1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * insertOutlinerEpilogue
29 ///   * insertOutlinedCall
30 ///   * insertOutlinerPrologue
31 ///   * isFunctionSafeToOutlineFrom
32 ///
33 /// in order to make use of the MachineOutliner.
34 ///
35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
37 /// how this pass works, the talk is available on YouTube at
38 ///
39 /// https://www.youtube.com/watch?v=yorld-WSOeU
40 ///
41 /// The slides for the talk are available at
42 ///
43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44 ///
45 /// The talk provides an overview of how the outliner finds candidates and
46 /// ultimately outlines them. It describes how the main data structure for this
47 /// pass, the suffix tree, is queried and purged for candidates. It also gives
48 /// a simplified suffix tree construction algorithm for suffix trees based off
49 /// of the algorithm actually used here, Ukkonen's algorithm.
50 ///
51 /// For the original RFC for this pass, please see
52 ///
53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54 ///
55 /// For more information on the suffix tree data structure, please see
56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57 ///
58 //===----------------------------------------------------------------------===//
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/MachineRegisterInfo.h"
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/TargetInstrInfo.h"
68 #include "llvm/CodeGen/TargetRegisterInfo.h"
69 #include "llvm/CodeGen/TargetSubtargetInfo.h"
70 #include "llvm/IR/DIBuilder.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/Mangler.h"
73 #include "llvm/Support/Allocator.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <functional>
77 #include <map>
78 #include <sstream>
79 #include <tuple>
80 #include <vector>
81 
82 #define DEBUG_TYPE "machine-outliner"
83 
84 using namespace llvm;
85 using namespace ore;
86 
87 STATISTIC(NumOutlined, "Number of candidates outlined");
88 STATISTIC(FunctionsCreated, "Number of functions created");
89 
90 namespace {
91 
92 /// \brief An individual sequence of instructions to be replaced with a call to
93 /// an outlined function.
94 struct Candidate {
95 private:
96   /// The start index of this \p Candidate in the instruction list.
97   unsigned StartIdx;
98 
99   /// The number of instructions in this \p Candidate.
100   unsigned Len;
101 
102   /// The MachineFunction containing this \p Candidate.
103   MachineFunction *MF = nullptr;
104 
105 public:
106   /// Set to false if the candidate overlapped with another candidate.
107   bool InCandidateList = true;
108 
109   /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of
110   /// \p OutlinedFunctions.
111   unsigned FunctionIdx;
112 
113   /// Contains all target-specific information for this \p Candidate.
114   TargetInstrInfo::MachineOutlinerInfo MInfo;
115 
116   /// If there is a DISubprogram associated with the function that this
117   /// Candidate lives in, return it.
118   DISubprogram *getSubprogramOrNull() const {
119     assert(MF && "Candidate has no MF!");
120     if (DISubprogram *SP = MF->getFunction().getSubprogram())
121       return SP;
122     return nullptr;
123   }
124 
125   /// Return the number of instructions in this Candidate.
126   unsigned getLength() const { return Len; }
127 
128   /// Return the start index of this candidate.
129   unsigned getStartIdx() const { return StartIdx; }
130 
131   // Return the end index of this candidate.
132   unsigned getEndIdx() const { return StartIdx + Len - 1; }
133 
134   /// \brief The number of instructions that would be saved by outlining every
135   /// candidate of this type.
136   ///
137   /// This is a fixed value which is not updated during the candidate pruning
138   /// process. It is only used for deciding which candidate to keep if two
139   /// candidates overlap. The true benefit is stored in the OutlinedFunction
140   /// for some given candidate.
141   unsigned Benefit = 0;
142 
143   Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx,
144             MachineFunction *MF)
145       : StartIdx(StartIdx), Len(Len), MF(MF), FunctionIdx(FunctionIdx) {}
146 
147   Candidate() {}
148 
149   /// \brief Used to ensure that \p Candidates are outlined in an order that
150   /// preserves the start and end indices of other \p Candidates.
151   bool operator<(const Candidate &RHS) const {
152     return getStartIdx() > RHS.getStartIdx();
153   }
154 };
155 
156 /// \brief The information necessary to create an outlined function for some
157 /// class of candidate.
158 struct OutlinedFunction {
159 
160 private:
161   /// The number of candidates for this \p OutlinedFunction.
162   unsigned OccurrenceCount = 0;
163 
164 public:
165   std::vector<std::shared_ptr<Candidate>> Candidates;
166 
167   /// The actual outlined function created.
168   /// This is initialized after we go through and create the actual function.
169   MachineFunction *MF = nullptr;
170 
171   /// A number assigned to this function which appears at the end of its name.
172   unsigned Name;
173 
174   /// \brief The sequence of integers corresponding to the instructions in this
175   /// function.
176   std::vector<unsigned> Sequence;
177 
178   /// Contains all target-specific information for this \p OutlinedFunction.
179   TargetInstrInfo::MachineOutlinerInfo MInfo;
180 
181   /// If there is a DISubprogram for any Candidate for this outlined function,
182   /// then return it. Otherwise, return nullptr.
183   DISubprogram *getSubprogramOrNull() const {
184     for (const auto &C : Candidates)
185       if (DISubprogram *SP = C->getSubprogramOrNull())
186         return SP;
187     return nullptr;
188   }
189 
190   /// Return the number of candidates for this \p OutlinedFunction.
191   unsigned getOccurrenceCount() { return OccurrenceCount; }
192 
193   /// Decrement the occurrence count of this OutlinedFunction and return the
194   /// new count.
195   unsigned decrement() {
196     assert(OccurrenceCount > 0 && "Can't decrement an empty function!");
197     OccurrenceCount--;
198     return getOccurrenceCount();
199   }
200 
201   /// \brief Return the number of instructions it would take to outline this
202   /// function.
203   unsigned getOutliningCost() {
204     return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() +
205            MInfo.FrameOverhead;
206   }
207 
208   /// \brief Return the number of instructions that would be saved by outlining
209   /// this function.
210   unsigned getBenefit() {
211     unsigned NotOutlinedCost = OccurrenceCount * Sequence.size();
212     unsigned OutlinedCost = getOutliningCost();
213     return (NotOutlinedCost < OutlinedCost) ? 0
214                                             : NotOutlinedCost - OutlinedCost;
215   }
216 
217   OutlinedFunction(unsigned Name, unsigned OccurrenceCount,
218                    const std::vector<unsigned> &Sequence,
219                    TargetInstrInfo::MachineOutlinerInfo &MInfo)
220       : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence),
221         MInfo(MInfo) {}
222 };
223 
224 /// Represents an undefined index in the suffix tree.
225 const unsigned EmptyIdx = -1;
226 
227 /// A node in a suffix tree which represents a substring or suffix.
228 ///
229 /// Each node has either no children or at least two children, with the root
230 /// being a exception in the empty tree.
231 ///
232 /// Children are represented as a map between unsigned integers and nodes. If
233 /// a node N has a child M on unsigned integer k, then the mapping represented
234 /// by N is a proper prefix of the mapping represented by M. Note that this,
235 /// although similar to a trie is somewhat different: each node stores a full
236 /// substring of the full mapping rather than a single character state.
237 ///
238 /// Each internal node contains a pointer to the internal node representing
239 /// the same string, but with the first character chopped off. This is stored
240 /// in \p Link. Each leaf node stores the start index of its respective
241 /// suffix in \p SuffixIdx.
242 struct SuffixTreeNode {
243 
244   /// The children of this node.
245   ///
246   /// A child existing on an unsigned integer implies that from the mapping
247   /// represented by the current node, there is a way to reach another
248   /// mapping by tacking that character on the end of the current string.
249   DenseMap<unsigned, SuffixTreeNode *> Children;
250 
251   /// A flag set to false if the node has been pruned from the tree.
252   bool IsInTree = true;
253 
254   /// The start index of this node's substring in the main string.
255   unsigned StartIdx = EmptyIdx;
256 
257   /// The end index of this node's substring in the main string.
258   ///
259   /// Every leaf node must have its \p EndIdx incremented at the end of every
260   /// step in the construction algorithm. To avoid having to update O(N)
261   /// nodes individually at the end of every step, the end index is stored
262   /// as a pointer.
263   unsigned *EndIdx = nullptr;
264 
265   /// For leaves, the start index of the suffix represented by this node.
266   ///
267   /// For all other nodes, this is ignored.
268   unsigned SuffixIdx = EmptyIdx;
269 
270   /// \brief For internal nodes, a pointer to the internal node representing
271   /// the same sequence with the first character chopped off.
272   ///
273   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
274   /// Ukkonen's algorithm does to achieve linear-time construction is
275   /// keep track of which node the next insert should be at. This makes each
276   /// insert O(1), and there are a total of O(N) inserts. The suffix link
277   /// helps with inserting children of internal nodes.
278   ///
279   /// Say we add a child to an internal node with associated mapping S. The
280   /// next insertion must be at the node representing S - its first character.
281   /// This is given by the way that we iteratively build the tree in Ukkonen's
282   /// algorithm. The main idea is to look at the suffixes of each prefix in the
283   /// string, starting with the longest suffix of the prefix, and ending with
284   /// the shortest. Therefore, if we keep pointers between such nodes, we can
285   /// move to the next insertion point in O(1) time. If we don't, then we'd
286   /// have to query from the root, which takes O(N) time. This would make the
287   /// construction algorithm O(N^2) rather than O(N).
288   SuffixTreeNode *Link = nullptr;
289 
290   /// The parent of this node. Every node except for the root has a parent.
291   SuffixTreeNode *Parent = nullptr;
292 
293   /// The number of times this node's string appears in the tree.
294   ///
295   /// This is equal to the number of leaf children of the string. It represents
296   /// the number of suffixes that the node's string is a prefix of.
297   unsigned OccurrenceCount = 0;
298 
299   /// The length of the string formed by concatenating the edge labels from the
300   /// root to this node.
301   unsigned ConcatLen = 0;
302 
303   /// Returns true if this node is a leaf.
304   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
305 
306   /// Returns true if this node is the root of its owning \p SuffixTree.
307   bool isRoot() const { return StartIdx == EmptyIdx; }
308 
309   /// Return the number of elements in the substring associated with this node.
310   size_t size() const {
311 
312     // Is it the root? If so, it's the empty string so return 0.
313     if (isRoot())
314       return 0;
315 
316     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
317 
318     // Size = the number of elements in the string.
319     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
320     return *EndIdx - StartIdx + 1;
321   }
322 
323   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
324                  SuffixTreeNode *Parent)
325       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
326 
327   SuffixTreeNode() {}
328 };
329 
330 /// A data structure for fast substring queries.
331 ///
332 /// Suffix trees represent the suffixes of their input strings in their leaves.
333 /// A suffix tree is a type of compressed trie structure where each node
334 /// represents an entire substring rather than a single character. Each leaf
335 /// of the tree is a suffix.
336 ///
337 /// A suffix tree can be seen as a type of state machine where each state is a
338 /// substring of the full string. The tree is structured so that, for a string
339 /// of length N, there are exactly N leaves in the tree. This structure allows
340 /// us to quickly find repeated substrings of the input string.
341 ///
342 /// In this implementation, a "string" is a vector of unsigned integers.
343 /// These integers may result from hashing some data type. A suffix tree can
344 /// contain 1 or many strings, which can then be queried as one large string.
345 ///
346 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
347 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
348 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
349 /// paper is available at
350 ///
351 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
352 class SuffixTree {
353 public:
354   /// Stores each leaf node in the tree.
355   ///
356   /// This is used for finding outlining candidates.
357   std::vector<SuffixTreeNode *> LeafVector;
358 
359   /// Each element is an integer representing an instruction in the module.
360   ArrayRef<unsigned> Str;
361 
362 private:
363   /// Maintains each node in the tree.
364   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
365 
366   /// The root of the suffix tree.
367   ///
368   /// The root represents the empty string. It is maintained by the
369   /// \p NodeAllocator like every other node in the tree.
370   SuffixTreeNode *Root = nullptr;
371 
372   /// Maintains the end indices of the internal nodes in the tree.
373   ///
374   /// Each internal node is guaranteed to never have its end index change
375   /// during the construction algorithm; however, leaves must be updated at
376   /// every step. Therefore, we need to store leaf end indices by reference
377   /// to avoid updating O(N) leaves at every step of construction. Thus,
378   /// every internal node must be allocated its own end index.
379   BumpPtrAllocator InternalEndIdxAllocator;
380 
381   /// The end index of each leaf in the tree.
382   unsigned LeafEndIdx = -1;
383 
384   /// \brief Helper struct which keeps track of the next insertion point in
385   /// Ukkonen's algorithm.
386   struct ActiveState {
387     /// The next node to insert at.
388     SuffixTreeNode *Node;
389 
390     /// The index of the first character in the substring currently being added.
391     unsigned Idx = EmptyIdx;
392 
393     /// The length of the substring we have to add at the current step.
394     unsigned Len = 0;
395   };
396 
397   /// \brief The point the next insertion will take place at in the
398   /// construction algorithm.
399   ActiveState Active;
400 
401   /// Allocate a leaf node and add it to the tree.
402   ///
403   /// \param Parent The parent of this node.
404   /// \param StartIdx The start index of this node's associated string.
405   /// \param Edge The label on the edge leaving \p Parent to this node.
406   ///
407   /// \returns A pointer to the allocated leaf node.
408   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
409                              unsigned Edge) {
410 
411     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
412 
413     SuffixTreeNode *N = new (NodeAllocator.Allocate())
414         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
415     Parent.Children[Edge] = N;
416 
417     return N;
418   }
419 
420   /// Allocate an internal node and add it to the tree.
421   ///
422   /// \param Parent The parent of this node. Only null when allocating the root.
423   /// \param StartIdx The start index of this node's associated string.
424   /// \param EndIdx The end index of this node's associated string.
425   /// \param Edge The label on the edge leaving \p Parent to this node.
426   ///
427   /// \returns A pointer to the allocated internal node.
428   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
429                                      unsigned EndIdx, unsigned Edge) {
430 
431     assert(StartIdx <= EndIdx && "String can't start after it ends!");
432     assert(!(!Parent && StartIdx != EmptyIdx) &&
433            "Non-root internal nodes must have parents!");
434 
435     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
436     SuffixTreeNode *N = new (NodeAllocator.Allocate())
437         SuffixTreeNode(StartIdx, E, Root, Parent);
438     if (Parent)
439       Parent->Children[Edge] = N;
440 
441     return N;
442   }
443 
444   /// \brief Set the suffix indices of the leaves to the start indices of their
445   /// respective suffixes. Also stores each leaf in \p LeafVector at its
446   /// respective suffix index.
447   ///
448   /// \param[in] CurrNode The node currently being visited.
449   /// \param CurrIdx The current index of the string being visited.
450   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
451 
452     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
453 
454     // Store the length of the concatenation of all strings from the root to
455     // this node.
456     if (!CurrNode.isRoot()) {
457       if (CurrNode.ConcatLen == 0)
458         CurrNode.ConcatLen = CurrNode.size();
459 
460       if (CurrNode.Parent)
461         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
462     }
463 
464     // Traverse the tree depth-first.
465     for (auto &ChildPair : CurrNode.Children) {
466       assert(ChildPair.second && "Node had a null child!");
467       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
468     }
469 
470     // Is this node a leaf?
471     if (IsLeaf) {
472       // If yes, give it a suffix index and bump its parent's occurrence count.
473       CurrNode.SuffixIdx = Str.size() - CurrIdx;
474       assert(CurrNode.Parent && "CurrNode had no parent!");
475       CurrNode.Parent->OccurrenceCount++;
476 
477       // Store the leaf in the leaf vector for pruning later.
478       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
479     }
480   }
481 
482   /// \brief Construct the suffix tree for the prefix of the input ending at
483   /// \p EndIdx.
484   ///
485   /// Used to construct the full suffix tree iteratively. At the end of each
486   /// step, the constructed suffix tree is either a valid suffix tree, or a
487   /// suffix tree with implicit suffixes. At the end of the final step, the
488   /// suffix tree is a valid tree.
489   ///
490   /// \param EndIdx The end index of the current prefix in the main string.
491   /// \param SuffixesToAdd The number of suffixes that must be added
492   /// to complete the suffix tree at the current phase.
493   ///
494   /// \returns The number of suffixes that have not been added at the end of
495   /// this step.
496   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
497     SuffixTreeNode *NeedsLink = nullptr;
498 
499     while (SuffixesToAdd > 0) {
500 
501       // Are we waiting to add anything other than just the last character?
502       if (Active.Len == 0) {
503         // If not, then say the active index is the end index.
504         Active.Idx = EndIdx;
505       }
506 
507       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
508 
509       // The first character in the current substring we're looking at.
510       unsigned FirstChar = Str[Active.Idx];
511 
512       // Have we inserted anything starting with FirstChar at the current node?
513       if (Active.Node->Children.count(FirstChar) == 0) {
514         // If not, then we can just insert a leaf and move too the next step.
515         insertLeaf(*Active.Node, EndIdx, FirstChar);
516 
517         // The active node is an internal node, and we visited it, so it must
518         // need a link if it doesn't have one.
519         if (NeedsLink) {
520           NeedsLink->Link = Active.Node;
521           NeedsLink = nullptr;
522         }
523       } else {
524         // There's a match with FirstChar, so look for the point in the tree to
525         // insert a new node.
526         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
527 
528         unsigned SubstringLen = NextNode->size();
529 
530         // Is the current suffix we're trying to insert longer than the size of
531         // the child we want to move to?
532         if (Active.Len >= SubstringLen) {
533           // If yes, then consume the characters we've seen and move to the next
534           // node.
535           Active.Idx += SubstringLen;
536           Active.Len -= SubstringLen;
537           Active.Node = NextNode;
538           continue;
539         }
540 
541         // Otherwise, the suffix we're trying to insert must be contained in the
542         // next node we want to move to.
543         unsigned LastChar = Str[EndIdx];
544 
545         // Is the string we're trying to insert a substring of the next node?
546         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
547           // If yes, then we're done for this step. Remember our insertion point
548           // and move to the next end index. At this point, we have an implicit
549           // suffix tree.
550           if (NeedsLink && !Active.Node->isRoot()) {
551             NeedsLink->Link = Active.Node;
552             NeedsLink = nullptr;
553           }
554 
555           Active.Len++;
556           break;
557         }
558 
559         // The string we're trying to insert isn't a substring of the next node,
560         // but matches up to a point. Split the node.
561         //
562         // For example, say we ended our search at a node n and we're trying to
563         // insert ABD. Then we'll create a new node s for AB, reduce n to just
564         // representing C, and insert a new leaf node l to represent d. This
565         // allows us to ensure that if n was a leaf, it remains a leaf.
566         //
567         //   | ABC  ---split--->  | AB
568         //   n                    s
569         //                     C / \ D
570         //                      n   l
571 
572         // The node s from the diagram
573         SuffixTreeNode *SplitNode =
574             insertInternalNode(Active.Node, NextNode->StartIdx,
575                                NextNode->StartIdx + Active.Len - 1, FirstChar);
576 
577         // Insert the new node representing the new substring into the tree as
578         // a child of the split node. This is the node l from the diagram.
579         insertLeaf(*SplitNode, EndIdx, LastChar);
580 
581         // Make the old node a child of the split node and update its start
582         // index. This is the node n from the diagram.
583         NextNode->StartIdx += Active.Len;
584         NextNode->Parent = SplitNode;
585         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
586 
587         // SplitNode is an internal node, update the suffix link.
588         if (NeedsLink)
589           NeedsLink->Link = SplitNode;
590 
591         NeedsLink = SplitNode;
592       }
593 
594       // We've added something new to the tree, so there's one less suffix to
595       // add.
596       SuffixesToAdd--;
597 
598       if (Active.Node->isRoot()) {
599         if (Active.Len > 0) {
600           Active.Len--;
601           Active.Idx = EndIdx - SuffixesToAdd + 1;
602         }
603       } else {
604         // Start the next phase at the next smallest suffix.
605         Active.Node = Active.Node->Link;
606       }
607     }
608 
609     return SuffixesToAdd;
610   }
611 
612 public:
613   /// Construct a suffix tree from a sequence of unsigned integers.
614   ///
615   /// \param Str The string to construct the suffix tree for.
616   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
617     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
618     Root->IsInTree = true;
619     Active.Node = Root;
620     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
621 
622     // Keep track of the number of suffixes we have to add of the current
623     // prefix.
624     unsigned SuffixesToAdd = 0;
625     Active.Node = Root;
626 
627     // Construct the suffix tree iteratively on each prefix of the string.
628     // PfxEndIdx is the end index of the current prefix.
629     // End is one past the last element in the string.
630     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
631          PfxEndIdx++) {
632       SuffixesToAdd++;
633       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
634       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
635     }
636 
637     // Set the suffix indices of each leaf.
638     assert(Root && "Root node can't be nullptr!");
639     setSuffixIndices(*Root, 0);
640   }
641 };
642 
643 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
644 struct InstructionMapper {
645 
646   /// \brief The next available integer to assign to a \p MachineInstr that
647   /// cannot be outlined.
648   ///
649   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
650   unsigned IllegalInstrNumber = -3;
651 
652   /// \brief The next available integer to assign to a \p MachineInstr that can
653   /// be outlined.
654   unsigned LegalInstrNumber = 0;
655 
656   /// Correspondence from \p MachineInstrs to unsigned integers.
657   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
658       InstructionIntegerMap;
659 
660   /// Corresponcence from unsigned integers to \p MachineInstrs.
661   /// Inverse of \p InstructionIntegerMap.
662   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
663 
664   /// The vector of unsigned integers that the module is mapped to.
665   std::vector<unsigned> UnsignedVec;
666 
667   /// \brief Stores the location of the instruction associated with the integer
668   /// at index i in \p UnsignedVec for each index i.
669   std::vector<MachineBasicBlock::iterator> InstrList;
670 
671   /// \brief Maps \p *It to a legal integer.
672   ///
673   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
674   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
675   ///
676   /// \returns The integer that \p *It was mapped to.
677   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
678 
679     // Get the integer for this instruction or give it the current
680     // LegalInstrNumber.
681     InstrList.push_back(It);
682     MachineInstr &MI = *It;
683     bool WasInserted;
684     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
685         ResultIt;
686     std::tie(ResultIt, WasInserted) =
687         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
688     unsigned MINumber = ResultIt->second;
689 
690     // There was an insertion.
691     if (WasInserted) {
692       LegalInstrNumber++;
693       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
694     }
695 
696     UnsignedVec.push_back(MINumber);
697 
698     // Make sure we don't overflow or use any integers reserved by the DenseMap.
699     if (LegalInstrNumber >= IllegalInstrNumber)
700       report_fatal_error("Instruction mapping overflow!");
701 
702     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
703            "Tried to assign DenseMap tombstone or empty key to instruction.");
704     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
705            "Tried to assign DenseMap tombstone or empty key to instruction.");
706 
707     return MINumber;
708   }
709 
710   /// Maps \p *It to an illegal integer.
711   ///
712   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
713   ///
714   /// \returns The integer that \p *It was mapped to.
715   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
716     unsigned MINumber = IllegalInstrNumber;
717 
718     InstrList.push_back(It);
719     UnsignedVec.push_back(IllegalInstrNumber);
720     IllegalInstrNumber--;
721 
722     assert(LegalInstrNumber < IllegalInstrNumber &&
723            "Instruction mapping overflow!");
724 
725     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
726            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
727 
728     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
729            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
730 
731     return MINumber;
732   }
733 
734   /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
735   /// and appends it to \p UnsignedVec and \p InstrList.
736   ///
737   /// Two instructions are assigned the same integer if they are identical.
738   /// If an instruction is deemed unsafe to outline, then it will be assigned an
739   /// unique integer. The resulting mapping is placed into a suffix tree and
740   /// queried for candidates.
741   ///
742   /// \param MBB The \p MachineBasicBlock to be translated into integers.
743   /// \param TRI \p TargetRegisterInfo for the module.
744   /// \param TII \p TargetInstrInfo for the module.
745   void convertToUnsignedVec(MachineBasicBlock &MBB,
746                             const TargetRegisterInfo &TRI,
747                             const TargetInstrInfo &TII) {
748     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
749 
750     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
751          It++) {
752 
753       // Keep track of where this instruction is in the module.
754       switch (TII.getOutliningType(It, Flags)) {
755       case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
756         mapToIllegalUnsigned(It);
757         break;
758 
759       case TargetInstrInfo::MachineOutlinerInstrType::Legal:
760         mapToLegalUnsigned(It);
761         break;
762 
763       case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
764         break;
765       }
766     }
767 
768     // After we're done every insertion, uniquely terminate this part of the
769     // "string". This makes sure we won't match across basic block or function
770     // boundaries since the "end" is encoded uniquely and thus appears in no
771     // repeated substring.
772     InstrList.push_back(MBB.end());
773     UnsignedVec.push_back(IllegalInstrNumber);
774     IllegalInstrNumber--;
775   }
776 
777   InstructionMapper() {
778     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
779     // changed.
780     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
781            "DenseMapInfo<unsigned>'s empty key isn't -1!");
782     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
783            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
784   }
785 };
786 
787 /// \brief An interprocedural pass which finds repeated sequences of
788 /// instructions and replaces them with calls to functions.
789 ///
790 /// Each instruction is mapped to an unsigned integer and placed in a string.
791 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
792 /// is then repeatedly queried for repeated sequences of instructions. Each
793 /// non-overlapping repeated sequence is then placed in its own
794 /// \p MachineFunction and each instance is then replaced with a call to that
795 /// function.
796 struct MachineOutliner : public ModulePass {
797 
798   static char ID;
799 
800   /// \brief Set to true if the outliner should consider functions with
801   /// linkonceodr linkage.
802   bool OutlineFromLinkOnceODRs = false;
803 
804   // Collection of IR functions created by the outliner.
805   std::vector<Function *> CreatedIRFunctions;
806 
807   StringRef getPassName() const override { return "Machine Outliner"; }
808 
809   void getAnalysisUsage(AnalysisUsage &AU) const override {
810     AU.addRequired<MachineModuleInfo>();
811     AU.addPreserved<MachineModuleInfo>();
812     AU.setPreservesAll();
813     ModulePass::getAnalysisUsage(AU);
814   }
815 
816   MachineOutliner(bool OutlineFromLinkOnceODRs = false)
817       : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) {
818     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
819   }
820 
821   /// Find all repeated substrings that satisfy the outlining cost model.
822   ///
823   /// If a substring appears at least twice, then it must be represented by
824   /// an internal node which appears in at least two suffixes. Each suffix is
825   /// represented by a leaf node. To do this, we visit each internal node in
826   /// the tree, using the leaf children of each internal node. If an internal
827   /// node represents a beneficial substring, then we use each of its leaf
828   /// children to find the locations of its substring.
829   ///
830   /// \param ST A suffix tree to query.
831   /// \param TII TargetInstrInfo for the target.
832   /// \param Mapper Contains outlining mapping information.
833   /// \param[out] CandidateList Filled with candidates representing each
834   /// beneficial substring.
835   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
836   /// type of candidate.
837   ///
838   /// \returns The length of the longest candidate found.
839   unsigned
840   findCandidates(SuffixTree &ST, const TargetInstrInfo &TII,
841                  InstructionMapper &Mapper,
842                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
843                  std::vector<OutlinedFunction> &FunctionList);
844 
845   /// \brief Replace the sequences of instructions represented by the
846   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
847   /// described in \p FunctionList.
848   ///
849   /// \param M The module we are outlining from.
850   /// \param CandidateList A list of candidates to be outlined.
851   /// \param FunctionList A list of functions to be inserted into the module.
852   /// \param Mapper Contains the instruction mappings for the module.
853   bool outline(Module &M,
854                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
855                std::vector<OutlinedFunction> &FunctionList,
856                InstructionMapper &Mapper);
857 
858   /// Creates a function for \p OF and inserts it into the module.
859   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
860                                           InstructionMapper &Mapper);
861 
862   /// Find potential outlining candidates and store them in \p CandidateList.
863   ///
864   /// For each type of potential candidate, also build an \p OutlinedFunction
865   /// struct containing the information to build the function for that
866   /// candidate.
867   ///
868   /// \param[out] CandidateList Filled with outlining candidates for the module.
869   /// \param[out] FunctionList Filled with functions corresponding to each type
870   /// of \p Candidate.
871   /// \param ST The suffix tree for the module.
872   /// \param TII TargetInstrInfo for the module.
873   ///
874   /// \returns The length of the longest candidate found. 0 if there are none.
875   unsigned
876   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
877                      std::vector<OutlinedFunction> &FunctionList,
878                      SuffixTree &ST, InstructionMapper &Mapper,
879                      const TargetInstrInfo &TII);
880 
881   /// Helper function for pruneOverlaps.
882   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
883   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
884 
885   /// \brief Remove any overlapping candidates that weren't handled by the
886   /// suffix tree's pruning method.
887   ///
888   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
889   /// If a short candidate is chosen for outlining, then a longer candidate
890   /// which has that short candidate as a suffix is chosen, the tree's pruning
891   /// method will not find it. Thus, we need to prune before outlining as well.
892   ///
893   /// \param[in,out] CandidateList A list of outlining candidates.
894   /// \param[in,out] FunctionList A list of functions to be outlined.
895   /// \param Mapper Contains instruction mapping info for outlining.
896   /// \param MaxCandidateLen The length of the longest candidate.
897   /// \param TII TargetInstrInfo for the module.
898   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
899                      std::vector<OutlinedFunction> &FunctionList,
900                      InstructionMapper &Mapper, unsigned MaxCandidateLen,
901                      const TargetInstrInfo &TII);
902 
903   /// Construct a suffix tree on the instructions in \p M and outline repeated
904   /// strings from that tree.
905   bool runOnModule(Module &M) override;
906 };
907 
908 } // Anonymous namespace.
909 
910 char MachineOutliner::ID = 0;
911 
912 namespace llvm {
913 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) {
914   return new MachineOutliner(OutlineFromLinkOnceODRs);
915 }
916 
917 } // namespace llvm
918 
919 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
920                 false)
921 
922 unsigned MachineOutliner::findCandidates(
923     SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper,
924     std::vector<std::shared_ptr<Candidate>> &CandidateList,
925     std::vector<OutlinedFunction> &FunctionList) {
926   CandidateList.clear();
927   FunctionList.clear();
928   unsigned MaxLen = 0;
929 
930   // FIXME: Visit internal nodes instead of leaves.
931   for (SuffixTreeNode *Leaf : ST.LeafVector) {
932     assert(Leaf && "Leaves in LeafVector cannot be null!");
933     if (!Leaf->IsInTree)
934       continue;
935 
936     assert(Leaf->Parent && "All leaves must have parents!");
937     SuffixTreeNode &Parent = *(Leaf->Parent);
938 
939     // If it doesn't appear enough, or we already outlined from it, skip it.
940     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
941       continue;
942 
943     // Figure out if this candidate is beneficial.
944     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
945 
946     // Too short to be beneficial; skip it.
947     // FIXME: This isn't necessarily true for, say, X86. If we factor in
948     // instruction lengths we need more information than this.
949     if (StringLen < 2)
950       continue;
951 
952     // If this is a beneficial class of candidate, then every one is stored in
953     // this vector.
954     std::vector<Candidate> CandidatesForRepeatedSeq;
955 
956     // Describes the start and end point of each candidate. This allows the
957     // target to infer some information about each occurrence of each repeated
958     // sequence.
959     // FIXME: CandidatesForRepeatedSeq and this should be combined.
960     std::vector<
961         std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
962         RepeatedSequenceLocs;
963 
964     // Figure out the call overhead for each instance of the sequence.
965     for (auto &ChildPair : Parent.Children) {
966       SuffixTreeNode *M = ChildPair.second;
967 
968       if (M && M->IsInTree && M->isLeaf()) {
969         // Never visit this leaf again.
970         M->IsInTree = false;
971         unsigned StartIdx = M->SuffixIdx;
972         unsigned EndIdx = StartIdx + StringLen - 1;
973 
974         // Trick: Discard some candidates that would be incompatible with the
975         // ones we've already found for this sequence. This will save us some
976         // work in candidate selection.
977         //
978         // If two candidates overlap, then we can't outline them both. This
979         // happens when we have candidates that look like, say
980         //
981         // AA (where each "A" is an instruction).
982         //
983         // We might have some portion of the module that looks like this:
984         // AAAAAA (6 A's)
985         //
986         // In this case, there are 5 different copies of "AA" in this range, but
987         // at most 3 can be outlined. If only outlining 3 of these is going to
988         // be unbeneficial, then we ought to not bother.
989         //
990         // Note that two things DON'T overlap when they look like this:
991         // start1...end1 .... start2...end2
992         // That is, one must either
993         // * End before the other starts
994         // * Start after the other ends
995         if (std::all_of(CandidatesForRepeatedSeq.begin(),
996                         CandidatesForRepeatedSeq.end(),
997                         [&StartIdx, &EndIdx](const Candidate &C) {
998                           return (EndIdx < C.getStartIdx() ||
999                                   StartIdx > C.getEndIdx());
1000                         })) {
1001           // It doesn't overlap with anything, so we can outline it.
1002           // Each sequence is over [StartIt, EndIt].
1003           MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1004           MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1005 
1006           // Save the MachineFunction containing the Candidate.
1007           MachineFunction *MF = StartIt->getParent()->getParent();
1008           assert(MF && "Candidate doesn't have a MF?");
1009 
1010           // Save the candidate and its location.
1011           CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen,
1012                                                 FunctionList.size(), MF);
1013           RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt));
1014         }
1015       }
1016     }
1017 
1018     // We've found something we might want to outline.
1019     // Create an OutlinedFunction to store it and check if it'd be beneficial
1020     // to outline.
1021     TargetInstrInfo::MachineOutlinerInfo MInfo =
1022         TII.getOutlininingCandidateInfo(RepeatedSequenceLocs);
1023     std::vector<unsigned> Seq;
1024     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
1025       Seq.push_back(ST.Str[i]);
1026     OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(),
1027                         Seq, MInfo);
1028     unsigned Benefit = OF.getBenefit();
1029 
1030     // Is it better to outline this candidate than not?
1031     if (Benefit < 1) {
1032       // Outlining this candidate would take more instructions than not
1033       // outlining.
1034       // Emit a remark explaining why we didn't outline this candidate.
1035       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C =
1036           RepeatedSequenceLocs[0];
1037       MachineOptimizationRemarkEmitter MORE(
1038           *(C.first->getParent()->getParent()), nullptr);
1039       MORE.emit([&]() {
1040         MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
1041                                           C.first->getDebugLoc(),
1042                                           C.first->getParent());
1043         R << "Did not outline " << NV("Length", StringLen) << " instructions"
1044           << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size())
1045           << " locations."
1046           << " Instructions from outlining all occurrences ("
1047           << NV("OutliningCost", OF.getOutliningCost()) << ")"
1048           << " >= Unoutlined instruction count ("
1049           << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")"
1050           << " (Also found at: ";
1051 
1052         // Tell the user the other places the candidate was found.
1053         for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) {
1054           R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
1055                   RepeatedSequenceLocs[i].first->getDebugLoc());
1056           if (i != e - 1)
1057             R << ", ";
1058         }
1059 
1060         R << ")";
1061         return R;
1062       });
1063 
1064       // Move to the next candidate.
1065       continue;
1066     }
1067 
1068     if (StringLen > MaxLen)
1069       MaxLen = StringLen;
1070 
1071     // At this point, the candidate class is seen as beneficial. Set their
1072     // benefit values and save them in the candidate list.
1073     std::vector<std::shared_ptr<Candidate>> CandidatesForFn;
1074     for (Candidate &C : CandidatesForRepeatedSeq) {
1075       C.Benefit = Benefit;
1076       C.MInfo = MInfo;
1077       std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C);
1078       CandidateList.push_back(Cptr);
1079       CandidatesForFn.push_back(Cptr);
1080     }
1081 
1082     FunctionList.push_back(OF);
1083     FunctionList.back().Candidates = CandidatesForFn;
1084 
1085     // Move to the next function.
1086     Parent.IsInTree = false;
1087   }
1088 
1089   return MaxLen;
1090 }
1091 
1092 // Remove C from the candidate space, and update its OutlinedFunction.
1093 void MachineOutliner::prune(Candidate &C,
1094                             std::vector<OutlinedFunction> &FunctionList) {
1095   // Get the OutlinedFunction associated with this Candidate.
1096   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1097 
1098   // Update C's associated function's occurrence count.
1099   F.decrement();
1100 
1101   // Remove C from the CandidateList.
1102   C.InCandidateList = false;
1103 
1104   DEBUG(dbgs() << "- Removed a Candidate \n";
1105         dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount()
1106                << "\n";
1107         dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1108                << "\n";);
1109 }
1110 
1111 void MachineOutliner::pruneOverlaps(
1112     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1113     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1114     unsigned MaxCandidateLen, const TargetInstrInfo &TII) {
1115 
1116   // Return true if this candidate became unbeneficial for outlining in a
1117   // previous step.
1118   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1119 
1120     // Check if the candidate was removed in a previous step.
1121     if (!C.InCandidateList)
1122       return true;
1123 
1124     // C must be alive. Check if we should remove it.
1125     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1126       prune(C, FunctionList);
1127       return true;
1128     }
1129 
1130     // C is in the list, and F is still beneficial.
1131     return false;
1132   };
1133 
1134   // TODO: Experiment with interval trees or other interval-checking structures
1135   // to lower the time complexity of this function.
1136   // TODO: Can we do better than the simple greedy choice?
1137   // Check for overlaps in the range.
1138   // This is O(MaxCandidateLen * CandidateList.size()).
1139   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1140        It++) {
1141     Candidate &C1 = **It;
1142 
1143     // If C1 was already pruned, or its function is no longer beneficial for
1144     // outlining, move to the next candidate.
1145     if (ShouldSkipCandidate(C1))
1146       continue;
1147 
1148     // The minimum start index of any candidate that could overlap with this
1149     // one.
1150     unsigned FarthestPossibleIdx = 0;
1151 
1152     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1153     if (C1.getStartIdx() > MaxCandidateLen)
1154       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1155 
1156     // Compare against the candidates in the list that start at most
1157     // FarthestPossibleIdx indices away from C1. There are at most
1158     // MaxCandidateLen of these.
1159     for (auto Sit = It + 1; Sit != Et; Sit++) {
1160       Candidate &C2 = **Sit;
1161 
1162       // Is this candidate too far away to overlap?
1163       if (C2.getStartIdx() < FarthestPossibleIdx)
1164         break;
1165 
1166       // If C2 was already pruned, or its function is no longer beneficial for
1167       // outlining, move to the next candidate.
1168       if (ShouldSkipCandidate(C2))
1169         continue;
1170 
1171       // Do C1 and C2 overlap?
1172       //
1173       // Not overlapping:
1174       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1175       //
1176       // We sorted our candidate list so C2Start <= C1Start. We know that
1177       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1178       // have to check is C2End < C2Start to see if we overlap.
1179       if (C2.getEndIdx() < C1.getStartIdx())
1180         continue;
1181 
1182       // C1 and C2 overlap.
1183       // We need to choose the better of the two.
1184       //
1185       // Approximate this by picking the one which would have saved us the
1186       // most instructions before any pruning.
1187 
1188       // Is C2 a better candidate?
1189       if (C2.Benefit > C1.Benefit) {
1190         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1191         // against anything anymore, so break.
1192         prune(C1, FunctionList);
1193         break;
1194       }
1195 
1196       // Prune C2 and move on to the next candidate.
1197       prune(C2, FunctionList);
1198     }
1199   }
1200 }
1201 
1202 unsigned MachineOutliner::buildCandidateList(
1203     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1204     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1205     InstructionMapper &Mapper, const TargetInstrInfo &TII) {
1206 
1207   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1208   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1209 
1210   MaxCandidateLen =
1211       findCandidates(ST, TII, Mapper, CandidateList, FunctionList);
1212 
1213   // Sort the candidates in decending order. This will simplify the outlining
1214   // process when we have to remove the candidates from the mapping by
1215   // allowing us to cut them out without keeping track of an offset.
1216   std::stable_sort(
1217       CandidateList.begin(), CandidateList.end(),
1218       [](const std::shared_ptr<Candidate> &LHS,
1219          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1220 
1221   return MaxCandidateLen;
1222 }
1223 
1224 MachineFunction *
1225 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1226                                         InstructionMapper &Mapper) {
1227 
1228   // Create the function name. This should be unique. For now, just hash the
1229   // module name and include it in the function name plus the number of this
1230   // function.
1231   std::ostringstream NameStream;
1232   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1233 
1234   // Create the function using an IR-level function.
1235   LLVMContext &C = M.getContext();
1236   Function *F = dyn_cast<Function>(
1237       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1238   assert(F && "Function was null!");
1239 
1240   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1241   // which gives us better results when we outline from linkonceodr functions.
1242   F->setLinkage(GlobalValue::PrivateLinkage);
1243   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1244 
1245   // Save F so that we can add debug info later if we need to.
1246   CreatedIRFunctions.push_back(F);
1247 
1248   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1249   IRBuilder<> Builder(EntryBB);
1250   Builder.CreateRetVoid();
1251 
1252   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1253   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1254   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1255   const TargetSubtargetInfo &STI = MF.getSubtarget();
1256   const TargetInstrInfo &TII = *STI.getInstrInfo();
1257 
1258   // Insert the new function into the module.
1259   MF.insert(MF.begin(), &MBB);
1260 
1261   TII.insertOutlinerPrologue(MBB, MF, OF.MInfo);
1262 
1263   // Copy over the instructions for the function using the integer mappings in
1264   // its sequence.
1265   for (unsigned Str : OF.Sequence) {
1266     MachineInstr *NewMI =
1267         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1268     NewMI->dropMemRefs();
1269 
1270     // Don't keep debug information for outlined instructions.
1271     NewMI->setDebugLoc(DebugLoc());
1272     MBB.insert(MBB.end(), NewMI);
1273   }
1274 
1275   TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo);
1276 
1277   // If there's a DISubprogram associated with this outlined function, then
1278   // emit debug info for the outlined function.
1279   if (DISubprogram *SP = OF.getSubprogramOrNull()) {
1280     // We have a DISubprogram. Get its DICompileUnit.
1281     DICompileUnit *CU = SP->getUnit();
1282     DIBuilder DB(M, true, CU);
1283     DIFile *Unit = SP->getFile();
1284     Mangler Mg;
1285 
1286     // Walk over each IR function we created in the outliner and create
1287     // DISubprograms for each function.
1288     for (Function *F : CreatedIRFunctions) {
1289       // Get the mangled name of the function for the linkage name.
1290       std::string Dummy;
1291       llvm::raw_string_ostream MangledNameStream(Dummy);
1292       Mg.getNameWithPrefix(MangledNameStream, F, false);
1293 
1294       DISubprogram *SP = DB.createFunction(
1295           Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1296           Unit /* File */,
1297           0 /* Line 0 is reserved for compiler-generated code. */,
1298           DB.createSubroutineType(
1299               DB.getOrCreateTypeArray(None)), /* void type */
1300           false, true, 0, /* Line 0 is reserved for compiler-generated code. */
1301           DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1302           true /* Outlined code is optimized code by definition. */);
1303 
1304       // Don't add any new variables to the subprogram.
1305       DB.finalizeSubprogram(SP);
1306 
1307       // Attach subprogram to the function.
1308       F->setSubprogram(SP);
1309     }
1310 
1311     // We're done with the DIBuilder.
1312     DB.finalize();
1313   }
1314 
1315   MF.getRegInfo().freezeReservedRegs(MF);
1316   return &MF;
1317 }
1318 
1319 bool MachineOutliner::outline(
1320     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1321     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1322 
1323   bool OutlinedSomething = false;
1324   // Replace the candidates with calls to their respective outlined functions.
1325   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1326     Candidate &C = *Cptr;
1327     // Was the candidate removed during pruneOverlaps?
1328     if (!C.InCandidateList)
1329       continue;
1330 
1331     // If not, then look at its OutlinedFunction.
1332     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1333 
1334     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1335     if (OF.getBenefit() < 1)
1336       continue;
1337 
1338     // If not, then outline it.
1339     assert(C.getStartIdx() < Mapper.InstrList.size() &&
1340            "Candidate out of bounds!");
1341     MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent();
1342     MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()];
1343     unsigned EndIdx = C.getEndIdx();
1344 
1345     assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
1346     MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1347     assert(EndIt != MBB->end() && "EndIt out of bounds!");
1348 
1349     EndIt++; // Erase needs one past the end index.
1350 
1351     // Does this candidate have a function yet?
1352     if (!OF.MF) {
1353       OF.MF = createOutlinedFunction(M, OF, Mapper);
1354       MachineBasicBlock *MBB = &*OF.MF->begin();
1355 
1356       // Output a remark telling the user that an outlined function was created,
1357       // and explaining where it came from.
1358       MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
1359       MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
1360                                   MBB->findDebugLoc(MBB->begin()), MBB);
1361       R << "Saved " << NV("OutliningBenefit", OF.getBenefit())
1362         << " instructions by "
1363         << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
1364         << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
1365         << " locations. "
1366         << "(Found at: ";
1367 
1368       // Tell the user the other places the candidate was found.
1369       for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1370 
1371         // Skip over things that were pruned.
1372         if (!OF.Candidates[i]->InCandidateList)
1373           continue;
1374 
1375         R << NV(
1376             (Twine("StartLoc") + Twine(i)).str(),
1377             Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc());
1378         if (i != e - 1)
1379           R << ", ";
1380       }
1381 
1382       R << ")";
1383 
1384       MORE.emit(R);
1385       FunctionsCreated++;
1386     }
1387 
1388     MachineFunction *MF = OF.MF;
1389     const TargetSubtargetInfo &STI = MF->getSubtarget();
1390     const TargetInstrInfo &TII = *STI.getInstrInfo();
1391 
1392     // Insert a call to the new function and erase the old sequence.
1393     TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo);
1394     StartIt = Mapper.InstrList[C.getStartIdx()];
1395     MBB->erase(StartIt, EndIt);
1396 
1397     OutlinedSomething = true;
1398 
1399     // Statistics.
1400     NumOutlined++;
1401   }
1402 
1403   DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1404 
1405   return OutlinedSomething;
1406 }
1407 
1408 bool MachineOutliner::runOnModule(Module &M) {
1409 
1410   // Is there anything in the module at all?
1411   if (M.empty())
1412     return false;
1413 
1414   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1415   const TargetSubtargetInfo &STI =
1416       MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget();
1417   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
1418   const TargetInstrInfo *TII = STI.getInstrInfo();
1419 
1420   InstructionMapper Mapper;
1421 
1422   // Build instruction mappings for each function in the module.
1423   for (Function &F : M) {
1424     MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
1425 
1426     // Is the function empty? Safe to outline from?
1427     if (F.empty() ||
1428         !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs))
1429       continue;
1430 
1431     // If it is, look at each MachineBasicBlock in the function.
1432     for (MachineBasicBlock &MBB : MF) {
1433 
1434       // Is there anything in MBB? And is it the target of an indirect branch?
1435       if (MBB.empty() || MBB.hasAddressTaken())
1436         continue;
1437 
1438       // If yes, map it.
1439       Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
1440     }
1441   }
1442 
1443   // Construct a suffix tree, use it to find candidates, and then outline them.
1444   SuffixTree ST(Mapper.UnsignedVec);
1445   std::vector<std::shared_ptr<Candidate>> CandidateList;
1446   std::vector<OutlinedFunction> FunctionList;
1447 
1448   // Find all of the outlining candidates.
1449   unsigned MaxCandidateLen =
1450       buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
1451 
1452   // Remove candidates that overlap with other candidates.
1453   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII);
1454 
1455   // Outline each of the candidates and return true if something was outlined.
1456   bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
1457 
1458   return OutlinedSomething;
1459 }
1460