A list of functions to be inserted into the module. 888 /// \param Mapper Contains the instruction mappings for the module. 889 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 890 InstructionMapper &Mapper, unsigned &OutlinedFunctionNum); 891 892 /// Creates a function for \p OF and inserts it into the module. 893 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 894 InstructionMapper &Mapper, 895 unsigned Name); 896 897 /// Calls 'doOutline()'. 898 bool runOnModule(Module &M) override; 899 900 /// Construct a suffix tree on the instructions in \p M and outline repeated 901 /// strings from that tree. 902 bool doOutline(Module &M, unsigned &OutlinedFunctionNum); 903 904 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 905 /// function for remark emission. 906 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 907 DISubprogram *SP; 908 for (const Candidate &C : OF.Candidates) 909 if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram())) 910 return SP; 911 return nullptr; 912 } 913 914 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 915 /// These are used to construct a suffix tree. 916 void populateMapper(InstructionMapper &Mapper, Module &M, 917 MachineModuleInfo &MMI); 918 919 /// Initialize information necessary to output a size remark. 920 /// FIXME: This should be handled by the pass manager, not the outliner. 921 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 922 /// pass manager. 923 void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI, 924 StringMap<unsigned> &FunctionToInstrCount); 925 926 /// Emit the remark. 927 // FIXME: This should be handled by the pass manager, not the outliner. 928 void 929 emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI, 930 const StringMap<unsigned> &FunctionToInstrCount); 931 }; 932 } // Anonymous namespace. 933 934 char MachineOutliner::ID = 0; 935 936 namespace llvm { 937 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 938 MachineOutliner *OL = new MachineOutliner(); 939 OL->RunOnAllFunctions = RunOnAllFunctions; 940 return OL; 941 } 942 943 } // namespace llvm 944 945 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 946 false) 947 948 void MachineOutliner::emitNotOutliningCheaperRemark( 949 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 950 OutlinedFunction &OF) { 951 // FIXME: Right now, we arbitrarily choose some Candidate from the 952 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 953 // We should probably sort these by function name or something to make sure 954 // the remarks are stable. 955 Candidate &C = CandidatesForRepeatedSeq.front(); 956 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 957 MORE.emit([&]() { 958 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 959 C.front()->getDebugLoc(), C.getMBB()); 960 R << "Did not outline " << NV("Length", StringLen) << " instructions" 961 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 962 << " locations." 963 << " Bytes from outlining all occurrences (" 964 << NV("OutliningCost", OF.getOutliningCost()) << ")" 965 << " >= Unoutlined instruction bytes (" 966 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 967 << " (Also found at: "; 968 969 // Tell the user the other places the candidate was found. 970 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 971 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 972 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 973 if (i != e - 1) 974 R << ", "; 975 } 976 977 R << ")"; 978 return R; 979 }); 980 } 981 982 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 983 MachineBasicBlock *MBB = &*OF.MF->begin(); 984 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 985 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 986 MBB->findDebugLoc(MBB->begin()), MBB); 987 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 988 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 989 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 990 << " locations. " 991 << "(Found at: "; 992 993 // Tell the user the other places the candidate was found. 994 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 995 996 R << NV((Twine("StartLoc") + Twine(i)).str(), 997 OF.Candidates[i].front()->getDebugLoc()); 998 if (i != e - 1) 999 R << ", "; 1000 } 1001 1002 R << ")"; 1003 1004 MORE.emit(R); 1005 } 1006 1007 void MachineOutliner::findCandidates( 1008 InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) { 1009 FunctionList.clear(); 1010 SuffixTree ST(Mapper.UnsignedVec); 1011 1012 // First, find all of the repeated substrings in the tree of minimum length 1013 // 2. 1014 std::vector<Candidate> CandidatesForRepeatedSeq; 1015 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1016 CandidatesForRepeatedSeq.clear(); 1017 SuffixTree::RepeatedSubstring RS = *It; 1018 unsigned StringLen = RS.Length; 1019 for (const unsigned &StartIdx : RS.StartIndices) { 1020 unsigned EndIdx = StartIdx + StringLen - 1; 1021 // Trick: Discard some candidates that would be incompatible with the 1022 // ones we've already found for this sequence. This will save us some 1023 // work in candidate selection. 1024 // 1025 // If two candidates overlap, then we can't outline them both. This 1026 // happens when we have candidates that look like, say 1027 // 1028 // AA (where each "A" is an instruction). 1029 // 1030 // We might have some portion of the module that looks like this: 1031 // AAAAAA (6 A's) 1032 // 1033 // In this case, there are 5 different copies of "AA" in this range, but 1034 // at most 3 can be outlined. If only outlining 3 of these is going to 1035 // be unbeneficial, then we ought to not bother. 1036 // 1037 // Note that two things DON'T overlap when they look like this: 1038 // start1...end1 .... start2...end2 1039 // That is, one must either 1040 // * End before the other starts 1041 // * Start after the other ends 1042 if (std::all_of( 1043 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1044 [&StartIdx, &EndIdx](const Candidate &C) { 1045 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1046 })) { 1047 // It doesn't overlap with anything, so we can outline it. 1048 // Each sequence is over [StartIt, EndIt]. 1049 // Save the candidate and its location. 1050 1051 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1052 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1053 MachineBasicBlock *MBB = StartIt->getParent(); 1054 1055 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1056 EndIt, MBB, FunctionList.size(), 1057 Mapper.MBBFlagsMap[MBB]); 1058 } 1059 } 1060 1061 // We've found something we might want to outline. 1062 // Create an OutlinedFunction to store it and check if it'd be beneficial 1063 // to outline. 1064 if (CandidatesForRepeatedSeq.size() < 2) 1065 continue; 1066 1067 // Arbitrarily choose a TII from the first candidate. 1068 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1069 const TargetInstrInfo *TII = 1070 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1071 1072 OutlinedFunction OF = 1073 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1074 1075 // If we deleted too many candidates, then there's nothing worth outlining. 1076 // FIXME: This should take target-specified instruction sizes into account. 1077 if (OF.Candidates.size() < 2) 1078 continue; 1079 1080 // Is it better to outline this candidate than not? 1081 if (OF.getBenefit() < 1) { 1082 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1083 continue; 1084 } 1085 1086 FunctionList.push_back(OF); 1087 } 1088 } 1089 1090 MachineFunction *MachineOutliner::createOutlinedFunction( 1091 Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) { 1092 1093 // Create the function name. This should be unique. 1094 // FIXME: We should have a better naming scheme. This should be stable, 1095 // regardless of changes to the outliner's cost model/traversal order. 1096 std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); 1097 1098 // Create the function using an IR-level function. 1099 LLVMContext &C = M.getContext(); 1100 Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1101 Function::ExternalLinkage, FunctionName, M); 1102 1103 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1104 // which gives us better results when we outline from linkonceodr functions. 1105 F->setLinkage(GlobalValue::InternalLinkage); 1106 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1107 1108 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1109 // necessary. 1110 1111 // Set optsize/minsize, so we don't insert padding between outlined 1112 // functions. 1113 F->addFnAttr(Attribute::OptimizeForSize); 1114 F->addFnAttr(Attribute::MinSize); 1115 1116 // Include target features from an arbitrary candidate for the outlined 1117 // function. This makes sure the outlined function knows what kinds of 1118 // instructions are going into it. This is fine, since all parent functions 1119 // must necessarily support the instructions that are in the outlined region. 1120 Candidate &FirstCand = OF.Candidates.front(); 1121 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1122 if (ParentFn.hasFnAttribute("target-features")) 1123 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1124 1125 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1126 IRBuilder<> Builder(EntryBB); 1127 Builder.CreateRetVoid(); 1128 1129 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1130 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1131 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1132 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1133 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1134 1135 // Insert the new function into the module. 1136 MF.insert(MF.begin(), &MBB); 1137 1138 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1139 ++I) { 1140 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1141 NewMI->dropMemRefs(MF); 1142 1143 // Don't keep debug information for outlined instructions. 1144 NewMI->setDebugLoc(DebugLoc()); 1145 MBB.insert(MBB.end(), NewMI); 1146 } 1147 1148 TII.buildOutlinedFrame(MBB, MF, OF); 1149 1150 // Outlined functions shouldn't preserve liveness. 1151 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1152 MF.getRegInfo().freezeReservedRegs(MF); 1153 1154 // If there's a DISubprogram associated with this outlined function, then 1155 // emit debug info for the outlined function. 1156 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1157 // We have a DISubprogram. Get its DICompileUnit. 1158 DICompileUnit *CU = SP->getUnit(); 1159 DIBuilder DB(M, true, CU); 1160 DIFile *Unit = SP->getFile(); 1161 Mangler Mg; 1162 // Get the mangled name of the function for the linkage name. 1163 std::string Dummy; 1164 llvm::raw_string_ostream MangledNameStream(Dummy); 1165 Mg.getNameWithPrefix(MangledNameStream, F, false); 1166 1167 DISubprogram *OutlinedSP = DB.createFunction( 1168 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1169 Unit /* File */, 1170 0 /* Line 0 is reserved for compiler-generated code. */, 1171 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1172 0, /* Line 0 is reserved for compiler-generated code. */ 1173 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1174 /* Outlined code is optimized code by definition. */ 1175 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1176 1177 // Don't add any new variables to the subprogram. 1178 DB.finalizeSubprogram(OutlinedSP); 1179 1180 // Attach subprogram to the function. 1181 F->setSubprogram(OutlinedSP); 1182 // We're done with the DIBuilder. 1183 DB.finalize(); 1184 } 1185 1186 return &MF; 1187 } 1188 1189 bool MachineOutliner::outline(Module &M, 1190 std::vector<OutlinedFunction> &FunctionList, 1191 InstructionMapper &Mapper, 1192 unsigned &OutlinedFunctionNum) { 1193 1194 bool OutlinedSomething = false; 1195 1196 // Sort by benefit. The most beneficial functions should be outlined first. 1197 llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, 1198 const OutlinedFunction &RHS) { 1199 return LHS.getBenefit() > RHS.getBenefit(); 1200 }); 1201 1202 // Walk over each function, outlining them as we go along. Functions are 1203 // outlined greedily, based off the sort above. 1204 for (OutlinedFunction &OF : FunctionList) { 1205 // If we outlined something that overlapped with a candidate in a previous 1206 // step, then we can't outline from it. 1207 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1208 return std::any_of( 1209 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1210 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1211 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1212 }); 1213 1214 // If we made it unbeneficial to outline this function, skip it. 1215 if (OF.getBenefit() < 1) 1216 continue; 1217 1218 // It's beneficial. Create the function and outline its sequence's 1219 // occurrences. 1220 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1221 emitOutlinedFunctionRemark(OF); 1222 FunctionsCreated++; 1223 OutlinedFunctionNum++; // Created a function, move to the next name. 1224 MachineFunction *MF = OF.MF; 1225 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1226 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1227 1228 // Replace occurrences of the sequence with calls to the new function. 1229 for (Candidate &C : OF.Candidates) { 1230 MachineBasicBlock &MBB = *C.getMBB(); 1231 MachineBasicBlock::iterator StartIt = C.front(); 1232 MachineBasicBlock::iterator EndIt = C.back(); 1233 1234 // Insert the call. 1235 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1236 1237 // If the caller tracks liveness, then we need to make sure that 1238 // anything we outline doesn't break liveness assumptions. The outlined 1239 // functions themselves currently don't track liveness, but we should 1240 // make sure that the ranges we yank things out of aren't wrong. 1241 if (MBB.getParent()->getProperties().hasProperty( 1242 MachineFunctionProperties::Property::TracksLiveness)) { 1243 // Helper lambda for adding implicit def operands to the call 1244 // instruction. It also updates call site information for moved 1245 // code. 1246 auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) { 1247 for (MachineOperand &MOP : MI.operands()) { 1248 // Skip over anything that isn't a register. 1249 if (!MOP.isReg()) 1250 continue; 1251 1252 // If it's a def, add it to the call instruction. 1253 if (MOP.isDef()) 1254 CallInst->addOperand(MachineOperand::CreateReg( 1255 MOP.getReg(), true, /* isDef = true */ 1256 true /* isImp = true */)); 1257 } 1258 if (MI.isCall()) 1259 MI.getMF()->eraseCallSiteInfo(&MI); 1260 }; 1261 // Copy over the defs in the outlined range. 1262 // First inst in outlined range <-- Anything that's defined in this 1263 // ... .. range has to be added as an 1264 // implicit Last inst in outlined range <-- def to the call 1265 // instruction. Also remove call site information for outlined block 1266 // of code. 1267 std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls); 1268 } 1269 1270 // Erase from the point after where the call was inserted up to, and 1271 // including, the final instruction in the sequence. 1272 // Erase needs one past the end, so we need std::next there too. 1273 MBB.erase(std::next(StartIt), std::next(EndIt)); 1274 1275 // Keep track of what we removed by marking them all as -1. 1276 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1277 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1278 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1279 OutlinedSomething = true; 1280 1281 // Statistics. 1282 NumOutlined++; 1283 } 1284 } 1285 1286 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1287 1288 return OutlinedSomething; 1289 } 1290 1291 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1292 MachineModuleInfo &MMI) { 1293 // Build instruction mappings for each function in the module. Start by 1294 // iterating over each Function in M. 1295 for (Function &F : M) { 1296 1297 // If there's nothing in F, then there's no reason to try and outline from 1298 // it. 1299 if (F.empty()) 1300 continue; 1301 1302 // Disable outlining from noreturn functions right now. Noreturn requires 1303 // special handling for the case where what we are outlining could be a 1304 // tail call. 1305 if (F.hasFnAttribute(Attribute::NoReturn)) 1306 continue; 1307 1308 // There's something in F. Check if it has a MachineFunction associated with 1309 // it. 1310 MachineFunction *MF = MMI.getMachineFunction(F); 1311 1312 // If it doesn't, then there's nothing to outline from. Move to the next 1313 // Function. 1314 if (!MF) 1315 continue; 1316 1317 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1318 1319 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1320 continue; 1321 1322 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1323 // If it isn't, then move on to the next Function in the module. 1324 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1325 continue; 1326 1327 // We have a function suitable for outlining. Iterate over every 1328 // MachineBasicBlock in MF and try to map its instructions to a list of 1329 // unsigned integers. 1330 for (MachineBasicBlock &MBB : *MF) { 1331 // If there isn't anything in MBB, then there's no point in outlining from 1332 // it. 1333 // If there are fewer than 2 instructions in the MBB, then it can't ever 1334 // contain something worth outlining. 1335 // FIXME: This should be based off of the maximum size in B of an outlined 1336 // call versus the size in B of the MBB. 1337 if (MBB.empty() || MBB.size() < 2) 1338 continue; 1339 1340 // Check if MBB could be the target of an indirect branch. If it is, then 1341 // we don't want to outline from it. 1342 if (MBB.hasAddressTaken()) 1343 continue; 1344 1345 // MBB is suitable for outlining. Map it to a list of unsigneds. 1346 Mapper.convertToUnsignedVec(MBB, *TII); 1347 } 1348 } 1349 } 1350 1351 void MachineOutliner::initSizeRemarkInfo( 1352 const Module &M, const MachineModuleInfo &MMI, 1353 StringMap<unsigned> &FunctionToInstrCount) { 1354 // Collect instruction counts for every function. We'll use this to emit 1355 // per-function size remarks later. 1356 for (const Function &F : M) { 1357 MachineFunction *MF = MMI.getMachineFunction(F); 1358 1359 // We only care about MI counts here. If there's no MachineFunction at this 1360 // point, then there won't be after the outliner runs, so let's move on. 1361 if (!MF) 1362 continue; 1363 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1364 } 1365 } 1366 1367 void MachineOutliner::emitInstrCountChangedRemark( 1368 const Module &M, const MachineModuleInfo &MMI, 1369 const StringMap<unsigned> &FunctionToInstrCount) { 1370 // Iterate over each function in the module and emit remarks. 1371 // Note that we won't miss anything by doing this, because the outliner never 1372 // deletes functions. 1373 for (const Function &F : M) { 1374 MachineFunction *MF = MMI.getMachineFunction(F); 1375 1376 // The outliner never deletes functions. If we don't have a MF here, then we 1377 // didn't have one prior to outlining either. 1378 if (!MF) 1379 continue; 1380 1381 std::string Fname = F.getName(); 1382 unsigned FnCountAfter = MF->getInstructionCount(); 1383 unsigned FnCountBefore = 0; 1384 1385 // Check if the function was recorded before. 1386 auto It = FunctionToInstrCount.find(Fname); 1387 1388 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1389 // to that. 1390 if (It != FunctionToInstrCount.end()) 1391 FnCountBefore = It->second; 1392 1393 // Compute the delta and emit a remark if there was a change. 1394 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1395 static_cast<int64_t>(FnCountBefore); 1396 if (FnDelta == 0) 1397 continue; 1398 1399 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1400 MORE.emit([&]() { 1401 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1402 DiagnosticLocation(), &MF->front()); 1403 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1404 << ": Function: " 1405 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1406 << ": MI instruction count changed from " 1407 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1408 FnCountBefore) 1409 << " to " 1410 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1411 FnCountAfter) 1412 << "; Delta: " 1413 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1414 return R; 1415 }); 1416 } 1417 } 1418 1419 bool MachineOutliner::runOnModule(Module &M) { 1420 // Check if there's anything in the module. If it's empty, then there's 1421 // nothing to outline. 1422 if (M.empty()) 1423 return false; 1424 1425 // Number to append to the current outlined function. 1426 unsigned OutlinedFunctionNum = 0; 1427 1428 if (!doOutline(M, OutlinedFunctionNum)) 1429 return false; 1430 return true; 1431 } 1432 1433 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) { 1434 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1435 1436 // If the user passed -enable-machine-outliner=always or 1437 // -enable-machine-outliner, the pass will run on all functions in the module. 1438 // Otherwise, if the target supports default outlining, it will run on all 1439 // functions deemed by the target to be worth outlining from by default. Tell 1440 // the user how the outliner is running. 1441 LLVM_DEBUG({ 1442 dbgs() << "Machine Outliner: Running on "; 1443 if (RunOnAllFunctions) 1444 dbgs() << "all functions"; 1445 else 1446 dbgs() << "target-default functions"; 1447 dbgs() << "\n"; 1448 }); 1449 1450 // If the user specifies that they want to outline from linkonceodrs, set 1451 // it here. 1452 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1453 InstructionMapper Mapper; 1454 1455 // Prepare instruction mappings for the suffix tree. 1456 populateMapper(Mapper, M, MMI); 1457 std::vector<OutlinedFunction> FunctionList; 1458 1459 // Find all of the outlining candidates. 1460 findCandidates(Mapper, FunctionList); 1461 1462 // If we've requested size remarks, then collect the MI counts of every 1463 // function before outlining, and the MI counts after outlining. 1464 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1465 // the pass manager's responsibility. 1466 // This could pretty easily be placed in outline instead, but because we 1467 // really ultimately *don't* want this here, it's done like this for now 1468 // instead. 1469 1470 // Check if we want size remarks. 1471 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1472 StringMap<unsigned> FunctionToInstrCount; 1473 if (ShouldEmitSizeRemarks) 1474 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1475 1476 // Outline each of the candidates and return true if something was outlined. 1477 bool OutlinedSomething = 1478 outline(M, FunctionList, Mapper, OutlinedFunctionNum); 1479 1480 // If we outlined something, we definitely changed the MI count of the 1481 // module. If we've asked for size remarks, then output them. 1482 // FIXME: This should be in the pass manager. 1483 if (ShouldEmitSizeRemarks && OutlinedSomething) 1484 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1485 1486 return OutlinedSomething; 1487 } 1488