1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFrameInfo.h" 63 #include "llvm/CodeGen/MachineFunction.h" 64 #include "llvm/CodeGen/MachineInstrBuilder.h" 65 #include "llvm/CodeGen/MachineModuleInfo.h" 66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/IR/IRBuilder.h" 69 #include "llvm/Support/Allocator.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetInstrInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <functional> 77 #include <map> 78 #include <sstream> 79 #include <tuple> 80 #include <vector> 81 82 #define DEBUG_TYPE "machine-outliner" 83 84 using namespace llvm; 85 using namespace ore; 86 87 STATISTIC(NumOutlined, "Number of candidates outlined"); 88 STATISTIC(FunctionsCreated, "Number of functions created"); 89 90 namespace { 91 92 /// \brief An individual sequence of instructions to be replaced with a call to 93 /// an outlined function. 94 struct Candidate { 95 private: 96 /// The start index of this \p Candidate in the instruction list. 97 unsigned StartIdx; 98 99 /// The number of instructions in this \p Candidate. 100 unsigned Len; 101 102 public: 103 /// Set to false if the candidate overlapped with another candidate. 104 bool InCandidateList = true; 105 106 /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of 107 /// \p OutlinedFunctions. 108 unsigned FunctionIdx; 109 110 /// Contains all target-specific information for this \p Candidate. 111 TargetInstrInfo::MachineOutlinerInfo MInfo; 112 113 /// Return the number of instructions in this Candidate. 114 unsigned length() const { return Len; } 115 116 /// Return the start index of this candidate. 117 unsigned startIdx() const { return StartIdx; } 118 119 // Return the end index of this candidate. 120 unsigned endIdx() const { return StartIdx + Len - 1; } 121 122 /// \brief The number of instructions that would be saved by outlining every 123 /// candidate of this type. 124 /// 125 /// This is a fixed value which is not updated during the candidate pruning 126 /// process. It is only used for deciding which candidate to keep if two 127 /// candidates overlap. The true benefit is stored in the OutlinedFunction 128 /// for some given candidate. 129 unsigned Benefit = 0; 130 131 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 132 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 133 134 Candidate() {} 135 136 /// \brief Used to ensure that \p Candidates are outlined in an order that 137 /// preserves the start and end indices of other \p Candidates. 138 bool operator<(const Candidate &RHS) const { 139 return startIdx() > RHS.startIdx(); 140 } 141 }; 142 143 /// \brief The information necessary to create an outlined function for some 144 /// class of candidate. 145 struct OutlinedFunction { 146 147 private: 148 /// The number of candidates for this \p OutlinedFunction. 149 unsigned OccurrenceCount = 0; 150 151 public: 152 /// The actual outlined function created. 153 /// This is initialized after we go through and create the actual function. 154 MachineFunction *MF = nullptr; 155 156 /// A number assigned to this function which appears at the end of its name. 157 unsigned Name; 158 159 /// \brief The sequence of integers corresponding to the instructions in this 160 /// function. 161 std::vector<unsigned> Sequence; 162 163 /// Contains all target-specific information for this \p OutlinedFunction. 164 TargetInstrInfo::MachineOutlinerInfo MInfo; 165 166 /// Return the number of candidates for this \p OutlinedFunction. 167 unsigned getOccurrenceCount() { return OccurrenceCount; } 168 169 /// Decrement the occurrence count of this OutlinedFunction and return the 170 /// new count. 171 unsigned decrement() { 172 assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); 173 OccurrenceCount--; 174 return getOccurrenceCount(); 175 } 176 177 /// \brief Return the number of instructions it would take to outline this 178 /// function. 179 unsigned getOutliningCost() { 180 return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 181 MInfo.FrameOverhead; 182 } 183 184 /// \brief Return the number of instructions that would be saved by outlining 185 /// this function. 186 unsigned getBenefit() { 187 unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 188 unsigned OutlinedCost = getOutliningCost(); 189 return (NotOutlinedCost < OutlinedCost) ? 0 190 : NotOutlinedCost - OutlinedCost; 191 } 192 193 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 194 const std::vector<unsigned> &Sequence, 195 TargetInstrInfo::MachineOutlinerInfo &MInfo) 196 : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), 197 MInfo(MInfo) {} 198 }; 199 200 /// Represents an undefined index in the suffix tree. 201 const unsigned EmptyIdx = -1; 202 203 /// A node in a suffix tree which represents a substring or suffix. 204 /// 205 /// Each node has either no children or at least two children, with the root 206 /// being a exception in the empty tree. 207 /// 208 /// Children are represented as a map between unsigned integers and nodes. If 209 /// a node N has a child M on unsigned integer k, then the mapping represented 210 /// by N is a proper prefix of the mapping represented by M. Note that this, 211 /// although similar to a trie is somewhat different: each node stores a full 212 /// substring of the full mapping rather than a single character state. 213 /// 214 /// Each internal node contains a pointer to the internal node representing 215 /// the same string, but with the first character chopped off. This is stored 216 /// in \p Link. Each leaf node stores the start index of its respective 217 /// suffix in \p SuffixIdx. 218 struct SuffixTreeNode { 219 220 /// The children of this node. 221 /// 222 /// A child existing on an unsigned integer implies that from the mapping 223 /// represented by the current node, there is a way to reach another 224 /// mapping by tacking that character on the end of the current string. 225 DenseMap<unsigned, SuffixTreeNode *> Children; 226 227 /// A flag set to false if the node has been pruned from the tree. 228 bool IsInTree = true; 229 230 /// The start index of this node's substring in the main string. 231 unsigned StartIdx = EmptyIdx; 232 233 /// The end index of this node's substring in the main string. 234 /// 235 /// Every leaf node must have its \p EndIdx incremented at the end of every 236 /// step in the construction algorithm. To avoid having to update O(N) 237 /// nodes individually at the end of every step, the end index is stored 238 /// as a pointer. 239 unsigned *EndIdx = nullptr; 240 241 /// For leaves, the start index of the suffix represented by this node. 242 /// 243 /// For all other nodes, this is ignored. 244 unsigned SuffixIdx = EmptyIdx; 245 246 /// \brief For internal nodes, a pointer to the internal node representing 247 /// the same sequence with the first character chopped off. 248 /// 249 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 250 /// Ukkonen's algorithm does to achieve linear-time construction is 251 /// keep track of which node the next insert should be at. This makes each 252 /// insert O(1), and there are a total of O(N) inserts. The suffix link 253 /// helps with inserting children of internal nodes. 254 /// 255 /// Say we add a child to an internal node with associated mapping S. The 256 /// next insertion must be at the node representing S - its first character. 257 /// This is given by the way that we iteratively build the tree in Ukkonen's 258 /// algorithm. The main idea is to look at the suffixes of each prefix in the 259 /// string, starting with the longest suffix of the prefix, and ending with 260 /// the shortest. Therefore, if we keep pointers between such nodes, we can 261 /// move to the next insertion point in O(1) time. If we don't, then we'd 262 /// have to query from the root, which takes O(N) time. This would make the 263 /// construction algorithm O(N^2) rather than O(N). 264 SuffixTreeNode *Link = nullptr; 265 266 /// The parent of this node. Every node except for the root has a parent. 267 SuffixTreeNode *Parent = nullptr; 268 269 /// The number of times this node's string appears in the tree. 270 /// 271 /// This is equal to the number of leaf children of the string. It represents 272 /// the number of suffixes that the node's string is a prefix of. 273 unsigned OccurrenceCount = 0; 274 275 /// The length of the string formed by concatenating the edge labels from the 276 /// root to this node. 277 unsigned ConcatLen = 0; 278 279 /// Returns true if this node is a leaf. 280 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 281 282 /// Returns true if this node is the root of its owning \p SuffixTree. 283 bool isRoot() const { return StartIdx == EmptyIdx; } 284 285 /// Return the number of elements in the substring associated with this node. 286 size_t size() const { 287 288 // Is it the root? If so, it's the empty string so return 0. 289 if (isRoot()) 290 return 0; 291 292 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 293 294 // Size = the number of elements in the string. 295 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 296 return *EndIdx - StartIdx + 1; 297 } 298 299 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 300 SuffixTreeNode *Parent) 301 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 302 303 SuffixTreeNode() {} 304 }; 305 306 /// A data structure for fast substring queries. 307 /// 308 /// Suffix trees represent the suffixes of their input strings in their leaves. 309 /// A suffix tree is a type of compressed trie structure where each node 310 /// represents an entire substring rather than a single character. Each leaf 311 /// of the tree is a suffix. 312 /// 313 /// A suffix tree can be seen as a type of state machine where each state is a 314 /// substring of the full string. The tree is structured so that, for a string 315 /// of length N, there are exactly N leaves in the tree. This structure allows 316 /// us to quickly find repeated substrings of the input string. 317 /// 318 /// In this implementation, a "string" is a vector of unsigned integers. 319 /// These integers may result from hashing some data type. A suffix tree can 320 /// contain 1 or many strings, which can then be queried as one large string. 321 /// 322 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 323 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 324 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 325 /// paper is available at 326 /// 327 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 328 class SuffixTree { 329 public: 330 /// Stores each leaf node in the tree. 331 /// 332 /// This is used for finding outlining candidates. 333 std::vector<SuffixTreeNode *> LeafVector; 334 335 /// Each element is an integer representing an instruction in the module. 336 ArrayRef<unsigned> Str; 337 338 private: 339 /// Maintains each node in the tree. 340 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 341 342 /// The root of the suffix tree. 343 /// 344 /// The root represents the empty string. It is maintained by the 345 /// \p NodeAllocator like every other node in the tree. 346 SuffixTreeNode *Root = nullptr; 347 348 /// Maintains the end indices of the internal nodes in the tree. 349 /// 350 /// Each internal node is guaranteed to never have its end index change 351 /// during the construction algorithm; however, leaves must be updated at 352 /// every step. Therefore, we need to store leaf end indices by reference 353 /// to avoid updating O(N) leaves at every step of construction. Thus, 354 /// every internal node must be allocated its own end index. 355 BumpPtrAllocator InternalEndIdxAllocator; 356 357 /// The end index of each leaf in the tree. 358 unsigned LeafEndIdx = -1; 359 360 /// \brief Helper struct which keeps track of the next insertion point in 361 /// Ukkonen's algorithm. 362 struct ActiveState { 363 /// The next node to insert at. 364 SuffixTreeNode *Node; 365 366 /// The index of the first character in the substring currently being added. 367 unsigned Idx = EmptyIdx; 368 369 /// The length of the substring we have to add at the current step. 370 unsigned Len = 0; 371 }; 372 373 /// \brief The point the next insertion will take place at in the 374 /// construction algorithm. 375 ActiveState Active; 376 377 /// Allocate a leaf node and add it to the tree. 378 /// 379 /// \param Parent The parent of this node. 380 /// \param StartIdx The start index of this node's associated string. 381 /// \param Edge The label on the edge leaving \p Parent to this node. 382 /// 383 /// \returns A pointer to the allocated leaf node. 384 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 385 unsigned Edge) { 386 387 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 388 389 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 390 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 391 Parent.Children[Edge] = N; 392 393 return N; 394 } 395 396 /// Allocate an internal node and add it to the tree. 397 /// 398 /// \param Parent The parent of this node. Only null when allocating the root. 399 /// \param StartIdx The start index of this node's associated string. 400 /// \param EndIdx The end index of this node's associated string. 401 /// \param Edge The label on the edge leaving \p Parent to this node. 402 /// 403 /// \returns A pointer to the allocated internal node. 404 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 405 unsigned EndIdx, unsigned Edge) { 406 407 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 408 assert(!(!Parent && StartIdx != EmptyIdx) && 409 "Non-root internal nodes must have parents!"); 410 411 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 412 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 413 SuffixTreeNode(StartIdx, E, Root, Parent); 414 if (Parent) 415 Parent->Children[Edge] = N; 416 417 return N; 418 } 419 420 /// \brief Set the suffix indices of the leaves to the start indices of their 421 /// respective suffixes. Also stores each leaf in \p LeafVector at its 422 /// respective suffix index. 423 /// 424 /// \param[in] CurrNode The node currently being visited. 425 /// \param CurrIdx The current index of the string being visited. 426 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 427 428 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 429 430 // Store the length of the concatenation of all strings from the root to 431 // this node. 432 if (!CurrNode.isRoot()) { 433 if (CurrNode.ConcatLen == 0) 434 CurrNode.ConcatLen = CurrNode.size(); 435 436 if (CurrNode.Parent) 437 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 438 } 439 440 // Traverse the tree depth-first. 441 for (auto &ChildPair : CurrNode.Children) { 442 assert(ChildPair.second && "Node had a null child!"); 443 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 444 } 445 446 // Is this node a leaf? 447 if (IsLeaf) { 448 // If yes, give it a suffix index and bump its parent's occurrence count. 449 CurrNode.SuffixIdx = Str.size() - CurrIdx; 450 assert(CurrNode.Parent && "CurrNode had no parent!"); 451 CurrNode.Parent->OccurrenceCount++; 452 453 // Store the leaf in the leaf vector for pruning later. 454 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 455 } 456 } 457 458 /// \brief Construct the suffix tree for the prefix of the input ending at 459 /// \p EndIdx. 460 /// 461 /// Used to construct the full suffix tree iteratively. At the end of each 462 /// step, the constructed suffix tree is either a valid suffix tree, or a 463 /// suffix tree with implicit suffixes. At the end of the final step, the 464 /// suffix tree is a valid tree. 465 /// 466 /// \param EndIdx The end index of the current prefix in the main string. 467 /// \param SuffixesToAdd The number of suffixes that must be added 468 /// to complete the suffix tree at the current phase. 469 /// 470 /// \returns The number of suffixes that have not been added at the end of 471 /// this step. 472 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 473 SuffixTreeNode *NeedsLink = nullptr; 474 475 while (SuffixesToAdd > 0) { 476 477 // Are we waiting to add anything other than just the last character? 478 if (Active.Len == 0) { 479 // If not, then say the active index is the end index. 480 Active.Idx = EndIdx; 481 } 482 483 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 484 485 // The first character in the current substring we're looking at. 486 unsigned FirstChar = Str[Active.Idx]; 487 488 // Have we inserted anything starting with FirstChar at the current node? 489 if (Active.Node->Children.count(FirstChar) == 0) { 490 // If not, then we can just insert a leaf and move too the next step. 491 insertLeaf(*Active.Node, EndIdx, FirstChar); 492 493 // The active node is an internal node, and we visited it, so it must 494 // need a link if it doesn't have one. 495 if (NeedsLink) { 496 NeedsLink->Link = Active.Node; 497 NeedsLink = nullptr; 498 } 499 } else { 500 // There's a match with FirstChar, so look for the point in the tree to 501 // insert a new node. 502 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 503 504 unsigned SubstringLen = NextNode->size(); 505 506 // Is the current suffix we're trying to insert longer than the size of 507 // the child we want to move to? 508 if (Active.Len >= SubstringLen) { 509 // If yes, then consume the characters we've seen and move to the next 510 // node. 511 Active.Idx += SubstringLen; 512 Active.Len -= SubstringLen; 513 Active.Node = NextNode; 514 continue; 515 } 516 517 // Otherwise, the suffix we're trying to insert must be contained in the 518 // next node we want to move to. 519 unsigned LastChar = Str[EndIdx]; 520 521 // Is the string we're trying to insert a substring of the next node? 522 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 523 // If yes, then we're done for this step. Remember our insertion point 524 // and move to the next end index. At this point, we have an implicit 525 // suffix tree. 526 if (NeedsLink && !Active.Node->isRoot()) { 527 NeedsLink->Link = Active.Node; 528 NeedsLink = nullptr; 529 } 530 531 Active.Len++; 532 break; 533 } 534 535 // The string we're trying to insert isn't a substring of the next node, 536 // but matches up to a point. Split the node. 537 // 538 // For example, say we ended our search at a node n and we're trying to 539 // insert ABD. Then we'll create a new node s for AB, reduce n to just 540 // representing C, and insert a new leaf node l to represent d. This 541 // allows us to ensure that if n was a leaf, it remains a leaf. 542 // 543 // | ABC ---split---> | AB 544 // n s 545 // C / \ D 546 // n l 547 548 // The node s from the diagram 549 SuffixTreeNode *SplitNode = 550 insertInternalNode(Active.Node, NextNode->StartIdx, 551 NextNode->StartIdx + Active.Len - 1, FirstChar); 552 553 // Insert the new node representing the new substring into the tree as 554 // a child of the split node. This is the node l from the diagram. 555 insertLeaf(*SplitNode, EndIdx, LastChar); 556 557 // Make the old node a child of the split node and update its start 558 // index. This is the node n from the diagram. 559 NextNode->StartIdx += Active.Len; 560 NextNode->Parent = SplitNode; 561 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 562 563 // SplitNode is an internal node, update the suffix link. 564 if (NeedsLink) 565 NeedsLink->Link = SplitNode; 566 567 NeedsLink = SplitNode; 568 } 569 570 // We've added something new to the tree, so there's one less suffix to 571 // add. 572 SuffixesToAdd--; 573 574 if (Active.Node->isRoot()) { 575 if (Active.Len > 0) { 576 Active.Len--; 577 Active.Idx = EndIdx - SuffixesToAdd + 1; 578 } 579 } else { 580 // Start the next phase at the next smallest suffix. 581 Active.Node = Active.Node->Link; 582 } 583 } 584 585 return SuffixesToAdd; 586 } 587 588 public: 589 /// Construct a suffix tree from a sequence of unsigned integers. 590 /// 591 /// \param Str The string to construct the suffix tree for. 592 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 593 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 594 Root->IsInTree = true; 595 Active.Node = Root; 596 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 597 598 // Keep track of the number of suffixes we have to add of the current 599 // prefix. 600 unsigned SuffixesToAdd = 0; 601 Active.Node = Root; 602 603 // Construct the suffix tree iteratively on each prefix of the string. 604 // PfxEndIdx is the end index of the current prefix. 605 // End is one past the last element in the string. 606 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 607 PfxEndIdx++) { 608 SuffixesToAdd++; 609 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 610 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 611 } 612 613 // Set the suffix indices of each leaf. 614 assert(Root && "Root node can't be nullptr!"); 615 setSuffixIndices(*Root, 0); 616 } 617 }; 618 619 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 620 struct InstructionMapper { 621 622 /// \brief The next available integer to assign to a \p MachineInstr that 623 /// cannot be outlined. 624 /// 625 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 626 unsigned IllegalInstrNumber = -3; 627 628 /// \brief The next available integer to assign to a \p MachineInstr that can 629 /// be outlined. 630 unsigned LegalInstrNumber = 0; 631 632 /// Correspondence from \p MachineInstrs to unsigned integers. 633 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 634 InstructionIntegerMap; 635 636 /// Corresponcence from unsigned integers to \p MachineInstrs. 637 /// Inverse of \p InstructionIntegerMap. 638 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 639 640 /// The vector of unsigned integers that the module is mapped to. 641 std::vector<unsigned> UnsignedVec; 642 643 /// \brief Stores the location of the instruction associated with the integer 644 /// at index i in \p UnsignedVec for each index i. 645 std::vector<MachineBasicBlock::iterator> InstrList; 646 647 /// \brief Maps \p *It to a legal integer. 648 /// 649 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 650 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 651 /// 652 /// \returns The integer that \p *It was mapped to. 653 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 654 655 // Get the integer for this instruction or give it the current 656 // LegalInstrNumber. 657 InstrList.push_back(It); 658 MachineInstr &MI = *It; 659 bool WasInserted; 660 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 661 ResultIt; 662 std::tie(ResultIt, WasInserted) = 663 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 664 unsigned MINumber = ResultIt->second; 665 666 // There was an insertion. 667 if (WasInserted) { 668 LegalInstrNumber++; 669 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 670 } 671 672 UnsignedVec.push_back(MINumber); 673 674 // Make sure we don't overflow or use any integers reserved by the DenseMap. 675 if (LegalInstrNumber >= IllegalInstrNumber) 676 report_fatal_error("Instruction mapping overflow!"); 677 678 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 679 "Tried to assign DenseMap tombstone or empty key to instruction."); 680 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 681 "Tried to assign DenseMap tombstone or empty key to instruction."); 682 683 return MINumber; 684 } 685 686 /// Maps \p *It to an illegal integer. 687 /// 688 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 689 /// 690 /// \returns The integer that \p *It was mapped to. 691 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 692 unsigned MINumber = IllegalInstrNumber; 693 694 InstrList.push_back(It); 695 UnsignedVec.push_back(IllegalInstrNumber); 696 IllegalInstrNumber--; 697 698 assert(LegalInstrNumber < IllegalInstrNumber && 699 "Instruction mapping overflow!"); 700 701 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 702 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 703 704 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 705 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 706 707 return MINumber; 708 } 709 710 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 711 /// and appends it to \p UnsignedVec and \p InstrList. 712 /// 713 /// Two instructions are assigned the same integer if they are identical. 714 /// If an instruction is deemed unsafe to outline, then it will be assigned an 715 /// unique integer. The resulting mapping is placed into a suffix tree and 716 /// queried for candidates. 717 /// 718 /// \param MBB The \p MachineBasicBlock to be translated into integers. 719 /// \param TRI \p TargetRegisterInfo for the module. 720 /// \param TII \p TargetInstrInfo for the module. 721 void convertToUnsignedVec(MachineBasicBlock &MBB, 722 const TargetRegisterInfo &TRI, 723 const TargetInstrInfo &TII) { 724 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 725 It++) { 726 727 // Keep track of where this instruction is in the module. 728 switch (TII.getOutliningType(*It)) { 729 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 730 mapToIllegalUnsigned(It); 731 break; 732 733 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 734 mapToLegalUnsigned(It); 735 break; 736 737 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 738 break; 739 } 740 } 741 742 // After we're done every insertion, uniquely terminate this part of the 743 // "string". This makes sure we won't match across basic block or function 744 // boundaries since the "end" is encoded uniquely and thus appears in no 745 // repeated substring. 746 InstrList.push_back(MBB.end()); 747 UnsignedVec.push_back(IllegalInstrNumber); 748 IllegalInstrNumber--; 749 } 750 751 InstructionMapper() { 752 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 753 // changed. 754 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 755 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 756 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 757 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 758 } 759 }; 760 761 /// \brief An interprocedural pass which finds repeated sequences of 762 /// instructions and replaces them with calls to functions. 763 /// 764 /// Each instruction is mapped to an unsigned integer and placed in a string. 765 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 766 /// is then repeatedly queried for repeated sequences of instructions. Each 767 /// non-overlapping repeated sequence is then placed in its own 768 /// \p MachineFunction and each instance is then replaced with a call to that 769 /// function. 770 struct MachineOutliner : public ModulePass { 771 772 static char ID; 773 774 /// \brief Set to true if the outliner should consider functions with 775 /// linkonceodr linkage. 776 bool OutlineFromLinkOnceODRs = false; 777 778 StringRef getPassName() const override { return "Machine Outliner"; } 779 780 void getAnalysisUsage(AnalysisUsage &AU) const override { 781 AU.addRequired<MachineModuleInfo>(); 782 AU.addPreserved<MachineModuleInfo>(); 783 AU.setPreservesAll(); 784 ModulePass::getAnalysisUsage(AU); 785 } 786 787 MachineOutliner(bool OutlineFromLinkOnceODRs = false) 788 : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { 789 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 790 } 791 792 /// Find all repeated substrings that satisfy the outlining cost model. 793 /// 794 /// If a substring appears at least twice, then it must be represented by 795 /// an internal node which appears in at least two suffixes. Each suffix is 796 /// represented by a leaf node. To do this, we visit each internal node in 797 /// the tree, using the leaf children of each internal node. If an internal 798 /// node represents a beneficial substring, then we use each of its leaf 799 /// children to find the locations of its substring. 800 /// 801 /// \param ST A suffix tree to query. 802 /// \param TII TargetInstrInfo for the target. 803 /// \param Mapper Contains outlining mapping information. 804 /// \param[out] CandidateList Filled with candidates representing each 805 /// beneficial substring. 806 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 807 /// type of candidate. 808 /// 809 /// \returns The length of the longest candidate found. 810 unsigned findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 811 InstructionMapper &Mapper, 812 std::vector<Candidate> &CandidateList, 813 std::vector<OutlinedFunction> &FunctionList); 814 815 /// \brief Replace the sequences of instructions represented by the 816 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 817 /// described in \p FunctionList. 818 /// 819 /// \param M The module we are outlining from. 820 /// \param CandidateList A list of candidates to be outlined. 821 /// \param FunctionList A list of functions to be inserted into the module. 822 /// \param Mapper Contains the instruction mappings for the module. 823 bool outline(Module &M, const ArrayRef<Candidate> &CandidateList, 824 std::vector<OutlinedFunction> &FunctionList, 825 InstructionMapper &Mapper); 826 827 /// Creates a function for \p OF and inserts it into the module. 828 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 829 InstructionMapper &Mapper); 830 831 /// Find potential outlining candidates and store them in \p CandidateList. 832 /// 833 /// For each type of potential candidate, also build an \p OutlinedFunction 834 /// struct containing the information to build the function for that 835 /// candidate. 836 /// 837 /// \param[out] CandidateList Filled with outlining candidates for the module. 838 /// \param[out] FunctionList Filled with functions corresponding to each type 839 /// of \p Candidate. 840 /// \param ST The suffix tree for the module. 841 /// \param TII TargetInstrInfo for the module. 842 /// 843 /// \returns The length of the longest candidate found. 0 if there are none. 844 unsigned buildCandidateList(std::vector<Candidate> &CandidateList, 845 std::vector<OutlinedFunction> &FunctionList, 846 SuffixTree &ST, InstructionMapper &Mapper, 847 const TargetInstrInfo &TII); 848 849 /// Helper function for pruneOverlaps. 850 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 851 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 852 853 /// \brief Remove any overlapping candidates that weren't handled by the 854 /// suffix tree's pruning method. 855 /// 856 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 857 /// If a short candidate is chosen for outlining, then a longer candidate 858 /// which has that short candidate as a suffix is chosen, the tree's pruning 859 /// method will not find it. Thus, we need to prune before outlining as well. 860 /// 861 /// \param[in,out] CandidateList A list of outlining candidates. 862 /// \param[in,out] FunctionList A list of functions to be outlined. 863 /// \param Mapper Contains instruction mapping info for outlining. 864 /// \param MaxCandidateLen The length of the longest candidate. 865 /// \param TII TargetInstrInfo for the module. 866 void pruneOverlaps(std::vector<Candidate> &CandidateList, 867 std::vector<OutlinedFunction> &FunctionList, 868 InstructionMapper &Mapper, unsigned MaxCandidateLen, 869 const TargetInstrInfo &TII); 870 871 /// Construct a suffix tree on the instructions in \p M and outline repeated 872 /// strings from that tree. 873 bool runOnModule(Module &M) override; 874 }; 875 876 } // Anonymous namespace. 877 878 char MachineOutliner::ID = 0; 879 880 namespace llvm { 881 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { 882 return new MachineOutliner(OutlineFromLinkOnceODRs); 883 } 884 885 } // namespace llvm 886 887 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 888 false) 889 890 unsigned 891 MachineOutliner::findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 892 InstructionMapper &Mapper, 893 std::vector<Candidate> &CandidateList, 894 std::vector<OutlinedFunction> &FunctionList) { 895 CandidateList.clear(); 896 FunctionList.clear(); 897 unsigned MaxLen = 0; 898 899 // FIXME: Visit internal nodes instead of leaves. 900 for (SuffixTreeNode *Leaf : ST.LeafVector) { 901 assert(Leaf && "Leaves in LeafVector cannot be null!"); 902 if (!Leaf->IsInTree) 903 continue; 904 905 assert(Leaf->Parent && "All leaves must have parents!"); 906 SuffixTreeNode &Parent = *(Leaf->Parent); 907 908 // If it doesn't appear enough, or we already outlined from it, skip it. 909 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 910 continue; 911 912 // Figure out if this candidate is beneficial. 913 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 914 915 // Too short to be beneficial; skip it. 916 // FIXME: This isn't necessarily true for, say, X86. If we factor in 917 // instruction lengths we need more information than this. 918 if (StringLen < 2) 919 continue; 920 921 // If this is a beneficial class of candidate, then every one is stored in 922 // this vector. 923 std::vector<Candidate> CandidatesForRepeatedSeq; 924 925 // Describes the start and end point of each candidate. This allows the 926 // target to infer some information about each occurrence of each repeated 927 // sequence. 928 // FIXME: CandidatesForRepeatedSeq and this should be combined. 929 std::vector< 930 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 931 RepeatedSequenceLocs; 932 933 // Figure out the call overhead for each instance of the sequence. 934 for (auto &ChildPair : Parent.Children) { 935 SuffixTreeNode *M = ChildPair.second; 936 937 if (M && M->IsInTree && M->isLeaf()) { 938 // Each sequence is over [StartIt, EndIt]. 939 MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; 940 MachineBasicBlock::iterator EndIt = 941 Mapper.InstrList[M->SuffixIdx + StringLen - 1]; 942 943 CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, 944 FunctionList.size()); 945 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 946 947 // Never visit this leaf again. 948 M->IsInTree = false; 949 } 950 } 951 952 // We've found something we might want to outline. 953 // Create an OutlinedFunction to store it and check if it'd be beneficial 954 // to outline. 955 TargetInstrInfo::MachineOutlinerInfo MInfo = 956 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 957 std::vector<unsigned> Seq; 958 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 959 Seq.push_back(ST.Str[i]); 960 OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq, 961 MInfo); 962 unsigned Benefit = OF.getBenefit(); 963 964 // Is it better to outline this candidate than not? 965 if (Benefit < 1) { 966 // Outlining this candidate would take more instructions than not 967 // outlining. 968 // Emit a remark explaining why we didn't outline this candidate. 969 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 970 RepeatedSequenceLocs[0]; 971 MachineOptimizationRemarkEmitter MORE( 972 *(C.first->getParent()->getParent()), nullptr); 973 MORE.emit([&]() { 974 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 975 C.first->getDebugLoc(), 976 C.first->getParent()); 977 R << "Did not outline " << NV("Length", StringLen) << " instructions" 978 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 979 << " locations." 980 << " Instructions from outlining all occurrences (" 981 << NV("OutliningCost", OF.getOutliningCost()) << ")" 982 << " >= Unoutlined instruction count (" 983 << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")" 984 << " (Also found at: "; 985 986 // Tell the user the other places the candidate was found. 987 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 988 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 989 RepeatedSequenceLocs[i].first->getDebugLoc()); 990 if (i != e - 1) 991 R << ", "; 992 } 993 994 R << ")"; 995 return R; 996 }); 997 998 // Move to the next candidate. 999 continue; 1000 } 1001 1002 if (StringLen > MaxLen) 1003 MaxLen = StringLen; 1004 1005 // At this point, the candidate class is seen as beneficial. Set their 1006 // benefit values and save them in the candidate list. 1007 for (Candidate &C : CandidatesForRepeatedSeq) { 1008 C.Benefit = Benefit; 1009 C.MInfo = MInfo; 1010 CandidateList.push_back(C); 1011 } 1012 1013 FunctionList.push_back(OF); 1014 1015 // Move to the next function. 1016 Parent.IsInTree = false; 1017 } 1018 1019 return MaxLen; 1020 } 1021 1022 // Remove C from the candidate space, and update its OutlinedFunction. 1023 void MachineOutliner::prune(Candidate &C, 1024 std::vector<OutlinedFunction> &FunctionList) { 1025 // Get the OutlinedFunction associated with this Candidate. 1026 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1027 1028 // Update C's associated function's occurrence count. 1029 F.decrement(); 1030 1031 // Remove C from the CandidateList. 1032 C.InCandidateList = false; 1033 1034 DEBUG(dbgs() << "- Removed a Candidate \n"; 1035 dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount() 1036 << "\n"; 1037 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 1038 << "\n";); 1039 } 1040 1041 void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList, 1042 std::vector<OutlinedFunction> &FunctionList, 1043 InstructionMapper &Mapper, 1044 unsigned MaxCandidateLen, 1045 const TargetInstrInfo &TII) { 1046 1047 // Return true if this candidate became unbeneficial for outlining in a 1048 // previous step. 1049 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1050 1051 // Check if the candidate was removed in a previous step. 1052 if (!C.InCandidateList) 1053 return true; 1054 1055 // C must be alive. Check if we should remove it. 1056 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1057 prune(C, FunctionList); 1058 return true; 1059 } 1060 1061 // C is in the list, and F is still beneficial. 1062 return false; 1063 }; 1064 1065 // TODO: Experiment with interval trees or other interval-checking structures 1066 // to lower the time complexity of this function. 1067 // TODO: Can we do better than the simple greedy choice? 1068 // Check for overlaps in the range. 1069 // This is O(MaxCandidateLen * CandidateList.size()). 1070 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1071 It++) { 1072 Candidate &C1 = *It; 1073 1074 // If C1 was already pruned, or its function is no longer beneficial for 1075 // outlining, move to the next candidate. 1076 if (ShouldSkipCandidate(C1)) 1077 continue; 1078 1079 // The minimum start index of any candidate that could overlap with this 1080 // one. 1081 unsigned FarthestPossibleIdx = 0; 1082 1083 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1084 if (C1.startIdx() > MaxCandidateLen) 1085 FarthestPossibleIdx = C1.startIdx() - MaxCandidateLen; 1086 1087 // Compare against the candidates in the list that start at at most 1088 // FarthestPossibleIdx indices away from C1. There are at most 1089 // MaxCandidateLen of these. 1090 for (auto Sit = It + 1; Sit != Et; Sit++) { 1091 Candidate &C2 = *Sit; 1092 1093 // Is this candidate too far away to overlap? 1094 if (C2.startIdx() < FarthestPossibleIdx) 1095 break; 1096 1097 // If C2 was already pruned, or its function is no longer beneficial for 1098 // outlining, move to the next candidate. 1099 if (ShouldSkipCandidate(C2)) 1100 continue; 1101 1102 // Do C1 and C2 overlap? 1103 // 1104 // Not overlapping: 1105 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1106 // 1107 // We sorted our candidate list so C2Start <= C1Start. We know that 1108 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1109 // have to check is C2End < C2Start to see if we overlap. 1110 if (C2.endIdx() < C1.startIdx()) 1111 continue; 1112 1113 // C1 and C2 overlap. 1114 // We need to choose the better of the two. 1115 // 1116 // Approximate this by picking the one which would have saved us the 1117 // most instructions before any pruning. 1118 1119 // Is C2 a better candidate? 1120 if (C2.Benefit > C1.Benefit) { 1121 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1122 // against anything anymore, so break. 1123 prune(C1, FunctionList); 1124 break; 1125 } 1126 1127 // Prune C2 and move on to the next candidate. 1128 prune(C2, FunctionList); 1129 } 1130 } 1131 } 1132 1133 unsigned 1134 MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList, 1135 std::vector<OutlinedFunction> &FunctionList, 1136 SuffixTree &ST, InstructionMapper &Mapper, 1137 const TargetInstrInfo &TII) { 1138 1139 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1140 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1141 1142 MaxCandidateLen = 1143 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1144 1145 // Sort the candidates in decending order. This will simplify the outlining 1146 // process when we have to remove the candidates from the mapping by 1147 // allowing us to cut them out without keeping track of an offset. 1148 std::stable_sort(CandidateList.begin(), CandidateList.end()); 1149 1150 return MaxCandidateLen; 1151 } 1152 1153 MachineFunction * 1154 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1155 InstructionMapper &Mapper) { 1156 1157 // Create the function name. This should be unique. For now, just hash the 1158 // module name and include it in the function name plus the number of this 1159 // function. 1160 std::ostringstream NameStream; 1161 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1162 1163 // Create the function using an IR-level function. 1164 LLVMContext &C = M.getContext(); 1165 Function *F = dyn_cast<Function>( 1166 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1167 assert(F && "Function was null!"); 1168 1169 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1170 // which gives us better results when we outline from linkonceodr functions. 1171 F->setLinkage(GlobalValue::PrivateLinkage); 1172 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1173 1174 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1175 IRBuilder<> Builder(EntryBB); 1176 Builder.CreateRetVoid(); 1177 1178 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1179 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1180 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1181 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1182 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1183 1184 // Insert the new function into the module. 1185 MF.insert(MF.begin(), &MBB); 1186 1187 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1188 1189 // Copy over the instructions for the function using the integer mappings in 1190 // its sequence. 1191 for (unsigned Str : OF.Sequence) { 1192 MachineInstr *NewMI = 1193 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1194 NewMI->dropMemRefs(); 1195 1196 // Don't keep debug information for outlined instructions. 1197 // FIXME: This means outlined functions are currently undebuggable. 1198 NewMI->setDebugLoc(DebugLoc()); 1199 MBB.insert(MBB.end(), NewMI); 1200 } 1201 1202 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1203 1204 return &MF; 1205 } 1206 1207 bool MachineOutliner::outline(Module &M, 1208 const ArrayRef<Candidate> &CandidateList, 1209 std::vector<OutlinedFunction> &FunctionList, 1210 InstructionMapper &Mapper) { 1211 1212 bool OutlinedSomething = false; 1213 // Replace the candidates with calls to their respective outlined functions. 1214 for (const Candidate &C : CandidateList) { 1215 1216 // Was the candidate removed during pruneOverlaps? 1217 if (!C.InCandidateList) 1218 continue; 1219 1220 // If not, then look at its OutlinedFunction. 1221 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1222 1223 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1224 if (OF.getBenefit() < 1) 1225 continue; 1226 1227 // If not, then outline it. 1228 assert(C.startIdx() < Mapper.InstrList.size() && 1229 "Candidate out of bounds!"); 1230 MachineBasicBlock *MBB = (*Mapper.InstrList[C.startIdx()]).getParent(); 1231 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.startIdx()]; 1232 unsigned EndIdx = C.endIdx(); 1233 1234 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1235 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1236 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1237 1238 EndIt++; // Erase needs one past the end index. 1239 1240 // Does this candidate have a function yet? 1241 if (!OF.MF) { 1242 OF.MF = createOutlinedFunction(M, OF, Mapper); 1243 FunctionsCreated++; 1244 } 1245 1246 MachineFunction *MF = OF.MF; 1247 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1248 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1249 1250 // Insert a call to the new function and erase the old sequence. 1251 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1252 StartIt = Mapper.InstrList[C.startIdx()]; 1253 MBB->erase(StartIt, EndIt); 1254 1255 OutlinedSomething = true; 1256 1257 // Statistics. 1258 NumOutlined++; 1259 } 1260 1261 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1262 1263 return OutlinedSomething; 1264 } 1265 1266 bool MachineOutliner::runOnModule(Module &M) { 1267 1268 // Is there anything in the module at all? 1269 if (M.empty()) 1270 return false; 1271 1272 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1273 const TargetSubtargetInfo &STI = 1274 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1275 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1276 const TargetInstrInfo *TII = STI.getInstrInfo(); 1277 1278 InstructionMapper Mapper; 1279 1280 // Build instruction mappings for each function in the module. 1281 for (Function &F : M) { 1282 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1283 1284 // Is the function empty? Safe to outline from? 1285 if (F.empty() || 1286 !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs)) 1287 continue; 1288 1289 // If it is, look at each MachineBasicBlock in the function. 1290 for (MachineBasicBlock &MBB : MF) { 1291 1292 // Is there anything in MBB? 1293 if (MBB.empty()) 1294 continue; 1295 1296 // If yes, map it. 1297 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1298 } 1299 } 1300 1301 // Construct a suffix tree, use it to find candidates, and then outline them. 1302 SuffixTree ST(Mapper.UnsignedVec); 1303 std::vector<Candidate> CandidateList; 1304 std::vector<OutlinedFunction> FunctionList; 1305 1306 // Find all of the outlining candidates. 1307 unsigned MaxCandidateLen = 1308 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1309 1310 // Remove candidates that overlap with other candidates. 1311 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1312 1313 // Outline each of the candidates and return true if something was outlined. 1314 return outline(M, CandidateList, FunctionList, Mapper); 1315 } 1316