1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFrameInfo.h" 63 #include "llvm/CodeGen/MachineFunction.h" 64 #include "llvm/CodeGen/MachineInstrBuilder.h" 65 #include "llvm/CodeGen/MachineModuleInfo.h" 66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/IR/IRBuilder.h" 69 #include "llvm/Support/Allocator.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetInstrInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <functional> 77 #include <map> 78 #include <sstream> 79 #include <tuple> 80 #include <vector> 81 82 #define DEBUG_TYPE "machine-outliner" 83 84 using namespace llvm; 85 using namespace ore; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 namespace { 91 92 /// \brief An individual sequence of instructions to be replaced with a call to 93 /// an outlined function. 94 struct Candidate { 95 96 /// Set to false if the candidate overlapped with another candidate. 97 bool InCandidateList = true; 98 99 /// The start index of this \p Candidate. 100 unsigned StartIdx; 101 102 /// The number of instructions in this \p Candidate. 103 unsigned Len; 104 105 /// The index of this \p Candidate's \p OutlinedFunction in the list of 106 /// \p OutlinedFunctions. 107 unsigned FunctionIdx; 108 109 /// Contains all target-specific information for this \p Candidate. 110 TargetInstrInfo::MachineOutlinerInfo MInfo; 111 112 /// \brief The number of instructions that would be saved by outlining every 113 /// candidate of this type. 114 /// 115 /// This is a fixed value which is not updated during the candidate pruning 116 /// process. It is only used for deciding which candidate to keep if two 117 /// candidates overlap. The true benefit is stored in the OutlinedFunction 118 /// for some given candidate. 119 unsigned Benefit = 0; 120 121 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 122 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 123 124 Candidate() {} 125 126 /// \brief Used to ensure that \p Candidates are outlined in an order that 127 /// preserves the start and end indices of other \p Candidates. 128 bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; } 129 }; 130 131 /// \brief The information necessary to create an outlined function for some 132 /// class of candidate. 133 struct OutlinedFunction { 134 135 /// The actual outlined function created. 136 /// This is initialized after we go through and create the actual function. 137 MachineFunction *MF = nullptr; 138 139 /// A number assigned to this function which appears at the end of its name. 140 unsigned Name; 141 142 /// The number of candidates for this OutlinedFunction. 143 unsigned OccurrenceCount = 0; 144 145 /// \brief The sequence of integers corresponding to the instructions in this 146 /// function. 147 std::vector<unsigned> Sequence; 148 149 /// Contains all target-specific information for this \p OutlinedFunction. 150 TargetInstrInfo::MachineOutlinerInfo MInfo; 151 152 /// \brief Return the number of instructions it would take to outline this 153 /// function. 154 unsigned getOutliningCost() { 155 return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 156 MInfo.FrameOverhead; 157 } 158 159 /// \brief Return the number of instructions that would be saved by outlining 160 /// this function. 161 unsigned getBenefit() { 162 unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 163 unsigned OutlinedCost = getOutliningCost(); 164 return (NotOutlinedCost < OutlinedCost) ? 0 165 : NotOutlinedCost - OutlinedCost; 166 } 167 168 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 169 const std::vector<unsigned> &Sequence, 170 TargetInstrInfo::MachineOutlinerInfo &MInfo) 171 : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence), 172 MInfo(MInfo) {} 173 }; 174 175 /// Represents an undefined index in the suffix tree. 176 const unsigned EmptyIdx = -1; 177 178 /// A node in a suffix tree which represents a substring or suffix. 179 /// 180 /// Each node has either no children or at least two children, with the root 181 /// being a exception in the empty tree. 182 /// 183 /// Children are represented as a map between unsigned integers and nodes. If 184 /// a node N has a child M on unsigned integer k, then the mapping represented 185 /// by N is a proper prefix of the mapping represented by M. Note that this, 186 /// although similar to a trie is somewhat different: each node stores a full 187 /// substring of the full mapping rather than a single character state. 188 /// 189 /// Each internal node contains a pointer to the internal node representing 190 /// the same string, but with the first character chopped off. This is stored 191 /// in \p Link. Each leaf node stores the start index of its respective 192 /// suffix in \p SuffixIdx. 193 struct SuffixTreeNode { 194 195 /// The children of this node. 196 /// 197 /// A child existing on an unsigned integer implies that from the mapping 198 /// represented by the current node, there is a way to reach another 199 /// mapping by tacking that character on the end of the current string. 200 DenseMap<unsigned, SuffixTreeNode *> Children; 201 202 /// A flag set to false if the node has been pruned from the tree. 203 bool IsInTree = true; 204 205 /// The start index of this node's substring in the main string. 206 unsigned StartIdx = EmptyIdx; 207 208 /// The end index of this node's substring in the main string. 209 /// 210 /// Every leaf node must have its \p EndIdx incremented at the end of every 211 /// step in the construction algorithm. To avoid having to update O(N) 212 /// nodes individually at the end of every step, the end index is stored 213 /// as a pointer. 214 unsigned *EndIdx = nullptr; 215 216 /// For leaves, the start index of the suffix represented by this node. 217 /// 218 /// For all other nodes, this is ignored. 219 unsigned SuffixIdx = EmptyIdx; 220 221 /// \brief For internal nodes, a pointer to the internal node representing 222 /// the same sequence with the first character chopped off. 223 /// 224 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 225 /// Ukkonen's algorithm does to achieve linear-time construction is 226 /// keep track of which node the next insert should be at. This makes each 227 /// insert O(1), and there are a total of O(N) inserts. The suffix link 228 /// helps with inserting children of internal nodes. 229 /// 230 /// Say we add a child to an internal node with associated mapping S. The 231 /// next insertion must be at the node representing S - its first character. 232 /// This is given by the way that we iteratively build the tree in Ukkonen's 233 /// algorithm. The main idea is to look at the suffixes of each prefix in the 234 /// string, starting with the longest suffix of the prefix, and ending with 235 /// the shortest. Therefore, if we keep pointers between such nodes, we can 236 /// move to the next insertion point in O(1) time. If we don't, then we'd 237 /// have to query from the root, which takes O(N) time. This would make the 238 /// construction algorithm O(N^2) rather than O(N). 239 SuffixTreeNode *Link = nullptr; 240 241 /// The parent of this node. Every node except for the root has a parent. 242 SuffixTreeNode *Parent = nullptr; 243 244 /// The number of times this node's string appears in the tree. 245 /// 246 /// This is equal to the number of leaf children of the string. It represents 247 /// the number of suffixes that the node's string is a prefix of. 248 unsigned OccurrenceCount = 0; 249 250 /// The length of the string formed by concatenating the edge labels from the 251 /// root to this node. 252 unsigned ConcatLen = 0; 253 254 /// Returns true if this node is a leaf. 255 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 256 257 /// Returns true if this node is the root of its owning \p SuffixTree. 258 bool isRoot() const { return StartIdx == EmptyIdx; } 259 260 /// Return the number of elements in the substring associated with this node. 261 size_t size() const { 262 263 // Is it the root? If so, it's the empty string so return 0. 264 if (isRoot()) 265 return 0; 266 267 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 268 269 // Size = the number of elements in the string. 270 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 271 return *EndIdx - StartIdx + 1; 272 } 273 274 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 275 SuffixTreeNode *Parent) 276 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 277 278 SuffixTreeNode() {} 279 }; 280 281 /// A data structure for fast substring queries. 282 /// 283 /// Suffix trees represent the suffixes of their input strings in their leaves. 284 /// A suffix tree is a type of compressed trie structure where each node 285 /// represents an entire substring rather than a single character. Each leaf 286 /// of the tree is a suffix. 287 /// 288 /// A suffix tree can be seen as a type of state machine where each state is a 289 /// substring of the full string. The tree is structured so that, for a string 290 /// of length N, there are exactly N leaves in the tree. This structure allows 291 /// us to quickly find repeated substrings of the input string. 292 /// 293 /// In this implementation, a "string" is a vector of unsigned integers. 294 /// These integers may result from hashing some data type. A suffix tree can 295 /// contain 1 or many strings, which can then be queried as one large string. 296 /// 297 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 298 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 299 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 300 /// paper is available at 301 /// 302 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 303 class SuffixTree { 304 public: 305 /// Stores each leaf node in the tree. 306 /// 307 /// This is used for finding outlining candidates. 308 std::vector<SuffixTreeNode *> LeafVector; 309 310 /// Each element is an integer representing an instruction in the module. 311 ArrayRef<unsigned> Str; 312 313 private: 314 /// Maintains each node in the tree. 315 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 316 317 /// The root of the suffix tree. 318 /// 319 /// The root represents the empty string. It is maintained by the 320 /// \p NodeAllocator like every other node in the tree. 321 SuffixTreeNode *Root = nullptr; 322 323 /// Maintains the end indices of the internal nodes in the tree. 324 /// 325 /// Each internal node is guaranteed to never have its end index change 326 /// during the construction algorithm; however, leaves must be updated at 327 /// every step. Therefore, we need to store leaf end indices by reference 328 /// to avoid updating O(N) leaves at every step of construction. Thus, 329 /// every internal node must be allocated its own end index. 330 BumpPtrAllocator InternalEndIdxAllocator; 331 332 /// The end index of each leaf in the tree. 333 unsigned LeafEndIdx = -1; 334 335 /// \brief Helper struct which keeps track of the next insertion point in 336 /// Ukkonen's algorithm. 337 struct ActiveState { 338 /// The next node to insert at. 339 SuffixTreeNode *Node; 340 341 /// The index of the first character in the substring currently being added. 342 unsigned Idx = EmptyIdx; 343 344 /// The length of the substring we have to add at the current step. 345 unsigned Len = 0; 346 }; 347 348 /// \brief The point the next insertion will take place at in the 349 /// construction algorithm. 350 ActiveState Active; 351 352 /// Allocate a leaf node and add it to the tree. 353 /// 354 /// \param Parent The parent of this node. 355 /// \param StartIdx The start index of this node's associated string. 356 /// \param Edge The label on the edge leaving \p Parent to this node. 357 /// 358 /// \returns A pointer to the allocated leaf node. 359 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 360 unsigned Edge) { 361 362 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 363 364 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 365 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 366 Parent.Children[Edge] = N; 367 368 return N; 369 } 370 371 /// Allocate an internal node and add it to the tree. 372 /// 373 /// \param Parent The parent of this node. Only null when allocating the root. 374 /// \param StartIdx The start index of this node's associated string. 375 /// \param EndIdx The end index of this node's associated string. 376 /// \param Edge The label on the edge leaving \p Parent to this node. 377 /// 378 /// \returns A pointer to the allocated internal node. 379 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 380 unsigned EndIdx, unsigned Edge) { 381 382 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 383 assert(!(!Parent && StartIdx != EmptyIdx) && 384 "Non-root internal nodes must have parents!"); 385 386 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 387 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 388 SuffixTreeNode(StartIdx, E, Root, Parent); 389 if (Parent) 390 Parent->Children[Edge] = N; 391 392 return N; 393 } 394 395 /// \brief Set the suffix indices of the leaves to the start indices of their 396 /// respective suffixes. Also stores each leaf in \p LeafVector at its 397 /// respective suffix index. 398 /// 399 /// \param[in] CurrNode The node currently being visited. 400 /// \param CurrIdx The current index of the string being visited. 401 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 402 403 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 404 405 // Store the length of the concatenation of all strings from the root to 406 // this node. 407 if (!CurrNode.isRoot()) { 408 if (CurrNode.ConcatLen == 0) 409 CurrNode.ConcatLen = CurrNode.size(); 410 411 if (CurrNode.Parent) 412 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 413 } 414 415 // Traverse the tree depth-first. 416 for (auto &ChildPair : CurrNode.Children) { 417 assert(ChildPair.second && "Node had a null child!"); 418 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 419 } 420 421 // Is this node a leaf? 422 if (IsLeaf) { 423 // If yes, give it a suffix index and bump its parent's occurrence count. 424 CurrNode.SuffixIdx = Str.size() - CurrIdx; 425 assert(CurrNode.Parent && "CurrNode had no parent!"); 426 CurrNode.Parent->OccurrenceCount++; 427 428 // Store the leaf in the leaf vector for pruning later. 429 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 430 } 431 } 432 433 /// \brief Construct the suffix tree for the prefix of the input ending at 434 /// \p EndIdx. 435 /// 436 /// Used to construct the full suffix tree iteratively. At the end of each 437 /// step, the constructed suffix tree is either a valid suffix tree, or a 438 /// suffix tree with implicit suffixes. At the end of the final step, the 439 /// suffix tree is a valid tree. 440 /// 441 /// \param EndIdx The end index of the current prefix in the main string. 442 /// \param SuffixesToAdd The number of suffixes that must be added 443 /// to complete the suffix tree at the current phase. 444 /// 445 /// \returns The number of suffixes that have not been added at the end of 446 /// this step. 447 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 448 SuffixTreeNode *NeedsLink = nullptr; 449 450 while (SuffixesToAdd > 0) { 451 452 // Are we waiting to add anything other than just the last character? 453 if (Active.Len == 0) { 454 // If not, then say the active index is the end index. 455 Active.Idx = EndIdx; 456 } 457 458 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 459 460 // The first character in the current substring we're looking at. 461 unsigned FirstChar = Str[Active.Idx]; 462 463 // Have we inserted anything starting with FirstChar at the current node? 464 if (Active.Node->Children.count(FirstChar) == 0) { 465 // If not, then we can just insert a leaf and move too the next step. 466 insertLeaf(*Active.Node, EndIdx, FirstChar); 467 468 // The active node is an internal node, and we visited it, so it must 469 // need a link if it doesn't have one. 470 if (NeedsLink) { 471 NeedsLink->Link = Active.Node; 472 NeedsLink = nullptr; 473 } 474 } else { 475 // There's a match with FirstChar, so look for the point in the tree to 476 // insert a new node. 477 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 478 479 unsigned SubstringLen = NextNode->size(); 480 481 // Is the current suffix we're trying to insert longer than the size of 482 // the child we want to move to? 483 if (Active.Len >= SubstringLen) { 484 // If yes, then consume the characters we've seen and move to the next 485 // node. 486 Active.Idx += SubstringLen; 487 Active.Len -= SubstringLen; 488 Active.Node = NextNode; 489 continue; 490 } 491 492 // Otherwise, the suffix we're trying to insert must be contained in the 493 // next node we want to move to. 494 unsigned LastChar = Str[EndIdx]; 495 496 // Is the string we're trying to insert a substring of the next node? 497 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 498 // If yes, then we're done for this step. Remember our insertion point 499 // and move to the next end index. At this point, we have an implicit 500 // suffix tree. 501 if (NeedsLink && !Active.Node->isRoot()) { 502 NeedsLink->Link = Active.Node; 503 NeedsLink = nullptr; 504 } 505 506 Active.Len++; 507 break; 508 } 509 510 // The string we're trying to insert isn't a substring of the next node, 511 // but matches up to a point. Split the node. 512 // 513 // For example, say we ended our search at a node n and we're trying to 514 // insert ABD. Then we'll create a new node s for AB, reduce n to just 515 // representing C, and insert a new leaf node l to represent d. This 516 // allows us to ensure that if n was a leaf, it remains a leaf. 517 // 518 // | ABC ---split---> | AB 519 // n s 520 // C / \ D 521 // n l 522 523 // The node s from the diagram 524 SuffixTreeNode *SplitNode = 525 insertInternalNode(Active.Node, NextNode->StartIdx, 526 NextNode->StartIdx + Active.Len - 1, FirstChar); 527 528 // Insert the new node representing the new substring into the tree as 529 // a child of the split node. This is the node l from the diagram. 530 insertLeaf(*SplitNode, EndIdx, LastChar); 531 532 // Make the old node a child of the split node and update its start 533 // index. This is the node n from the diagram. 534 NextNode->StartIdx += Active.Len; 535 NextNode->Parent = SplitNode; 536 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 537 538 // SplitNode is an internal node, update the suffix link. 539 if (NeedsLink) 540 NeedsLink->Link = SplitNode; 541 542 NeedsLink = SplitNode; 543 } 544 545 // We've added something new to the tree, so there's one less suffix to 546 // add. 547 SuffixesToAdd--; 548 549 if (Active.Node->isRoot()) { 550 if (Active.Len > 0) { 551 Active.Len--; 552 Active.Idx = EndIdx - SuffixesToAdd + 1; 553 } 554 } else { 555 // Start the next phase at the next smallest suffix. 556 Active.Node = Active.Node->Link; 557 } 558 } 559 560 return SuffixesToAdd; 561 } 562 563 public: 564 /// Construct a suffix tree from a sequence of unsigned integers. 565 /// 566 /// \param Str The string to construct the suffix tree for. 567 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 568 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 569 Root->IsInTree = true; 570 Active.Node = Root; 571 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 572 573 // Keep track of the number of suffixes we have to add of the current 574 // prefix. 575 unsigned SuffixesToAdd = 0; 576 Active.Node = Root; 577 578 // Construct the suffix tree iteratively on each prefix of the string. 579 // PfxEndIdx is the end index of the current prefix. 580 // End is one past the last element in the string. 581 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 582 PfxEndIdx++) { 583 SuffixesToAdd++; 584 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 585 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 586 } 587 588 // Set the suffix indices of each leaf. 589 assert(Root && "Root node can't be nullptr!"); 590 setSuffixIndices(*Root, 0); 591 } 592 }; 593 594 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 595 struct InstructionMapper { 596 597 /// \brief The next available integer to assign to a \p MachineInstr that 598 /// cannot be outlined. 599 /// 600 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 601 unsigned IllegalInstrNumber = -3; 602 603 /// \brief The next available integer to assign to a \p MachineInstr that can 604 /// be outlined. 605 unsigned LegalInstrNumber = 0; 606 607 /// Correspondence from \p MachineInstrs to unsigned integers. 608 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 609 InstructionIntegerMap; 610 611 /// Corresponcence from unsigned integers to \p MachineInstrs. 612 /// Inverse of \p InstructionIntegerMap. 613 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 614 615 /// The vector of unsigned integers that the module is mapped to. 616 std::vector<unsigned> UnsignedVec; 617 618 /// \brief Stores the location of the instruction associated with the integer 619 /// at index i in \p UnsignedVec for each index i. 620 std::vector<MachineBasicBlock::iterator> InstrList; 621 622 /// \brief Maps \p *It to a legal integer. 623 /// 624 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 625 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 626 /// 627 /// \returns The integer that \p *It was mapped to. 628 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 629 630 // Get the integer for this instruction or give it the current 631 // LegalInstrNumber. 632 InstrList.push_back(It); 633 MachineInstr &MI = *It; 634 bool WasInserted; 635 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 636 ResultIt; 637 std::tie(ResultIt, WasInserted) = 638 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 639 unsigned MINumber = ResultIt->second; 640 641 // There was an insertion. 642 if (WasInserted) { 643 LegalInstrNumber++; 644 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 645 } 646 647 UnsignedVec.push_back(MINumber); 648 649 // Make sure we don't overflow or use any integers reserved by the DenseMap. 650 if (LegalInstrNumber >= IllegalInstrNumber) 651 report_fatal_error("Instruction mapping overflow!"); 652 653 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 654 "Tried to assign DenseMap tombstone or empty key to instruction."); 655 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 656 "Tried to assign DenseMap tombstone or empty key to instruction."); 657 658 return MINumber; 659 } 660 661 /// Maps \p *It to an illegal integer. 662 /// 663 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 664 /// 665 /// \returns The integer that \p *It was mapped to. 666 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 667 unsigned MINumber = IllegalInstrNumber; 668 669 InstrList.push_back(It); 670 UnsignedVec.push_back(IllegalInstrNumber); 671 IllegalInstrNumber--; 672 673 assert(LegalInstrNumber < IllegalInstrNumber && 674 "Instruction mapping overflow!"); 675 676 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 677 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 678 679 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 680 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 681 682 return MINumber; 683 } 684 685 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 686 /// and appends it to \p UnsignedVec and \p InstrList. 687 /// 688 /// Two instructions are assigned the same integer if they are identical. 689 /// If an instruction is deemed unsafe to outline, then it will be assigned an 690 /// unique integer. The resulting mapping is placed into a suffix tree and 691 /// queried for candidates. 692 /// 693 /// \param MBB The \p MachineBasicBlock to be translated into integers. 694 /// \param TRI \p TargetRegisterInfo for the module. 695 /// \param TII \p TargetInstrInfo for the module. 696 void convertToUnsignedVec(MachineBasicBlock &MBB, 697 const TargetRegisterInfo &TRI, 698 const TargetInstrInfo &TII) { 699 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 700 It++) { 701 702 // Keep track of where this instruction is in the module. 703 switch (TII.getOutliningType(*It)) { 704 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 705 mapToIllegalUnsigned(It); 706 break; 707 708 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 709 mapToLegalUnsigned(It); 710 break; 711 712 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 713 break; 714 } 715 } 716 717 // After we're done every insertion, uniquely terminate this part of the 718 // "string". This makes sure we won't match across basic block or function 719 // boundaries since the "end" is encoded uniquely and thus appears in no 720 // repeated substring. 721 InstrList.push_back(MBB.end()); 722 UnsignedVec.push_back(IllegalInstrNumber); 723 IllegalInstrNumber--; 724 } 725 726 InstructionMapper() { 727 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 728 // changed. 729 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 730 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 731 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 732 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 733 } 734 }; 735 736 /// \brief An interprocedural pass which finds repeated sequences of 737 /// instructions and replaces them with calls to functions. 738 /// 739 /// Each instruction is mapped to an unsigned integer and placed in a string. 740 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 741 /// is then repeatedly queried for repeated sequences of instructions. Each 742 /// non-overlapping repeated sequence is then placed in its own 743 /// \p MachineFunction and each instance is then replaced with a call to that 744 /// function. 745 struct MachineOutliner : public ModulePass { 746 747 static char ID; 748 749 /// \brief Set to true if the outliner should consider functions with 750 /// linkonceodr linkage. 751 bool OutlineFromLinkOnceODRs = false; 752 753 StringRef getPassName() const override { return "Machine Outliner"; } 754 755 void getAnalysisUsage(AnalysisUsage &AU) const override { 756 AU.addRequired<MachineModuleInfo>(); 757 AU.addPreserved<MachineModuleInfo>(); 758 AU.setPreservesAll(); 759 ModulePass::getAnalysisUsage(AU); 760 } 761 762 MachineOutliner(bool OutlineFromLinkOnceODRs = false) : 763 ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { 764 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 765 } 766 767 /// Find all repeated substrings that satisfy the outlining cost model. 768 /// 769 /// If a substring appears at least twice, then it must be represented by 770 /// an internal node which appears in at least two suffixes. Each suffix is 771 /// represented by a leaf node. To do this, we visit each internal node in 772 /// the tree, using the leaf children of each internal node. If an internal 773 /// node represents a beneficial substring, then we use each of its leaf 774 /// children to find the locations of its substring. 775 /// 776 /// \param ST A suffix tree to query. 777 /// \param TII TargetInstrInfo for the target. 778 /// \param Mapper Contains outlining mapping information. 779 /// \param[out] CandidateList Filled with candidates representing each 780 /// beneficial substring. 781 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 782 /// type of candidate. 783 /// 784 /// \returns The length of the longest candidate found. 785 unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 786 InstructionMapper &Mapper, 787 std::vector<Candidate> &CandidateList, 788 std::vector<OutlinedFunction> &FunctionList); 789 790 /// \brief Replace the sequences of instructions represented by the 791 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 792 /// described in \p FunctionList. 793 /// 794 /// \param M The module we are outlining from. 795 /// \param CandidateList A list of candidates to be outlined. 796 /// \param FunctionList A list of functions to be inserted into the module. 797 /// \param Mapper Contains the instruction mappings for the module. 798 bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 799 std::vector<OutlinedFunction> &FunctionList, 800 InstructionMapper &Mapper); 801 802 /// Creates a function for \p OF and inserts it into the module. 803 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 804 InstructionMapper &Mapper); 805 806 /// Find potential outlining candidates and store them in \p CandidateList. 807 /// 808 /// For each type of potential candidate, also build an \p OutlinedFunction 809 /// struct containing the information to build the function for that 810 /// candidate. 811 /// 812 /// \param[out] CandidateList Filled with outlining candidates for the module. 813 /// \param[out] FunctionList Filled with functions corresponding to each type 814 /// of \p Candidate. 815 /// \param ST The suffix tree for the module. 816 /// \param TII TargetInstrInfo for the module. 817 /// 818 /// \returns The length of the longest candidate found. 0 if there are none. 819 unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 820 std::vector<OutlinedFunction> &FunctionList, 821 SuffixTree &ST, InstructionMapper &Mapper, 822 const TargetInstrInfo &TII); 823 824 /// \brief Remove any overlapping candidates that weren't handled by the 825 /// suffix tree's pruning method. 826 /// 827 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 828 /// If a short candidate is chosen for outlining, then a longer candidate 829 /// which has that short candidate as a suffix is chosen, the tree's pruning 830 /// method will not find it. Thus, we need to prune before outlining as well. 831 /// 832 /// \param[in,out] CandidateList A list of outlining candidates. 833 /// \param[in,out] FunctionList A list of functions to be outlined. 834 /// \param Mapper Contains instruction mapping info for outlining. 835 /// \param MaxCandidateLen The length of the longest candidate. 836 /// \param TII TargetInstrInfo for the module. 837 void pruneOverlaps(std::vector<Candidate> &CandidateList, 838 std::vector<OutlinedFunction> &FunctionList, 839 InstructionMapper &Mapper, unsigned MaxCandidateLen, 840 const TargetInstrInfo &TII); 841 842 /// Construct a suffix tree on the instructions in \p M and outline repeated 843 /// strings from that tree. 844 bool runOnModule(Module &M) override; 845 }; 846 847 } // Anonymous namespace. 848 849 char MachineOutliner::ID = 0; 850 851 namespace llvm { 852 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { 853 return new MachineOutliner(OutlineFromLinkOnceODRs); 854 } 855 856 } // namespace llvm 857 858 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 859 false) 860 861 unsigned 862 MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 863 InstructionMapper &Mapper, 864 std::vector<Candidate> &CandidateList, 865 std::vector<OutlinedFunction> &FunctionList) { 866 CandidateList.clear(); 867 FunctionList.clear(); 868 unsigned MaxLen = 0; 869 870 // FIXME: Visit internal nodes instead of leaves. 871 for (SuffixTreeNode *Leaf : ST.LeafVector) { 872 assert(Leaf && "Leaves in LeafVector cannot be null!"); 873 if (!Leaf->IsInTree) 874 continue; 875 876 assert(Leaf->Parent && "All leaves must have parents!"); 877 SuffixTreeNode &Parent = *(Leaf->Parent); 878 879 // If it doesn't appear enough, or we already outlined from it, skip it. 880 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 881 continue; 882 883 // Figure out if this candidate is beneficial. 884 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 885 886 // Too short to be beneficial; skip it. 887 // FIXME: This isn't necessarily true for, say, X86. If we factor in 888 // instruction lengths we need more information than this. 889 if (StringLen < 2) 890 continue; 891 892 // If this is a beneficial class of candidate, then every one is stored in 893 // this vector. 894 std::vector<Candidate> CandidatesForRepeatedSeq; 895 896 // Describes the start and end point of each candidate. This allows the 897 // target to infer some information about each occurrence of each repeated 898 // sequence. 899 // FIXME: CandidatesForRepeatedSeq and this should be combined. 900 std::vector< 901 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 902 RepeatedSequenceLocs; 903 904 // Figure out the call overhead for each instance of the sequence. 905 for (auto &ChildPair : Parent.Children) { 906 SuffixTreeNode *M = ChildPair.second; 907 908 if (M && M->IsInTree && M->isLeaf()) { 909 // Each sequence is over [StartIt, EndIt]. 910 MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 911 MachineBasicBlock::iterator EndIt = 912 Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 913 914 CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, 915 FunctionList.size()); 916 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 917 918 // Never visit this leaf again. 919 M->IsInTree = false; 920 } 921 } 922 923 // We've found something we might want to outline. 924 // Create an OutlinedFunction to store it and check if it'd be beneficial 925 // to outline. 926 TargetInstrInfo::MachineOutlinerInfo MInfo = 927 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 928 std::vector<unsigned> Seq; 929 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 930 Seq.push_back(ST.Str[i]); 931 OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq, 932 MInfo); 933 unsigned Benefit = OF.getBenefit(); 934 935 // Is it better to outline this candidate than not? 936 if (Benefit < 1) { 937 // Outlining this candidate would take more instructions than not 938 // outlining. 939 // Emit a remark explaining why we didn't outline this candidate. 940 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 941 RepeatedSequenceLocs[0]; 942 MachineOptimizationRemarkEmitter MORE( 943 *(C.first->getParent()->getParent()), nullptr); 944 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 945 C.first->getDebugLoc(), 946 C.first->getParent()); 947 R << "Did not outline " << NV("Length", StringLen) << " instructions" 948 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 949 << " locations." 950 << " Instructions from outlining all occurrences (" 951 << NV("OutliningCost", OF.getOutliningCost()) << ")" 952 << " >= Unoutlined instruction count (" 953 << NV("NotOutliningCost", StringLen * OF.OccurrenceCount) << ")" 954 << " (Also found at: "; 955 956 // Tell the user the other places the candidate was found. 957 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 958 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 959 RepeatedSequenceLocs[i].first->getDebugLoc()); 960 if (i != e - 1) 961 R << ", "; 962 } 963 964 R << ")"; 965 MORE.emit(R); 966 967 // Move to the next candidate. 968 continue; 969 } 970 971 if (StringLen > MaxLen) 972 MaxLen = StringLen; 973 974 // At this point, the candidate class is seen as beneficial. Set their 975 // benefit values and save them in the candidate list. 976 for (Candidate &C : CandidatesForRepeatedSeq) { 977 C.Benefit = Benefit; 978 C.MInfo = MInfo; 979 CandidateList.push_back(C); 980 } 981 982 FunctionList.push_back(OF); 983 984 // Move to the next function. 985 Parent.IsInTree = false; 986 } 987 988 return MaxLen; 989 } 990 991 void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 992 std::vector<OutlinedFunction> &FunctionList, 993 InstructionMapper &Mapper, 994 unsigned MaxCandidateLen, 995 const TargetInstrInfo &TII) { 996 997 // Return true if this candidate became unbeneficial for outlining in a 998 // previous step. 999 auto ShouldSkipCandidate = [&FunctionList](Candidate &C) { 1000 1001 // Check if the candidate was removed in a previous step. 1002 if (!C.InCandidateList) 1003 return true; 1004 1005 // Check if C's associated function is still beneficial after previous 1006 // pruning steps. 1007 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1008 1009 if (F.OccurrenceCount < 2 || F.getBenefit() < 1) { 1010 assert(F.OccurrenceCount > 0 && 1011 "Can't remove OutlinedFunction with no occurrences!"); 1012 F.OccurrenceCount--; 1013 C.InCandidateList = false; 1014 return true; 1015 } 1016 1017 // C is in the list, and F is still beneficial. 1018 return false; 1019 }; 1020 1021 // Remove C from the candidate space, and update its OutlinedFunction. 1022 auto Prune = [&FunctionList](Candidate &C) { 1023 1024 // Get the OutlinedFunction associated with this Candidate. 1025 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1026 1027 // Update C's associated function's occurrence count. 1028 assert(F.OccurrenceCount > 0 && 1029 "Can't remove OutlinedFunction with no occurrences!"); 1030 F.OccurrenceCount--; 1031 1032 // Remove C from the CandidateList. 1033 C.InCandidateList = false; 1034 1035 DEBUG(dbgs() << "- Removed a Candidate \n"; 1036 dbgs() << "--- Num fns left for candidate: " << F.OccurrenceCount 1037 << "\n"; 1038 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 1039 << "\n";); 1040 }; 1041 1042 // TODO: Experiment with interval trees or other interval-checking structures 1043 // to lower the time complexity of this function. 1044 // TODO: Can we do better than the simple greedy choice? 1045 // Check for overlaps in the range. 1046 // This is O(MaxCandidateLen * CandidateList.size()). 1047 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1048 It++) { 1049 Candidate &C1 = *It; 1050 1051 // If C1 was already pruned, or its function is no longer beneficial for 1052 // outlining, move to the next candidate. 1053 if (ShouldSkipCandidate(C1)) 1054 continue; 1055 1056 // The minimum start index of any candidate that could overlap with this 1057 // one. 1058 unsigned FarthestPossibleIdx = 0; 1059 1060 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1061 if (C1.StartIdx > MaxCandidateLen) 1062 FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen; 1063 1064 // Compare against the candidates in the list that start at at most 1065 // FarthestPossibleIdx indices away from C1. There are at most 1066 // MaxCandidateLen of these. 1067 for (auto Sit = It + 1; Sit != Et; Sit++) { 1068 Candidate &C2 = *Sit; 1069 1070 // Is this candidate too far away to overlap? 1071 if (C2.StartIdx < FarthestPossibleIdx) 1072 break; 1073 1074 // If C2 was already pruned, or its function is no longer beneficial for 1075 // outlining, move to the next candidate. 1076 if (ShouldSkipCandidate(C2)) 1077 continue; 1078 1079 unsigned C2End = C2.StartIdx + C2.Len - 1; 1080 1081 // Do C1 and C2 overlap? 1082 // 1083 // Not overlapping: 1084 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1085 // 1086 // We sorted our candidate list so C2Start <= C1Start. We know that 1087 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1088 // have to check is C2End < C2Start to see if we overlap. 1089 if (C2End < C1.StartIdx) 1090 continue; 1091 1092 // C1 and C2 overlap. 1093 // We need to choose the better of the two. 1094 // 1095 // Approximate this by picking the one which would have saved us the 1096 // most instructions before any pruning. 1097 if (C1.Benefit >= C2.Benefit) { 1098 Prune(C2); 1099 } else { 1100 Prune(C1); 1101 // C1 is out, so we don't have to compare it against anyone else. 1102 break; 1103 } 1104 } 1105 } 1106 } 1107 1108 unsigned 1109 MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1110 std::vector<OutlinedFunction> &FunctionList, 1111 SuffixTree &ST, InstructionMapper &Mapper, 1112 const TargetInstrInfo &TII) { 1113 1114 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1115 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1116 1117 MaxCandidateLen = 1118 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1119 1120 // Sort the candidates in decending order. This will simplify the outlining 1121 // process when we have to remove the candidates from the mapping by 1122 // allowing us to cut them out without keeping track of an offset. 1123 std::stable_sort(CandidateList.begin(), CandidateList.end()); 1124 1125 return MaxCandidateLen; 1126 } 1127 1128 MachineFunction * 1129 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1130 InstructionMapper &Mapper) { 1131 1132 // Create the function name. This should be unique. For now, just hash the 1133 // module name and include it in the function name plus the number of this 1134 // function. 1135 std::ostringstream NameStream; 1136 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1137 1138 // Create the function using an IR-level function. 1139 LLVMContext &C = M.getContext(); 1140 Function *F = dyn_cast<Function>( 1141 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1142 assert(F && "Function was null!"); 1143 1144 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1145 // which gives us better results when we outline from linkonceodr functions. 1146 F->setLinkage(GlobalValue::PrivateLinkage); 1147 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1148 1149 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1150 IRBuilder<> Builder(EntryBB); 1151 Builder.CreateRetVoid(); 1152 1153 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1154 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1155 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1156 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1157 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1158 1159 // Insert the new function into the module. 1160 MF.insert(MF.begin(), &MBB); 1161 1162 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1163 1164 // Copy over the instructions for the function using the integer mappings in 1165 // its sequence. 1166 for (unsigned Str : OF.Sequence) { 1167 MachineInstr *NewMI = 1168 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1169 NewMI->dropMemRefs(); 1170 1171 // Don't keep debug information for outlined instructions. 1172 // FIXME: This means outlined functions are currently undebuggable. 1173 NewMI->setDebugLoc(DebugLoc()); 1174 MBB.insert(MBB.end(), NewMI); 1175 } 1176 1177 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1178 1179 return &MF; 1180 } 1181 1182 bool MachineOutliner::outline(Module &M, 1183 const ArrayRef<Candidate> &CandidateList, 1184 std::vector<OutlinedFunction> &FunctionList, 1185 InstructionMapper &Mapper) { 1186 1187 bool OutlinedSomething = false; 1188 // Replace the candidates with calls to their respective outlined functions. 1189 for (const Candidate &C : CandidateList) { 1190 1191 // Was the candidate removed during pruneOverlaps? 1192 if (!C.InCandidateList) 1193 continue; 1194 1195 // If not, then look at its OutlinedFunction. 1196 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1197 1198 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1199 if (OF.OccurrenceCount < 2 || OF.getBenefit() < 1) 1200 continue; 1201 1202 // If not, then outline it. 1203 assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1204 MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent(); 1205 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx]; 1206 unsigned EndIdx = C.StartIdx + C.Len - 1; 1207 1208 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1209 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1210 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1211 1212 EndIt++; // Erase needs one past the end index. 1213 1214 // Does this candidate have a function yet? 1215 if (!OF.MF) { 1216 OF.MF = createOutlinedFunction(M, OF, Mapper); 1217 FunctionsCreated++; 1218 } 1219 1220 MachineFunction *MF = OF.MF; 1221 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1222 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1223 1224 // Insert a call to the new function and erase the old sequence. 1225 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1226 StartIt = Mapper.InstrList[C.StartIdx]; 1227 MBB->erase(StartIt, EndIt); 1228 1229 OutlinedSomething = true; 1230 1231 // Statistics. 1232 NumOutlined++; 1233 } 1234 1235 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1236 1237 return OutlinedSomething; 1238 } 1239 1240 bool MachineOutliner::runOnModule(Module &M) { 1241 1242 // Is there anything in the module at all? 1243 if (M.empty()) 1244 return false; 1245 1246 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1247 const TargetSubtargetInfo &STI = 1248 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1249 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1250 const TargetInstrInfo *TII = STI.getInstrInfo(); 1251 1252 InstructionMapper Mapper; 1253 1254 // Build instruction mappings for each function in the module. 1255 for (Function &F : M) { 1256 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1257 1258 // Is the function empty? Safe to outline from? 1259 if (F.empty() || 1260 !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs)) 1261 continue; 1262 1263 // If it is, look at each MachineBasicBlock in the function. 1264 for (MachineBasicBlock &MBB : MF) { 1265 1266 // Is there anything in MBB? 1267 if (MBB.empty()) 1268 continue; 1269 1270 // If yes, map it. 1271 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1272 } 1273 } 1274 1275 // Construct a suffix tree, use it to find candidates, and then outline them. 1276 SuffixTree ST(Mapper.UnsignedVec); 1277 std::vector<Candidate> CandidateList; 1278 std::vector<OutlinedFunction> FunctionList; 1279 1280 // Find all of the outlining candidates. 1281 unsigned MaxCandidateLen = 1282 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1283 1284 // Remove candidates that overlap with other candidates. 1285 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1286 1287 // Outline each of the candidates and return true if something was outlined. 1288 return outline(M, CandidateList, FunctionList, Mapper); 1289 } 1290