1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineModuleInfo.h" 63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 64 #include "llvm/CodeGen/MachineRegisterInfo.h" 65 #include "llvm/CodeGen/Passes.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/IR/DIBuilder.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/Mangler.h" 71 #include "llvm/Support/Allocator.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <functional> 76 #include <map> 77 #include <sstream> 78 #include <tuple> 79 #include <vector> 80 81 #define DEBUG_TYPE "machine-outliner" 82 83 using namespace llvm; 84 using namespace ore; 85 using namespace outliner; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 // Set to true if the user wants the outliner to run on linkonceodr linkage 91 // functions. This is false by default because the linker can dedupe linkonceodr 92 // functions. Since the outliner is confined to a single module (modulo LTO), 93 // this is off by default. It should, however, be the default behaviour in 94 // LTO. 95 static cl::opt<bool> EnableLinkOnceODROutlining( 96 "enable-linkonceodr-outlining", 97 cl::Hidden, 98 cl::desc("Enable the machine outliner on linkonceodr functions"), 99 cl::init(false)); 100 101 namespace { 102 103 /// Represents an undefined index in the suffix tree. 104 const unsigned EmptyIdx = -1; 105 106 /// A node in a suffix tree which represents a substring or suffix. 107 /// 108 /// Each node has either no children or at least two children, with the root 109 /// being a exception in the empty tree. 110 /// 111 /// Children are represented as a map between unsigned integers and nodes. If 112 /// a node N has a child M on unsigned integer k, then the mapping represented 113 /// by N is a proper prefix of the mapping represented by M. Note that this, 114 /// although similar to a trie is somewhat different: each node stores a full 115 /// substring of the full mapping rather than a single character state. 116 /// 117 /// Each internal node contains a pointer to the internal node representing 118 /// the same string, but with the first character chopped off. This is stored 119 /// in \p Link. Each leaf node stores the start index of its respective 120 /// suffix in \p SuffixIdx. 121 struct SuffixTreeNode { 122 123 /// The children of this node. 124 /// 125 /// A child existing on an unsigned integer implies that from the mapping 126 /// represented by the current node, there is a way to reach another 127 /// mapping by tacking that character on the end of the current string. 128 DenseMap<unsigned, SuffixTreeNode *> Children; 129 130 /// The start index of this node's substring in the main string. 131 unsigned StartIdx = EmptyIdx; 132 133 /// The end index of this node's substring in the main string. 134 /// 135 /// Every leaf node must have its \p EndIdx incremented at the end of every 136 /// step in the construction algorithm. To avoid having to update O(N) 137 /// nodes individually at the end of every step, the end index is stored 138 /// as a pointer. 139 unsigned *EndIdx = nullptr; 140 141 /// For leaves, the start index of the suffix represented by this node. 142 /// 143 /// For all other nodes, this is ignored. 144 unsigned SuffixIdx = EmptyIdx; 145 146 /// For internal nodes, a pointer to the internal node representing 147 /// the same sequence with the first character chopped off. 148 /// 149 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 150 /// Ukkonen's algorithm does to achieve linear-time construction is 151 /// keep track of which node the next insert should be at. This makes each 152 /// insert O(1), and there are a total of O(N) inserts. The suffix link 153 /// helps with inserting children of internal nodes. 154 /// 155 /// Say we add a child to an internal node with associated mapping S. The 156 /// next insertion must be at the node representing S - its first character. 157 /// This is given by the way that we iteratively build the tree in Ukkonen's 158 /// algorithm. The main idea is to look at the suffixes of each prefix in the 159 /// string, starting with the longest suffix of the prefix, and ending with 160 /// the shortest. Therefore, if we keep pointers between such nodes, we can 161 /// move to the next insertion point in O(1) time. If we don't, then we'd 162 /// have to query from the root, which takes O(N) time. This would make the 163 /// construction algorithm O(N^2) rather than O(N). 164 SuffixTreeNode *Link = nullptr; 165 166 /// The length of the string formed by concatenating the edge labels from the 167 /// root to this node. 168 unsigned ConcatLen = 0; 169 170 /// Returns true if this node is a leaf. 171 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 172 173 /// Returns true if this node is the root of its owning \p SuffixTree. 174 bool isRoot() const { return StartIdx == EmptyIdx; } 175 176 /// Return the number of elements in the substring associated with this node. 177 size_t size() const { 178 179 // Is it the root? If so, it's the empty string so return 0. 180 if (isRoot()) 181 return 0; 182 183 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 184 185 // Size = the number of elements in the string. 186 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 187 return *EndIdx - StartIdx + 1; 188 } 189 190 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 191 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 192 193 SuffixTreeNode() {} 194 }; 195 196 /// A data structure for fast substring queries. 197 /// 198 /// Suffix trees represent the suffixes of their input strings in their leaves. 199 /// A suffix tree is a type of compressed trie structure where each node 200 /// represents an entire substring rather than a single character. Each leaf 201 /// of the tree is a suffix. 202 /// 203 /// A suffix tree can be seen as a type of state machine where each state is a 204 /// substring of the full string. The tree is structured so that, for a string 205 /// of length N, there are exactly N leaves in the tree. This structure allows 206 /// us to quickly find repeated substrings of the input string. 207 /// 208 /// In this implementation, a "string" is a vector of unsigned integers. 209 /// These integers may result from hashing some data type. A suffix tree can 210 /// contain 1 or many strings, which can then be queried as one large string. 211 /// 212 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 213 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 214 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 215 /// paper is available at 216 /// 217 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 218 class SuffixTree { 219 public: 220 /// Each element is an integer representing an instruction in the module. 221 ArrayRef<unsigned> Str; 222 223 /// A repeated substring in the tree. 224 struct RepeatedSubstring { 225 /// The length of the string. 226 unsigned Length; 227 228 /// The start indices of each occurrence. 229 std::vector<unsigned> StartIndices; 230 }; 231 232 private: 233 /// Maintains each node in the tree. 234 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 235 236 /// The root of the suffix tree. 237 /// 238 /// The root represents the empty string. It is maintained by the 239 /// \p NodeAllocator like every other node in the tree. 240 SuffixTreeNode *Root = nullptr; 241 242 /// Maintains the end indices of the internal nodes in the tree. 243 /// 244 /// Each internal node is guaranteed to never have its end index change 245 /// during the construction algorithm; however, leaves must be updated at 246 /// every step. Therefore, we need to store leaf end indices by reference 247 /// to avoid updating O(N) leaves at every step of construction. Thus, 248 /// every internal node must be allocated its own end index. 249 BumpPtrAllocator InternalEndIdxAllocator; 250 251 /// The end index of each leaf in the tree. 252 unsigned LeafEndIdx = -1; 253 254 /// Helper struct which keeps track of the next insertion point in 255 /// Ukkonen's algorithm. 256 struct ActiveState { 257 /// The next node to insert at. 258 SuffixTreeNode *Node; 259 260 /// The index of the first character in the substring currently being added. 261 unsigned Idx = EmptyIdx; 262 263 /// The length of the substring we have to add at the current step. 264 unsigned Len = 0; 265 }; 266 267 /// The point the next insertion will take place at in the 268 /// construction algorithm. 269 ActiveState Active; 270 271 /// Allocate a leaf node and add it to the tree. 272 /// 273 /// \param Parent The parent of this node. 274 /// \param StartIdx The start index of this node's associated string. 275 /// \param Edge The label on the edge leaving \p Parent to this node. 276 /// 277 /// \returns A pointer to the allocated leaf node. 278 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 279 unsigned Edge) { 280 281 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 282 283 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 284 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 285 Parent.Children[Edge] = N; 286 287 return N; 288 } 289 290 /// Allocate an internal node and add it to the tree. 291 /// 292 /// \param Parent The parent of this node. Only null when allocating the root. 293 /// \param StartIdx The start index of this node's associated string. 294 /// \param EndIdx The end index of this node's associated string. 295 /// \param Edge The label on the edge leaving \p Parent to this node. 296 /// 297 /// \returns A pointer to the allocated internal node. 298 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 299 unsigned EndIdx, unsigned Edge) { 300 301 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 302 assert(!(!Parent && StartIdx != EmptyIdx) && 303 "Non-root internal nodes must have parents!"); 304 305 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 306 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 307 SuffixTreeNode(StartIdx, E, Root); 308 if (Parent) 309 Parent->Children[Edge] = N; 310 311 return N; 312 } 313 314 /// Set the suffix indices of the leaves to the start indices of their 315 /// respective suffixes. 316 /// 317 /// \param[in] CurrNode The node currently being visited. 318 /// \param CurrNodeLen The concatenation of all node sizes from the root to 319 /// this node. Used to produce suffix indices. 320 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) { 321 322 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 323 324 // Store the concatenation of lengths down from the root. 325 CurrNode.ConcatLen = CurrNodeLen; 326 // Traverse the tree depth-first. 327 for (auto &ChildPair : CurrNode.Children) { 328 assert(ChildPair.second && "Node had a null child!"); 329 setSuffixIndices(*ChildPair.second, 330 CurrNodeLen + ChildPair.second->size()); 331 } 332 333 // Is this node a leaf? If it is, give it a suffix index. 334 if (IsLeaf) 335 CurrNode.SuffixIdx = Str.size() - CurrNodeLen; 336 } 337 338 /// Construct the suffix tree for the prefix of the input ending at 339 /// \p EndIdx. 340 /// 341 /// Used to construct the full suffix tree iteratively. At the end of each 342 /// step, the constructed suffix tree is either a valid suffix tree, or a 343 /// suffix tree with implicit suffixes. At the end of the final step, the 344 /// suffix tree is a valid tree. 345 /// 346 /// \param EndIdx The end index of the current prefix in the main string. 347 /// \param SuffixesToAdd The number of suffixes that must be added 348 /// to complete the suffix tree at the current phase. 349 /// 350 /// \returns The number of suffixes that have not been added at the end of 351 /// this step. 352 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 353 SuffixTreeNode *NeedsLink = nullptr; 354 355 while (SuffixesToAdd > 0) { 356 357 // Are we waiting to add anything other than just the last character? 358 if (Active.Len == 0) { 359 // If not, then say the active index is the end index. 360 Active.Idx = EndIdx; 361 } 362 363 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 364 365 // The first character in the current substring we're looking at. 366 unsigned FirstChar = Str[Active.Idx]; 367 368 // Have we inserted anything starting with FirstChar at the current node? 369 if (Active.Node->Children.count(FirstChar) == 0) { 370 // If not, then we can just insert a leaf and move too the next step. 371 insertLeaf(*Active.Node, EndIdx, FirstChar); 372 373 // The active node is an internal node, and we visited it, so it must 374 // need a link if it doesn't have one. 375 if (NeedsLink) { 376 NeedsLink->Link = Active.Node; 377 NeedsLink = nullptr; 378 } 379 } else { 380 // There's a match with FirstChar, so look for the point in the tree to 381 // insert a new node. 382 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 383 384 unsigned SubstringLen = NextNode->size(); 385 386 // Is the current suffix we're trying to insert longer than the size of 387 // the child we want to move to? 388 if (Active.Len >= SubstringLen) { 389 // If yes, then consume the characters we've seen and move to the next 390 // node. 391 Active.Idx += SubstringLen; 392 Active.Len -= SubstringLen; 393 Active.Node = NextNode; 394 continue; 395 } 396 397 // Otherwise, the suffix we're trying to insert must be contained in the 398 // next node we want to move to. 399 unsigned LastChar = Str[EndIdx]; 400 401 // Is the string we're trying to insert a substring of the next node? 402 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 403 // If yes, then we're done for this step. Remember our insertion point 404 // and move to the next end index. At this point, we have an implicit 405 // suffix tree. 406 if (NeedsLink && !Active.Node->isRoot()) { 407 NeedsLink->Link = Active.Node; 408 NeedsLink = nullptr; 409 } 410 411 Active.Len++; 412 break; 413 } 414 415 // The string we're trying to insert isn't a substring of the next node, 416 // but matches up to a point. Split the node. 417 // 418 // For example, say we ended our search at a node n and we're trying to 419 // insert ABD. Then we'll create a new node s for AB, reduce n to just 420 // representing C, and insert a new leaf node l to represent d. This 421 // allows us to ensure that if n was a leaf, it remains a leaf. 422 // 423 // | ABC ---split---> | AB 424 // n s 425 // C / \ D 426 // n l 427 428 // The node s from the diagram 429 SuffixTreeNode *SplitNode = 430 insertInternalNode(Active.Node, NextNode->StartIdx, 431 NextNode->StartIdx + Active.Len - 1, FirstChar); 432 433 // Insert the new node representing the new substring into the tree as 434 // a child of the split node. This is the node l from the diagram. 435 insertLeaf(*SplitNode, EndIdx, LastChar); 436 437 // Make the old node a child of the split node and update its start 438 // index. This is the node n from the diagram. 439 NextNode->StartIdx += Active.Len; 440 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 441 442 // SplitNode is an internal node, update the suffix link. 443 if (NeedsLink) 444 NeedsLink->Link = SplitNode; 445 446 NeedsLink = SplitNode; 447 } 448 449 // We've added something new to the tree, so there's one less suffix to 450 // add. 451 SuffixesToAdd--; 452 453 if (Active.Node->isRoot()) { 454 if (Active.Len > 0) { 455 Active.Len--; 456 Active.Idx = EndIdx - SuffixesToAdd + 1; 457 } 458 } else { 459 // Start the next phase at the next smallest suffix. 460 Active.Node = Active.Node->Link; 461 } 462 } 463 464 return SuffixesToAdd; 465 } 466 467 public: 468 /// Construct a suffix tree from a sequence of unsigned integers. 469 /// 470 /// \param Str The string to construct the suffix tree for. 471 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 472 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 473 Active.Node = Root; 474 475 // Keep track of the number of suffixes we have to add of the current 476 // prefix. 477 unsigned SuffixesToAdd = 0; 478 Active.Node = Root; 479 480 // Construct the suffix tree iteratively on each prefix of the string. 481 // PfxEndIdx is the end index of the current prefix. 482 // End is one past the last element in the string. 483 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 484 PfxEndIdx++) { 485 SuffixesToAdd++; 486 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 487 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 488 } 489 490 // Set the suffix indices of each leaf. 491 assert(Root && "Root node can't be nullptr!"); 492 setSuffixIndices(*Root, 0); 493 } 494 495 496 /// Iterator for finding all repeated substrings in the suffix tree. 497 struct RepeatedSubstringIterator { 498 private: 499 /// The current node we're visiting. 500 SuffixTreeNode *N = nullptr; 501 502 /// The repeated substring associated with this node. 503 RepeatedSubstring RS; 504 505 /// The nodes left to visit. 506 std::vector<SuffixTreeNode *> ToVisit; 507 508 /// The minimum length of a repeated substring to find. 509 /// Since we're outlining, we want at least two instructions in the range. 510 /// FIXME: This may not be true for targets like X86 which support many 511 /// instruction lengths. 512 const unsigned MinLength = 2; 513 514 /// Move the iterator to the next repeated substring. 515 void advance() { 516 // Clear the current state. If we're at the end of the range, then this 517 // is the state we want to be in. 518 RS = RepeatedSubstring(); 519 N = nullptr; 520 521 // Each leaf node represents a repeat of a string. 522 std::vector<SuffixTreeNode *> LeafChildren; 523 524 // Continue visiting nodes until we find one which repeats more than once. 525 while (!ToVisit.empty()) { 526 SuffixTreeNode *Curr = ToVisit.back(); 527 ToVisit.pop_back(); 528 LeafChildren.clear(); 529 530 // Keep track of the length of the string associated with the node. If 531 // it's too short, we'll quit. 532 unsigned Length = Curr->ConcatLen; 533 534 // Iterate over each child, saving internal nodes for visiting, and 535 // leaf nodes in LeafChildren. Internal nodes represent individual 536 // strings, which may repeat. 537 for (auto &ChildPair : Curr->Children) { 538 // Save all of this node's children for processing. 539 if (!ChildPair.second->isLeaf()) 540 ToVisit.push_back(ChildPair.second); 541 542 // It's not an internal node, so it must be a leaf. If we have a 543 // long enough string, then save the leaf children. 544 else if (Length >= MinLength) 545 LeafChildren.push_back(ChildPair.second); 546 } 547 548 // The root never represents a repeated substring. If we're looking at 549 // that, then skip it. 550 if (Curr->isRoot()) 551 continue; 552 553 // Do we have any repeated substrings? 554 if (LeafChildren.size() >= 2) { 555 // Yes. Update the state to reflect this, and then bail out. 556 N = Curr; 557 RS.Length = Length; 558 for (SuffixTreeNode *Leaf : LeafChildren) 559 RS.StartIndices.push_back(Leaf->SuffixIdx); 560 break; 561 } 562 } 563 564 // At this point, either NewRS is an empty RepeatedSubstring, or it was 565 // set in the above loop. Similarly, N is either nullptr, or the node 566 // associated with NewRS. 567 } 568 569 public: 570 /// Return the current repeated substring. 571 RepeatedSubstring &operator*() { return RS; } 572 573 RepeatedSubstringIterator &operator++() { 574 advance(); 575 return *this; 576 } 577 578 RepeatedSubstringIterator operator++(int I) { 579 RepeatedSubstringIterator It(*this); 580 advance(); 581 return It; 582 } 583 584 bool operator==(const RepeatedSubstringIterator &Other) { 585 return N == Other.N; 586 } 587 bool operator!=(const RepeatedSubstringIterator &Other) { 588 return !(*this == Other); 589 } 590 591 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 592 // Do we have a non-null node? 593 if (N) { 594 // Yes. At the first step, we need to visit all of N's children. 595 // Note: This means that we visit N last. 596 ToVisit.push_back(N); 597 advance(); 598 } 599 } 600 }; 601 602 typedef RepeatedSubstringIterator iterator; 603 iterator begin() { return iterator(Root); } 604 iterator end() { return iterator(nullptr); } 605 }; 606 607 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 608 struct InstructionMapper { 609 610 /// The next available integer to assign to a \p MachineInstr that 611 /// cannot be outlined. 612 /// 613 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 614 unsigned IllegalInstrNumber = -3; 615 616 /// The next available integer to assign to a \p MachineInstr that can 617 /// be outlined. 618 unsigned LegalInstrNumber = 0; 619 620 /// Correspondence from \p MachineInstrs to unsigned integers. 621 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 622 InstructionIntegerMap; 623 624 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 625 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 626 627 /// The vector of unsigned integers that the module is mapped to. 628 std::vector<unsigned> UnsignedVec; 629 630 /// Stores the location of the instruction associated with the integer 631 /// at index i in \p UnsignedVec for each index i. 632 std::vector<MachineBasicBlock::iterator> InstrList; 633 634 // Set if we added an illegal number in the previous step. 635 // Since each illegal number is unique, we only need one of them between 636 // each range of legal numbers. This lets us make sure we don't add more 637 // than one illegal number per range. 638 bool AddedIllegalLastTime = false; 639 640 /// Maps \p *It to a legal integer. 641 /// 642 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 643 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 644 /// 645 /// \returns The integer that \p *It was mapped to. 646 unsigned mapToLegalUnsigned( 647 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 648 bool &HaveLegalRange, unsigned &NumLegalInBlock, 649 std::vector<unsigned> &UnsignedVecForMBB, 650 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 651 // We added something legal, so we should unset the AddedLegalLastTime 652 // flag. 653 AddedIllegalLastTime = false; 654 655 // If we have at least two adjacent legal instructions (which may have 656 // invisible instructions in between), remember that. 657 if (CanOutlineWithPrevInstr) 658 HaveLegalRange = true; 659 CanOutlineWithPrevInstr = true; 660 661 // Keep track of the number of legal instructions we insert. 662 NumLegalInBlock++; 663 664 // Get the integer for this instruction or give it the current 665 // LegalInstrNumber. 666 InstrListForMBB.push_back(It); 667 MachineInstr &MI = *It; 668 bool WasInserted; 669 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 670 ResultIt; 671 std::tie(ResultIt, WasInserted) = 672 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 673 unsigned MINumber = ResultIt->second; 674 675 // There was an insertion. 676 if (WasInserted) 677 LegalInstrNumber++; 678 679 UnsignedVecForMBB.push_back(MINumber); 680 681 // Make sure we don't overflow or use any integers reserved by the DenseMap. 682 if (LegalInstrNumber >= IllegalInstrNumber) 683 report_fatal_error("Instruction mapping overflow!"); 684 685 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 686 "Tried to assign DenseMap tombstone or empty key to instruction."); 687 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 688 "Tried to assign DenseMap tombstone or empty key to instruction."); 689 690 return MINumber; 691 } 692 693 /// Maps \p *It to an illegal integer. 694 /// 695 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 696 /// IllegalInstrNumber. 697 /// 698 /// \returns The integer that \p *It was mapped to. 699 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It, 700 bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB, 701 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 702 // Can't outline an illegal instruction. Set the flag. 703 CanOutlineWithPrevInstr = false; 704 705 // Only add one illegal number per range of legal numbers. 706 if (AddedIllegalLastTime) 707 return IllegalInstrNumber; 708 709 // Remember that we added an illegal number last time. 710 AddedIllegalLastTime = true; 711 unsigned MINumber = IllegalInstrNumber; 712 713 InstrListForMBB.push_back(It); 714 UnsignedVecForMBB.push_back(IllegalInstrNumber); 715 IllegalInstrNumber--; 716 717 assert(LegalInstrNumber < IllegalInstrNumber && 718 "Instruction mapping overflow!"); 719 720 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 721 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 722 723 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 724 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 725 726 return MINumber; 727 } 728 729 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 730 /// and appends it to \p UnsignedVec and \p InstrList. 731 /// 732 /// Two instructions are assigned the same integer if they are identical. 733 /// If an instruction is deemed unsafe to outline, then it will be assigned an 734 /// unique integer. The resulting mapping is placed into a suffix tree and 735 /// queried for candidates. 736 /// 737 /// \param MBB The \p MachineBasicBlock to be translated into integers. 738 /// \param TII \p TargetInstrInfo for the function. 739 void convertToUnsignedVec(MachineBasicBlock &MBB, 740 const TargetInstrInfo &TII) { 741 unsigned Flags = 0; 742 743 // Don't even map in this case. 744 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 745 return; 746 747 // Store info for the MBB for later outlining. 748 MBBFlagsMap[&MBB] = Flags; 749 750 MachineBasicBlock::iterator It = MBB.begin(); 751 752 // The number of instructions in this block that will be considered for 753 // outlining. 754 unsigned NumLegalInBlock = 0; 755 756 // True if we have at least two legal instructions which aren't separated 757 // by an illegal instruction. 758 bool HaveLegalRange = false; 759 760 // True if we can perform outlining given the last mapped (non-invisible) 761 // instruction. This lets us know if we have a legal range. 762 bool CanOutlineWithPrevInstr = false; 763 764 // FIXME: Should this all just be handled in the target, rather than using 765 // repeated calls to getOutliningType? 766 std::vector<unsigned> UnsignedVecForMBB; 767 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 768 769 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) { 770 // Keep track of where this instruction is in the module. 771 switch (TII.getOutliningType(It, Flags)) { 772 case InstrType::Illegal: 773 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, 774 UnsignedVecForMBB, InstrListForMBB); 775 break; 776 777 case InstrType::Legal: 778 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 779 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 780 break; 781 782 case InstrType::LegalTerminator: 783 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 784 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 785 // The instruction also acts as a terminator, so we have to record that 786 // in the string. 787 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 788 InstrListForMBB); 789 break; 790 791 case InstrType::Invisible: 792 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 793 // skip this instruction. So, unset the flag here. 794 AddedIllegalLastTime = false; 795 break; 796 } 797 } 798 799 // Are there enough legal instructions in the block for outlining to be 800 // possible? 801 if (HaveLegalRange) { 802 // After we're done every insertion, uniquely terminate this part of the 803 // "string". This makes sure we won't match across basic block or function 804 // boundaries since the "end" is encoded uniquely and thus appears in no 805 // repeated substring. 806 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 807 InstrListForMBB); 808 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 809 InstrListForMBB.end()); 810 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 811 UnsignedVecForMBB.end()); 812 } 813 } 814 815 InstructionMapper() { 816 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 817 // changed. 818 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 819 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 820 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 821 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 822 } 823 }; 824 825 /// An interprocedural pass which finds repeated sequences of 826 /// instructions and replaces them with calls to functions. 827 /// 828 /// Each instruction is mapped to an unsigned integer and placed in a string. 829 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 830 /// is then repeatedly queried for repeated sequences of instructions. Each 831 /// non-overlapping repeated sequence is then placed in its own 832 /// \p MachineFunction and each instance is then replaced with a call to that 833 /// function. 834 struct MachineOutliner : public ModulePass { 835 836 static char ID; 837 838 /// Set to true if the outliner should consider functions with 839 /// linkonceodr linkage. 840 bool OutlineFromLinkOnceODRs = false; 841 842 /// Set to true if the outliner should run on all functions in the module 843 /// considered safe for outlining. 844 /// Set to true by default for compatibility with llc's -run-pass option. 845 /// Set when the pass is constructed in TargetPassConfig. 846 bool RunOnAllFunctions = true; 847 848 StringRef getPassName() const override { return "Machine Outliner"; } 849 850 void getAnalysisUsage(AnalysisUsage &AU) const override { 851 AU.addRequired<MachineModuleInfo>(); 852 AU.addPreserved<MachineModuleInfo>(); 853 AU.setPreservesAll(); 854 ModulePass::getAnalysisUsage(AU); 855 } 856 857 MachineOutliner() : ModulePass(ID) { 858 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 859 } 860 861 /// Remark output explaining that not outlining a set of candidates would be 862 /// better than outlining that set. 863 void emitNotOutliningCheaperRemark( 864 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 865 OutlinedFunction &OF); 866 867 /// Remark output explaining that a function was outlined. 868 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 869 870 /// Find all repeated substrings that satisfy the outlining cost model by 871 /// constructing a suffix tree. 872 /// 873 /// If a substring appears at least twice, then it must be represented by 874 /// an internal node which appears in at least two suffixes. Each suffix 875 /// is represented by a leaf node. To do this, we visit each internal node 876 /// in the tree, using the leaf children of each internal node. If an 877 /// internal node represents a beneficial substring, then we use each of 878 /// its leaf children to find the locations of its substring. 879 /// 880 /// \param Mapper Contains outlining mapping information. 881 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 882 /// each type of candidate. 883 void findCandidates(InstructionMapper &Mapper, 884 std::vector<OutlinedFunction> &FunctionList); 885 886 /// Replace the sequences of instructions represented by \p OutlinedFunctions 887 /// with calls to functions. 888 /// 889 /// \param M The module we are outlining from. 890 /// \param FunctionList A list of functions to be inserted into the module. 891 /// \param Mapper Contains the instruction mappings for the module. 892 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 893 InstructionMapper &Mapper); 894 895 /// Creates a function for \p OF and inserts it into the module. 896 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 897 InstructionMapper &Mapper, 898 unsigned Name); 899 900 /// Construct a suffix tree on the instructions in \p M and outline repeated 901 /// strings from that tree. 902 bool runOnModule(Module &M) override; 903 904 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 905 /// function for remark emission. 906 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 907 DISubprogram *SP; 908 for (const Candidate &C : OF.Candidates) 909 if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram())) 910 return SP; 911 return nullptr; 912 } 913 914 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 915 /// These are used to construct a suffix tree. 916 void populateMapper(InstructionMapper &Mapper, Module &M, 917 MachineModuleInfo &MMI); 918 919 /// Initialize information necessary to output a size remark. 920 /// FIXME: This should be handled by the pass manager, not the outliner. 921 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 922 /// pass manager. 923 void initSizeRemarkInfo( 924 const Module &M, const MachineModuleInfo &MMI, 925 StringMap<unsigned> &FunctionToInstrCount); 926 927 /// Emit the remark. 928 // FIXME: This should be handled by the pass manager, not the outliner. 929 void emitInstrCountChangedRemark( 930 const Module &M, const MachineModuleInfo &MMI, 931 const StringMap<unsigned> &FunctionToInstrCount); 932 }; 933 } // Anonymous namespace. 934 935 char MachineOutliner::ID = 0; 936 937 namespace llvm { 938 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 939 MachineOutliner *OL = new MachineOutliner(); 940 OL->RunOnAllFunctions = RunOnAllFunctions; 941 return OL; 942 } 943 944 } // namespace llvm 945 946 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 947 false) 948 949 void MachineOutliner::emitNotOutliningCheaperRemark( 950 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 951 OutlinedFunction &OF) { 952 // FIXME: Right now, we arbitrarily choose some Candidate from the 953 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 954 // We should probably sort these by function name or something to make sure 955 // the remarks are stable. 956 Candidate &C = CandidatesForRepeatedSeq.front(); 957 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 958 MORE.emit([&]() { 959 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 960 C.front()->getDebugLoc(), C.getMBB()); 961 R << "Did not outline " << NV("Length", StringLen) << " instructions" 962 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 963 << " locations." 964 << " Bytes from outlining all occurrences (" 965 << NV("OutliningCost", OF.getOutliningCost()) << ")" 966 << " >= Unoutlined instruction bytes (" 967 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 968 << " (Also found at: "; 969 970 // Tell the user the other places the candidate was found. 971 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 972 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 973 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 974 if (i != e - 1) 975 R << ", "; 976 } 977 978 R << ")"; 979 return R; 980 }); 981 } 982 983 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 984 MachineBasicBlock *MBB = &*OF.MF->begin(); 985 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 986 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 987 MBB->findDebugLoc(MBB->begin()), MBB); 988 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 989 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 990 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 991 << " locations. " 992 << "(Found at: "; 993 994 // Tell the user the other places the candidate was found. 995 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 996 997 R << NV((Twine("StartLoc") + Twine(i)).str(), 998 OF.Candidates[i].front()->getDebugLoc()); 999 if (i != e - 1) 1000 R << ", "; 1001 } 1002 1003 R << ")"; 1004 1005 MORE.emit(R); 1006 } 1007 1008 void 1009 MachineOutliner::findCandidates(InstructionMapper &Mapper, 1010 std::vector<OutlinedFunction> &FunctionList) { 1011 FunctionList.clear(); 1012 SuffixTree ST(Mapper.UnsignedVec); 1013 1014 // First, find dall of the repeated substrings in the tree of minimum length 1015 // 2. 1016 std::vector<Candidate> CandidatesForRepeatedSeq; 1017 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1018 CandidatesForRepeatedSeq.clear(); 1019 SuffixTree::RepeatedSubstring RS = *It; 1020 unsigned StringLen = RS.Length; 1021 for (const unsigned &StartIdx : RS.StartIndices) { 1022 unsigned EndIdx = StartIdx + StringLen - 1; 1023 // Trick: Discard some candidates that would be incompatible with the 1024 // ones we've already found for this sequence. This will save us some 1025 // work in candidate selection. 1026 // 1027 // If two candidates overlap, then we can't outline them both. This 1028 // happens when we have candidates that look like, say 1029 // 1030 // AA (where each "A" is an instruction). 1031 // 1032 // We might have some portion of the module that looks like this: 1033 // AAAAAA (6 A's) 1034 // 1035 // In this case, there are 5 different copies of "AA" in this range, but 1036 // at most 3 can be outlined. If only outlining 3 of these is going to 1037 // be unbeneficial, then we ought to not bother. 1038 // 1039 // Note that two things DON'T overlap when they look like this: 1040 // start1...end1 .... start2...end2 1041 // That is, one must either 1042 // * End before the other starts 1043 // * Start after the other ends 1044 if (std::all_of( 1045 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1046 [&StartIdx, &EndIdx](const Candidate &C) { 1047 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1048 })) { 1049 // It doesn't overlap with anything, so we can outline it. 1050 // Each sequence is over [StartIt, EndIt]. 1051 // Save the candidate and its location. 1052 1053 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1054 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1055 MachineBasicBlock *MBB = StartIt->getParent(); 1056 1057 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1058 EndIt, MBB, FunctionList.size(), 1059 Mapper.MBBFlagsMap[MBB]); 1060 } 1061 } 1062 1063 // We've found something we might want to outline. 1064 // Create an OutlinedFunction to store it and check if it'd be beneficial 1065 // to outline. 1066 if (CandidatesForRepeatedSeq.size() < 2) 1067 continue; 1068 1069 // Arbitrarily choose a TII from the first candidate. 1070 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1071 const TargetInstrInfo *TII = 1072 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1073 1074 OutlinedFunction OF = 1075 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1076 1077 // If we deleted too many candidates, then there's nothing worth outlining. 1078 // FIXME: This should take target-specified instruction sizes into account. 1079 if (OF.Candidates.size() < 2) 1080 continue; 1081 1082 // Is it better to outline this candidate than not? 1083 if (OF.getBenefit() < 1) { 1084 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1085 continue; 1086 } 1087 1088 FunctionList.push_back(OF); 1089 } 1090 } 1091 1092 MachineFunction * 1093 MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF, 1094 InstructionMapper &Mapper, 1095 unsigned Name) { 1096 1097 // Create the function name. This should be unique. For now, just hash the 1098 // module name and include it in the function name plus the number of this 1099 // function. 1100 std::ostringstream NameStream; 1101 // FIXME: We should have a better naming scheme. This should be stable, 1102 // regardless of changes to the outliner's cost model/traversal order. 1103 NameStream << "OUTLINED_FUNCTION_" << Name; 1104 1105 // Create the function using an IR-level function. 1106 LLVMContext &C = M.getContext(); 1107 Function *F = 1108 Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1109 Function::ExternalLinkage, NameStream.str(), M); 1110 1111 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1112 // which gives us better results when we outline from linkonceodr functions. 1113 F->setLinkage(GlobalValue::InternalLinkage); 1114 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1115 1116 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1117 // necessary. 1118 1119 // Set optsize/minsize, so we don't insert padding between outlined 1120 // functions. 1121 F->addFnAttr(Attribute::OptimizeForSize); 1122 F->addFnAttr(Attribute::MinSize); 1123 1124 // Include target features from an arbitrary candidate for the outlined 1125 // function. This makes sure the outlined function knows what kinds of 1126 // instructions are going into it. This is fine, since all parent functions 1127 // must necessarily support the instructions that are in the outlined region. 1128 Candidate &FirstCand = OF.Candidates.front(); 1129 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1130 if (ParentFn.hasFnAttribute("target-features")) 1131 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1132 1133 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1134 IRBuilder<> Builder(EntryBB); 1135 Builder.CreateRetVoid(); 1136 1137 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1138 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1139 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1140 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1141 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1142 1143 // Insert the new function into the module. 1144 MF.insert(MF.begin(), &MBB); 1145 1146 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1147 ++I) { 1148 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1149 NewMI->dropMemRefs(MF); 1150 1151 // Don't keep debug information for outlined instructions. 1152 NewMI->setDebugLoc(DebugLoc()); 1153 MBB.insert(MBB.end(), NewMI); 1154 } 1155 1156 TII.buildOutlinedFrame(MBB, MF, OF); 1157 1158 // Outlined functions shouldn't preserve liveness. 1159 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1160 MF.getRegInfo().freezeReservedRegs(MF); 1161 1162 // If there's a DISubprogram associated with this outlined function, then 1163 // emit debug info for the outlined function. 1164 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1165 // We have a DISubprogram. Get its DICompileUnit. 1166 DICompileUnit *CU = SP->getUnit(); 1167 DIBuilder DB(M, true, CU); 1168 DIFile *Unit = SP->getFile(); 1169 Mangler Mg; 1170 // Get the mangled name of the function for the linkage name. 1171 std::string Dummy; 1172 llvm::raw_string_ostream MangledNameStream(Dummy); 1173 Mg.getNameWithPrefix(MangledNameStream, F, false); 1174 1175 DISubprogram *OutlinedSP = DB.createFunction( 1176 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1177 Unit /* File */, 1178 0 /* Line 0 is reserved for compiler-generated code. */, 1179 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1180 0, /* Line 0 is reserved for compiler-generated code. */ 1181 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1182 /* Outlined code is optimized code by definition. */ 1183 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1184 1185 // Don't add any new variables to the subprogram. 1186 DB.finalizeSubprogram(OutlinedSP); 1187 1188 // Attach subprogram to the function. 1189 F->setSubprogram(OutlinedSP); 1190 // We're done with the DIBuilder. 1191 DB.finalize(); 1192 } 1193 1194 return &MF; 1195 } 1196 1197 bool MachineOutliner::outline(Module &M, 1198 std::vector<OutlinedFunction> &FunctionList, 1199 InstructionMapper &Mapper) { 1200 1201 bool OutlinedSomething = false; 1202 1203 // Number to append to the current outlined function. 1204 unsigned OutlinedFunctionNum = 0; 1205 1206 // Sort by benefit. The most beneficial functions should be outlined first. 1207 std::stable_sort( 1208 FunctionList.begin(), FunctionList.end(), 1209 [](const OutlinedFunction &LHS, const OutlinedFunction &RHS) { 1210 return LHS.getBenefit() > RHS.getBenefit(); 1211 }); 1212 1213 // Walk over each function, outlining them as we go along. Functions are 1214 // outlined greedily, based off the sort above. 1215 for (OutlinedFunction &OF : FunctionList) { 1216 // If we outlined something that overlapped with a candidate in a previous 1217 // step, then we can't outline from it. 1218 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1219 return std::any_of( 1220 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1221 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1222 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1223 }); 1224 1225 // If we made it unbeneficial to outline this function, skip it. 1226 if (OF.getBenefit() < 1) 1227 continue; 1228 1229 // It's beneficial. Create the function and outline its sequence's 1230 // occurrences. 1231 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1232 emitOutlinedFunctionRemark(OF); 1233 FunctionsCreated++; 1234 OutlinedFunctionNum++; // Created a function, move to the next name. 1235 MachineFunction *MF = OF.MF; 1236 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1237 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1238 1239 // Replace occurrences of the sequence with calls to the new function. 1240 for (Candidate &C : OF.Candidates) { 1241 MachineBasicBlock &MBB = *C.getMBB(); 1242 MachineBasicBlock::iterator StartIt = C.front(); 1243 MachineBasicBlock::iterator EndIt = C.back(); 1244 1245 // Insert the call. 1246 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1247 1248 // If the caller tracks liveness, then we need to make sure that 1249 // anything we outline doesn't break liveness assumptions. The outlined 1250 // functions themselves currently don't track liveness, but we should 1251 // make sure that the ranges we yank things out of aren't wrong. 1252 if (MBB.getParent()->getProperties().hasProperty( 1253 MachineFunctionProperties::Property::TracksLiveness)) { 1254 // Helper lambda for adding implicit def operands to the call 1255 // instruction. 1256 auto CopyDefs = [&CallInst](MachineInstr &MI) { 1257 for (MachineOperand &MOP : MI.operands()) { 1258 // Skip over anything that isn't a register. 1259 if (!MOP.isReg()) 1260 continue; 1261 1262 // If it's a def, add it to the call instruction. 1263 if (MOP.isDef()) 1264 CallInst->addOperand(MachineOperand::CreateReg( 1265 MOP.getReg(), true, /* isDef = true */ 1266 true /* isImp = true */)); 1267 } 1268 }; 1269 // Copy over the defs in the outlined range. 1270 // First inst in outlined range <-- Anything that's defined in this 1271 // ... .. range has to be added as an 1272 // implicit Last inst in outlined range <-- def to the call 1273 // instruction. 1274 std::for_each(CallInst, std::next(EndIt), CopyDefs); 1275 } 1276 1277 // Erase from the point after where the call was inserted up to, and 1278 // including, the final instruction in the sequence. 1279 // Erase needs one past the end, so we need std::next there too. 1280 MBB.erase(std::next(StartIt), std::next(EndIt)); 1281 1282 // Keep track of what we removed by marking them all as -1. 1283 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1284 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1285 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1286 OutlinedSomething = true; 1287 1288 // Statistics. 1289 NumOutlined++; 1290 } 1291 } 1292 1293 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1294 1295 return OutlinedSomething; 1296 } 1297 1298 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1299 MachineModuleInfo &MMI) { 1300 // Build instruction mappings for each function in the module. Start by 1301 // iterating over each Function in M. 1302 for (Function &F : M) { 1303 1304 // If there's nothing in F, then there's no reason to try and outline from 1305 // it. 1306 if (F.empty()) 1307 continue; 1308 1309 // There's something in F. Check if it has a MachineFunction associated with 1310 // it. 1311 MachineFunction *MF = MMI.getMachineFunction(F); 1312 1313 // If it doesn't, then there's nothing to outline from. Move to the next 1314 // Function. 1315 if (!MF) 1316 continue; 1317 1318 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1319 1320 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1321 continue; 1322 1323 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1324 // If it isn't, then move on to the next Function in the module. 1325 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1326 continue; 1327 1328 // We have a function suitable for outlining. Iterate over every 1329 // MachineBasicBlock in MF and try to map its instructions to a list of 1330 // unsigned integers. 1331 for (MachineBasicBlock &MBB : *MF) { 1332 // If there isn't anything in MBB, then there's no point in outlining from 1333 // it. 1334 // If there are fewer than 2 instructions in the MBB, then it can't ever 1335 // contain something worth outlining. 1336 // FIXME: This should be based off of the maximum size in B of an outlined 1337 // call versus the size in B of the MBB. 1338 if (MBB.empty() || MBB.size() < 2) 1339 continue; 1340 1341 // Check if MBB could be the target of an indirect branch. If it is, then 1342 // we don't want to outline from it. 1343 if (MBB.hasAddressTaken()) 1344 continue; 1345 1346 // MBB is suitable for outlining. Map it to a list of unsigneds. 1347 Mapper.convertToUnsignedVec(MBB, *TII); 1348 } 1349 } 1350 } 1351 1352 void MachineOutliner::initSizeRemarkInfo( 1353 const Module &M, const MachineModuleInfo &MMI, 1354 StringMap<unsigned> &FunctionToInstrCount) { 1355 // Collect instruction counts for every function. We'll use this to emit 1356 // per-function size remarks later. 1357 for (const Function &F : M) { 1358 MachineFunction *MF = MMI.getMachineFunction(F); 1359 1360 // We only care about MI counts here. If there's no MachineFunction at this 1361 // point, then there won't be after the outliner runs, so let's move on. 1362 if (!MF) 1363 continue; 1364 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1365 } 1366 } 1367 1368 void MachineOutliner::emitInstrCountChangedRemark( 1369 const Module &M, const MachineModuleInfo &MMI, 1370 const StringMap<unsigned> &FunctionToInstrCount) { 1371 // Iterate over each function in the module and emit remarks. 1372 // Note that we won't miss anything by doing this, because the outliner never 1373 // deletes functions. 1374 for (const Function &F : M) { 1375 MachineFunction *MF = MMI.getMachineFunction(F); 1376 1377 // The outliner never deletes functions. If we don't have a MF here, then we 1378 // didn't have one prior to outlining either. 1379 if (!MF) 1380 continue; 1381 1382 std::string Fname = F.getName(); 1383 unsigned FnCountAfter = MF->getInstructionCount(); 1384 unsigned FnCountBefore = 0; 1385 1386 // Check if the function was recorded before. 1387 auto It = FunctionToInstrCount.find(Fname); 1388 1389 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1390 // to that. 1391 if (It != FunctionToInstrCount.end()) 1392 FnCountBefore = It->second; 1393 1394 // Compute the delta and emit a remark if there was a change. 1395 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1396 static_cast<int64_t>(FnCountBefore); 1397 if (FnDelta == 0) 1398 continue; 1399 1400 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1401 MORE.emit([&]() { 1402 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1403 DiagnosticLocation(), 1404 &MF->front()); 1405 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1406 << ": Function: " 1407 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1408 << ": MI instruction count changed from " 1409 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1410 FnCountBefore) 1411 << " to " 1412 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1413 FnCountAfter) 1414 << "; Delta: " 1415 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1416 return R; 1417 }); 1418 } 1419 } 1420 1421 bool MachineOutliner::runOnModule(Module &M) { 1422 // Check if there's anything in the module. If it's empty, then there's 1423 // nothing to outline. 1424 if (M.empty()) 1425 return false; 1426 1427 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1428 1429 // If the user passed -enable-machine-outliner=always or 1430 // -enable-machine-outliner, the pass will run on all functions in the module. 1431 // Otherwise, if the target supports default outlining, it will run on all 1432 // functions deemed by the target to be worth outlining from by default. Tell 1433 // the user how the outliner is running. 1434 LLVM_DEBUG( 1435 dbgs() << "Machine Outliner: Running on "; 1436 if (RunOnAllFunctions) 1437 dbgs() << "all functions"; 1438 else 1439 dbgs() << "target-default functions"; 1440 dbgs() << "\n" 1441 ); 1442 1443 // If the user specifies that they want to outline from linkonceodrs, set 1444 // it here. 1445 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1446 InstructionMapper Mapper; 1447 1448 // Prepare instruction mappings for the suffix tree. 1449 populateMapper(Mapper, M, MMI); 1450 std::vector<OutlinedFunction> FunctionList; 1451 1452 // Find all of the outlining candidates. 1453 findCandidates(Mapper, FunctionList); 1454 1455 // If we've requested size remarks, then collect the MI counts of every 1456 // function before outlining, and the MI counts after outlining. 1457 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1458 // the pass manager's responsibility. 1459 // This could pretty easily be placed in outline instead, but because we 1460 // really ultimately *don't* want this here, it's done like this for now 1461 // instead. 1462 1463 // Check if we want size remarks. 1464 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1465 StringMap<unsigned> FunctionToInstrCount; 1466 if (ShouldEmitSizeRemarks) 1467 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1468 1469 // Outline each of the candidates and return true if something was outlined. 1470 bool OutlinedSomething = outline(M, FunctionList, Mapper); 1471 1472 // If we outlined something, we definitely changed the MI count of the 1473 // module. If we've asked for size remarks, then output them. 1474 // FIXME: This should be in the pass manager. 1475 if (ShouldEmitSizeRemarks && OutlinedSomething) 1476 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1477 1478 return OutlinedSomething; 1479 } 1480