1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFrameInfo.h" 63 #include "llvm/CodeGen/MachineFunction.h" 64 #include "llvm/CodeGen/MachineInstrBuilder.h" 65 #include "llvm/CodeGen/MachineModuleInfo.h" 66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/TargetInstrInfo.h" 69 #include "llvm/CodeGen/TargetRegisterInfo.h" 70 #include "llvm/CodeGen/TargetSubtargetInfo.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/Support/Allocator.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Target/TargetMachine.h" 76 #include <functional> 77 #include <map> 78 #include <sstream> 79 #include <tuple> 80 #include <vector> 81 82 #define DEBUG_TYPE "machine-outliner" 83 84 using namespace llvm; 85 using namespace ore; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 namespace { 91 92 /// \brief An individual sequence of instructions to be replaced with a call to 93 /// an outlined function. 94 struct Candidate { 95 private: 96 /// The start index of this \p Candidate in the instruction list. 97 unsigned StartIdx; 98 99 /// The number of instructions in this \p Candidate. 100 unsigned Len; 101 102 public: 103 /// Set to false if the candidate overlapped with another candidate. 104 bool InCandidateList = true; 105 106 /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of 107 /// \p OutlinedFunctions. 108 unsigned FunctionIdx; 109 110 /// Contains all target-specific information for this \p Candidate. 111 TargetInstrInfo::MachineOutlinerInfo MInfo; 112 113 /// Return the number of instructions in this Candidate. 114 unsigned getLength() const { return Len; } 115 116 /// Return the start index of this candidate. 117 unsigned getStartIdx() const { return StartIdx; } 118 119 // Return the end index of this candidate. 120 unsigned getEndIdx() const { return StartIdx + Len - 1; } 121 122 /// \brief The number of instructions that would be saved by outlining every 123 /// candidate of this type. 124 /// 125 /// This is a fixed value which is not updated during the candidate pruning 126 /// process. It is only used for deciding which candidate to keep if two 127 /// candidates overlap. The true benefit is stored in the OutlinedFunction 128 /// for some given candidate. 129 unsigned Benefit = 0; 130 131 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 132 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 133 134 Candidate() {} 135 136 /// \brief Used to ensure that \p Candidates are outlined in an order that 137 /// preserves the start and end indices of other \p Candidates. 138 bool operator<(const Candidate &RHS) const { 139 return getStartIdx() > RHS.getStartIdx(); 140 } 141 }; 142 143 /// \brief The information necessary to create an outlined function for some 144 /// class of candidate. 145 struct OutlinedFunction { 146 147 private: 148 /// The number of candidates for this \p OutlinedFunction. 149 unsigned OccurrenceCount = 0; 150 151 public: 152 std::vector<std::shared_ptr<Candidate>> Candidates; 153 154 /// The actual outlined function created. 155 /// This is initialized after we go through and create the actual function. 156 MachineFunction *MF = nullptr; 157 158 /// A number assigned to this function which appears at the end of its name. 159 unsigned Name; 160 161 /// \brief The sequence of integers corresponding to the instructions in this 162 /// function. 163 std::vector<unsigned> Sequence; 164 165 /// Contains all target-specific information for this \p OutlinedFunction. 166 TargetInstrInfo::MachineOutlinerInfo MInfo; 167 168 /// Return the number of candidates for this \p OutlinedFunction. 169 unsigned getOccurrenceCount() { return OccurrenceCount; } 170 171 /// Decrement the occurrence count of this OutlinedFunction and return the 172 /// new count. 173 unsigned decrement() { 174 assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); 175 OccurrenceCount--; 176 return getOccurrenceCount(); 177 } 178 179 /// \brief Return the number of instructions it would take to outline this 180 /// function. 181 unsigned getOutliningCost() { 182 return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 183 MInfo.FrameOverhead; 184 } 185 186 /// \brief Return the number of instructions that would be saved by outlining 187 /// this function. 188 unsigned getBenefit() { 189 unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 190 unsigned OutlinedCost = getOutliningCost(); 191 return (NotOutlinedCost < OutlinedCost) ? 0 192 : NotOutlinedCost - OutlinedCost; 193 } 194 195 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 196 const std::vector<unsigned> &Sequence, 197 TargetInstrInfo::MachineOutlinerInfo &MInfo) 198 : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), 199 MInfo(MInfo) {} 200 }; 201 202 /// Represents an undefined index in the suffix tree. 203 const unsigned EmptyIdx = -1; 204 205 /// A node in a suffix tree which represents a substring or suffix. 206 /// 207 /// Each node has either no children or at least two children, with the root 208 /// being a exception in the empty tree. 209 /// 210 /// Children are represented as a map between unsigned integers and nodes. If 211 /// a node N has a child M on unsigned integer k, then the mapping represented 212 /// by N is a proper prefix of the mapping represented by M. Note that this, 213 /// although similar to a trie is somewhat different: each node stores a full 214 /// substring of the full mapping rather than a single character state. 215 /// 216 /// Each internal node contains a pointer to the internal node representing 217 /// the same string, but with the first character chopped off. This is stored 218 /// in \p Link. Each leaf node stores the start index of its respective 219 /// suffix in \p SuffixIdx. 220 struct SuffixTreeNode { 221 222 /// The children of this node. 223 /// 224 /// A child existing on an unsigned integer implies that from the mapping 225 /// represented by the current node, there is a way to reach another 226 /// mapping by tacking that character on the end of the current string. 227 DenseMap<unsigned, SuffixTreeNode *> Children; 228 229 /// A flag set to false if the node has been pruned from the tree. 230 bool IsInTree = true; 231 232 /// The start index of this node's substring in the main string. 233 unsigned StartIdx = EmptyIdx; 234 235 /// The end index of this node's substring in the main string. 236 /// 237 /// Every leaf node must have its \p EndIdx incremented at the end of every 238 /// step in the construction algorithm. To avoid having to update O(N) 239 /// nodes individually at the end of every step, the end index is stored 240 /// as a pointer. 241 unsigned *EndIdx = nullptr; 242 243 /// For leaves, the start index of the suffix represented by this node. 244 /// 245 /// For all other nodes, this is ignored. 246 unsigned SuffixIdx = EmptyIdx; 247 248 /// \brief For internal nodes, a pointer to the internal node representing 249 /// the same sequence with the first character chopped off. 250 /// 251 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 252 /// Ukkonen's algorithm does to achieve linear-time construction is 253 /// keep track of which node the next insert should be at. This makes each 254 /// insert O(1), and there are a total of O(N) inserts. The suffix link 255 /// helps with inserting children of internal nodes. 256 /// 257 /// Say we add a child to an internal node with associated mapping S. The 258 /// next insertion must be at the node representing S - its first character. 259 /// This is given by the way that we iteratively build the tree in Ukkonen's 260 /// algorithm. The main idea is to look at the suffixes of each prefix in the 261 /// string, starting with the longest suffix of the prefix, and ending with 262 /// the shortest. Therefore, if we keep pointers between such nodes, we can 263 /// move to the next insertion point in O(1) time. If we don't, then we'd 264 /// have to query from the root, which takes O(N) time. This would make the 265 /// construction algorithm O(N^2) rather than O(N). 266 SuffixTreeNode *Link = nullptr; 267 268 /// The parent of this node. Every node except for the root has a parent. 269 SuffixTreeNode *Parent = nullptr; 270 271 /// The number of times this node's string appears in the tree. 272 /// 273 /// This is equal to the number of leaf children of the string. It represents 274 /// the number of suffixes that the node's string is a prefix of. 275 unsigned OccurrenceCount = 0; 276 277 /// The length of the string formed by concatenating the edge labels from the 278 /// root to this node. 279 unsigned ConcatLen = 0; 280 281 /// Returns true if this node is a leaf. 282 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 283 284 /// Returns true if this node is the root of its owning \p SuffixTree. 285 bool isRoot() const { return StartIdx == EmptyIdx; } 286 287 /// Return the number of elements in the substring associated with this node. 288 size_t size() const { 289 290 // Is it the root? If so, it's the empty string so return 0. 291 if (isRoot()) 292 return 0; 293 294 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 295 296 // Size = the number of elements in the string. 297 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 298 return *EndIdx - StartIdx + 1; 299 } 300 301 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 302 SuffixTreeNode *Parent) 303 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 304 305 SuffixTreeNode() {} 306 }; 307 308 /// A data structure for fast substring queries. 309 /// 310 /// Suffix trees represent the suffixes of their input strings in their leaves. 311 /// A suffix tree is a type of compressed trie structure where each node 312 /// represents an entire substring rather than a single character. Each leaf 313 /// of the tree is a suffix. 314 /// 315 /// A suffix tree can be seen as a type of state machine where each state is a 316 /// substring of the full string. The tree is structured so that, for a string 317 /// of length N, there are exactly N leaves in the tree. This structure allows 318 /// us to quickly find repeated substrings of the input string. 319 /// 320 /// In this implementation, a "string" is a vector of unsigned integers. 321 /// These integers may result from hashing some data type. A suffix tree can 322 /// contain 1 or many strings, which can then be queried as one large string. 323 /// 324 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 325 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 326 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 327 /// paper is available at 328 /// 329 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 330 class SuffixTree { 331 public: 332 /// Stores each leaf node in the tree. 333 /// 334 /// This is used for finding outlining candidates. 335 std::vector<SuffixTreeNode *> LeafVector; 336 337 /// Each element is an integer representing an instruction in the module. 338 ArrayRef<unsigned> Str; 339 340 private: 341 /// Maintains each node in the tree. 342 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 343 344 /// The root of the suffix tree. 345 /// 346 /// The root represents the empty string. It is maintained by the 347 /// \p NodeAllocator like every other node in the tree. 348 SuffixTreeNode *Root = nullptr; 349 350 /// Maintains the end indices of the internal nodes in the tree. 351 /// 352 /// Each internal node is guaranteed to never have its end index change 353 /// during the construction algorithm; however, leaves must be updated at 354 /// every step. Therefore, we need to store leaf end indices by reference 355 /// to avoid updating O(N) leaves at every step of construction. Thus, 356 /// every internal node must be allocated its own end index. 357 BumpPtrAllocator InternalEndIdxAllocator; 358 359 /// The end index of each leaf in the tree. 360 unsigned LeafEndIdx = -1; 361 362 /// \brief Helper struct which keeps track of the next insertion point in 363 /// Ukkonen's algorithm. 364 struct ActiveState { 365 /// The next node to insert at. 366 SuffixTreeNode *Node; 367 368 /// The index of the first character in the substring currently being added. 369 unsigned Idx = EmptyIdx; 370 371 /// The length of the substring we have to add at the current step. 372 unsigned Len = 0; 373 }; 374 375 /// \brief The point the next insertion will take place at in the 376 /// construction algorithm. 377 ActiveState Active; 378 379 /// Allocate a leaf node and add it to the tree. 380 /// 381 /// \param Parent The parent of this node. 382 /// \param StartIdx The start index of this node's associated string. 383 /// \param Edge The label on the edge leaving \p Parent to this node. 384 /// 385 /// \returns A pointer to the allocated leaf node. 386 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 387 unsigned Edge) { 388 389 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 390 391 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 392 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 393 Parent.Children[Edge] = N; 394 395 return N; 396 } 397 398 /// Allocate an internal node and add it to the tree. 399 /// 400 /// \param Parent The parent of this node. Only null when allocating the root. 401 /// \param StartIdx The start index of this node's associated string. 402 /// \param EndIdx The end index of this node's associated string. 403 /// \param Edge The label on the edge leaving \p Parent to this node. 404 /// 405 /// \returns A pointer to the allocated internal node. 406 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 407 unsigned EndIdx, unsigned Edge) { 408 409 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 410 assert(!(!Parent && StartIdx != EmptyIdx) && 411 "Non-root internal nodes must have parents!"); 412 413 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 414 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 415 SuffixTreeNode(StartIdx, E, Root, Parent); 416 if (Parent) 417 Parent->Children[Edge] = N; 418 419 return N; 420 } 421 422 /// \brief Set the suffix indices of the leaves to the start indices of their 423 /// respective suffixes. Also stores each leaf in \p LeafVector at its 424 /// respective suffix index. 425 /// 426 /// \param[in] CurrNode The node currently being visited. 427 /// \param CurrIdx The current index of the string being visited. 428 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 429 430 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 431 432 // Store the length of the concatenation of all strings from the root to 433 // this node. 434 if (!CurrNode.isRoot()) { 435 if (CurrNode.ConcatLen == 0) 436 CurrNode.ConcatLen = CurrNode.size(); 437 438 if (CurrNode.Parent) 439 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 440 } 441 442 // Traverse the tree depth-first. 443 for (auto &ChildPair : CurrNode.Children) { 444 assert(ChildPair.second && "Node had a null child!"); 445 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 446 } 447 448 // Is this node a leaf? 449 if (IsLeaf) { 450 // If yes, give it a suffix index and bump its parent's occurrence count. 451 CurrNode.SuffixIdx = Str.size() - CurrIdx; 452 assert(CurrNode.Parent && "CurrNode had no parent!"); 453 CurrNode.Parent->OccurrenceCount++; 454 455 // Store the leaf in the leaf vector for pruning later. 456 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 457 } 458 } 459 460 /// \brief Construct the suffix tree for the prefix of the input ending at 461 /// \p EndIdx. 462 /// 463 /// Used to construct the full suffix tree iteratively. At the end of each 464 /// step, the constructed suffix tree is either a valid suffix tree, or a 465 /// suffix tree with implicit suffixes. At the end of the final step, the 466 /// suffix tree is a valid tree. 467 /// 468 /// \param EndIdx The end index of the current prefix in the main string. 469 /// \param SuffixesToAdd The number of suffixes that must be added 470 /// to complete the suffix tree at the current phase. 471 /// 472 /// \returns The number of suffixes that have not been added at the end of 473 /// this step. 474 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 475 SuffixTreeNode *NeedsLink = nullptr; 476 477 while (SuffixesToAdd > 0) { 478 479 // Are we waiting to add anything other than just the last character? 480 if (Active.Len == 0) { 481 // If not, then say the active index is the end index. 482 Active.Idx = EndIdx; 483 } 484 485 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 486 487 // The first character in the current substring we're looking at. 488 unsigned FirstChar = Str[Active.Idx]; 489 490 // Have we inserted anything starting with FirstChar at the current node? 491 if (Active.Node->Children.count(FirstChar) == 0) { 492 // If not, then we can just insert a leaf and move too the next step. 493 insertLeaf(*Active.Node, EndIdx, FirstChar); 494 495 // The active node is an internal node, and we visited it, so it must 496 // need a link if it doesn't have one. 497 if (NeedsLink) { 498 NeedsLink->Link = Active.Node; 499 NeedsLink = nullptr; 500 } 501 } else { 502 // There's a match with FirstChar, so look for the point in the tree to 503 // insert a new node. 504 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 505 506 unsigned SubstringLen = NextNode->size(); 507 508 // Is the current suffix we're trying to insert longer than the size of 509 // the child we want to move to? 510 if (Active.Len >= SubstringLen) { 511 // If yes, then consume the characters we've seen and move to the next 512 // node. 513 Active.Idx += SubstringLen; 514 Active.Len -= SubstringLen; 515 Active.Node = NextNode; 516 continue; 517 } 518 519 // Otherwise, the suffix we're trying to insert must be contained in the 520 // next node we want to move to. 521 unsigned LastChar = Str[EndIdx]; 522 523 // Is the string we're trying to insert a substring of the next node? 524 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 525 // If yes, then we're done for this step. Remember our insertion point 526 // and move to the next end index. At this point, we have an implicit 527 // suffix tree. 528 if (NeedsLink && !Active.Node->isRoot()) { 529 NeedsLink->Link = Active.Node; 530 NeedsLink = nullptr; 531 } 532 533 Active.Len++; 534 break; 535 } 536 537 // The string we're trying to insert isn't a substring of the next node, 538 // but matches up to a point. Split the node. 539 // 540 // For example, say we ended our search at a node n and we're trying to 541 // insert ABD. Then we'll create a new node s for AB, reduce n to just 542 // representing C, and insert a new leaf node l to represent d. This 543 // allows us to ensure that if n was a leaf, it remains a leaf. 544 // 545 // | ABC ---split---> | AB 546 // n s 547 // C / \ D 548 // n l 549 550 // The node s from the diagram 551 SuffixTreeNode *SplitNode = 552 insertInternalNode(Active.Node, NextNode->StartIdx, 553 NextNode->StartIdx + Active.Len - 1, FirstChar); 554 555 // Insert the new node representing the new substring into the tree as 556 // a child of the split node. This is the node l from the diagram. 557 insertLeaf(*SplitNode, EndIdx, LastChar); 558 559 // Make the old node a child of the split node and update its start 560 // index. This is the node n from the diagram. 561 NextNode->StartIdx += Active.Len; 562 NextNode->Parent = SplitNode; 563 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 564 565 // SplitNode is an internal node, update the suffix link. 566 if (NeedsLink) 567 NeedsLink->Link = SplitNode; 568 569 NeedsLink = SplitNode; 570 } 571 572 // We've added something new to the tree, so there's one less suffix to 573 // add. 574 SuffixesToAdd--; 575 576 if (Active.Node->isRoot()) { 577 if (Active.Len > 0) { 578 Active.Len--; 579 Active.Idx = EndIdx - SuffixesToAdd + 1; 580 } 581 } else { 582 // Start the next phase at the next smallest suffix. 583 Active.Node = Active.Node->Link; 584 } 585 } 586 587 return SuffixesToAdd; 588 } 589 590 public: 591 /// Construct a suffix tree from a sequence of unsigned integers. 592 /// 593 /// \param Str The string to construct the suffix tree for. 594 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 595 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 596 Root->IsInTree = true; 597 Active.Node = Root; 598 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 599 600 // Keep track of the number of suffixes we have to add of the current 601 // prefix. 602 unsigned SuffixesToAdd = 0; 603 Active.Node = Root; 604 605 // Construct the suffix tree iteratively on each prefix of the string. 606 // PfxEndIdx is the end index of the current prefix. 607 // End is one past the last element in the string. 608 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 609 PfxEndIdx++) { 610 SuffixesToAdd++; 611 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 612 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 613 } 614 615 // Set the suffix indices of each leaf. 616 assert(Root && "Root node can't be nullptr!"); 617 setSuffixIndices(*Root, 0); 618 } 619 }; 620 621 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 622 struct InstructionMapper { 623 624 /// \brief The next available integer to assign to a \p MachineInstr that 625 /// cannot be outlined. 626 /// 627 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 628 unsigned IllegalInstrNumber = -3; 629 630 /// \brief The next available integer to assign to a \p MachineInstr that can 631 /// be outlined. 632 unsigned LegalInstrNumber = 0; 633 634 /// Correspondence from \p MachineInstrs to unsigned integers. 635 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 636 InstructionIntegerMap; 637 638 /// Corresponcence from unsigned integers to \p MachineInstrs. 639 /// Inverse of \p InstructionIntegerMap. 640 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 641 642 /// The vector of unsigned integers that the module is mapped to. 643 std::vector<unsigned> UnsignedVec; 644 645 /// \brief Stores the location of the instruction associated with the integer 646 /// at index i in \p UnsignedVec for each index i. 647 std::vector<MachineBasicBlock::iterator> InstrList; 648 649 /// \brief Maps \p *It to a legal integer. 650 /// 651 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 652 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 653 /// 654 /// \returns The integer that \p *It was mapped to. 655 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 656 657 // Get the integer for this instruction or give it the current 658 // LegalInstrNumber. 659 InstrList.push_back(It); 660 MachineInstr &MI = *It; 661 bool WasInserted; 662 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 663 ResultIt; 664 std::tie(ResultIt, WasInserted) = 665 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 666 unsigned MINumber = ResultIt->second; 667 668 // There was an insertion. 669 if (WasInserted) { 670 LegalInstrNumber++; 671 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 672 } 673 674 UnsignedVec.push_back(MINumber); 675 676 // Make sure we don't overflow or use any integers reserved by the DenseMap. 677 if (LegalInstrNumber >= IllegalInstrNumber) 678 report_fatal_error("Instruction mapping overflow!"); 679 680 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 681 "Tried to assign DenseMap tombstone or empty key to instruction."); 682 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 683 "Tried to assign DenseMap tombstone or empty key to instruction."); 684 685 return MINumber; 686 } 687 688 /// Maps \p *It to an illegal integer. 689 /// 690 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 691 /// 692 /// \returns The integer that \p *It was mapped to. 693 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 694 unsigned MINumber = IllegalInstrNumber; 695 696 InstrList.push_back(It); 697 UnsignedVec.push_back(IllegalInstrNumber); 698 IllegalInstrNumber--; 699 700 assert(LegalInstrNumber < IllegalInstrNumber && 701 "Instruction mapping overflow!"); 702 703 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 704 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 705 706 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 707 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 708 709 return MINumber; 710 } 711 712 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 713 /// and appends it to \p UnsignedVec and \p InstrList. 714 /// 715 /// Two instructions are assigned the same integer if they are identical. 716 /// If an instruction is deemed unsafe to outline, then it will be assigned an 717 /// unique integer. The resulting mapping is placed into a suffix tree and 718 /// queried for candidates. 719 /// 720 /// \param MBB The \p MachineBasicBlock to be translated into integers. 721 /// \param TRI \p TargetRegisterInfo for the module. 722 /// \param TII \p TargetInstrInfo for the module. 723 void convertToUnsignedVec(MachineBasicBlock &MBB, 724 const TargetRegisterInfo &TRI, 725 const TargetInstrInfo &TII) { 726 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 727 It++) { 728 729 // Keep track of where this instruction is in the module. 730 switch (TII.getOutliningType(*It)) { 731 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 732 mapToIllegalUnsigned(It); 733 break; 734 735 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 736 mapToLegalUnsigned(It); 737 break; 738 739 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 740 break; 741 } 742 } 743 744 // After we're done every insertion, uniquely terminate this part of the 745 // "string". This makes sure we won't match across basic block or function 746 // boundaries since the "end" is encoded uniquely and thus appears in no 747 // repeated substring. 748 InstrList.push_back(MBB.end()); 749 UnsignedVec.push_back(IllegalInstrNumber); 750 IllegalInstrNumber--; 751 } 752 753 InstructionMapper() { 754 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 755 // changed. 756 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 757 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 758 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 759 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 760 } 761 }; 762 763 /// \brief An interprocedural pass which finds repeated sequences of 764 /// instructions and replaces them with calls to functions. 765 /// 766 /// Each instruction is mapped to an unsigned integer and placed in a string. 767 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 768 /// is then repeatedly queried for repeated sequences of instructions. Each 769 /// non-overlapping repeated sequence is then placed in its own 770 /// \p MachineFunction and each instance is then replaced with a call to that 771 /// function. 772 struct MachineOutliner : public ModulePass { 773 774 static char ID; 775 776 /// \brief Set to true if the outliner should consider functions with 777 /// linkonceodr linkage. 778 bool OutlineFromLinkOnceODRs = false; 779 780 StringRef getPassName() const override { return "Machine Outliner"; } 781 782 void getAnalysisUsage(AnalysisUsage &AU) const override { 783 AU.addRequired<MachineModuleInfo>(); 784 AU.addPreserved<MachineModuleInfo>(); 785 AU.setPreservesAll(); 786 ModulePass::getAnalysisUsage(AU); 787 } 788 789 MachineOutliner(bool OutlineFromLinkOnceODRs = false) 790 : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { 791 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 792 } 793 794 /// Find all repeated substrings that satisfy the outlining cost model. 795 /// 796 /// If a substring appears at least twice, then it must be represented by 797 /// an internal node which appears in at least two suffixes. Each suffix is 798 /// represented by a leaf node. To do this, we visit each internal node in 799 /// the tree, using the leaf children of each internal node. If an internal 800 /// node represents a beneficial substring, then we use each of its leaf 801 /// children to find the locations of its substring. 802 /// 803 /// \param ST A suffix tree to query. 804 /// \param TII TargetInstrInfo for the target. 805 /// \param Mapper Contains outlining mapping information. 806 /// \param[out] CandidateList Filled with candidates representing each 807 /// beneficial substring. 808 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 809 /// type of candidate. 810 /// 811 /// \returns The length of the longest candidate found. 812 unsigned 813 findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 814 InstructionMapper &Mapper, 815 std::vector<std::shared_ptr<Candidate>> &CandidateList, 816 std::vector<OutlinedFunction> &FunctionList); 817 818 /// \brief Replace the sequences of instructions represented by the 819 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 820 /// described in \p FunctionList. 821 /// 822 /// \param M The module we are outlining from. 823 /// \param CandidateList A list of candidates to be outlined. 824 /// \param FunctionList A list of functions to be inserted into the module. 825 /// \param Mapper Contains the instruction mappings for the module. 826 bool outline(Module &M, 827 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 828 std::vector<OutlinedFunction> &FunctionList, 829 InstructionMapper &Mapper); 830 831 /// Creates a function for \p OF and inserts it into the module. 832 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 833 InstructionMapper &Mapper); 834 835 /// Find potential outlining candidates and store them in \p CandidateList. 836 /// 837 /// For each type of potential candidate, also build an \p OutlinedFunction 838 /// struct containing the information to build the function for that 839 /// candidate. 840 /// 841 /// \param[out] CandidateList Filled with outlining candidates for the module. 842 /// \param[out] FunctionList Filled with functions corresponding to each type 843 /// of \p Candidate. 844 /// \param ST The suffix tree for the module. 845 /// \param TII TargetInstrInfo for the module. 846 /// 847 /// \returns The length of the longest candidate found. 0 if there are none. 848 unsigned 849 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 850 std::vector<OutlinedFunction> &FunctionList, 851 SuffixTree &ST, InstructionMapper &Mapper, 852 const TargetInstrInfo &TII); 853 854 /// Helper function for pruneOverlaps. 855 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 856 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 857 858 /// \brief Remove any overlapping candidates that weren't handled by the 859 /// suffix tree's pruning method. 860 /// 861 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 862 /// If a short candidate is chosen for outlining, then a longer candidate 863 /// which has that short candidate as a suffix is chosen, the tree's pruning 864 /// method will not find it. Thus, we need to prune before outlining as well. 865 /// 866 /// \param[in,out] CandidateList A list of outlining candidates. 867 /// \param[in,out] FunctionList A list of functions to be outlined. 868 /// \param Mapper Contains instruction mapping info for outlining. 869 /// \param MaxCandidateLen The length of the longest candidate. 870 /// \param TII TargetInstrInfo for the module. 871 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 872 std::vector<OutlinedFunction> &FunctionList, 873 InstructionMapper &Mapper, unsigned MaxCandidateLen, 874 const TargetInstrInfo &TII); 875 876 /// Construct a suffix tree on the instructions in \p M and outline repeated 877 /// strings from that tree. 878 bool runOnModule(Module &M) override; 879 }; 880 881 } // Anonymous namespace. 882 883 char MachineOutliner::ID = 0; 884 885 namespace llvm { 886 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { 887 return new MachineOutliner(OutlineFromLinkOnceODRs); 888 } 889 890 } // namespace llvm 891 892 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 893 false) 894 895 unsigned MachineOutliner::findCandidates( 896 SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, 897 std::vector<std::shared_ptr<Candidate>> &CandidateList, 898 std::vector<OutlinedFunction> &FunctionList) { 899 CandidateList.clear(); 900 FunctionList.clear(); 901 unsigned MaxLen = 0; 902 903 // FIXME: Visit internal nodes instead of leaves. 904 for (SuffixTreeNode *Leaf : ST.LeafVector) { 905 assert(Leaf && "Leaves in LeafVector cannot be null!"); 906 if (!Leaf->IsInTree) 907 continue; 908 909 assert(Leaf->Parent && "All leaves must have parents!"); 910 SuffixTreeNode &Parent = *(Leaf->Parent); 911 912 // If it doesn't appear enough, or we already outlined from it, skip it. 913 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 914 continue; 915 916 // Figure out if this candidate is beneficial. 917 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 918 919 // Too short to be beneficial; skip it. 920 // FIXME: This isn't necessarily true for, say, X86. If we factor in 921 // instruction lengths we need more information than this. 922 if (StringLen < 2) 923 continue; 924 925 // If this is a beneficial class of candidate, then every one is stored in 926 // this vector. 927 std::vector<Candidate> CandidatesForRepeatedSeq; 928 929 // Describes the start and end point of each candidate. This allows the 930 // target to infer some information about each occurrence of each repeated 931 // sequence. 932 // FIXME: CandidatesForRepeatedSeq and this should be combined. 933 std::vector< 934 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 935 RepeatedSequenceLocs; 936 937 // Figure out the call overhead for each instance of the sequence. 938 for (auto &ChildPair : Parent.Children) { 939 SuffixTreeNode *M = ChildPair.second; 940 941 if (M && M->IsInTree && M->isLeaf()) { 942 // Never visit this leaf again. 943 M->IsInTree = false; 944 unsigned StartIdx = M->SuffixIdx; 945 unsigned EndIdx = StartIdx + StringLen - 1; 946 947 // Trick: Discard some candidates that would be incompatible with the 948 // ones we've already found for this sequence. This will save us some 949 // work in candidate selection. 950 // 951 // If two candidates overlap, then we can't outline them both. This 952 // happens when we have candidates that look like, say 953 // 954 // AA (where each "A" is an instruction). 955 // 956 // We might have some portion of the module that looks like this: 957 // AAAAAA (6 A's) 958 // 959 // In this case, there are 5 different copies of "AA" in this range, but 960 // at most 3 can be outlined. If only outlining 3 of these is going to 961 // be unbeneficial, then we ought to not bother. 962 // 963 // Note that two things DON'T overlap when they look like this: 964 // start1...end1 .... start2...end2 965 // That is, one must either 966 // * End before the other starts 967 // * Start after the other ends 968 if (std::all_of(CandidatesForRepeatedSeq.begin(), 969 CandidatesForRepeatedSeq.end(), 970 [&StartIdx, &EndIdx](const Candidate &C) { 971 return (EndIdx < C.getStartIdx() || 972 StartIdx > C.getEndIdx()); 973 })) { 974 // It doesn't overlap with anything, so we can outline it. 975 // Each sequence is over [StartIt, EndIt]. 976 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 977 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 978 979 // Save the candidate and its location. 980 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, 981 FunctionList.size()); 982 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 983 } 984 } 985 } 986 987 // We've found something we might want to outline. 988 // Create an OutlinedFunction to store it and check if it'd be beneficial 989 // to outline. 990 TargetInstrInfo::MachineOutlinerInfo MInfo = 991 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 992 std::vector<unsigned> Seq; 993 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 994 Seq.push_back(ST.Str[i]); 995 OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(), 996 Seq, MInfo); 997 unsigned Benefit = OF.getBenefit(); 998 999 // Is it better to outline this candidate than not? 1000 if (Benefit < 1) { 1001 // Outlining this candidate would take more instructions than not 1002 // outlining. 1003 // Emit a remark explaining why we didn't outline this candidate. 1004 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 1005 RepeatedSequenceLocs[0]; 1006 MachineOptimizationRemarkEmitter MORE( 1007 *(C.first->getParent()->getParent()), nullptr); 1008 MORE.emit([&]() { 1009 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 1010 C.first->getDebugLoc(), 1011 C.first->getParent()); 1012 R << "Did not outline " << NV("Length", StringLen) << " instructions" 1013 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 1014 << " locations." 1015 << " Instructions from outlining all occurrences (" 1016 << NV("OutliningCost", OF.getOutliningCost()) << ")" 1017 << " >= Unoutlined instruction count (" 1018 << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")" 1019 << " (Also found at: "; 1020 1021 // Tell the user the other places the candidate was found. 1022 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 1023 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 1024 RepeatedSequenceLocs[i].first->getDebugLoc()); 1025 if (i != e - 1) 1026 R << ", "; 1027 } 1028 1029 R << ")"; 1030 return R; 1031 }); 1032 1033 // Move to the next candidate. 1034 continue; 1035 } 1036 1037 if (StringLen > MaxLen) 1038 MaxLen = StringLen; 1039 1040 // At this point, the candidate class is seen as beneficial. Set their 1041 // benefit values and save them in the candidate list. 1042 std::vector<std::shared_ptr<Candidate>> CandidatesForFn; 1043 for (Candidate &C : CandidatesForRepeatedSeq) { 1044 C.Benefit = Benefit; 1045 C.MInfo = MInfo; 1046 std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); 1047 CandidateList.push_back(Cptr); 1048 CandidatesForFn.push_back(Cptr); 1049 } 1050 1051 FunctionList.push_back(OF); 1052 FunctionList.back().Candidates = CandidatesForFn; 1053 1054 // Move to the next function. 1055 Parent.IsInTree = false; 1056 } 1057 1058 return MaxLen; 1059 } 1060 1061 // Remove C from the candidate space, and update its OutlinedFunction. 1062 void MachineOutliner::prune(Candidate &C, 1063 std::vector<OutlinedFunction> &FunctionList) { 1064 // Get the OutlinedFunction associated with this Candidate. 1065 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1066 1067 // Update C's associated function's occurrence count. 1068 F.decrement(); 1069 1070 // Remove C from the CandidateList. 1071 C.InCandidateList = false; 1072 1073 DEBUG(dbgs() << "- Removed a Candidate \n"; 1074 dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount() 1075 << "\n"; 1076 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 1077 << "\n";); 1078 } 1079 1080 void MachineOutliner::pruneOverlaps( 1081 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1082 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 1083 unsigned MaxCandidateLen, const TargetInstrInfo &TII) { 1084 1085 // Return true if this candidate became unbeneficial for outlining in a 1086 // previous step. 1087 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1088 1089 // Check if the candidate was removed in a previous step. 1090 if (!C.InCandidateList) 1091 return true; 1092 1093 // C must be alive. Check if we should remove it. 1094 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1095 prune(C, FunctionList); 1096 return true; 1097 } 1098 1099 // C is in the list, and F is still beneficial. 1100 return false; 1101 }; 1102 1103 // TODO: Experiment with interval trees or other interval-checking structures 1104 // to lower the time complexity of this function. 1105 // TODO: Can we do better than the simple greedy choice? 1106 // Check for overlaps in the range. 1107 // This is O(MaxCandidateLen * CandidateList.size()). 1108 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1109 It++) { 1110 Candidate &C1 = **It; 1111 1112 // If C1 was already pruned, or its function is no longer beneficial for 1113 // outlining, move to the next candidate. 1114 if (ShouldSkipCandidate(C1)) 1115 continue; 1116 1117 // The minimum start index of any candidate that could overlap with this 1118 // one. 1119 unsigned FarthestPossibleIdx = 0; 1120 1121 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1122 if (C1.getStartIdx() > MaxCandidateLen) 1123 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1124 1125 // Compare against the candidates in the list that start at at most 1126 // FarthestPossibleIdx indices away from C1. There are at most 1127 // MaxCandidateLen of these. 1128 for (auto Sit = It + 1; Sit != Et; Sit++) { 1129 Candidate &C2 = **Sit; 1130 1131 // Is this candidate too far away to overlap? 1132 if (C2.getStartIdx() < FarthestPossibleIdx) 1133 break; 1134 1135 // If C2 was already pruned, or its function is no longer beneficial for 1136 // outlining, move to the next candidate. 1137 if (ShouldSkipCandidate(C2)) 1138 continue; 1139 1140 // Do C1 and C2 overlap? 1141 // 1142 // Not overlapping: 1143 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1144 // 1145 // We sorted our candidate list so C2Start <= C1Start. We know that 1146 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1147 // have to check is C2End < C2Start to see if we overlap. 1148 if (C2.getEndIdx() < C1.getStartIdx()) 1149 continue; 1150 1151 // C1 and C2 overlap. 1152 // We need to choose the better of the two. 1153 // 1154 // Approximate this by picking the one which would have saved us the 1155 // most instructions before any pruning. 1156 1157 // Is C2 a better candidate? 1158 if (C2.Benefit > C1.Benefit) { 1159 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1160 // against anything anymore, so break. 1161 prune(C1, FunctionList); 1162 break; 1163 } 1164 1165 // Prune C2 and move on to the next candidate. 1166 prune(C2, FunctionList); 1167 } 1168 } 1169 } 1170 1171 unsigned MachineOutliner::buildCandidateList( 1172 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1173 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 1174 InstructionMapper &Mapper, const TargetInstrInfo &TII) { 1175 1176 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1177 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1178 1179 MaxCandidateLen = 1180 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1181 1182 // Sort the candidates in decending order. This will simplify the outlining 1183 // process when we have to remove the candidates from the mapping by 1184 // allowing us to cut them out without keeping track of an offset. 1185 std::stable_sort( 1186 CandidateList.begin(), CandidateList.end(), 1187 [](const std::shared_ptr<Candidate> &LHS, 1188 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1189 1190 return MaxCandidateLen; 1191 } 1192 1193 MachineFunction * 1194 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1195 InstructionMapper &Mapper) { 1196 1197 // Create the function name. This should be unique. For now, just hash the 1198 // module name and include it in the function name plus the number of this 1199 // function. 1200 std::ostringstream NameStream; 1201 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1202 1203 // Create the function using an IR-level function. 1204 LLVMContext &C = M.getContext(); 1205 Function *F = dyn_cast<Function>( 1206 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1207 assert(F && "Function was null!"); 1208 1209 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1210 // which gives us better results when we outline from linkonceodr functions. 1211 F->setLinkage(GlobalValue::PrivateLinkage); 1212 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1213 1214 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1215 IRBuilder<> Builder(EntryBB); 1216 Builder.CreateRetVoid(); 1217 1218 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1219 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1220 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1221 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1222 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1223 1224 // Insert the new function into the module. 1225 MF.insert(MF.begin(), &MBB); 1226 1227 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1228 1229 // Copy over the instructions for the function using the integer mappings in 1230 // its sequence. 1231 for (unsigned Str : OF.Sequence) { 1232 MachineInstr *NewMI = 1233 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1234 NewMI->dropMemRefs(); 1235 1236 // Don't keep debug information for outlined instructions. 1237 // FIXME: This means outlined functions are currently undebuggable. 1238 NewMI->setDebugLoc(DebugLoc()); 1239 MBB.insert(MBB.end(), NewMI); 1240 } 1241 1242 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1243 1244 return &MF; 1245 } 1246 1247 bool MachineOutliner::outline( 1248 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 1249 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1250 1251 bool OutlinedSomething = false; 1252 // Replace the candidates with calls to their respective outlined functions. 1253 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 1254 Candidate &C = *Cptr; 1255 // Was the candidate removed during pruneOverlaps? 1256 if (!C.InCandidateList) 1257 continue; 1258 1259 // If not, then look at its OutlinedFunction. 1260 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1261 1262 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1263 if (OF.getBenefit() < 1) 1264 continue; 1265 1266 // If not, then outline it. 1267 assert(C.getStartIdx() < Mapper.InstrList.size() && 1268 "Candidate out of bounds!"); 1269 MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent(); 1270 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()]; 1271 unsigned EndIdx = C.getEndIdx(); 1272 1273 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1274 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1275 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1276 1277 EndIt++; // Erase needs one past the end index. 1278 1279 // Does this candidate have a function yet? 1280 if (!OF.MF) { 1281 OF.MF = createOutlinedFunction(M, OF, Mapper); 1282 MachineBasicBlock *MBB = &*OF.MF->begin(); 1283 1284 // Output a remark telling the user that an outlined function was created, 1285 // and explaining where it came from. 1286 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1287 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1288 MBB->findDebugLoc(MBB->begin()), MBB); 1289 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) 1290 << " instructions by " 1291 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 1292 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1293 << " locations. " 1294 << "(Found at: "; 1295 1296 // Tell the user the other places the candidate was found. 1297 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1298 1299 // Skip over things that were pruned. 1300 if (!OF.Candidates[i]->InCandidateList) 1301 continue; 1302 1303 R << NV( 1304 (Twine("StartLoc") + Twine(i)).str(), 1305 Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc()); 1306 if (i != e - 1) 1307 R << ", "; 1308 } 1309 1310 R << ")"; 1311 1312 MORE.emit(R); 1313 FunctionsCreated++; 1314 } 1315 1316 MachineFunction *MF = OF.MF; 1317 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1318 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1319 1320 // Insert a call to the new function and erase the old sequence. 1321 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1322 StartIt = Mapper.InstrList[C.getStartIdx()]; 1323 MBB->erase(StartIt, EndIt); 1324 1325 OutlinedSomething = true; 1326 1327 // Statistics. 1328 NumOutlined++; 1329 } 1330 1331 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1332 1333 return OutlinedSomething; 1334 } 1335 1336 bool MachineOutliner::runOnModule(Module &M) { 1337 1338 // Is there anything in the module at all? 1339 if (M.empty()) 1340 return false; 1341 1342 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1343 const TargetSubtargetInfo &STI = 1344 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1345 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1346 const TargetInstrInfo *TII = STI.getInstrInfo(); 1347 1348 InstructionMapper Mapper; 1349 1350 // Build instruction mappings for each function in the module. 1351 for (Function &F : M) { 1352 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1353 1354 // Is the function empty? Safe to outline from? 1355 if (F.empty() || 1356 !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs)) 1357 continue; 1358 1359 // If it is, look at each MachineBasicBlock in the function. 1360 for (MachineBasicBlock &MBB : MF) { 1361 1362 // Is there anything in MBB? 1363 if (MBB.empty()) 1364 continue; 1365 1366 // If yes, map it. 1367 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1368 } 1369 } 1370 1371 // Construct a suffix tree, use it to find candidates, and then outline them. 1372 SuffixTree ST(Mapper.UnsignedVec); 1373 std::vector<std::shared_ptr<Candidate>> CandidateList; 1374 std::vector<OutlinedFunction> FunctionList; 1375 1376 // Find all of the outlining candidates. 1377 unsigned MaxCandidateLen = 1378 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1379 1380 // Remove candidates that overlap with other candidates. 1381 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1382 1383 // Outline each of the candidates and return true if something was outlined. 1384 return outline(M, CandidateList, FunctionList, Mapper); 1385 } 1386