1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * buildOutlinedFrame
29 ///   * insertOutlinedCall
30 ///   * isFunctionSafeToOutlineFrom
31 ///
32 /// in order to make use of the MachineOutliner.
33 ///
34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
36 /// how this pass works, the talk is available on YouTube at
37 ///
38 /// https://www.youtube.com/watch?v=yorld-WSOeU
39 ///
40 /// The slides for the talk are available at
41 ///
42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
43 ///
44 /// The talk provides an overview of how the outliner finds candidates and
45 /// ultimately outlines them. It describes how the main data structure for this
46 /// pass, the suffix tree, is queried and purged for candidates. It also gives
47 /// a simplified suffix tree construction algorithm for suffix trees based off
48 /// of the algorithm actually used here, Ukkonen's algorithm.
49 ///
50 /// For the original RFC for this pass, please see
51 ///
52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
53 ///
54 /// For more information on the suffix tree data structure, please see
55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
56 ///
57 //===----------------------------------------------------------------------===//
58 #include "llvm/CodeGen/MachineOutliner.h"
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/MachineRegisterInfo.h"
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/TargetInstrInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/Mangler.h"
72 #include "llvm/Support/Allocator.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <functional>
77 #include <map>
78 #include <sstream>
79 #include <tuple>
80 #include <vector>
81 
82 #define DEBUG_TYPE "machine-outliner"
83 
84 using namespace llvm;
85 using namespace ore;
86 using namespace outliner;
87 
88 STATISTIC(NumOutlined, "Number of candidates outlined");
89 STATISTIC(FunctionsCreated, "Number of functions created");
90 
91 // Set to true if the user wants the outliner to run on linkonceodr linkage
92 // functions. This is false by default because the linker can dedupe linkonceodr
93 // functions. Since the outliner is confined to a single module (modulo LTO),
94 // this is off by default. It should, however, be the default behaviour in
95 // LTO.
96 static cl::opt<bool> EnableLinkOnceODROutlining(
97     "enable-linkonceodr-outlining",
98     cl::Hidden,
99     cl::desc("Enable the machine outliner on linkonceodr functions"),
100     cl::init(false));
101 
102 namespace {
103 
104 /// Represents an undefined index in the suffix tree.
105 const unsigned EmptyIdx = -1;
106 
107 /// A node in a suffix tree which represents a substring or suffix.
108 ///
109 /// Each node has either no children or at least two children, with the root
110 /// being a exception in the empty tree.
111 ///
112 /// Children are represented as a map between unsigned integers and nodes. If
113 /// a node N has a child M on unsigned integer k, then the mapping represented
114 /// by N is a proper prefix of the mapping represented by M. Note that this,
115 /// although similar to a trie is somewhat different: each node stores a full
116 /// substring of the full mapping rather than a single character state.
117 ///
118 /// Each internal node contains a pointer to the internal node representing
119 /// the same string, but with the first character chopped off. This is stored
120 /// in \p Link. Each leaf node stores the start index of its respective
121 /// suffix in \p SuffixIdx.
122 struct SuffixTreeNode {
123 
124   /// The children of this node.
125   ///
126   /// A child existing on an unsigned integer implies that from the mapping
127   /// represented by the current node, there is a way to reach another
128   /// mapping by tacking that character on the end of the current string.
129   DenseMap<unsigned, SuffixTreeNode *> Children;
130 
131   /// The start index of this node's substring in the main string.
132   unsigned StartIdx = EmptyIdx;
133 
134   /// The end index of this node's substring in the main string.
135   ///
136   /// Every leaf node must have its \p EndIdx incremented at the end of every
137   /// step in the construction algorithm. To avoid having to update O(N)
138   /// nodes individually at the end of every step, the end index is stored
139   /// as a pointer.
140   unsigned *EndIdx = nullptr;
141 
142   /// For leaves, the start index of the suffix represented by this node.
143   ///
144   /// For all other nodes, this is ignored.
145   unsigned SuffixIdx = EmptyIdx;
146 
147   /// For internal nodes, a pointer to the internal node representing
148   /// the same sequence with the first character chopped off.
149   ///
150   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
151   /// Ukkonen's algorithm does to achieve linear-time construction is
152   /// keep track of which node the next insert should be at. This makes each
153   /// insert O(1), and there are a total of O(N) inserts. The suffix link
154   /// helps with inserting children of internal nodes.
155   ///
156   /// Say we add a child to an internal node with associated mapping S. The
157   /// next insertion must be at the node representing S - its first character.
158   /// This is given by the way that we iteratively build the tree in Ukkonen's
159   /// algorithm. The main idea is to look at the suffixes of each prefix in the
160   /// string, starting with the longest suffix of the prefix, and ending with
161   /// the shortest. Therefore, if we keep pointers between such nodes, we can
162   /// move to the next insertion point in O(1) time. If we don't, then we'd
163   /// have to query from the root, which takes O(N) time. This would make the
164   /// construction algorithm O(N^2) rather than O(N).
165   SuffixTreeNode *Link = nullptr;
166 
167   /// The length of the string formed by concatenating the edge labels from the
168   /// root to this node.
169   unsigned ConcatLen = 0;
170 
171   /// Returns true if this node is a leaf.
172   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
173 
174   /// Returns true if this node is the root of its owning \p SuffixTree.
175   bool isRoot() const { return StartIdx == EmptyIdx; }
176 
177   /// Return the number of elements in the substring associated with this node.
178   size_t size() const {
179 
180     // Is it the root? If so, it's the empty string so return 0.
181     if (isRoot())
182       return 0;
183 
184     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
185 
186     // Size = the number of elements in the string.
187     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
188     return *EndIdx - StartIdx + 1;
189   }
190 
191   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
192       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
193 
194   SuffixTreeNode() {}
195 };
196 
197 /// A data structure for fast substring queries.
198 ///
199 /// Suffix trees represent the suffixes of their input strings in their leaves.
200 /// A suffix tree is a type of compressed trie structure where each node
201 /// represents an entire substring rather than a single character. Each leaf
202 /// of the tree is a suffix.
203 ///
204 /// A suffix tree can be seen as a type of state machine where each state is a
205 /// substring of the full string. The tree is structured so that, for a string
206 /// of length N, there are exactly N leaves in the tree. This structure allows
207 /// us to quickly find repeated substrings of the input string.
208 ///
209 /// In this implementation, a "string" is a vector of unsigned integers.
210 /// These integers may result from hashing some data type. A suffix tree can
211 /// contain 1 or many strings, which can then be queried as one large string.
212 ///
213 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
214 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
215 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
216 /// paper is available at
217 ///
218 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
219 class SuffixTree {
220 public:
221   /// Each element is an integer representing an instruction in the module.
222   ArrayRef<unsigned> Str;
223 
224   /// A repeated substring in the tree.
225   struct RepeatedSubstring {
226     /// The length of the string.
227     unsigned Length;
228 
229     /// The start indices of each occurrence.
230     std::vector<unsigned> StartIndices;
231   };
232 
233 private:
234   /// Maintains each node in the tree.
235   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
236 
237   /// The root of the suffix tree.
238   ///
239   /// The root represents the empty string. It is maintained by the
240   /// \p NodeAllocator like every other node in the tree.
241   SuffixTreeNode *Root = nullptr;
242 
243   /// Maintains the end indices of the internal nodes in the tree.
244   ///
245   /// Each internal node is guaranteed to never have its end index change
246   /// during the construction algorithm; however, leaves must be updated at
247   /// every step. Therefore, we need to store leaf end indices by reference
248   /// to avoid updating O(N) leaves at every step of construction. Thus,
249   /// every internal node must be allocated its own end index.
250   BumpPtrAllocator InternalEndIdxAllocator;
251 
252   /// The end index of each leaf in the tree.
253   unsigned LeafEndIdx = -1;
254 
255   /// Helper struct which keeps track of the next insertion point in
256   /// Ukkonen's algorithm.
257   struct ActiveState {
258     /// The next node to insert at.
259     SuffixTreeNode *Node;
260 
261     /// The index of the first character in the substring currently being added.
262     unsigned Idx = EmptyIdx;
263 
264     /// The length of the substring we have to add at the current step.
265     unsigned Len = 0;
266   };
267 
268   /// The point the next insertion will take place at in the
269   /// construction algorithm.
270   ActiveState Active;
271 
272   /// Allocate a leaf node and add it to the tree.
273   ///
274   /// \param Parent The parent of this node.
275   /// \param StartIdx The start index of this node's associated string.
276   /// \param Edge The label on the edge leaving \p Parent to this node.
277   ///
278   /// \returns A pointer to the allocated leaf node.
279   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
280                              unsigned Edge) {
281 
282     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
283 
284     SuffixTreeNode *N = new (NodeAllocator.Allocate())
285         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
286     Parent.Children[Edge] = N;
287 
288     return N;
289   }
290 
291   /// Allocate an internal node and add it to the tree.
292   ///
293   /// \param Parent The parent of this node. Only null when allocating the root.
294   /// \param StartIdx The start index of this node's associated string.
295   /// \param EndIdx The end index of this node's associated string.
296   /// \param Edge The label on the edge leaving \p Parent to this node.
297   ///
298   /// \returns A pointer to the allocated internal node.
299   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
300                                      unsigned EndIdx, unsigned Edge) {
301 
302     assert(StartIdx <= EndIdx && "String can't start after it ends!");
303     assert(!(!Parent && StartIdx != EmptyIdx) &&
304            "Non-root internal nodes must have parents!");
305 
306     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
307     SuffixTreeNode *N = new (NodeAllocator.Allocate())
308         SuffixTreeNode(StartIdx, E, Root);
309     if (Parent)
310       Parent->Children[Edge] = N;
311 
312     return N;
313   }
314 
315   /// Set the suffix indices of the leaves to the start indices of their
316   /// respective suffixes.
317   ///
318   /// \param[in] CurrNode The node currently being visited.
319   /// \param CurrNodeLen The concatenation of all node sizes from the root to
320   /// this node. Used to produce suffix indices.
321   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
322 
323     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
324 
325     // Store the concatenation of lengths down from the root.
326     CurrNode.ConcatLen = CurrNodeLen;
327     // Traverse the tree depth-first.
328     for (auto &ChildPair : CurrNode.Children) {
329       assert(ChildPair.second && "Node had a null child!");
330       setSuffixIndices(*ChildPair.second,
331                        CurrNodeLen + ChildPair.second->size());
332     }
333 
334     // Is this node a leaf? If it is, give it a suffix index.
335     if (IsLeaf)
336       CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
337   }
338 
339   /// Construct the suffix tree for the prefix of the input ending at
340   /// \p EndIdx.
341   ///
342   /// Used to construct the full suffix tree iteratively. At the end of each
343   /// step, the constructed suffix tree is either a valid suffix tree, or a
344   /// suffix tree with implicit suffixes. At the end of the final step, the
345   /// suffix tree is a valid tree.
346   ///
347   /// \param EndIdx The end index of the current prefix in the main string.
348   /// \param SuffixesToAdd The number of suffixes that must be added
349   /// to complete the suffix tree at the current phase.
350   ///
351   /// \returns The number of suffixes that have not been added at the end of
352   /// this step.
353   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
354     SuffixTreeNode *NeedsLink = nullptr;
355 
356     while (SuffixesToAdd > 0) {
357 
358       // Are we waiting to add anything other than just the last character?
359       if (Active.Len == 0) {
360         // If not, then say the active index is the end index.
361         Active.Idx = EndIdx;
362       }
363 
364       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
365 
366       // The first character in the current substring we're looking at.
367       unsigned FirstChar = Str[Active.Idx];
368 
369       // Have we inserted anything starting with FirstChar at the current node?
370       if (Active.Node->Children.count(FirstChar) == 0) {
371         // If not, then we can just insert a leaf and move too the next step.
372         insertLeaf(*Active.Node, EndIdx, FirstChar);
373 
374         // The active node is an internal node, and we visited it, so it must
375         // need a link if it doesn't have one.
376         if (NeedsLink) {
377           NeedsLink->Link = Active.Node;
378           NeedsLink = nullptr;
379         }
380       } else {
381         // There's a match with FirstChar, so look for the point in the tree to
382         // insert a new node.
383         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
384 
385         unsigned SubstringLen = NextNode->size();
386 
387         // Is the current suffix we're trying to insert longer than the size of
388         // the child we want to move to?
389         if (Active.Len >= SubstringLen) {
390           // If yes, then consume the characters we've seen and move to the next
391           // node.
392           Active.Idx += SubstringLen;
393           Active.Len -= SubstringLen;
394           Active.Node = NextNode;
395           continue;
396         }
397 
398         // Otherwise, the suffix we're trying to insert must be contained in the
399         // next node we want to move to.
400         unsigned LastChar = Str[EndIdx];
401 
402         // Is the string we're trying to insert a substring of the next node?
403         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
404           // If yes, then we're done for this step. Remember our insertion point
405           // and move to the next end index. At this point, we have an implicit
406           // suffix tree.
407           if (NeedsLink && !Active.Node->isRoot()) {
408             NeedsLink->Link = Active.Node;
409             NeedsLink = nullptr;
410           }
411 
412           Active.Len++;
413           break;
414         }
415 
416         // The string we're trying to insert isn't a substring of the next node,
417         // but matches up to a point. Split the node.
418         //
419         // For example, say we ended our search at a node n and we're trying to
420         // insert ABD. Then we'll create a new node s for AB, reduce n to just
421         // representing C, and insert a new leaf node l to represent d. This
422         // allows us to ensure that if n was a leaf, it remains a leaf.
423         //
424         //   | ABC  ---split--->  | AB
425         //   n                    s
426         //                     C / \ D
427         //                      n   l
428 
429         // The node s from the diagram
430         SuffixTreeNode *SplitNode =
431             insertInternalNode(Active.Node, NextNode->StartIdx,
432                                NextNode->StartIdx + Active.Len - 1, FirstChar);
433 
434         // Insert the new node representing the new substring into the tree as
435         // a child of the split node. This is the node l from the diagram.
436         insertLeaf(*SplitNode, EndIdx, LastChar);
437 
438         // Make the old node a child of the split node and update its start
439         // index. This is the node n from the diagram.
440         NextNode->StartIdx += Active.Len;
441         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
442 
443         // SplitNode is an internal node, update the suffix link.
444         if (NeedsLink)
445           NeedsLink->Link = SplitNode;
446 
447         NeedsLink = SplitNode;
448       }
449 
450       // We've added something new to the tree, so there's one less suffix to
451       // add.
452       SuffixesToAdd--;
453 
454       if (Active.Node->isRoot()) {
455         if (Active.Len > 0) {
456           Active.Len--;
457           Active.Idx = EndIdx - SuffixesToAdd + 1;
458         }
459       } else {
460         // Start the next phase at the next smallest suffix.
461         Active.Node = Active.Node->Link;
462       }
463     }
464 
465     return SuffixesToAdd;
466   }
467 
468 public:
469   /// Construct a suffix tree from a sequence of unsigned integers.
470   ///
471   /// \param Str The string to construct the suffix tree for.
472   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
473     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
474     Active.Node = Root;
475 
476     // Keep track of the number of suffixes we have to add of the current
477     // prefix.
478     unsigned SuffixesToAdd = 0;
479     Active.Node = Root;
480 
481     // Construct the suffix tree iteratively on each prefix of the string.
482     // PfxEndIdx is the end index of the current prefix.
483     // End is one past the last element in the string.
484     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
485          PfxEndIdx++) {
486       SuffixesToAdd++;
487       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
488       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
489     }
490 
491     // Set the suffix indices of each leaf.
492     assert(Root && "Root node can't be nullptr!");
493     setSuffixIndices(*Root, 0);
494   }
495 
496 
497   /// Iterator for finding all repeated substrings in the suffix tree.
498   struct RepeatedSubstringIterator {
499     private:
500     /// The current node we're visiting.
501     SuffixTreeNode *N = nullptr;
502 
503     /// The repeated substring associated with this node.
504     RepeatedSubstring RS;
505 
506     /// The nodes left to visit.
507     std::vector<SuffixTreeNode *> ToVisit;
508 
509     /// The minimum length of a repeated substring to find.
510     /// Since we're outlining, we want at least two instructions in the range.
511     /// FIXME: This may not be true for targets like X86 which support many
512     /// instruction lengths.
513     const unsigned MinLength = 2;
514 
515     /// Move the iterator to the next repeated substring.
516     void advance() {
517       // Clear the current state. If we're at the end of the range, then this
518       // is the state we want to be in.
519       RS = RepeatedSubstring();
520       N = nullptr;
521 
522       // Continue visiting nodes until we find one which repeats more than once.
523       while (!ToVisit.empty()) {
524         SuffixTreeNode *Curr = ToVisit.back();
525         ToVisit.pop_back();
526 
527         // Keep track of the length of the string associated with the node. If
528         // it's too short, we'll quit.
529         unsigned Length = Curr->ConcatLen;
530 
531         // Each leaf node represents a repeat of a string.
532         std::vector<SuffixTreeNode *> LeafChildren;
533 
534         // Iterate over each child, saving internal nodes for visiting, and
535         // leaf nodes in LeafChildren. Internal nodes represent individual
536         // strings, which may repeat.
537         for (auto &ChildPair : Curr->Children) {
538           // Save all of this node's children for processing.
539           if (!ChildPair.second->isLeaf())
540             ToVisit.push_back(ChildPair.second);
541 
542           // It's not an internal node, so it must be a leaf. If we have a
543           // long enough string, then save the leaf children.
544           else if (Length >= MinLength)
545             LeafChildren.push_back(ChildPair.second);
546         }
547 
548         // The root never represents a repeated substring. If we're looking at
549         // that, then skip it.
550         if (Curr->isRoot())
551           continue;
552 
553         // Do we have any repeated substrings?
554         if (LeafChildren.size() >= 2) {
555           // Yes. Update the state to reflect this, and then bail out.
556           N = Curr;
557           RS.Length = Length;
558           for (SuffixTreeNode *Leaf : LeafChildren)
559             RS.StartIndices.push_back(Leaf->SuffixIdx);
560           break;
561         }
562       }
563 
564       // At this point, either NewRS is an empty RepeatedSubstring, or it was
565       // set in the above loop. Similarly, N is either nullptr, or the node
566       // associated with NewRS.
567     }
568 
569   public:
570     /// Return the current repeated substring.
571     RepeatedSubstring &operator*() { return RS; }
572 
573     RepeatedSubstringIterator &operator++() {
574       advance();
575       return *this;
576     }
577 
578     RepeatedSubstringIterator operator++(int I) {
579       RepeatedSubstringIterator It(*this);
580       advance();
581       return It;
582     }
583 
584     bool operator==(const RepeatedSubstringIterator &Other) {
585       return N == Other.N;
586     }
587     bool operator!=(const RepeatedSubstringIterator &Other) {
588       return !(*this == Other);
589     }
590 
591     RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
592       // Do we have a non-null node?
593       if (N) {
594         // Yes. At the first step, we need to visit all of N's children.
595         // Note: This means that we visit N last.
596         ToVisit.push_back(N);
597         advance();
598       }
599     }
600 };
601 
602   typedef RepeatedSubstringIterator iterator;
603   iterator begin() { return iterator(Root); }
604   iterator end() { return iterator(nullptr); }
605 };
606 
607 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
608 struct InstructionMapper {
609 
610   /// The next available integer to assign to a \p MachineInstr that
611   /// cannot be outlined.
612   ///
613   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
614   unsigned IllegalInstrNumber = -3;
615 
616   /// The next available integer to assign to a \p MachineInstr that can
617   /// be outlined.
618   unsigned LegalInstrNumber = 0;
619 
620   /// Correspondence from \p MachineInstrs to unsigned integers.
621   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
622       InstructionIntegerMap;
623 
624   /// Corresponcence from unsigned integers to \p MachineInstrs.
625   /// Inverse of \p InstructionIntegerMap.
626   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
627 
628   /// Correspondence between \p MachineBasicBlocks and target-defined flags.
629   DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
630 
631   /// The vector of unsigned integers that the module is mapped to.
632   std::vector<unsigned> UnsignedVec;
633 
634   /// Stores the location of the instruction associated with the integer
635   /// at index i in \p UnsignedVec for each index i.
636   std::vector<MachineBasicBlock::iterator> InstrList;
637 
638   // Set if we added an illegal number in the previous step.
639   // Since each illegal number is unique, we only need one of them between
640   // each range of legal numbers. This lets us make sure we don't add more
641   // than one illegal number per range.
642   bool AddedIllegalLastTime = false;
643 
644   /// Maps \p *It to a legal integer.
645   ///
646   /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
647   /// \p UnsignedVecForMBB, \p InstructionIntegerMap, \p IntegerInstructionMap,
648   /// and \p LegalInstrNumber.
649   ///
650   /// \returns The integer that \p *It was mapped to.
651   unsigned mapToLegalUnsigned(
652       MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
653       bool &HaveLegalRange, unsigned &NumLegalInBlock,
654       std::vector<unsigned> &UnsignedVecForMBB,
655       std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
656     // We added something legal, so we should unset the AddedLegalLastTime
657     // flag.
658     AddedIllegalLastTime = false;
659 
660     // If we have at least two adjacent legal instructions (which may have
661     // invisible instructions in between), remember that.
662     if (CanOutlineWithPrevInstr)
663       HaveLegalRange = true;
664     CanOutlineWithPrevInstr = true;
665 
666     // Keep track of the number of legal instructions we insert.
667     NumLegalInBlock++;
668 
669     // Get the integer for this instruction or give it the current
670     // LegalInstrNumber.
671     InstrListForMBB.push_back(It);
672     MachineInstr &MI = *It;
673     bool WasInserted;
674     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
675         ResultIt;
676     std::tie(ResultIt, WasInserted) =
677         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
678     unsigned MINumber = ResultIt->second;
679 
680     // There was an insertion.
681     if (WasInserted) {
682       LegalInstrNumber++;
683       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
684     }
685 
686     UnsignedVecForMBB.push_back(MINumber);
687 
688     // Make sure we don't overflow or use any integers reserved by the DenseMap.
689     if (LegalInstrNumber >= IllegalInstrNumber)
690       report_fatal_error("Instruction mapping overflow!");
691 
692     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
693            "Tried to assign DenseMap tombstone or empty key to instruction.");
694     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
695            "Tried to assign DenseMap tombstone or empty key to instruction.");
696 
697     return MINumber;
698   }
699 
700   /// Maps \p *It to an illegal integer.
701   ///
702   /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
703   /// IllegalInstrNumber.
704   ///
705   /// \returns The integer that \p *It was mapped to.
706   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It,
707   bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB,
708   std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
709     // Can't outline an illegal instruction. Set the flag.
710     CanOutlineWithPrevInstr = false;
711 
712     // Only add one illegal number per range of legal numbers.
713     if (AddedIllegalLastTime)
714       return IllegalInstrNumber;
715 
716     // Remember that we added an illegal number last time.
717     AddedIllegalLastTime = true;
718     unsigned MINumber = IllegalInstrNumber;
719 
720     InstrListForMBB.push_back(It);
721     UnsignedVecForMBB.push_back(IllegalInstrNumber);
722     IllegalInstrNumber--;
723 
724     assert(LegalInstrNumber < IllegalInstrNumber &&
725            "Instruction mapping overflow!");
726 
727     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
728            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
729 
730     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
731            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
732 
733     return MINumber;
734   }
735 
736   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
737   /// and appends it to \p UnsignedVec and \p InstrList.
738   ///
739   /// Two instructions are assigned the same integer if they are identical.
740   /// If an instruction is deemed unsafe to outline, then it will be assigned an
741   /// unique integer. The resulting mapping is placed into a suffix tree and
742   /// queried for candidates.
743   ///
744   /// \param MBB The \p MachineBasicBlock to be translated into integers.
745   /// \param TII \p TargetInstrInfo for the function.
746   void convertToUnsignedVec(MachineBasicBlock &MBB,
747                             const TargetInstrInfo &TII) {
748     unsigned Flags = 0;
749 
750     // Don't even map in this case.
751     if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
752       return;
753 
754     // Store info for the MBB for later outlining.
755     MBBFlagsMap[&MBB] = Flags;
756 
757     MachineBasicBlock::iterator It = MBB.begin();
758 
759     // The number of instructions in this block that will be considered for
760     // outlining.
761     unsigned NumLegalInBlock = 0;
762 
763     // True if we have at least two legal instructions which aren't separated
764     // by an illegal instruction.
765     bool HaveLegalRange = false;
766 
767     // True if we can perform outlining given the last mapped (non-invisible)
768     // instruction. This lets us know if we have a legal range.
769     bool CanOutlineWithPrevInstr = false;
770 
771     // FIXME: Should this all just be handled in the target, rather than using
772     // repeated calls to getOutliningType?
773     std::vector<unsigned> UnsignedVecForMBB;
774     std::vector<MachineBasicBlock::iterator> InstrListForMBB;
775 
776     for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
777       // Keep track of where this instruction is in the module.
778       switch (TII.getOutliningType(It, Flags)) {
779       case InstrType::Illegal:
780         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr,
781                              UnsignedVecForMBB, InstrListForMBB);
782         break;
783 
784       case InstrType::Legal:
785         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
786                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
787         break;
788 
789       case InstrType::LegalTerminator:
790         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
791                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
792         // The instruction also acts as a terminator, so we have to record that
793         // in the string.
794         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
795         InstrListForMBB);
796         break;
797 
798       case InstrType::Invisible:
799         // Normally this is set by mapTo(Blah)Unsigned, but we just want to
800         // skip this instruction. So, unset the flag here.
801         AddedIllegalLastTime = false;
802         break;
803       }
804     }
805 
806     // Are there enough legal instructions in the block for outlining to be
807     // possible?
808     if (HaveLegalRange) {
809       // After we're done every insertion, uniquely terminate this part of the
810       // "string". This makes sure we won't match across basic block or function
811       // boundaries since the "end" is encoded uniquely and thus appears in no
812       // repeated substring.
813       mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
814       InstrListForMBB);
815       InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
816                        InstrListForMBB.end());
817       UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
818                          UnsignedVecForMBB.end());
819     }
820   }
821 
822   InstructionMapper() {
823     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
824     // changed.
825     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
826            "DenseMapInfo<unsigned>'s empty key isn't -1!");
827     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
828            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
829   }
830 };
831 
832 /// An interprocedural pass which finds repeated sequences of
833 /// instructions and replaces them with calls to functions.
834 ///
835 /// Each instruction is mapped to an unsigned integer and placed in a string.
836 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
837 /// is then repeatedly queried for repeated sequences of instructions. Each
838 /// non-overlapping repeated sequence is then placed in its own
839 /// \p MachineFunction and each instance is then replaced with a call to that
840 /// function.
841 struct MachineOutliner : public ModulePass {
842 
843   static char ID;
844 
845   /// Set to true if the outliner should consider functions with
846   /// linkonceodr linkage.
847   bool OutlineFromLinkOnceODRs = false;
848 
849   /// Set to true if the outliner should run on all functions in the module
850   /// considered safe for outlining.
851   /// Set to true by default for compatibility with llc's -run-pass option.
852   /// Set when the pass is constructed in TargetPassConfig.
853   bool RunOnAllFunctions = true;
854 
855   StringRef getPassName() const override { return "Machine Outliner"; }
856 
857   void getAnalysisUsage(AnalysisUsage &AU) const override {
858     AU.addRequired<MachineModuleInfo>();
859     AU.addPreserved<MachineModuleInfo>();
860     AU.setPreservesAll();
861     ModulePass::getAnalysisUsage(AU);
862   }
863 
864   MachineOutliner() : ModulePass(ID) {
865     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
866   }
867 
868   /// Remark output explaining that not outlining a set of candidates would be
869   /// better than outlining that set.
870   void emitNotOutliningCheaperRemark(
871       unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
872       OutlinedFunction &OF);
873 
874   /// Remark output explaining that a function was outlined.
875   void emitOutlinedFunctionRemark(OutlinedFunction &OF);
876 
877   /// Find all repeated substrings that satisfy the outlining cost model.
878   ///
879   /// If a substring appears at least twice, then it must be represented by
880   /// an internal node which appears in at least two suffixes. Each suffix
881   /// is represented by a leaf node. To do this, we visit each internal node
882   /// in the tree, using the leaf children of each internal node. If an
883   /// internal node represents a beneficial substring, then we use each of
884   /// its leaf children to find the locations of its substring.
885   ///
886   /// \param ST A suffix tree to query.
887   /// \param Mapper Contains outlining mapping information.
888   /// \param[out] CandidateList Filled with candidates representing each
889   /// beneficial substring.
890   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
891   /// each type of candidate.
892   ///
893   /// \returns The length of the longest candidate found.
894   unsigned
895   findCandidates(SuffixTree &ST,
896                  InstructionMapper &Mapper,
897                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
898                  std::vector<OutlinedFunction> &FunctionList);
899 
900   /// Replace the sequences of instructions represented by the
901   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
902   /// described in \p FunctionList.
903   ///
904   /// \param M The module we are outlining from.
905   /// \param CandidateList A list of candidates to be outlined.
906   /// \param FunctionList A list of functions to be inserted into the module.
907   /// \param Mapper Contains the instruction mappings for the module.
908   bool outline(Module &M,
909                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
910                std::vector<OutlinedFunction> &FunctionList,
911                InstructionMapper &Mapper);
912 
913   /// Creates a function for \p OF and inserts it into the module.
914   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
915                                           InstructionMapper &Mapper,
916                                           unsigned Name);
917 
918   /// Find potential outlining candidates and store them in \p CandidateList.
919   ///
920   /// For each type of potential candidate, also build an \p OutlinedFunction
921   /// struct containing the information to build the function for that
922   /// candidate.
923   ///
924   /// \param[out] CandidateList Filled with outlining candidates for the module.
925   /// \param[out] FunctionList Filled with functions corresponding to each type
926   /// of \p Candidate.
927   /// \param Mapper Contains the instruction mappings for the module.
928   ///
929   /// \returns The length of the longest candidate found. 0 if there are none.
930   unsigned
931   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
932                      std::vector<OutlinedFunction> &FunctionList,
933                      InstructionMapper &Mapper);
934 
935   /// Helper function for pruneOverlaps.
936   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
937   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
938 
939   /// Remove any overlapping candidates that weren't handled by the
940   /// suffix tree's pruning method.
941   ///
942   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
943   /// If a short candidate is chosen for outlining, then a longer candidate
944   /// which has that short candidate as a suffix is chosen, the tree's pruning
945   /// method will not find it. Thus, we need to prune before outlining as well.
946   ///
947   /// \param[in,out] CandidateList A list of outlining candidates.
948   /// \param[in,out] FunctionList A list of functions to be outlined.
949   /// \param Mapper Contains instruction mapping info for outlining.
950   /// \param MaxCandidateLen The length of the longest candidate.
951   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
952                      std::vector<OutlinedFunction> &FunctionList,
953                      InstructionMapper &Mapper, unsigned MaxCandidateLen);
954 
955   /// Construct a suffix tree on the instructions in \p M and outline repeated
956   /// strings from that tree.
957   bool runOnModule(Module &M) override;
958 
959   /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
960   /// function for remark emission.
961   DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
962     DISubprogram *SP;
963     for (const std::shared_ptr<Candidate> &C : OF.Candidates)
964       if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram()))
965         return SP;
966     return nullptr;
967   }
968 
969   /// Populate and \p InstructionMapper with instruction-to-integer mappings.
970   /// These are used to construct a suffix tree.
971   void populateMapper(InstructionMapper &Mapper, Module &M,
972                       MachineModuleInfo &MMI);
973 
974   /// Initialize information necessary to output a size remark.
975   /// FIXME: This should be handled by the pass manager, not the outliner.
976   /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
977   /// pass manager.
978   void initSizeRemarkInfo(
979       const Module &M, const MachineModuleInfo &MMI,
980       StringMap<unsigned> &FunctionToInstrCount);
981 
982   /// Emit the remark.
983   // FIXME: This should be handled by the pass manager, not the outliner.
984   void emitInstrCountChangedRemark(
985       const Module &M, const MachineModuleInfo &MMI,
986       const StringMap<unsigned> &FunctionToInstrCount);
987 };
988 } // Anonymous namespace.
989 
990 char MachineOutliner::ID = 0;
991 
992 namespace llvm {
993 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
994   MachineOutliner *OL = new MachineOutliner();
995   OL->RunOnAllFunctions = RunOnAllFunctions;
996   return OL;
997 }
998 
999 } // namespace llvm
1000 
1001 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
1002                 false)
1003 
1004 void MachineOutliner::emitNotOutliningCheaperRemark(
1005     unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
1006     OutlinedFunction &OF) {
1007   // FIXME: Right now, we arbitrarily choose some Candidate from the
1008   // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
1009   // We should probably sort these by function name or something to make sure
1010   // the remarks are stable.
1011   Candidate &C = CandidatesForRepeatedSeq.front();
1012   MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
1013   MORE.emit([&]() {
1014     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
1015                                       C.front()->getDebugLoc(), C.getMBB());
1016     R << "Did not outline " << NV("Length", StringLen) << " instructions"
1017       << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
1018       << " locations."
1019       << " Bytes from outlining all occurrences ("
1020       << NV("OutliningCost", OF.getOutliningCost()) << ")"
1021       << " >= Unoutlined instruction bytes ("
1022       << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
1023       << " (Also found at: ";
1024 
1025     // Tell the user the other places the candidate was found.
1026     for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
1027       R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
1028               CandidatesForRepeatedSeq[i].front()->getDebugLoc());
1029       if (i != e - 1)
1030         R << ", ";
1031     }
1032 
1033     R << ")";
1034     return R;
1035   });
1036 }
1037 
1038 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
1039   MachineBasicBlock *MBB = &*OF.MF->begin();
1040   MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
1041   MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
1042                               MBB->findDebugLoc(MBB->begin()), MBB);
1043   R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
1044     << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
1045     << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
1046     << " locations. "
1047     << "(Found at: ";
1048 
1049   // Tell the user the other places the candidate was found.
1050   for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1051 
1052     // Skip over things that were pruned.
1053     if (!OF.Candidates[i]->InCandidateList)
1054       continue;
1055 
1056     R << NV((Twine("StartLoc") + Twine(i)).str(),
1057             OF.Candidates[i]->front()->getDebugLoc());
1058     if (i != e - 1)
1059       R << ", ";
1060   }
1061 
1062   R << ")";
1063 
1064   MORE.emit(R);
1065 }
1066 
1067 unsigned MachineOutliner::findCandidates(
1068     SuffixTree &ST, InstructionMapper &Mapper,
1069     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1070     std::vector<OutlinedFunction> &FunctionList) {
1071   CandidateList.clear();
1072   FunctionList.clear();
1073   unsigned MaxLen = 0;
1074 
1075   // First, find dall of the repeated substrings in the tree of minimum length
1076   // 2.
1077   for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
1078     SuffixTree::RepeatedSubstring RS = *It;
1079     std::vector<Candidate> CandidatesForRepeatedSeq;
1080     unsigned StringLen = RS.Length;
1081     for (const unsigned &StartIdx : RS.StartIndices) {
1082       unsigned EndIdx = StartIdx + StringLen - 1;
1083       // Trick: Discard some candidates that would be incompatible with the
1084       // ones we've already found for this sequence. This will save us some
1085       // work in candidate selection.
1086       //
1087       // If two candidates overlap, then we can't outline them both. This
1088       // happens when we have candidates that look like, say
1089       //
1090       // AA (where each "A" is an instruction).
1091       //
1092       // We might have some portion of the module that looks like this:
1093       // AAAAAA (6 A's)
1094       //
1095       // In this case, there are 5 different copies of "AA" in this range, but
1096       // at most 3 can be outlined. If only outlining 3 of these is going to
1097       // be unbeneficial, then we ought to not bother.
1098       //
1099       // Note that two things DON'T overlap when they look like this:
1100       // start1...end1 .... start2...end2
1101       // That is, one must either
1102       // * End before the other starts
1103       // * Start after the other ends
1104       if (std::all_of(
1105               CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
1106               [&StartIdx, &EndIdx](const Candidate &C) {
1107                 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
1108               })) {
1109         // It doesn't overlap with anything, so we can outline it.
1110         // Each sequence is over [StartIt, EndIt].
1111         // Save the candidate and its location.
1112 
1113         MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1114         MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1115         MachineBasicBlock *MBB = StartIt->getParent();
1116 
1117         CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
1118                                               EndIt, MBB, FunctionList.size(),
1119                                               Mapper.MBBFlagsMap[MBB]);
1120       }
1121     }
1122 
1123     // We've found something we might want to outline.
1124     // Create an OutlinedFunction to store it and check if it'd be beneficial
1125     // to outline.
1126     if (CandidatesForRepeatedSeq.size() < 2)
1127       continue;
1128 
1129     // Arbitrarily choose a TII from the first candidate.
1130     // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1131     const TargetInstrInfo *TII =
1132         CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1133 
1134     OutlinedFunction OF =
1135         TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1136 
1137     // If we deleted too many candidates, then there's nothing worth outlining.
1138     // FIXME: This should take target-specified instruction sizes into account.
1139     if (OF.Candidates.size() < 2)
1140       continue;
1141 
1142     std::vector<unsigned> Seq;
1143     unsigned StartIdx = RS.StartIndices[0]; // Grab any start index.
1144     for (unsigned i = StartIdx; i < StartIdx + StringLen; i++)
1145       Seq.push_back(ST.Str[i]);
1146     OF.Sequence = Seq;
1147 
1148     // Is it better to outline this candidate than not?
1149     if (OF.getBenefit() < 1) {
1150       emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1151       continue;
1152     }
1153 
1154     if (StringLen > MaxLen)
1155       MaxLen = StringLen;
1156 
1157     // The function is beneficial. Save its candidates to the candidate list
1158     // for pruning.
1159     for (std::shared_ptr<Candidate> &C : OF.Candidates)
1160       CandidateList.push_back(C);
1161     FunctionList.push_back(OF);
1162   }
1163 
1164   return MaxLen;
1165 }
1166 
1167 // Remove C from the candidate space, and update its OutlinedFunction.
1168 void MachineOutliner::prune(Candidate &C,
1169                             std::vector<OutlinedFunction> &FunctionList) {
1170   // Get the OutlinedFunction associated with this Candidate.
1171   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1172 
1173   // Update C's associated function's occurrence count.
1174   F.decrement();
1175 
1176   // Remove C from the CandidateList.
1177   C.InCandidateList = false;
1178 
1179   LLVM_DEBUG(dbgs() << "- Removed a Candidate \n";
1180              dbgs() << "--- Num fns left for candidate: "
1181                     << F.getOccurrenceCount() << "\n";
1182              dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1183                     << "\n";);
1184 }
1185 
1186 void MachineOutliner::pruneOverlaps(
1187     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1188     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1189     unsigned MaxCandidateLen) {
1190 
1191   // Return true if this candidate became unbeneficial for outlining in a
1192   // previous step.
1193   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1194 
1195     // Check if the candidate was removed in a previous step.
1196     if (!C.InCandidateList)
1197       return true;
1198 
1199     // C must be alive. Check if we should remove it.
1200     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1201       prune(C, FunctionList);
1202       return true;
1203     }
1204 
1205     // C is in the list, and F is still beneficial.
1206     return false;
1207   };
1208 
1209   // TODO: Experiment with interval trees or other interval-checking structures
1210   // to lower the time complexity of this function.
1211   // TODO: Can we do better than the simple greedy choice?
1212   // Check for overlaps in the range.
1213   // This is O(MaxCandidateLen * CandidateList.size()).
1214   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1215        It++) {
1216     Candidate &C1 = **It;
1217 
1218     // If C1 was already pruned, or its function is no longer beneficial for
1219     // outlining, move to the next candidate.
1220     if (ShouldSkipCandidate(C1))
1221       continue;
1222 
1223     // The minimum start index of any candidate that could overlap with this
1224     // one.
1225     unsigned FarthestPossibleIdx = 0;
1226 
1227     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1228     if (C1.getStartIdx() > MaxCandidateLen)
1229       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1230 
1231     MachineBasicBlock *C1MBB = C1.getMBB();
1232 
1233     // Compare against the candidates in the list that start at most
1234     // FarthestPossibleIdx indices away from C1. There are at most
1235     // MaxCandidateLen of these.
1236     for (auto Sit = It + 1; Sit != Et; Sit++) {
1237       Candidate &C2 = **Sit;
1238 
1239       // If the two candidates don't belong to the same MBB, then we're done.
1240       // Because we sorted the candidates, there's no way that we'd find a
1241       // candidate in C1MBB after this point.
1242       if (C2.getMBB() != C1MBB)
1243         break;
1244 
1245       // Is this candidate too far away to overlap?
1246       if (C2.getStartIdx() < FarthestPossibleIdx)
1247         break;
1248 
1249       // If C2 was already pruned, or its function is no longer beneficial for
1250       // outlining, move to the next candidate.
1251       if (ShouldSkipCandidate(C2))
1252         continue;
1253 
1254       // Do C1 and C2 overlap?
1255       //
1256       // Not overlapping:
1257       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1258       //
1259       // We sorted our candidate list so C2Start <= C1Start. We know that
1260       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1261       // have to check is C2End < C2Start to see if we overlap.
1262       if (C2.getEndIdx() < C1.getStartIdx())
1263         continue;
1264 
1265       // C1 and C2 overlap.
1266       // We need to choose the better of the two.
1267       //
1268       // Approximate this by picking the one which would have saved us the
1269       // most instructions before any pruning.
1270 
1271       // Is C2 a better candidate?
1272       if (C2.Benefit > C1.Benefit) {
1273         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1274         // against anything anymore, so break.
1275         prune(C1, FunctionList);
1276         break;
1277       }
1278 
1279       // Prune C2 and move on to the next candidate.
1280       prune(C2, FunctionList);
1281     }
1282   }
1283 }
1284 
1285 unsigned MachineOutliner::buildCandidateList(
1286     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1287     std::vector<OutlinedFunction> &FunctionList,
1288     InstructionMapper &Mapper) {
1289   // Construct a suffix tree and use it to find candidates.
1290   SuffixTree ST(Mapper.UnsignedVec);
1291 
1292   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1293   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1294 
1295   MaxCandidateLen =
1296       findCandidates(ST, Mapper, CandidateList, FunctionList);
1297 
1298   // Sort the candidates in decending order. This will simplify the outlining
1299   // process when we have to remove the candidates from the mapping by
1300   // allowing us to cut them out without keeping track of an offset.
1301   std::stable_sort(
1302       CandidateList.begin(), CandidateList.end(),
1303       [](const std::shared_ptr<Candidate> &LHS,
1304          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1305 
1306   return MaxCandidateLen;
1307 }
1308 
1309 MachineFunction *
1310 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1311                                         InstructionMapper &Mapper,
1312                                         unsigned Name) {
1313 
1314   // Create the function name. This should be unique. For now, just hash the
1315   // module name and include it in the function name plus the number of this
1316   // function.
1317   std::ostringstream NameStream;
1318   // FIXME: We should have a better naming scheme. This should be stable,
1319   // regardless of changes to the outliner's cost model/traversal order.
1320   NameStream << "OUTLINED_FUNCTION_" << Name;
1321 
1322   // Create the function using an IR-level function.
1323   LLVMContext &C = M.getContext();
1324   Function *F = dyn_cast<Function>(
1325       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1326   assert(F && "Function was null!");
1327 
1328   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1329   // which gives us better results when we outline from linkonceodr functions.
1330   F->setLinkage(GlobalValue::InternalLinkage);
1331   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1332 
1333   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1334   // necessary.
1335 
1336   // Set optsize/minsize, so we don't insert padding between outlined
1337   // functions.
1338   F->addFnAttr(Attribute::OptimizeForSize);
1339   F->addFnAttr(Attribute::MinSize);
1340 
1341   // Include target features from an arbitrary candidate for the outlined
1342   // function. This makes sure the outlined function knows what kinds of
1343   // instructions are going into it. This is fine, since all parent functions
1344   // must necessarily support the instructions that are in the outlined region.
1345   const Function &ParentFn = OF.Candidates.front()->getMF()->getFunction();
1346   if (ParentFn.hasFnAttribute("target-features"))
1347     F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1348 
1349   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1350   IRBuilder<> Builder(EntryBB);
1351   Builder.CreateRetVoid();
1352 
1353   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1354   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1355   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1356   const TargetSubtargetInfo &STI = MF.getSubtarget();
1357   const TargetInstrInfo &TII = *STI.getInstrInfo();
1358 
1359   // Insert the new function into the module.
1360   MF.insert(MF.begin(), &MBB);
1361 
1362   // Copy over the instructions for the function using the integer mappings in
1363   // its sequence.
1364   for (unsigned Str : OF.Sequence) {
1365     MachineInstr *NewMI =
1366         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1367     NewMI->dropMemRefs(MF);
1368 
1369     // Don't keep debug information for outlined instructions.
1370     NewMI->setDebugLoc(DebugLoc());
1371     MBB.insert(MBB.end(), NewMI);
1372   }
1373 
1374   TII.buildOutlinedFrame(MBB, MF, OF);
1375 
1376   // Outlined functions shouldn't preserve liveness.
1377   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1378   MF.getRegInfo().freezeReservedRegs(MF);
1379 
1380   // If there's a DISubprogram associated with this outlined function, then
1381   // emit debug info for the outlined function.
1382   if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1383     // We have a DISubprogram. Get its DICompileUnit.
1384     DICompileUnit *CU = SP->getUnit();
1385     DIBuilder DB(M, true, CU);
1386     DIFile *Unit = SP->getFile();
1387     Mangler Mg;
1388     // Get the mangled name of the function for the linkage name.
1389     std::string Dummy;
1390     llvm::raw_string_ostream MangledNameStream(Dummy);
1391     Mg.getNameWithPrefix(MangledNameStream, F, false);
1392 
1393     DISubprogram *OutlinedSP = DB.createFunction(
1394         Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1395         Unit /* File */,
1396         0 /* Line 0 is reserved for compiler-generated code. */,
1397         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1398         0, /* Line 0 is reserved for compiler-generated code. */
1399         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1400         /* Outlined code is optimized code by definition. */
1401         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
1402 
1403     // Don't add any new variables to the subprogram.
1404     DB.finalizeSubprogram(OutlinedSP);
1405 
1406     // Attach subprogram to the function.
1407     F->setSubprogram(OutlinedSP);
1408     // We're done with the DIBuilder.
1409     DB.finalize();
1410   }
1411 
1412   return &MF;
1413 }
1414 
1415 bool MachineOutliner::outline(
1416     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1417     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1418 
1419   bool OutlinedSomething = false;
1420 
1421   // Number to append to the current outlined function.
1422   unsigned OutlinedFunctionNum = 0;
1423 
1424   // Replace the candidates with calls to their respective outlined functions.
1425   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1426     Candidate &C = *Cptr;
1427     // Was the candidate removed during pruneOverlaps?
1428     if (!C.InCandidateList)
1429       continue;
1430 
1431     // If not, then look at its OutlinedFunction.
1432     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1433 
1434     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1435     if (OF.getBenefit() < 1)
1436       continue;
1437 
1438     // Does this candidate have a function yet?
1439     if (!OF.MF) {
1440       OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
1441       emitOutlinedFunctionRemark(OF);
1442       FunctionsCreated++;
1443       OutlinedFunctionNum++; // Created a function, move to the next name.
1444     }
1445 
1446     MachineFunction *MF = OF.MF;
1447     MachineBasicBlock &MBB = *C.getMBB();
1448     MachineBasicBlock::iterator StartIt = C.front();
1449     MachineBasicBlock::iterator EndIt = C.back();
1450     assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!");
1451     assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!");
1452 
1453     const TargetSubtargetInfo &STI = MF->getSubtarget();
1454     const TargetInstrInfo &TII = *STI.getInstrInfo();
1455 
1456     // Insert a call to the new function and erase the old sequence.
1457     auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C);
1458 
1459     // If the caller tracks liveness, then we need to make sure that anything
1460     // we outline doesn't break liveness assumptions.
1461     // The outlined functions themselves currently don't track liveness, but
1462     // we should make sure that the ranges we yank things out of aren't
1463     // wrong.
1464     if (MBB.getParent()->getProperties().hasProperty(
1465             MachineFunctionProperties::Property::TracksLiveness)) {
1466       // Helper lambda for adding implicit def operands to the call instruction.
1467       auto CopyDefs = [&CallInst](MachineInstr &MI) {
1468         for (MachineOperand &MOP : MI.operands()) {
1469           // Skip over anything that isn't a register.
1470           if (!MOP.isReg())
1471             continue;
1472 
1473           // If it's a def, add it to the call instruction.
1474           if (MOP.isDef())
1475             CallInst->addOperand(
1476                 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */
1477                                           true /* isImp = true */));
1478         }
1479       };
1480 
1481       // Copy over the defs in the outlined range.
1482       // First inst in outlined range <-- Anything that's defined in this
1483       // ...                           .. range has to be added as an implicit
1484       // Last inst in outlined range  <-- def to the call instruction.
1485       std::for_each(CallInst, std::next(EndIt), CopyDefs);
1486     }
1487 
1488     // Erase from the point after where the call was inserted up to, and
1489     // including, the final instruction in the sequence.
1490     // Erase needs one past the end, so we need std::next there too.
1491     MBB.erase(std::next(StartIt), std::next(EndIt));
1492     OutlinedSomething = true;
1493 
1494     // Statistics.
1495     NumOutlined++;
1496   }
1497 
1498   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1499 
1500   return OutlinedSomething;
1501 }
1502 
1503 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1504                                      MachineModuleInfo &MMI) {
1505   // Build instruction mappings for each function in the module. Start by
1506   // iterating over each Function in M.
1507   for (Function &F : M) {
1508 
1509     // If there's nothing in F, then there's no reason to try and outline from
1510     // it.
1511     if (F.empty())
1512       continue;
1513 
1514     // There's something in F. Check if it has a MachineFunction associated with
1515     // it.
1516     MachineFunction *MF = MMI.getMachineFunction(F);
1517 
1518     // If it doesn't, then there's nothing to outline from. Move to the next
1519     // Function.
1520     if (!MF)
1521       continue;
1522 
1523     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1524 
1525     if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1526       continue;
1527 
1528     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1529     // If it isn't, then move on to the next Function in the module.
1530     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1531       continue;
1532 
1533     // We have a function suitable for outlining. Iterate over every
1534     // MachineBasicBlock in MF and try to map its instructions to a list of
1535     // unsigned integers.
1536     for (MachineBasicBlock &MBB : *MF) {
1537       // If there isn't anything in MBB, then there's no point in outlining from
1538       // it.
1539       // If there are fewer than 2 instructions in the MBB, then it can't ever
1540       // contain something worth outlining.
1541       // FIXME: This should be based off of the maximum size in B of an outlined
1542       // call versus the size in B of the MBB.
1543       if (MBB.empty() || MBB.size() < 2)
1544         continue;
1545 
1546       // Check if MBB could be the target of an indirect branch. If it is, then
1547       // we don't want to outline from it.
1548       if (MBB.hasAddressTaken())
1549         continue;
1550 
1551       // MBB is suitable for outlining. Map it to a list of unsigneds.
1552       Mapper.convertToUnsignedVec(MBB, *TII);
1553     }
1554   }
1555 }
1556 
1557 void MachineOutliner::initSizeRemarkInfo(
1558     const Module &M, const MachineModuleInfo &MMI,
1559     StringMap<unsigned> &FunctionToInstrCount) {
1560   // Collect instruction counts for every function. We'll use this to emit
1561   // per-function size remarks later.
1562   for (const Function &F : M) {
1563     MachineFunction *MF = MMI.getMachineFunction(F);
1564 
1565     // We only care about MI counts here. If there's no MachineFunction at this
1566     // point, then there won't be after the outliner runs, so let's move on.
1567     if (!MF)
1568       continue;
1569     FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1570   }
1571 }
1572 
1573 void MachineOutliner::emitInstrCountChangedRemark(
1574     const Module &M, const MachineModuleInfo &MMI,
1575     const StringMap<unsigned> &FunctionToInstrCount) {
1576   // Iterate over each function in the module and emit remarks.
1577   // Note that we won't miss anything by doing this, because the outliner never
1578   // deletes functions.
1579   for (const Function &F : M) {
1580     MachineFunction *MF = MMI.getMachineFunction(F);
1581 
1582     // The outliner never deletes functions. If we don't have a MF here, then we
1583     // didn't have one prior to outlining either.
1584     if (!MF)
1585       continue;
1586 
1587     std::string Fname = F.getName();
1588     unsigned FnCountAfter = MF->getInstructionCount();
1589     unsigned FnCountBefore = 0;
1590 
1591     // Check if the function was recorded before.
1592     auto It = FunctionToInstrCount.find(Fname);
1593 
1594     // Did we have a previously-recorded size? If yes, then set FnCountBefore
1595     // to that.
1596     if (It != FunctionToInstrCount.end())
1597       FnCountBefore = It->second;
1598 
1599     // Compute the delta and emit a remark if there was a change.
1600     int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1601                       static_cast<int64_t>(FnCountBefore);
1602     if (FnDelta == 0)
1603       continue;
1604 
1605     MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1606     MORE.emit([&]() {
1607       MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1608                                           DiagnosticLocation(),
1609                                           &MF->front());
1610       R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1611         << ": Function: "
1612         << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1613         << ": MI instruction count changed from "
1614         << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1615                                                     FnCountBefore)
1616         << " to "
1617         << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1618                                                     FnCountAfter)
1619         << "; Delta: "
1620         << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1621       return R;
1622     });
1623   }
1624 }
1625 
1626 bool MachineOutliner::runOnModule(Module &M) {
1627   // Check if there's anything in the module. If it's empty, then there's
1628   // nothing to outline.
1629   if (M.empty())
1630     return false;
1631 
1632   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1633 
1634   // If the user passed -enable-machine-outliner=always or
1635   // -enable-machine-outliner, the pass will run on all functions in the module.
1636   // Otherwise, if the target supports default outlining, it will run on all
1637   // functions deemed by the target to be worth outlining from by default. Tell
1638   // the user how the outliner is running.
1639   LLVM_DEBUG(
1640     dbgs() << "Machine Outliner: Running on ";
1641     if (RunOnAllFunctions)
1642       dbgs() << "all functions";
1643     else
1644       dbgs() << "target-default functions";
1645     dbgs() << "\n"
1646   );
1647 
1648   // If the user specifies that they want to outline from linkonceodrs, set
1649   // it here.
1650   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1651   InstructionMapper Mapper;
1652 
1653   // Prepare instruction mappings for the suffix tree.
1654   populateMapper(Mapper, M, MMI);
1655   std::vector<std::shared_ptr<Candidate>> CandidateList;
1656   std::vector<OutlinedFunction> FunctionList;
1657 
1658   // Find all of the outlining candidates.
1659   unsigned MaxCandidateLen =
1660       buildCandidateList(CandidateList, FunctionList, Mapper);
1661 
1662   // Remove candidates that overlap with other candidates.
1663   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen);
1664 
1665   // If we've requested size remarks, then collect the MI counts of every
1666   // function before outlining, and the MI counts after outlining.
1667   // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1668   // the pass manager's responsibility.
1669   // This could pretty easily be placed in outline instead, but because we
1670   // really ultimately *don't* want this here, it's done like this for now
1671   // instead.
1672 
1673   // Check if we want size remarks.
1674   bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1675   StringMap<unsigned> FunctionToInstrCount;
1676   if (ShouldEmitSizeRemarks)
1677     initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1678 
1679   // Outline each of the candidates and return true if something was outlined.
1680   bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
1681 
1682   // If we outlined something, we definitely changed the MI count of the
1683   // module. If we've asked for size remarks, then output them.
1684   // FIXME: This should be in the pass manager.
1685   if (ShouldEmitSizeRemarks && OutlinedSomething)
1686     emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1687 
1688   return OutlinedSomething;
1689 }
1690