1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/Passes.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetRegisterInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/Support/Allocator.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <functional> 75 #include <map> 76 #include <sstream> 77 #include <tuple> 78 #include <vector> 79 80 #define DEBUG_TYPE "machine-outliner" 81 82 using namespace llvm; 83 using namespace ore; 84 85 STATISTIC(NumOutlined, "Number of candidates outlined"); 86 STATISTIC(FunctionsCreated, "Number of functions created"); 87 88 namespace { 89 90 /// \brief An individual sequence of instructions to be replaced with a call to 91 /// an outlined function. 92 struct Candidate { 93 private: 94 /// The start index of this \p Candidate in the instruction list. 95 unsigned StartIdx; 96 97 /// The number of instructions in this \p Candidate. 98 unsigned Len; 99 100 public: 101 /// Set to false if the candidate overlapped with another candidate. 102 bool InCandidateList = true; 103 104 /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of 105 /// \p OutlinedFunctions. 106 unsigned FunctionIdx; 107 108 /// Contains all target-specific information for this \p Candidate. 109 TargetInstrInfo::MachineOutlinerInfo MInfo; 110 111 /// Return the number of instructions in this Candidate. 112 unsigned getLength() const { return Len; } 113 114 /// Return the start index of this candidate. 115 unsigned getStartIdx() const { return StartIdx; } 116 117 // Return the end index of this candidate. 118 unsigned getEndIdx() const { return StartIdx + Len - 1; } 119 120 /// \brief The number of instructions that would be saved by outlining every 121 /// candidate of this type. 122 /// 123 /// This is a fixed value which is not updated during the candidate pruning 124 /// process. It is only used for deciding which candidate to keep if two 125 /// candidates overlap. The true benefit is stored in the OutlinedFunction 126 /// for some given candidate. 127 unsigned Benefit = 0; 128 129 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 130 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 131 132 Candidate() {} 133 134 /// \brief Used to ensure that \p Candidates are outlined in an order that 135 /// preserves the start and end indices of other \p Candidates. 136 bool operator<(const Candidate &RHS) const { 137 return getStartIdx() > RHS.getStartIdx(); 138 } 139 }; 140 141 /// \brief The information necessary to create an outlined function for some 142 /// class of candidate. 143 struct OutlinedFunction { 144 145 private: 146 /// The number of candidates for this \p OutlinedFunction. 147 unsigned OccurrenceCount = 0; 148 149 public: 150 std::vector<std::shared_ptr<Candidate>> Candidates; 151 152 /// The actual outlined function created. 153 /// This is initialized after we go through and create the actual function. 154 MachineFunction *MF = nullptr; 155 156 /// A number assigned to this function which appears at the end of its name. 157 unsigned Name; 158 159 /// \brief The sequence of integers corresponding to the instructions in this 160 /// function. 161 std::vector<unsigned> Sequence; 162 163 /// Contains all target-specific information for this \p OutlinedFunction. 164 TargetInstrInfo::MachineOutlinerInfo MInfo; 165 166 /// Return the number of candidates for this \p OutlinedFunction. 167 unsigned getOccurrenceCount() { return OccurrenceCount; } 168 169 /// Decrement the occurrence count of this OutlinedFunction and return the 170 /// new count. 171 unsigned decrement() { 172 assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); 173 OccurrenceCount--; 174 return getOccurrenceCount(); 175 } 176 177 /// \brief Return the number of instructions it would take to outline this 178 /// function. 179 unsigned getOutliningCost() { 180 return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 181 MInfo.FrameOverhead; 182 } 183 184 /// \brief Return the number of instructions that would be saved by outlining 185 /// this function. 186 unsigned getBenefit() { 187 unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 188 unsigned OutlinedCost = getOutliningCost(); 189 return (NotOutlinedCost < OutlinedCost) ? 0 190 : NotOutlinedCost - OutlinedCost; 191 } 192 193 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 194 const std::vector<unsigned> &Sequence, 195 TargetInstrInfo::MachineOutlinerInfo &MInfo) 196 : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), 197 MInfo(MInfo) {} 198 }; 199 200 /// Represents an undefined index in the suffix tree. 201 const unsigned EmptyIdx = -1; 202 203 /// A node in a suffix tree which represents a substring or suffix. 204 /// 205 /// Each node has either no children or at least two children, with the root 206 /// being a exception in the empty tree. 207 /// 208 /// Children are represented as a map between unsigned integers and nodes. If 209 /// a node N has a child M on unsigned integer k, then the mapping represented 210 /// by N is a proper prefix of the mapping represented by M. Note that this, 211 /// although similar to a trie is somewhat different: each node stores a full 212 /// substring of the full mapping rather than a single character state. 213 /// 214 /// Each internal node contains a pointer to the internal node representing 215 /// the same string, but with the first character chopped off. This is stored 216 /// in \p Link. Each leaf node stores the start index of its respective 217 /// suffix in \p SuffixIdx. 218 struct SuffixTreeNode { 219 220 /// The children of this node. 221 /// 222 /// A child existing on an unsigned integer implies that from the mapping 223 /// represented by the current node, there is a way to reach another 224 /// mapping by tacking that character on the end of the current string. 225 DenseMap<unsigned, SuffixTreeNode *> Children; 226 227 /// A flag set to false if the node has been pruned from the tree. 228 bool IsInTree = true; 229 230 /// The start index of this node's substring in the main string. 231 unsigned StartIdx = EmptyIdx; 232 233 /// The end index of this node's substring in the main string. 234 /// 235 /// Every leaf node must have its \p EndIdx incremented at the end of every 236 /// step in the construction algorithm. To avoid having to update O(N) 237 /// nodes individually at the end of every step, the end index is stored 238 /// as a pointer. 239 unsigned *EndIdx = nullptr; 240 241 /// For leaves, the start index of the suffix represented by this node. 242 /// 243 /// For all other nodes, this is ignored. 244 unsigned SuffixIdx = EmptyIdx; 245 246 /// \brief For internal nodes, a pointer to the internal node representing 247 /// the same sequence with the first character chopped off. 248 /// 249 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 250 /// Ukkonen's algorithm does to achieve linear-time construction is 251 /// keep track of which node the next insert should be at. This makes each 252 /// insert O(1), and there are a total of O(N) inserts. The suffix link 253 /// helps with inserting children of internal nodes. 254 /// 255 /// Say we add a child to an internal node with associated mapping S. The 256 /// next insertion must be at the node representing S - its first character. 257 /// This is given by the way that we iteratively build the tree in Ukkonen's 258 /// algorithm. The main idea is to look at the suffixes of each prefix in the 259 /// string, starting with the longest suffix of the prefix, and ending with 260 /// the shortest. Therefore, if we keep pointers between such nodes, we can 261 /// move to the next insertion point in O(1) time. If we don't, then we'd 262 /// have to query from the root, which takes O(N) time. This would make the 263 /// construction algorithm O(N^2) rather than O(N). 264 SuffixTreeNode *Link = nullptr; 265 266 /// The parent of this node. Every node except for the root has a parent. 267 SuffixTreeNode *Parent = nullptr; 268 269 /// The number of times this node's string appears in the tree. 270 /// 271 /// This is equal to the number of leaf children of the string. It represents 272 /// the number of suffixes that the node's string is a prefix of. 273 unsigned OccurrenceCount = 0; 274 275 /// The length of the string formed by concatenating the edge labels from the 276 /// root to this node. 277 unsigned ConcatLen = 0; 278 279 /// Returns true if this node is a leaf. 280 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 281 282 /// Returns true if this node is the root of its owning \p SuffixTree. 283 bool isRoot() const { return StartIdx == EmptyIdx; } 284 285 /// Return the number of elements in the substring associated with this node. 286 size_t size() const { 287 288 // Is it the root? If so, it's the empty string so return 0. 289 if (isRoot()) 290 return 0; 291 292 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 293 294 // Size = the number of elements in the string. 295 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 296 return *EndIdx - StartIdx + 1; 297 } 298 299 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 300 SuffixTreeNode *Parent) 301 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 302 303 SuffixTreeNode() {} 304 }; 305 306 /// A data structure for fast substring queries. 307 /// 308 /// Suffix trees represent the suffixes of their input strings in their leaves. 309 /// A suffix tree is a type of compressed trie structure where each node 310 /// represents an entire substring rather than a single character. Each leaf 311 /// of the tree is a suffix. 312 /// 313 /// A suffix tree can be seen as a type of state machine where each state is a 314 /// substring of the full string. The tree is structured so that, for a string 315 /// of length N, there are exactly N leaves in the tree. This structure allows 316 /// us to quickly find repeated substrings of the input string. 317 /// 318 /// In this implementation, a "string" is a vector of unsigned integers. 319 /// These integers may result from hashing some data type. A suffix tree can 320 /// contain 1 or many strings, which can then be queried as one large string. 321 /// 322 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 323 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 324 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 325 /// paper is available at 326 /// 327 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 328 class SuffixTree { 329 public: 330 /// Stores each leaf node in the tree. 331 /// 332 /// This is used for finding outlining candidates. 333 std::vector<SuffixTreeNode *> LeafVector; 334 335 /// Each element is an integer representing an instruction in the module. 336 ArrayRef<unsigned> Str; 337 338 private: 339 /// Maintains each node in the tree. 340 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 341 342 /// The root of the suffix tree. 343 /// 344 /// The root represents the empty string. It is maintained by the 345 /// \p NodeAllocator like every other node in the tree. 346 SuffixTreeNode *Root = nullptr; 347 348 /// Maintains the end indices of the internal nodes in the tree. 349 /// 350 /// Each internal node is guaranteed to never have its end index change 351 /// during the construction algorithm; however, leaves must be updated at 352 /// every step. Therefore, we need to store leaf end indices by reference 353 /// to avoid updating O(N) leaves at every step of construction. Thus, 354 /// every internal node must be allocated its own end index. 355 BumpPtrAllocator InternalEndIdxAllocator; 356 357 /// The end index of each leaf in the tree. 358 unsigned LeafEndIdx = -1; 359 360 /// \brief Helper struct which keeps track of the next insertion point in 361 /// Ukkonen's algorithm. 362 struct ActiveState { 363 /// The next node to insert at. 364 SuffixTreeNode *Node; 365 366 /// The index of the first character in the substring currently being added. 367 unsigned Idx = EmptyIdx; 368 369 /// The length of the substring we have to add at the current step. 370 unsigned Len = 0; 371 }; 372 373 /// \brief The point the next insertion will take place at in the 374 /// construction algorithm. 375 ActiveState Active; 376 377 /// Allocate a leaf node and add it to the tree. 378 /// 379 /// \param Parent The parent of this node. 380 /// \param StartIdx The start index of this node's associated string. 381 /// \param Edge The label on the edge leaving \p Parent to this node. 382 /// 383 /// \returns A pointer to the allocated leaf node. 384 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 385 unsigned Edge) { 386 387 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 388 389 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 390 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 391 Parent.Children[Edge] = N; 392 393 return N; 394 } 395 396 /// Allocate an internal node and add it to the tree. 397 /// 398 /// \param Parent The parent of this node. Only null when allocating the root. 399 /// \param StartIdx The start index of this node's associated string. 400 /// \param EndIdx The end index of this node's associated string. 401 /// \param Edge The label on the edge leaving \p Parent to this node. 402 /// 403 /// \returns A pointer to the allocated internal node. 404 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 405 unsigned EndIdx, unsigned Edge) { 406 407 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 408 assert(!(!Parent && StartIdx != EmptyIdx) && 409 "Non-root internal nodes must have parents!"); 410 411 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 412 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 413 SuffixTreeNode(StartIdx, E, Root, Parent); 414 if (Parent) 415 Parent->Children[Edge] = N; 416 417 return N; 418 } 419 420 /// \brief Set the suffix indices of the leaves to the start indices of their 421 /// respective suffixes. Also stores each leaf in \p LeafVector at its 422 /// respective suffix index. 423 /// 424 /// \param[in] CurrNode The node currently being visited. 425 /// \param CurrIdx The current index of the string being visited. 426 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 427 428 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 429 430 // Store the length of the concatenation of all strings from the root to 431 // this node. 432 if (!CurrNode.isRoot()) { 433 if (CurrNode.ConcatLen == 0) 434 CurrNode.ConcatLen = CurrNode.size(); 435 436 if (CurrNode.Parent) 437 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 438 } 439 440 // Traverse the tree depth-first. 441 for (auto &ChildPair : CurrNode.Children) { 442 assert(ChildPair.second && "Node had a null child!"); 443 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 444 } 445 446 // Is this node a leaf? 447 if (IsLeaf) { 448 // If yes, give it a suffix index and bump its parent's occurrence count. 449 CurrNode.SuffixIdx = Str.size() - CurrIdx; 450 assert(CurrNode.Parent && "CurrNode had no parent!"); 451 CurrNode.Parent->OccurrenceCount++; 452 453 // Store the leaf in the leaf vector for pruning later. 454 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 455 } 456 } 457 458 /// \brief Construct the suffix tree for the prefix of the input ending at 459 /// \p EndIdx. 460 /// 461 /// Used to construct the full suffix tree iteratively. At the end of each 462 /// step, the constructed suffix tree is either a valid suffix tree, or a 463 /// suffix tree with implicit suffixes. At the end of the final step, the 464 /// suffix tree is a valid tree. 465 /// 466 /// \param EndIdx The end index of the current prefix in the main string. 467 /// \param SuffixesToAdd The number of suffixes that must be added 468 /// to complete the suffix tree at the current phase. 469 /// 470 /// \returns The number of suffixes that have not been added at the end of 471 /// this step. 472 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 473 SuffixTreeNode *NeedsLink = nullptr; 474 475 while (SuffixesToAdd > 0) { 476 477 // Are we waiting to add anything other than just the last character? 478 if (Active.Len == 0) { 479 // If not, then say the active index is the end index. 480 Active.Idx = EndIdx; 481 } 482 483 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 484 485 // The first character in the current substring we're looking at. 486 unsigned FirstChar = Str[Active.Idx]; 487 488 // Have we inserted anything starting with FirstChar at the current node? 489 if (Active.Node->Children.count(FirstChar) == 0) { 490 // If not, then we can just insert a leaf and move too the next step. 491 insertLeaf(*Active.Node, EndIdx, FirstChar); 492 493 // The active node is an internal node, and we visited it, so it must 494 // need a link if it doesn't have one. 495 if (NeedsLink) { 496 NeedsLink->Link = Active.Node; 497 NeedsLink = nullptr; 498 } 499 } else { 500 // There's a match with FirstChar, so look for the point in the tree to 501 // insert a new node. 502 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 503 504 unsigned SubstringLen = NextNode->size(); 505 506 // Is the current suffix we're trying to insert longer than the size of 507 // the child we want to move to? 508 if (Active.Len >= SubstringLen) { 509 // If yes, then consume the characters we've seen and move to the next 510 // node. 511 Active.Idx += SubstringLen; 512 Active.Len -= SubstringLen; 513 Active.Node = NextNode; 514 continue; 515 } 516 517 // Otherwise, the suffix we're trying to insert must be contained in the 518 // next node we want to move to. 519 unsigned LastChar = Str[EndIdx]; 520 521 // Is the string we're trying to insert a substring of the next node? 522 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 523 // If yes, then we're done for this step. Remember our insertion point 524 // and move to the next end index. At this point, we have an implicit 525 // suffix tree. 526 if (NeedsLink && !Active.Node->isRoot()) { 527 NeedsLink->Link = Active.Node; 528 NeedsLink = nullptr; 529 } 530 531 Active.Len++; 532 break; 533 } 534 535 // The string we're trying to insert isn't a substring of the next node, 536 // but matches up to a point. Split the node. 537 // 538 // For example, say we ended our search at a node n and we're trying to 539 // insert ABD. Then we'll create a new node s for AB, reduce n to just 540 // representing C, and insert a new leaf node l to represent d. This 541 // allows us to ensure that if n was a leaf, it remains a leaf. 542 // 543 // | ABC ---split---> | AB 544 // n s 545 // C / \ D 546 // n l 547 548 // The node s from the diagram 549 SuffixTreeNode *SplitNode = 550 insertInternalNode(Active.Node, NextNode->StartIdx, 551 NextNode->StartIdx + Active.Len - 1, FirstChar); 552 553 // Insert the new node representing the new substring into the tree as 554 // a child of the split node. This is the node l from the diagram. 555 insertLeaf(*SplitNode, EndIdx, LastChar); 556 557 // Make the old node a child of the split node and update its start 558 // index. This is the node n from the diagram. 559 NextNode->StartIdx += Active.Len; 560 NextNode->Parent = SplitNode; 561 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 562 563 // SplitNode is an internal node, update the suffix link. 564 if (NeedsLink) 565 NeedsLink->Link = SplitNode; 566 567 NeedsLink = SplitNode; 568 } 569 570 // We've added something new to the tree, so there's one less suffix to 571 // add. 572 SuffixesToAdd--; 573 574 if (Active.Node->isRoot()) { 575 if (Active.Len > 0) { 576 Active.Len--; 577 Active.Idx = EndIdx - SuffixesToAdd + 1; 578 } 579 } else { 580 // Start the next phase at the next smallest suffix. 581 Active.Node = Active.Node->Link; 582 } 583 } 584 585 return SuffixesToAdd; 586 } 587 588 public: 589 /// Construct a suffix tree from a sequence of unsigned integers. 590 /// 591 /// \param Str The string to construct the suffix tree for. 592 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 593 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 594 Root->IsInTree = true; 595 Active.Node = Root; 596 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 597 598 // Keep track of the number of suffixes we have to add of the current 599 // prefix. 600 unsigned SuffixesToAdd = 0; 601 Active.Node = Root; 602 603 // Construct the suffix tree iteratively on each prefix of the string. 604 // PfxEndIdx is the end index of the current prefix. 605 // End is one past the last element in the string. 606 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 607 PfxEndIdx++) { 608 SuffixesToAdd++; 609 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 610 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 611 } 612 613 // Set the suffix indices of each leaf. 614 assert(Root && "Root node can't be nullptr!"); 615 setSuffixIndices(*Root, 0); 616 } 617 }; 618 619 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 620 struct InstructionMapper { 621 622 /// \brief The next available integer to assign to a \p MachineInstr that 623 /// cannot be outlined. 624 /// 625 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 626 unsigned IllegalInstrNumber = -3; 627 628 /// \brief The next available integer to assign to a \p MachineInstr that can 629 /// be outlined. 630 unsigned LegalInstrNumber = 0; 631 632 /// Correspondence from \p MachineInstrs to unsigned integers. 633 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 634 InstructionIntegerMap; 635 636 /// Corresponcence from unsigned integers to \p MachineInstrs. 637 /// Inverse of \p InstructionIntegerMap. 638 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 639 640 /// The vector of unsigned integers that the module is mapped to. 641 std::vector<unsigned> UnsignedVec; 642 643 /// \brief Stores the location of the instruction associated with the integer 644 /// at index i in \p UnsignedVec for each index i. 645 std::vector<MachineBasicBlock::iterator> InstrList; 646 647 /// \brief Maps \p *It to a legal integer. 648 /// 649 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 650 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 651 /// 652 /// \returns The integer that \p *It was mapped to. 653 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 654 655 // Get the integer for this instruction or give it the current 656 // LegalInstrNumber. 657 InstrList.push_back(It); 658 MachineInstr &MI = *It; 659 bool WasInserted; 660 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 661 ResultIt; 662 std::tie(ResultIt, WasInserted) = 663 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 664 unsigned MINumber = ResultIt->second; 665 666 // There was an insertion. 667 if (WasInserted) { 668 LegalInstrNumber++; 669 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 670 } 671 672 UnsignedVec.push_back(MINumber); 673 674 // Make sure we don't overflow or use any integers reserved by the DenseMap. 675 if (LegalInstrNumber >= IllegalInstrNumber) 676 report_fatal_error("Instruction mapping overflow!"); 677 678 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 679 "Tried to assign DenseMap tombstone or empty key to instruction."); 680 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 681 "Tried to assign DenseMap tombstone or empty key to instruction."); 682 683 return MINumber; 684 } 685 686 /// Maps \p *It to an illegal integer. 687 /// 688 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 689 /// 690 /// \returns The integer that \p *It was mapped to. 691 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 692 unsigned MINumber = IllegalInstrNumber; 693 694 InstrList.push_back(It); 695 UnsignedVec.push_back(IllegalInstrNumber); 696 IllegalInstrNumber--; 697 698 assert(LegalInstrNumber < IllegalInstrNumber && 699 "Instruction mapping overflow!"); 700 701 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 702 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 703 704 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 705 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 706 707 return MINumber; 708 } 709 710 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 711 /// and appends it to \p UnsignedVec and \p InstrList. 712 /// 713 /// Two instructions are assigned the same integer if they are identical. 714 /// If an instruction is deemed unsafe to outline, then it will be assigned an 715 /// unique integer. The resulting mapping is placed into a suffix tree and 716 /// queried for candidates. 717 /// 718 /// \param MBB The \p MachineBasicBlock to be translated into integers. 719 /// \param TRI \p TargetRegisterInfo for the module. 720 /// \param TII \p TargetInstrInfo for the module. 721 void convertToUnsignedVec(MachineBasicBlock &MBB, 722 const TargetRegisterInfo &TRI, 723 const TargetInstrInfo &TII) { 724 unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB); 725 726 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 727 It++) { 728 729 // Keep track of where this instruction is in the module. 730 switch (TII.getOutliningType(It, Flags)) { 731 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 732 mapToIllegalUnsigned(It); 733 break; 734 735 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 736 mapToLegalUnsigned(It); 737 break; 738 739 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 740 break; 741 } 742 } 743 744 // After we're done every insertion, uniquely terminate this part of the 745 // "string". This makes sure we won't match across basic block or function 746 // boundaries since the "end" is encoded uniquely and thus appears in no 747 // repeated substring. 748 InstrList.push_back(MBB.end()); 749 UnsignedVec.push_back(IllegalInstrNumber); 750 IllegalInstrNumber--; 751 } 752 753 InstructionMapper() { 754 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 755 // changed. 756 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 757 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 758 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 759 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 760 } 761 }; 762 763 /// \brief An interprocedural pass which finds repeated sequences of 764 /// instructions and replaces them with calls to functions. 765 /// 766 /// Each instruction is mapped to an unsigned integer and placed in a string. 767 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 768 /// is then repeatedly queried for repeated sequences of instructions. Each 769 /// non-overlapping repeated sequence is then placed in its own 770 /// \p MachineFunction and each instance is then replaced with a call to that 771 /// function. 772 struct MachineOutliner : public ModulePass { 773 774 static char ID; 775 776 /// \brief Set to true if the outliner should consider functions with 777 /// linkonceodr linkage. 778 bool OutlineFromLinkOnceODRs = false; 779 780 // Collection of IR functions created by the outliner. 781 std::vector<Function *> CreatedIRFunctions; 782 783 StringRef getPassName() const override { return "Machine Outliner"; } 784 785 void getAnalysisUsage(AnalysisUsage &AU) const override { 786 AU.addRequired<MachineModuleInfo>(); 787 AU.addPreserved<MachineModuleInfo>(); 788 AU.setPreservesAll(); 789 ModulePass::getAnalysisUsage(AU); 790 } 791 792 MachineOutliner(bool OutlineFromLinkOnceODRs = false) 793 : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { 794 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 795 } 796 797 /// Find all repeated substrings that satisfy the outlining cost model. 798 /// 799 /// If a substring appears at least twice, then it must be represented by 800 /// an internal node which appears in at least two suffixes. Each suffix is 801 /// represented by a leaf node. To do this, we visit each internal node in 802 /// the tree, using the leaf children of each internal node. If an internal 803 /// node represents a beneficial substring, then we use each of its leaf 804 /// children to find the locations of its substring. 805 /// 806 /// \param ST A suffix tree to query. 807 /// \param TII TargetInstrInfo for the target. 808 /// \param Mapper Contains outlining mapping information. 809 /// \param[out] CandidateList Filled with candidates representing each 810 /// beneficial substring. 811 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 812 /// type of candidate. 813 /// 814 /// \returns The length of the longest candidate found. 815 unsigned 816 findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 817 InstructionMapper &Mapper, 818 std::vector<std::shared_ptr<Candidate>> &CandidateList, 819 std::vector<OutlinedFunction> &FunctionList); 820 821 /// \brief Replace the sequences of instructions represented by the 822 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 823 /// described in \p FunctionList. 824 /// 825 /// \param M The module we are outlining from. 826 /// \param CandidateList A list of candidates to be outlined. 827 /// \param FunctionList A list of functions to be inserted into the module. 828 /// \param Mapper Contains the instruction mappings for the module. 829 bool outline(Module &M, 830 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 831 std::vector<OutlinedFunction> &FunctionList, 832 InstructionMapper &Mapper); 833 834 /// Creates a function for \p OF and inserts it into the module. 835 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 836 InstructionMapper &Mapper); 837 838 /// Find potential outlining candidates and store them in \p CandidateList. 839 /// 840 /// For each type of potential candidate, also build an \p OutlinedFunction 841 /// struct containing the information to build the function for that 842 /// candidate. 843 /// 844 /// \param[out] CandidateList Filled with outlining candidates for the module. 845 /// \param[out] FunctionList Filled with functions corresponding to each type 846 /// of \p Candidate. 847 /// \param ST The suffix tree for the module. 848 /// \param TII TargetInstrInfo for the module. 849 /// 850 /// \returns The length of the longest candidate found. 0 if there are none. 851 unsigned 852 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 853 std::vector<OutlinedFunction> &FunctionList, 854 SuffixTree &ST, InstructionMapper &Mapper, 855 const TargetInstrInfo &TII); 856 857 /// Helper function for pruneOverlaps. 858 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 859 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 860 861 /// \brief Remove any overlapping candidates that weren't handled by the 862 /// suffix tree's pruning method. 863 /// 864 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 865 /// If a short candidate is chosen for outlining, then a longer candidate 866 /// which has that short candidate as a suffix is chosen, the tree's pruning 867 /// method will not find it. Thus, we need to prune before outlining as well. 868 /// 869 /// \param[in,out] CandidateList A list of outlining candidates. 870 /// \param[in,out] FunctionList A list of functions to be outlined. 871 /// \param Mapper Contains instruction mapping info for outlining. 872 /// \param MaxCandidateLen The length of the longest candidate. 873 /// \param TII TargetInstrInfo for the module. 874 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 875 std::vector<OutlinedFunction> &FunctionList, 876 InstructionMapper &Mapper, unsigned MaxCandidateLen, 877 const TargetInstrInfo &TII); 878 879 /// Construct a suffix tree on the instructions in \p M and outline repeated 880 /// strings from that tree. 881 bool runOnModule(Module &M) override; 882 }; 883 884 } // Anonymous namespace. 885 886 char MachineOutliner::ID = 0; 887 888 namespace llvm { 889 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { 890 return new MachineOutliner(OutlineFromLinkOnceODRs); 891 } 892 893 } // namespace llvm 894 895 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 896 false) 897 898 unsigned MachineOutliner::findCandidates( 899 SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, 900 std::vector<std::shared_ptr<Candidate>> &CandidateList, 901 std::vector<OutlinedFunction> &FunctionList) { 902 CandidateList.clear(); 903 FunctionList.clear(); 904 unsigned MaxLen = 0; 905 906 // FIXME: Visit internal nodes instead of leaves. 907 for (SuffixTreeNode *Leaf : ST.LeafVector) { 908 assert(Leaf && "Leaves in LeafVector cannot be null!"); 909 if (!Leaf->IsInTree) 910 continue; 911 912 assert(Leaf->Parent && "All leaves must have parents!"); 913 SuffixTreeNode &Parent = *(Leaf->Parent); 914 915 // If it doesn't appear enough, or we already outlined from it, skip it. 916 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 917 continue; 918 919 // Figure out if this candidate is beneficial. 920 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 921 922 // Too short to be beneficial; skip it. 923 // FIXME: This isn't necessarily true for, say, X86. If we factor in 924 // instruction lengths we need more information than this. 925 if (StringLen < 2) 926 continue; 927 928 // If this is a beneficial class of candidate, then every one is stored in 929 // this vector. 930 std::vector<Candidate> CandidatesForRepeatedSeq; 931 932 // Describes the start and end point of each candidate. This allows the 933 // target to infer some information about each occurrence of each repeated 934 // sequence. 935 // FIXME: CandidatesForRepeatedSeq and this should be combined. 936 std::vector< 937 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 938 RepeatedSequenceLocs; 939 940 // Figure out the call overhead for each instance of the sequence. 941 for (auto &ChildPair : Parent.Children) { 942 SuffixTreeNode *M = ChildPair.second; 943 944 if (M && M->IsInTree && M->isLeaf()) { 945 // Never visit this leaf again. 946 M->IsInTree = false; 947 unsigned StartIdx = M->SuffixIdx; 948 unsigned EndIdx = StartIdx + StringLen - 1; 949 950 // Trick: Discard some candidates that would be incompatible with the 951 // ones we've already found for this sequence. This will save us some 952 // work in candidate selection. 953 // 954 // If two candidates overlap, then we can't outline them both. This 955 // happens when we have candidates that look like, say 956 // 957 // AA (where each "A" is an instruction). 958 // 959 // We might have some portion of the module that looks like this: 960 // AAAAAA (6 A's) 961 // 962 // In this case, there are 5 different copies of "AA" in this range, but 963 // at most 3 can be outlined. If only outlining 3 of these is going to 964 // be unbeneficial, then we ought to not bother. 965 // 966 // Note that two things DON'T overlap when they look like this: 967 // start1...end1 .... start2...end2 968 // That is, one must either 969 // * End before the other starts 970 // * Start after the other ends 971 if (std::all_of(CandidatesForRepeatedSeq.begin(), 972 CandidatesForRepeatedSeq.end(), 973 [&StartIdx, &EndIdx](const Candidate &C) { 974 return (EndIdx < C.getStartIdx() || 975 StartIdx > C.getEndIdx()); 976 })) { 977 // It doesn't overlap with anything, so we can outline it. 978 // Each sequence is over [StartIt, EndIt]. 979 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 980 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 981 982 // Save the candidate and its location. 983 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, 984 FunctionList.size()); 985 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 986 } 987 } 988 } 989 990 // We've found something we might want to outline. 991 // Create an OutlinedFunction to store it and check if it'd be beneficial 992 // to outline. 993 TargetInstrInfo::MachineOutlinerInfo MInfo = 994 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 995 std::vector<unsigned> Seq; 996 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 997 Seq.push_back(ST.Str[i]); 998 OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(), 999 Seq, MInfo); 1000 unsigned Benefit = OF.getBenefit(); 1001 1002 // Is it better to outline this candidate than not? 1003 if (Benefit < 1) { 1004 // Outlining this candidate would take more instructions than not 1005 // outlining. 1006 // Emit a remark explaining why we didn't outline this candidate. 1007 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 1008 RepeatedSequenceLocs[0]; 1009 MachineOptimizationRemarkEmitter MORE( 1010 *(C.first->getParent()->getParent()), nullptr); 1011 MORE.emit([&]() { 1012 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 1013 C.first->getDebugLoc(), 1014 C.first->getParent()); 1015 R << "Did not outline " << NV("Length", StringLen) << " instructions" 1016 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 1017 << " locations." 1018 << " Instructions from outlining all occurrences (" 1019 << NV("OutliningCost", OF.getOutliningCost()) << ")" 1020 << " >= Unoutlined instruction count (" 1021 << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")" 1022 << " (Also found at: "; 1023 1024 // Tell the user the other places the candidate was found. 1025 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 1026 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 1027 RepeatedSequenceLocs[i].first->getDebugLoc()); 1028 if (i != e - 1) 1029 R << ", "; 1030 } 1031 1032 R << ")"; 1033 return R; 1034 }); 1035 1036 // Move to the next candidate. 1037 continue; 1038 } 1039 1040 if (StringLen > MaxLen) 1041 MaxLen = StringLen; 1042 1043 // At this point, the candidate class is seen as beneficial. Set their 1044 // benefit values and save them in the candidate list. 1045 std::vector<std::shared_ptr<Candidate>> CandidatesForFn; 1046 for (Candidate &C : CandidatesForRepeatedSeq) { 1047 C.Benefit = Benefit; 1048 C.MInfo = MInfo; 1049 std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); 1050 CandidateList.push_back(Cptr); 1051 CandidatesForFn.push_back(Cptr); 1052 } 1053 1054 FunctionList.push_back(OF); 1055 FunctionList.back().Candidates = CandidatesForFn; 1056 1057 // Move to the next function. 1058 Parent.IsInTree = false; 1059 } 1060 1061 return MaxLen; 1062 } 1063 1064 // Remove C from the candidate space, and update its OutlinedFunction. 1065 void MachineOutliner::prune(Candidate &C, 1066 std::vector<OutlinedFunction> &FunctionList) { 1067 // Get the OutlinedFunction associated with this Candidate. 1068 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1069 1070 // Update C's associated function's occurrence count. 1071 F.decrement(); 1072 1073 // Remove C from the CandidateList. 1074 C.InCandidateList = false; 1075 1076 DEBUG(dbgs() << "- Removed a Candidate \n"; 1077 dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount() 1078 << "\n"; 1079 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 1080 << "\n";); 1081 } 1082 1083 void MachineOutliner::pruneOverlaps( 1084 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1085 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 1086 unsigned MaxCandidateLen, const TargetInstrInfo &TII) { 1087 1088 // Return true if this candidate became unbeneficial for outlining in a 1089 // previous step. 1090 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1091 1092 // Check if the candidate was removed in a previous step. 1093 if (!C.InCandidateList) 1094 return true; 1095 1096 // C must be alive. Check if we should remove it. 1097 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1098 prune(C, FunctionList); 1099 return true; 1100 } 1101 1102 // C is in the list, and F is still beneficial. 1103 return false; 1104 }; 1105 1106 // TODO: Experiment with interval trees or other interval-checking structures 1107 // to lower the time complexity of this function. 1108 // TODO: Can we do better than the simple greedy choice? 1109 // Check for overlaps in the range. 1110 // This is O(MaxCandidateLen * CandidateList.size()). 1111 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1112 It++) { 1113 Candidate &C1 = **It; 1114 1115 // If C1 was already pruned, or its function is no longer beneficial for 1116 // outlining, move to the next candidate. 1117 if (ShouldSkipCandidate(C1)) 1118 continue; 1119 1120 // The minimum start index of any candidate that could overlap with this 1121 // one. 1122 unsigned FarthestPossibleIdx = 0; 1123 1124 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1125 if (C1.getStartIdx() > MaxCandidateLen) 1126 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1127 1128 // Compare against the candidates in the list that start at at most 1129 // FarthestPossibleIdx indices away from C1. There are at most 1130 // MaxCandidateLen of these. 1131 for (auto Sit = It + 1; Sit != Et; Sit++) { 1132 Candidate &C2 = **Sit; 1133 1134 // Is this candidate too far away to overlap? 1135 if (C2.getStartIdx() < FarthestPossibleIdx) 1136 break; 1137 1138 // If C2 was already pruned, or its function is no longer beneficial for 1139 // outlining, move to the next candidate. 1140 if (ShouldSkipCandidate(C2)) 1141 continue; 1142 1143 // Do C1 and C2 overlap? 1144 // 1145 // Not overlapping: 1146 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1147 // 1148 // We sorted our candidate list so C2Start <= C1Start. We know that 1149 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1150 // have to check is C2End < C2Start to see if we overlap. 1151 if (C2.getEndIdx() < C1.getStartIdx()) 1152 continue; 1153 1154 // C1 and C2 overlap. 1155 // We need to choose the better of the two. 1156 // 1157 // Approximate this by picking the one which would have saved us the 1158 // most instructions before any pruning. 1159 1160 // Is C2 a better candidate? 1161 if (C2.Benefit > C1.Benefit) { 1162 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1163 // against anything anymore, so break. 1164 prune(C1, FunctionList); 1165 break; 1166 } 1167 1168 // Prune C2 and move on to the next candidate. 1169 prune(C2, FunctionList); 1170 } 1171 } 1172 } 1173 1174 unsigned MachineOutliner::buildCandidateList( 1175 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1176 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 1177 InstructionMapper &Mapper, const TargetInstrInfo &TII) { 1178 1179 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1180 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1181 1182 MaxCandidateLen = 1183 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1184 1185 // Sort the candidates in decending order. This will simplify the outlining 1186 // process when we have to remove the candidates from the mapping by 1187 // allowing us to cut them out without keeping track of an offset. 1188 std::stable_sort( 1189 CandidateList.begin(), CandidateList.end(), 1190 [](const std::shared_ptr<Candidate> &LHS, 1191 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1192 1193 return MaxCandidateLen; 1194 } 1195 1196 MachineFunction * 1197 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1198 InstructionMapper &Mapper) { 1199 1200 // Create the function name. This should be unique. For now, just hash the 1201 // module name and include it in the function name plus the number of this 1202 // function. 1203 std::ostringstream NameStream; 1204 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1205 1206 // Create the function using an IR-level function. 1207 LLVMContext &C = M.getContext(); 1208 Function *F = dyn_cast<Function>( 1209 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1210 assert(F && "Function was null!"); 1211 1212 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1213 // which gives us better results when we outline from linkonceodr functions. 1214 F->setLinkage(GlobalValue::PrivateLinkage); 1215 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1216 1217 // Save F so that we can add debug info later if we need to. 1218 CreatedIRFunctions.push_back(F); 1219 1220 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1221 IRBuilder<> Builder(EntryBB); 1222 Builder.CreateRetVoid(); 1223 1224 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1225 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1226 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1227 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1228 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1229 1230 // Insert the new function into the module. 1231 MF.insert(MF.begin(), &MBB); 1232 1233 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1234 1235 // Copy over the instructions for the function using the integer mappings in 1236 // its sequence. 1237 for (unsigned Str : OF.Sequence) { 1238 MachineInstr *NewMI = 1239 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1240 NewMI->dropMemRefs(); 1241 1242 // Don't keep debug information for outlined instructions. 1243 NewMI->setDebugLoc(DebugLoc()); 1244 MBB.insert(MBB.end(), NewMI); 1245 } 1246 1247 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1248 1249 return &MF; 1250 } 1251 1252 bool MachineOutliner::outline( 1253 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 1254 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1255 1256 bool OutlinedSomething = false; 1257 // Replace the candidates with calls to their respective outlined functions. 1258 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 1259 Candidate &C = *Cptr; 1260 // Was the candidate removed during pruneOverlaps? 1261 if (!C.InCandidateList) 1262 continue; 1263 1264 // If not, then look at its OutlinedFunction. 1265 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1266 1267 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1268 if (OF.getBenefit() < 1) 1269 continue; 1270 1271 // If not, then outline it. 1272 assert(C.getStartIdx() < Mapper.InstrList.size() && 1273 "Candidate out of bounds!"); 1274 MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent(); 1275 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()]; 1276 unsigned EndIdx = C.getEndIdx(); 1277 1278 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1279 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1280 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1281 1282 EndIt++; // Erase needs one past the end index. 1283 1284 // Does this candidate have a function yet? 1285 if (!OF.MF) { 1286 OF.MF = createOutlinedFunction(M, OF, Mapper); 1287 MachineBasicBlock *MBB = &*OF.MF->begin(); 1288 1289 // Output a remark telling the user that an outlined function was created, 1290 // and explaining where it came from. 1291 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1292 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1293 MBB->findDebugLoc(MBB->begin()), MBB); 1294 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) 1295 << " instructions by " 1296 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 1297 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1298 << " locations. " 1299 << "(Found at: "; 1300 1301 // Tell the user the other places the candidate was found. 1302 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1303 1304 // Skip over things that were pruned. 1305 if (!OF.Candidates[i]->InCandidateList) 1306 continue; 1307 1308 R << NV( 1309 (Twine("StartLoc") + Twine(i)).str(), 1310 Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc()); 1311 if (i != e - 1) 1312 R << ", "; 1313 } 1314 1315 R << ")"; 1316 1317 MORE.emit(R); 1318 FunctionsCreated++; 1319 } 1320 1321 MachineFunction *MF = OF.MF; 1322 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1323 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1324 1325 // Insert a call to the new function and erase the old sequence. 1326 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1327 StartIt = Mapper.InstrList[C.getStartIdx()]; 1328 MBB->erase(StartIt, EndIt); 1329 1330 OutlinedSomething = true; 1331 1332 // Statistics. 1333 NumOutlined++; 1334 } 1335 1336 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1337 1338 return OutlinedSomething; 1339 } 1340 1341 bool MachineOutliner::runOnModule(Module &M) { 1342 1343 // Is there anything in the module at all? 1344 if (M.empty()) 1345 return false; 1346 1347 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1348 const TargetSubtargetInfo &STI = 1349 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1350 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1351 const TargetInstrInfo *TII = STI.getInstrInfo(); 1352 1353 InstructionMapper Mapper; 1354 1355 // Build instruction mappings for each function in the module. 1356 for (Function &F : M) { 1357 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1358 1359 // Is the function empty? Safe to outline from? 1360 if (F.empty() || 1361 !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs)) 1362 continue; 1363 1364 // If it is, look at each MachineBasicBlock in the function. 1365 for (MachineBasicBlock &MBB : MF) { 1366 1367 // Is there anything in MBB? And is it the target of an indirect branch? 1368 if (MBB.empty() || MBB.hasAddressTaken()) 1369 continue; 1370 1371 // If yes, map it. 1372 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1373 } 1374 } 1375 1376 // Construct a suffix tree, use it to find candidates, and then outline them. 1377 SuffixTree ST(Mapper.UnsignedVec); 1378 std::vector<std::shared_ptr<Candidate>> CandidateList; 1379 std::vector<OutlinedFunction> FunctionList; 1380 1381 // Find all of the outlining candidates. 1382 unsigned MaxCandidateLen = 1383 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1384 1385 // Remove candidates that overlap with other candidates. 1386 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1387 1388 // Outline each of the candidates and return true if something was outlined. 1389 bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper); 1390 1391 // If we have a compile unit, and we've outlined something, then set debug 1392 // information on the outlined function. 1393 if (M.debug_compile_units_begin() != M.debug_compile_units_end() && 1394 OutlinedSomething) { 1395 std::unique_ptr<DIBuilder> DB = llvm::make_unique<DIBuilder>(M); 1396 1397 // Create a compile unit for the outlined function. 1398 DICompileUnit *MCU = *M.debug_compile_units_begin(); 1399 DIFile *Unit = DB->createFile(M.getName(), "/"); 1400 DB->createCompileUnit(MCU->getSourceLanguage(), Unit, "machine-outliner", 1401 true, "", MCU->getRuntimeVersion(), StringRef(), 1402 DICompileUnit::DebugEmissionKind::NoDebug); 1403 1404 // Walk over each IR function we created in the outliner and create 1405 // DISubprograms for each function. 1406 for (Function *F : CreatedIRFunctions) { 1407 DISubprogram *SP = DB->createFunction( 1408 Unit /* Context */, F->getName(), 1409 StringRef() /* Empty linkage name. */, Unit /* File */, 1410 0 /* Line numbers don't matter*/, 1411 DB->createSubroutineType(DB->getOrCreateTypeArray(None)), /* void */ 1412 false, true, 0, /* Line in scope doesn't matter*/ 1413 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1414 true /* Outlined code is optimized code by definition. */); 1415 1416 // Don't add any new variables to the subprogram. 1417 DB->finalizeSubprogram(SP); 1418 1419 // Attach subprogram to the function. 1420 F->setSubprogram(SP); 1421 } 1422 1423 // We're done with the DIBuilder. 1424 DB->finalize(); 1425 } 1426 1427 return OutlinedSomething; 1428 } 1429